

Part 15C TEST REPORT

Product Name	WIFI/BT Combo wireless module
Model	M26H002
Brand Name	FOXCONN
FCC ID	MCLM26H002
Client	Hon Hai Precision Ind. Co.,Ltd.

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1301-0014RF01R4

Page 2 of 86

GENERAL SUMMARY

Product Name	WIFI/BT Combo wireless module	Model	M26H002		
FCC ID	MCLM26H002	Report No.	RXA1301-0014RF01R2		
Client	Hon Hai Precision Ind. Co.,Ltd.				
Manufacturer	Hon Hai Precision Ind. Co.,Ltd.	Hon Hai Precision Ind. Co.,Ltd.			
Reference Standard(s)	 FCC CFR47 Part 15C (2013) Radio Frequency Devices 15.205 Restricted bands of operation; 15.207 Conducted limits; 15.209 Radiated emission limits; general requirements; 15.247 Operation within the bands 902-928 MHz,2400-2483.5 MHz, and 5725-5850MHz. ANSI C63.4 Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40GHz. (2009) DA00-705 Filing and Frequency Measurement Guidelines For Frequency Hopping Spread Spectrum System.(2000) 				
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 3 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: February 21 st , 2013				
Comment	The test result only responds to the measured sample.				

Approved by

うい Revised by

Performed by

Director

¥

RF Manager

RF Engineer

Report No.: RXA1301-0014RF01R4

TABLE OF CONTENT

1.	Ger	neral Information	4
	1.1.	Notes of the test report	. 4
	1.2.	Testing laboratory	. 5
	1.3.	Applicant Information	. 5
	1.4.	Manufacturer Information	. 5
	1.5.	Information of EUT	. 6
	1.6.	Test Date	. 7
2.	Info	rmation about the FHSS characteristics	8
	2.1.	Pseudorandom Frequency Hopping Sequence	. 8
	2.2.	Equal Hopping Frequency Use	. 9
	2.3.	System Receiver Input Bandwidth	. 9
3.	Tes	t Information	10
	3.1.	Test Mode	10
	3.2.	Summary of test results	10
	3.3.	Peak Power Output –Conducted	11
	3.4.	Occupied Bandwidth (20dB)	17
	3.5.	Frequency Separation	24
	3.6.	Time of Occupancy (Dwell Time)	31
	3.7.	Band Edge Compliance	38
	3.8.	Spurious Radiated Emissions in the Restricted Band	45
	3.9.	Number of hopping Frequency	52
	3.10.	Spurious RF Conducted Emissions	56
	3.11.	Radiates Emission	70
	3.12.	Conducted Emission	81
4.	Mai	n Test Instruments	86

Report No.: RXA1301-0014RF01R4

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 428261.

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 8510A.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company:	Hon Hai Precision Ind. Co.,Ltd.
Address:	5F-1, 5 Hsin-An Road, Hsinchu Science-Based Industrial Park
City:	/
Postal Code:	1
Country:	/

1.4. Manufacturer Information

Company:	Hon Hai Precision Ind. Co.,Ltd.
Address:	5F-1, 5 Hsin-An Road, Hsinchu Science-Based Industrial Park
City:	1
Postal Code:	1
Country:	1

1.5. Information of EUT

General information

Name of EUT:	WIFI/BT Combo wireless module				
IMEI:	A41731673970				
Hardware Version:	v.015				
Software Version:	MFG-8787-WIFI-SD-BT-SD-WIN-X86-1.2.7.33-14.0.11.p74				
	Туре		External Antenna		
	Antenna 1 Part NO.		MSA-3411-25	GC1-A1-W550MU	
Antonno Information:	Antenna 2 Part NO.		MSA-3411-25GC1-A1-W550MM		
Antenna Information:	Cable Length		550mm		
	Antenna 1 Max Gain		4.0dBi		
	Antenna 2 Max Gain		3.6dBi		
Device Operating Configurations:					
Test Mode	Basic Rate Enhanced Data Rate(EDR)			ate(EDR)	
Modulation Type:	Frequency Hopping Spread Spectrum (FHSS)		SS)		
Modulation Type.	GFSK	π/4	4-DQPSK	8DPSK	
Packet Type:(Maximum Payload)	DH5 2D)H5	3DH5	
Max. Conducted Power	6.00 dBm				
Operating Frequency Range(s)	2400 ~ 2483.5 MHz				

Equipment under Test (EUT) is WIFI/BT Combo wireless module with external antenna. The EUT supports Bluetooth and WIFI function.

The EUT consist of two types of Bluetooth antennas. The Part NO of antenna 1 is MSA-3411-25GC1-A1-W550MU, The Part NO of antenna 2 is MSA-3411-25GC1-A1-W550MM.

The gain of antenna 1 is bigger than antenna 2. The radiation test cases were all tested for antenna 1, then the worst emission was found and this mode was tested for antenna 2.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

Report No.: RXA1301-0014RF01R4

Page 7 of 86

1.6. Test Date

The test performed from January 25, 2013 to February 1, 2013.

2. Information about the FHSS characteristics

2.1. Pseudorandom Frequency Hopping Sequence

Frequency Hopping Systems. A spread spectrum system in which the carrier is modulated with the coded information in a conventional manner causing a conventional spreading of the RF energy about the frequency carrier. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. The wide RF bandwidth needed by such a system is not required by spreading of the RF energy about the carrier but rather to accommodate the range of frequencies to which the carrier frequency can hop. The test of a frequency hopping system is that the near term distribution of hops appears random, the long term distribution appears evenly distributed over the hop set, and sequential hops are randomly distributed in both direction and magnitude of change in the hop set.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops. The principle is depicted in the figure below.

Hop selection scheme in CONNECTION state.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45, etc. Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: RXA1301-0014RF01R4

2.2. Equal Hopping Frequency Use

All Bluetooth units participating in the Pico net are time and hop-synchronized to the channel. Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

2.3. System Receiver Input Bandwidth

Each channel bandwidth is 1MHz. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: RXA1301-0014RF01R4

3. Test Information

3.1. Test Mode

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

EUT is stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded. Then this mode was measured in the following mode.

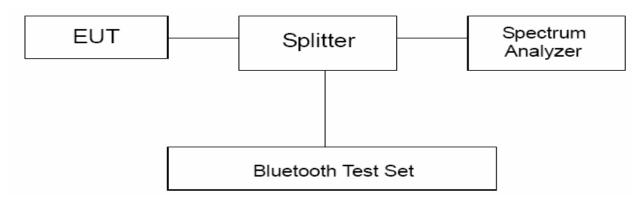
	Test Modes					
	Band	Radiated Test Cases	Conducted Test Cases			
		DHE CESK/Channel 0/20/78)	DH5 GFSK(Channel 0/39/78)			
	ВТ	DH5 GFSK(Channel 0/39/78)	2DH5 π/4-DQPSK(Channel 0/39/78)			
		3DH5 8DPSK(Channel 0/39/78)	3DH5 8DPSK(Channel 0/39/78)			

Note: It is chosen the maximum RF output power of basic rata and EDR mode of Bluetooth for RSE and CSE to test.

3.2. Summary of test results

Number	Summary of measurements of results	Clause in FCC rules	Verdict
1	Peak Power Output -Conducted	15.247(b)(1)	PASS
2	Occupied Bandwidth (20dB)	15.247(a)(1)	PASS
3	Frequency Separation	15.247(a)(1)	PASS
4	Time of Occupancy (Dwell Time)	15.247(a)(1)(iii)	PASS
5	Band Edge Compliance	15.247(d)	PASS
6	Spurious Radiated Emissions in the restricted band	15.247(d),15.205,15.209	PASS
7	Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
8	Spurious RF Conducted Emissions	15.247(d)	PASS
9	Radiates Emission	15.247(d),15.205,15.209	PASS
10	AC Power Line Conducted Emission	15.207	PASS

3.3. Peak Power Output –Conducted


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, the EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The EUT is controlled by the Bluetooth test set to ensure max power transmission with proper modulation. The peak detector is used. RBW is set to 2 MHz; VBW is set to 6 MHz. These measurements have been tested at following channels: 0, 39, and 78.

Test Setup

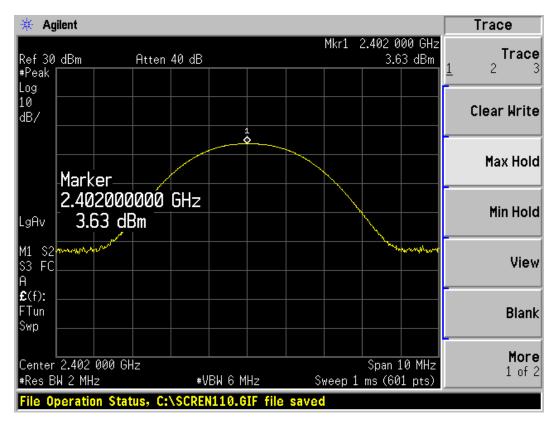
Limits

Rule Part 15.247 (b) (1)specifies that "For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts."

Peak Output Power

Measurement Uncertainty

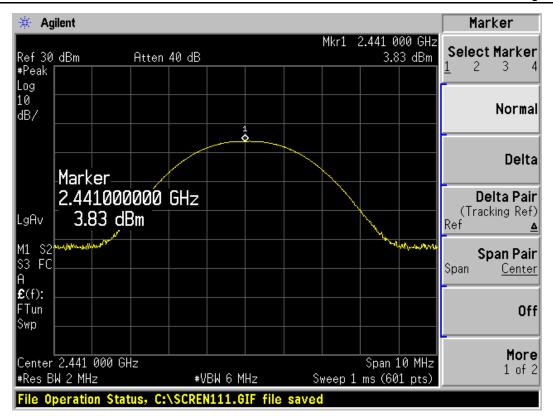
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

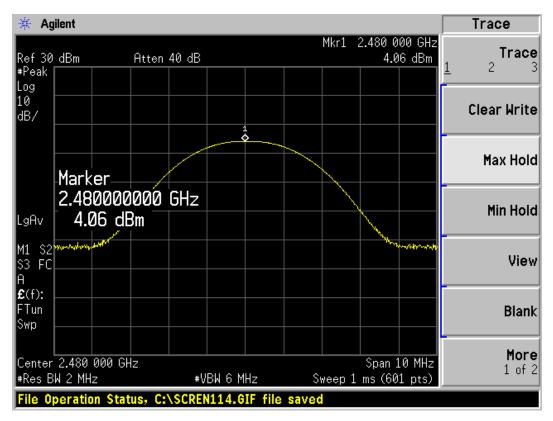

Report No.: RXA1301-0014RF01R4

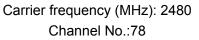
Page 12 of 86

Test Results

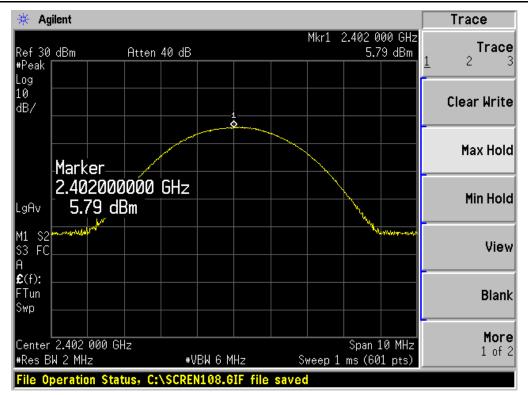
Channel		Peak Output Power (dBm)		Conclusion	
Channel	Frequency (MHz)	DH5	2DH5	3DH5	Conclusion
0	2402	3.63	5.79	5.57	PASS
39	2441	3.83	5.99	5.77	PASS
78	2480	4.06	6.00	5.69	PASS

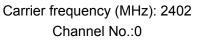

DH5

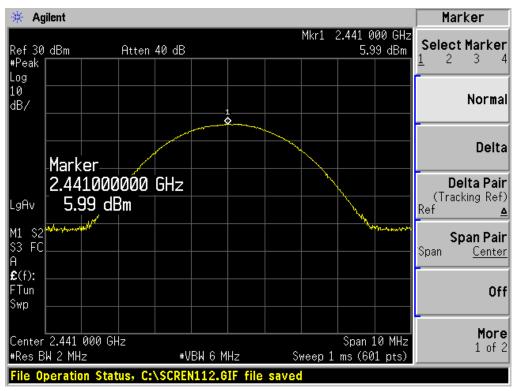

Carrier frequency (MHz): 2402 Channel No.:0


Report No.: RXA1301-0014RF01R4

```
Page 13 of 86
```

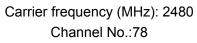


Carrier frequency (MHz): 2441 Channel No.:39





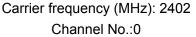
Report No.: RXA1301-0014RF01R4

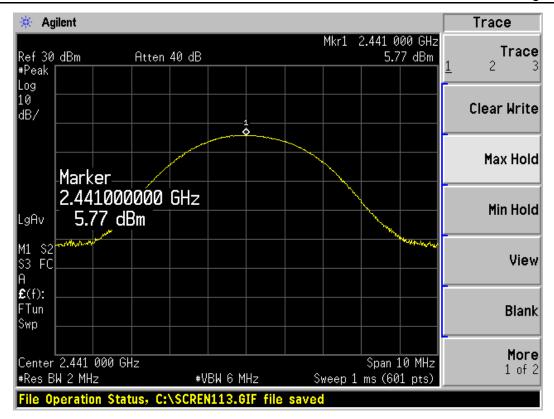
Page 14 of 86

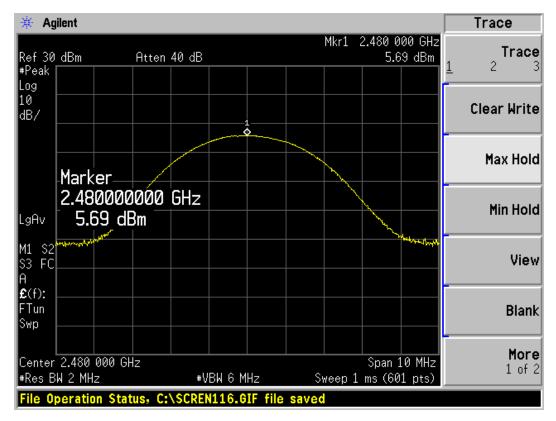


Carrier frequency (MHz): 2441 Channel No.:39


Report No.: RXA1301-0014RF01R4


Page 15 of 86


3DH5



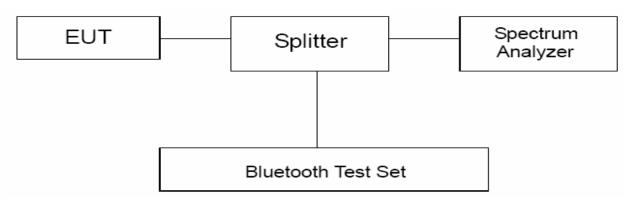
Report No.: RXA1301-0014RF01R4

Page 16 of 86

Carrier frequency (MHz): 2441 Channel No.:39

Carrier frequency (MHz): 2480 Channel No.:78

3.4. Occupied Bandwidth (20dB)


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

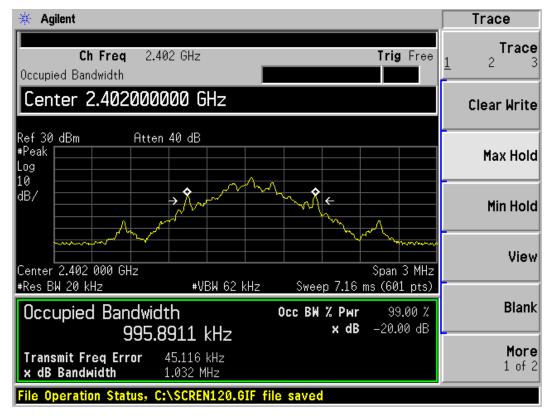
The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 20 kHz and VBW is set to 60 kHz on spectrum analyzer. -20dB occupied bandwidths are recorded.

Test Setup

Limits

No specific occupied bandwidth requirements in part 15.247(a) (1).

Measurement Uncertainty

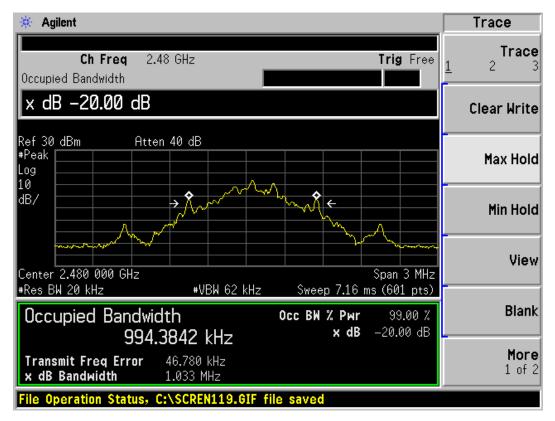

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Page 18 of 86

Test Results

DH5

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
0	2402	1032
39	2441	1032
78	2480	1033


Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXA1301-0014RF01R4

Page 19 of 86

Carrier frequency (MHz): 2441 Channel No.:39

Carrier frequency (MHz): 2480 Channel No.:78

Report No.: RXA1301-0014RF01R4 2DH5 Channel Frequency (MHz) 20dB Bandwidth (kHz) 0 2402 1087 39 2441 1080 2480 1089 78

Carrier frequency (MHz): 2402 Channel No.:0


Page 20 of 86

Report No.: RXA1301-0014RF01R4

Page 21 of 86

Carrier frequency (MHz): 2441 Channel No.:39

Carrier frequency (MHz): 2480 Channel No.:78

Report No.: RXA1301-0014RF01R4 3DH5 Channel Frequency (MHz) 20dB Bandwidth (kHz) 0 2402 1174 39 2441 1180 2480 78 1180

Carrier frequency (MHz): 2402 Channel No.:0


Page 22 of 86

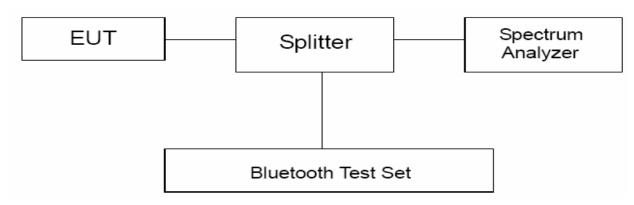
Report No.: RXA1301-0014RF01R4

Page 23 of 86

Carrier frequency (MHz): 2441 Channel No.:39

Carrier frequency (MHz): 2480 Channel No.:78

3.5. Frequency Separation


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 300 kHz and VBW is set to 3MHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a)(1)specifies that "Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. "

Note: The value of two-thirds of 20 dB bandwidth is always greater than 25 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Report No.: RXA1301-0014RF01R4

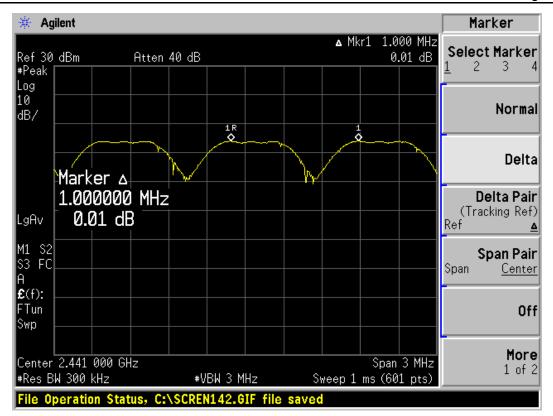
Page 25 of 86

Test Results:

DH5

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1005	1032	688	PASS
2441	1000	1032	688	PASS
2480	1005	1033	688.67	PASS

Note: The limit is two-thirds of 20 dB bandwidth.



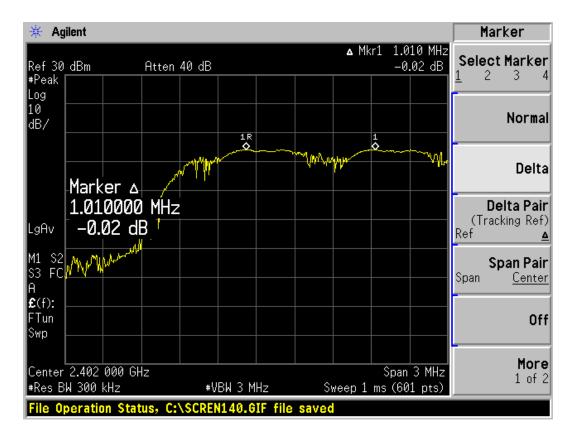
Carrier frequency (MHz): 2402

Channel No.:0

Report No.: RXA1301-0014RF01R4

```
Page 26 of 86
```


Carrier frequency (MHz): 2441 Channel No.:39

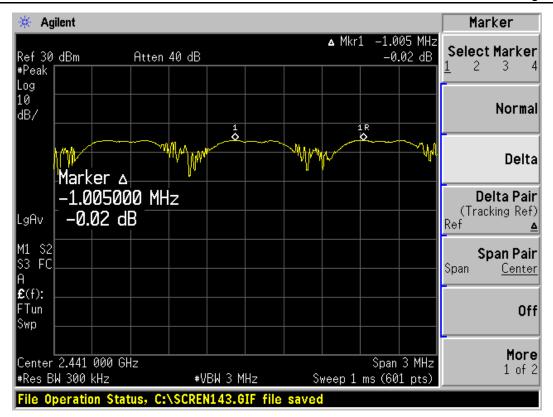

Carrier frequency (MHz): 2480 Channel No.:78

Report No.: RXA1301-0014RF01R4

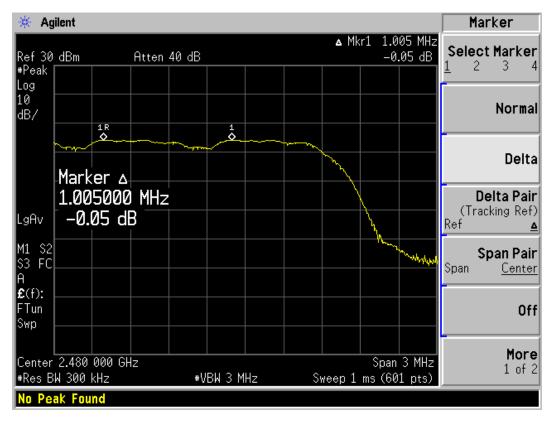
2DH5

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1010	1087	724.67	PASS
2441	1005	1080	720	PASS
2480	1005	1089	726	PASS

Note: The limit is two-thirds of 20 dB bandwidth.



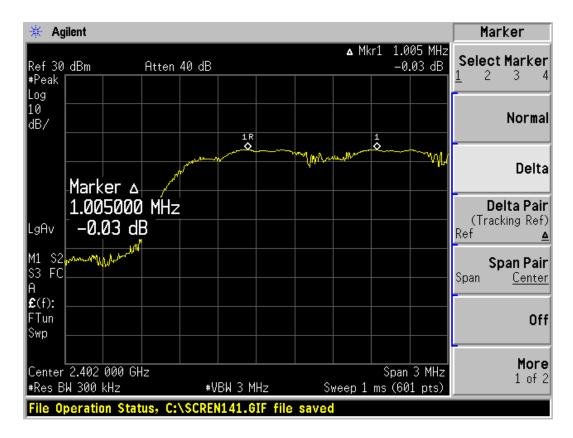
Carrier frequency (MHz): 2402


Channel No.:0

Report No.: RXA1301-0014RF01R4

```
Page 28 of 86
```


Carrier frequency (MHz): 2441 Channel No.:39

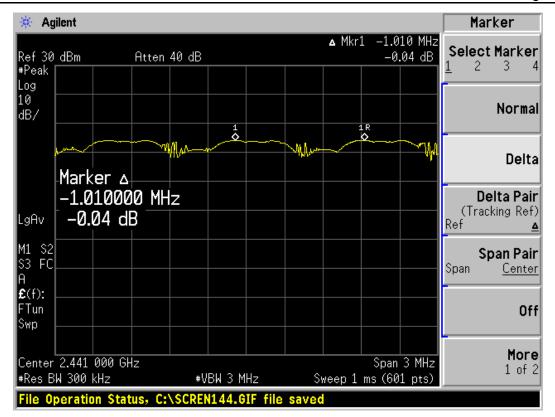

Carrier frequency (MHz): 2480 Channel No.:78

Report No.: RXA1301-0014RF01R4

3DH5

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1005	1174	782.67	PASS
2441	1010	1180	786.67	PASS
2480	1010	1180	786.67	PASS

Note: The limit is two-thirds of 20 dB bandwidth.



Carrier frequency (MHz): 2402

Channel No.:0

Report No.: RXA1301-0014RF01R4

```
Page 30 of 86
```

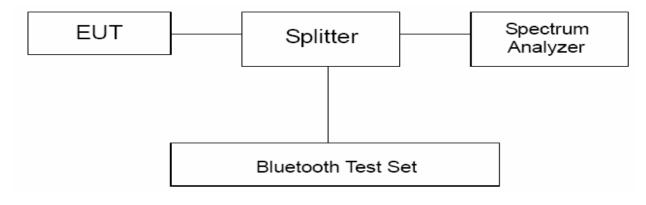

Carrier frequency (MHz): 2441 Channel No.:39

Carrier frequency (MHz): 2480 Channel No.:78

3.6. Time of Occupancy (Dwell Time)

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Methods of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 1MHz and VBW is set to 3MHz on spectrum analyzer .The time slot length is measured of three different packet types, which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

Dwell time = time slot length * hop rate * 0.4s with:

- hop rate=1600 * 1/s for DH1 packet =1600
- hop rate=1600/3 * 1/s for DH3 packet =533.33
- hop rate=1600/5 * 1/s for DH5 packet =320

Test Setup

Limits

Rule Part 22.913(a) specifies that "Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.."

Dwell time < 400ms

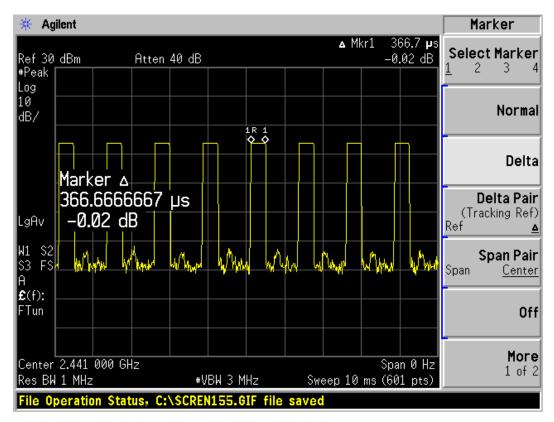
Report No.: RXA1301-0014RF01R4

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2.

Requirements	Uncertainty		
	DH1	<i>U</i> = 0.64ms	
Dwell Time	DH3	<i>U</i> = 0.80ms	
	DH5	<i>U</i> = 0.70ms	

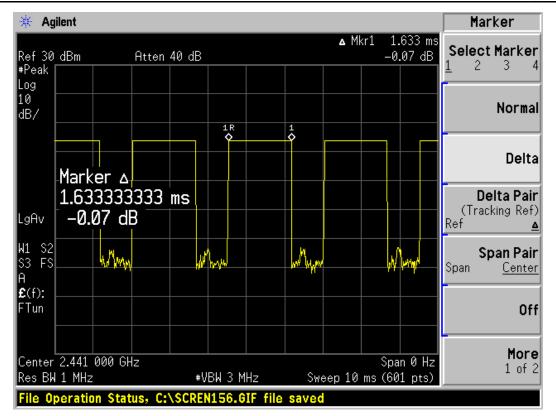
Report No.: RXA1301-0014RF01R4

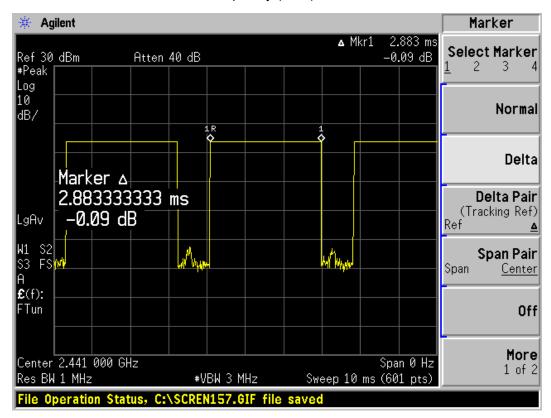

Page 33 of 86

Test Results:

CH 39

Packet type	hop rate (1/s)	Time slot length(ms)	Dwell time (ms)	Limit (ms)	Conclusion
DH1	1600	0.367	234.88	400	PASS
DH3	533.33	1.633	348.37	400	PASS
DH5	320	2.883	369.02	400	PASS
2DH1	1600	0.350	224.00	400	PASS
2DH3	533.33	1.600	341.33	400	PASS
2DH5	320	2.833	362.62	400	PASS
3DH1	1600	0.350	224.00	400	PASS
3DH3	533.33	1.617	344.96	400	PASS
3DH5	320	2.867	366.98	400	PASS

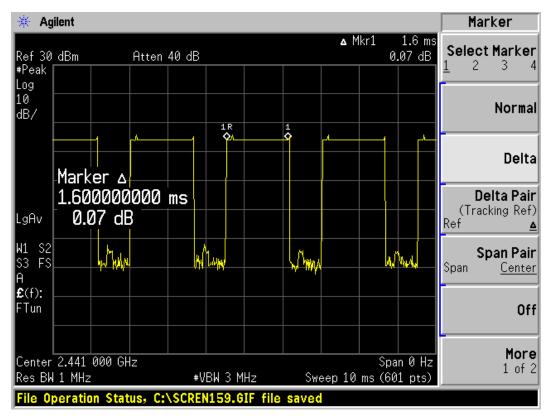

Note: Dwell time = time slot length * hop rate * 0.4s


Carrier frequency (MHz): 2441, DH1

Report No.: RXA1301-0014RF01R4

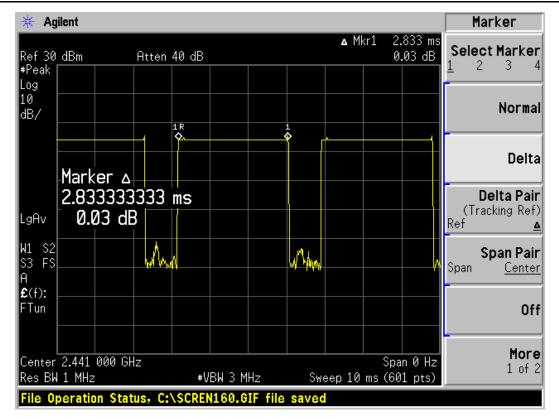
```
Page 34 of 86
```

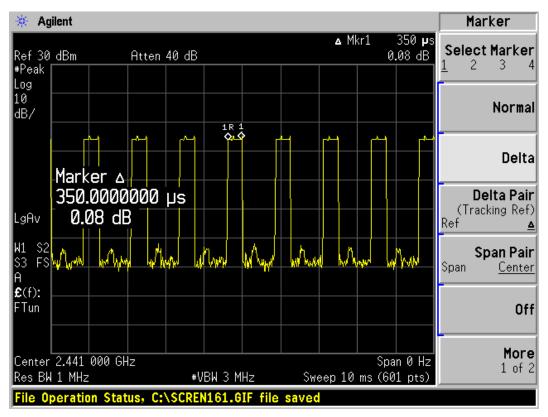

Carrier frequency (MHz): 2441, DH3


Carrier frequency (MHz): 2441, DH5

Report No.: RXA1301-0014RF01R4

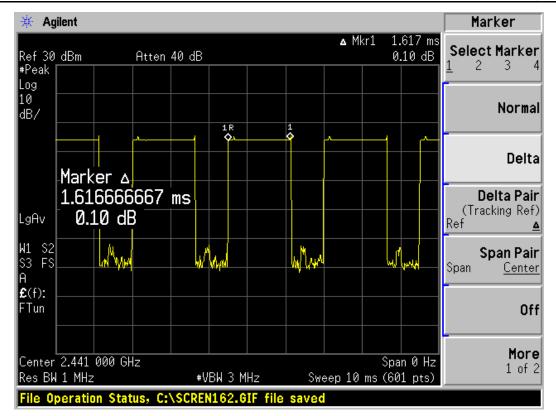
```
Page 35 of 86
```

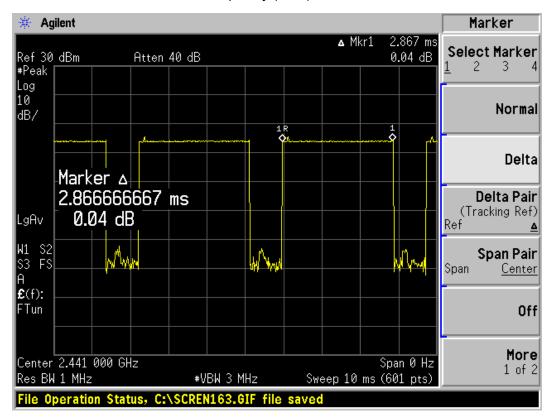


Carrier frequency (MHz): 2441, 2DH1


Carrier frequency (MHz): 2441, 2DH3

Report No.: RXA1301-0014RF01R4

```
Page 36 of 86
```



Carrier frequency (MHz): 2441, 2DH5


Carrier frequency (MHz): 2441, 3DH1

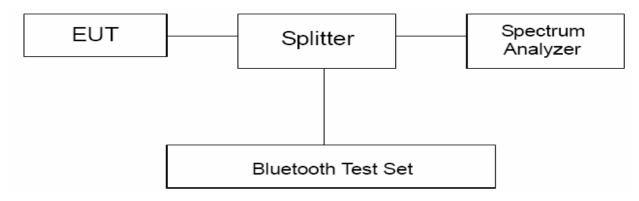
Report No.: RXA1301-0014RF01R4

```
Page 37 of 86
```


Carrier frequency (MHz): 2441, 3DH3

Carrier frequency (MHz): 2441, 3DH5

3.7. Band Edge Compliance


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The lowest and highest channels were measured. The peak detector is used. RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. EUT test for Hopping On mode and Hopping Off mode.

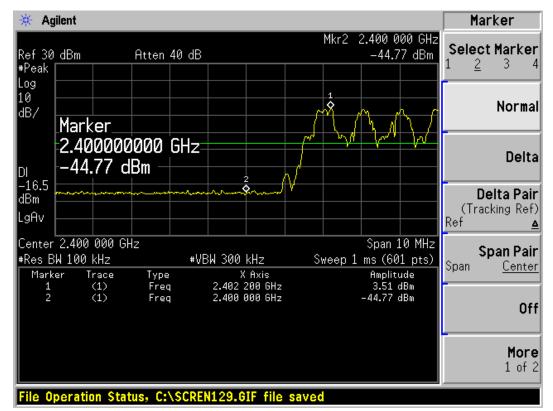
Test Setup

Limits

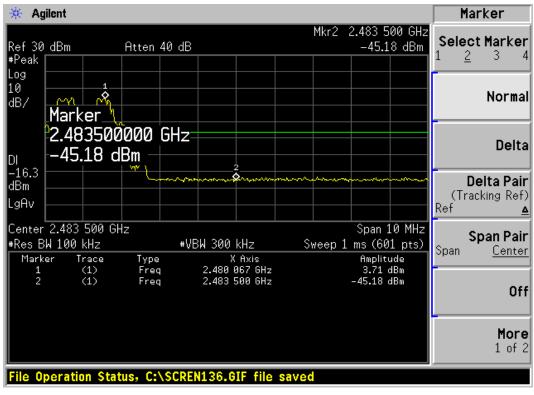
Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits."

Limit	≥20 dB
-------	--------

Measurement Uncertainty

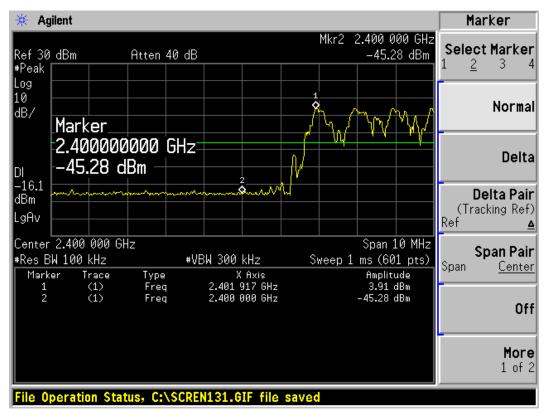

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
2GHz-3GHz	1.407 dB


Report No.: RXA1301-0014RF01R4

Page 39 of 86

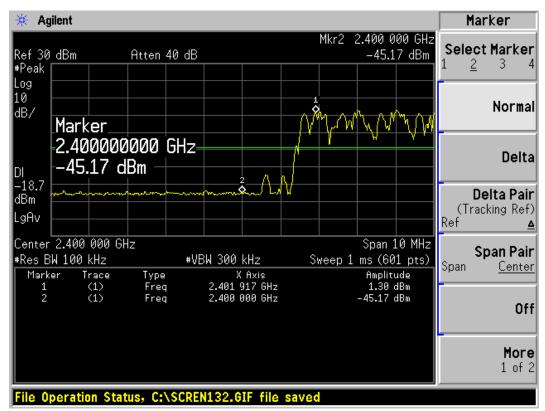
Test Results: PASS Hopping On-DH5-

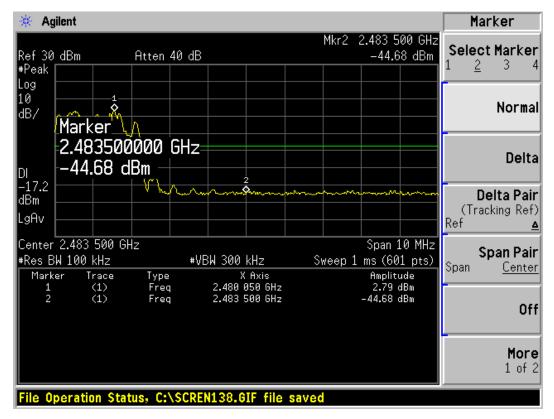

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXA1301-0014RF01R4

Page 40 of 86

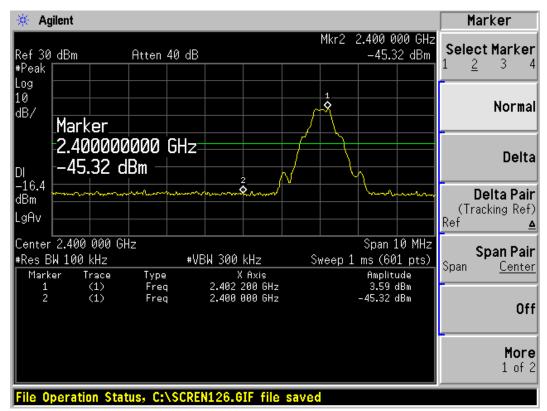
Hopping On-2DH5


Carrier frequency (MHz): 2402 Channel No.:0

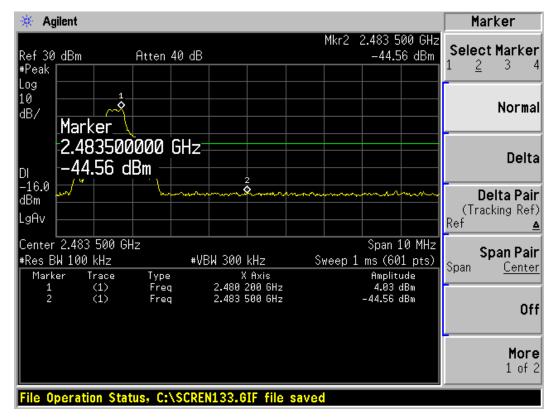

Report No.: RXA1301-0014RF01R4

Page 41 of 86

Hopping On-3DH5

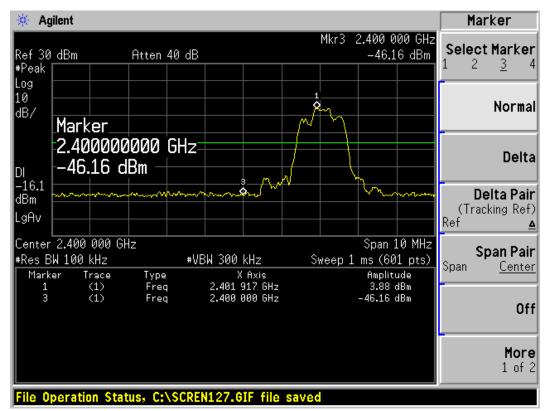


Carrier frequency (MHz): 2402 Channel No.:0

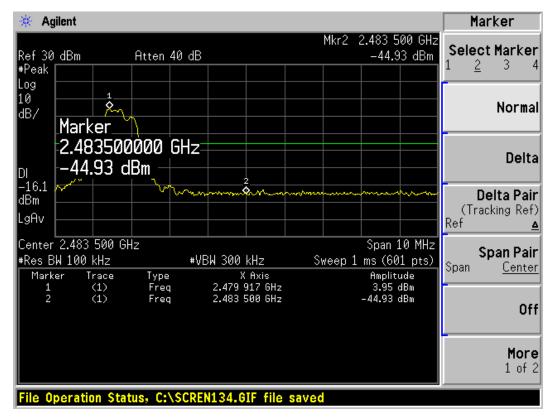


Report No.: RXA1301-0014RF01R4

Hopping Off-DH5-

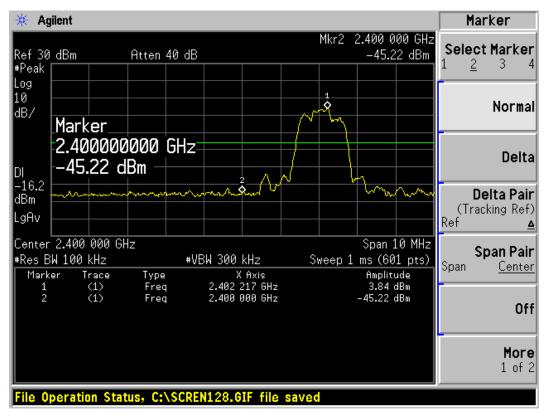


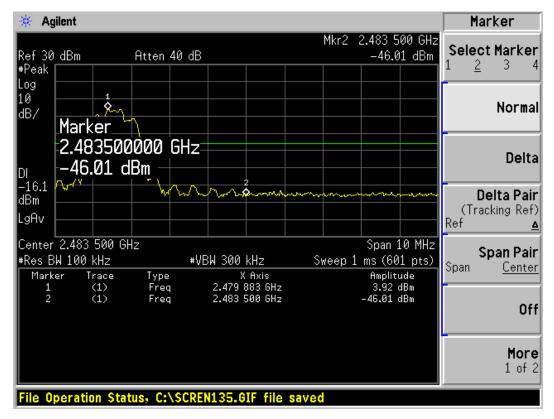
Carrier frequency (MHz): 2402 Channel No.:0



Report No.: RXA1301-0014RF01R4

Hopping Off-2DH5


Carrier frequency (MHz): 2402 Channel No.:0


Report No.: RXA1301-0014RF01R4

Page 44 of 86

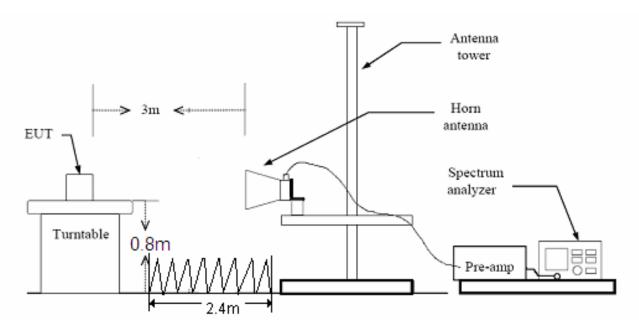
Hopping Off-3DH5

Carrier frequency (MHz): 2402 Channel No.:0

3.8. Spurious Radiated Emissions in the Restricted Band

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Set the spectrum analyzer in the following:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) The dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak- average correction factor, derived form the appropriate duty cycle calculation.

This setting method can refer to DA00-705.

The test is in transmitting mode. The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis) and docking mode. The worst emission was found in stand-up position (Y axis) and the worst case was recorded.

Test setup

Report No.: RXA1301-0014RF01R4

Page 46 of 86

Limits

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m Average Limit=54 dBuV/m

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U= 3.55 dB.

Report No.: RXA1301-0014RF01R4

Page 47 of 86

Test Results:

BT ANTENNA 1 Test Results:

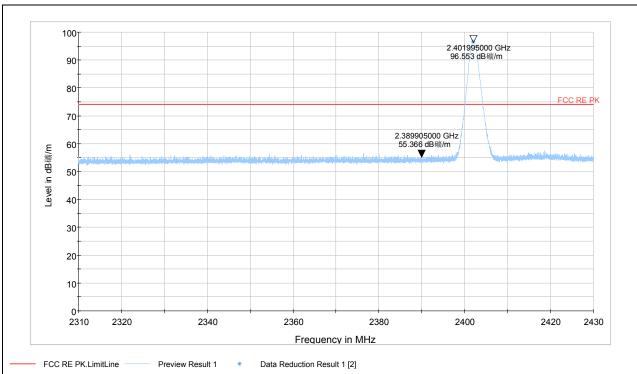
Channel.	Fre. (MHz)	PK Value (dBuV/m)	AV Value (dBuV/m)	Limit (dBuV/m)				Reading value	Correct Factor	Antenna Height	Table Angle
	(11172)	(0607/11)	(0607/11)	PK	AV	PK	AV	(dBuV/m)	(dB)	(m)	(Degree)
DH5-Ch0	2389.905	55.366	24.5639	74	54	18.634	1.01	60.666	-5.3	1.01	90
DH5-Ch78	2483.269	57.868	27.0659	74	54	16.132	1.02	62.368	-4.5	1.02	270
3DH5-Ch0	2393.775	45.963	15.12064	74	54	28.037	1.01	51.263	-5.3	1.01	90
3DH5-Ch78	2482.994	62.380	31.53764	74	54	11.620	1.03	66.88	-4.5	1.03	180

Note: 1. The other emission levels were very low against the limit.

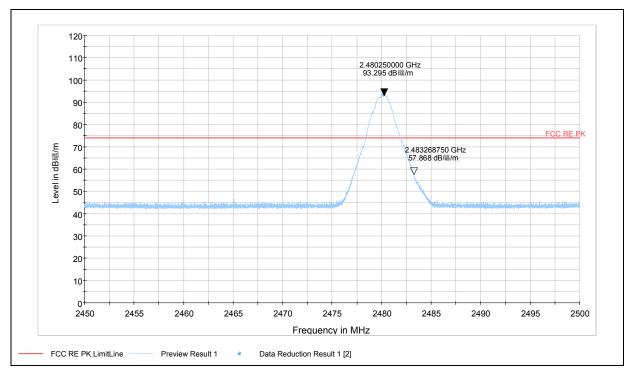
2. Margin value = Emission level – Limit value.

 The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel. Based upon Bluetooth theory the transmitter is on 0.625 *5 per 296.25 ms per channel. Therefore the duty cycle correlation factor be equal to 20log(2.8333/100)=-30.8021dB for DH5, 20log(2.87/100)=-30.8424dB for 3DH5.

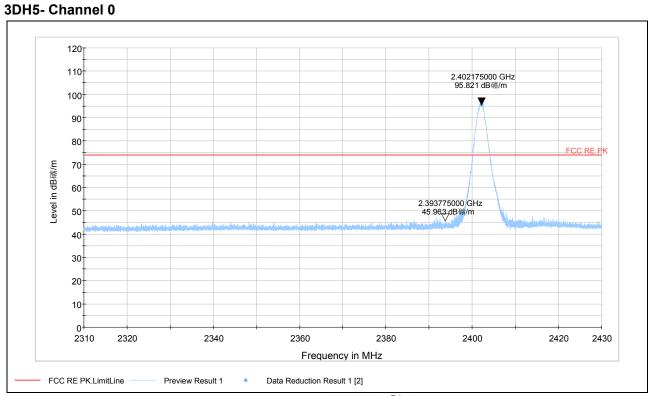
4. Average value = Peak value + 20log(duty cycle)

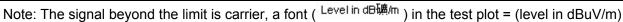

5. The other emission levels were very low against the limit.

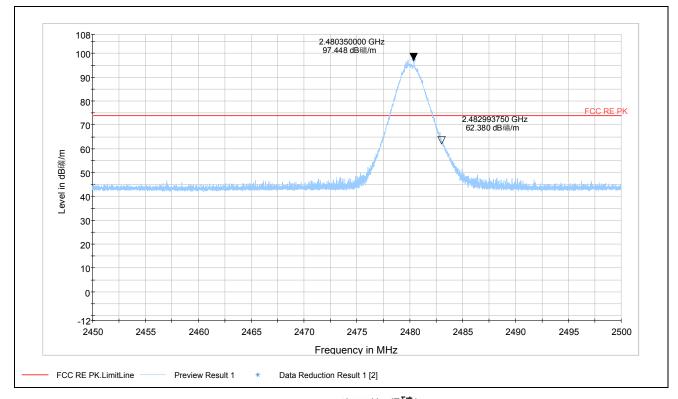
6. PK value= Reading Value+ Correct Factor


Report No.: RXA1301-0014RF01R4

DH5- Channel 0


Note: The signal beyond the limit is carrier, a font (Level in dB曉伽) in the test plot = (level in dBuV/m)




DH5- Channel 78

Note: The signal beyond the limit is carrier, a font (Level in dB礦m) in the test plot = (level in dBuV/m)

Report No.: RXA1301-0014RF01R4

3DH5- Channel 78

Note: The signal beyond the limit is carrier, a font (Level in dB礦m) in the test plot = (level in dBuV/m)

Report No.: RXA1301-0014RF01R4

Page 50 of 86

BT ANTENNA 2 Test Results:

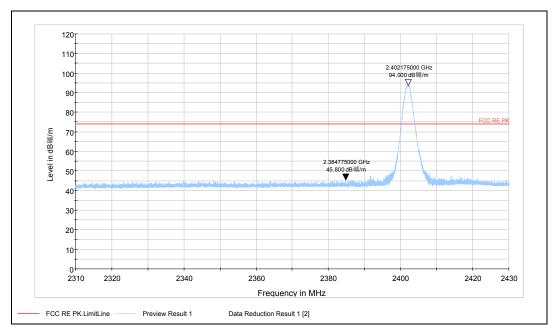
Channel.	Fre. (MHz)	PK Value (dBuV/m)	AV Value (dBuV/m)		nit V/m)		argin dB)	Reading value	Correct Factor	Antenna Height	Table Angle
	(11172)	(060 v/11)	(ubuv/iii)	PK	AV	PK	AV	(dBuV/m)	(dB)	(m)	(Degree)
3DH5-Ch0	2384.775	45.8	14.956	74	54	28.2	39.042	51.1	-5.3	1.01	0
3DH5-Ch78	2483.51875	57.8	26.958	74	54	16.2	27.042	62.3	-4.5	1.01	180

Note: 1. The other emission levels were very low against the limit.

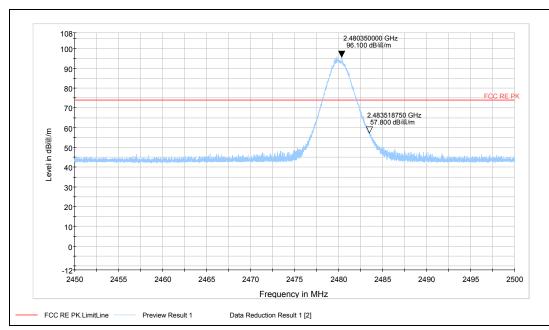
2. Margin value = Emission level – Limit value.

 The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel . Based upon Bluetooth theory the transmitter is on 0.625 *5 per 296.25 ms per channel . Therefore the duty cycle correlation factor be equal to 20log(2.8333/100)=-30.8021dB for DH5, 20log(2.87/100)=-30.8424dB for 3DH5.

4. Average value = peak reading + 20log(duty cycle)


5. The other emission levels were very low against the limit.

6. PK value= Reading Value+ Correct Factor


Report No.: RXA1301-0014RF01R4

Page 51 of 86

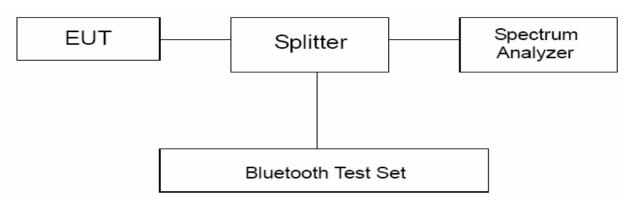
3DH5- Channel 0

Note: The signal beyond the limit is carrier, a font (Level in dB礦m) in the test plot = (level in dBuV/m)

3DH5- Channel 78

Note: The signal beyond the limit is carrier, a font (^{Level in dB确m}) in the test plot = (level in dBuV/m)

3.9. Number of hopping Frequency


Ambient condition

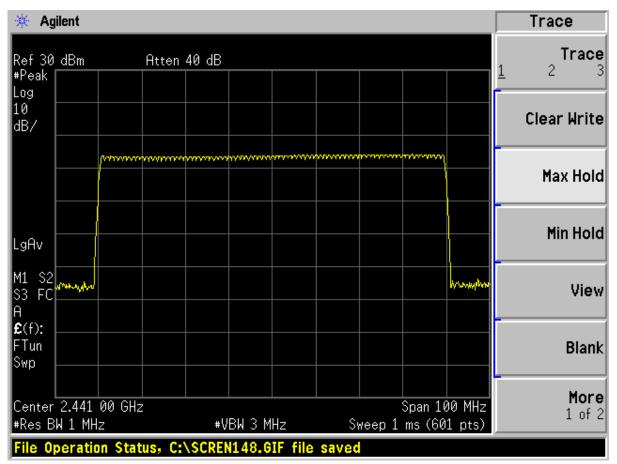
Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 1 MHz and VBW is set to 3 MHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits


Rule Part 15.247(a) (1) (iii) specifies that" Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels..".

Limits ≥ 15 channels

Report No.: RXA1301-0014RF01R4

DH5

Number of hopping channels	conclusion
79	PASS

2400 MHz -2483.5 MHz

2DH5

Number of hopping channels	conclusion
79	PASS

🔆 Agilent						Trace
Ref 30 dBm #Peak	Atten	40 dB				Trace <u>1</u> 2 3
Log 10 dB/						Clear Write
	*************************************				·····	Max Hold
LgAv						Min Hold
M1 S2 S3 FC A					L. J. Martin Barrison	View
£(f): FTun Swp						Blank
Center 2.441 #Res BW 1 MH	lz	#VBW 3			Span 100 MHz ms (601 pts)	More 1 of 2
File operation	on Status, C:	VSCREN153	.or the s	avea		

2400 MHz -2483.5 MHz

3DH5

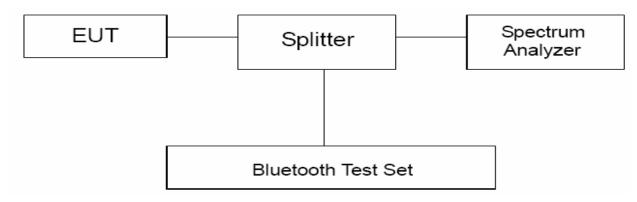
Number of hopping channels	conclusion
79	PASS

🔆 Agile	ent											Trace
Ref 30 o #Peak	dBm		Atten	40 dB							<u>1</u>	Trace 2 3
Log 10 dB/												Clear Write
		19000000 1		v-qv-m-***		*******	vm	********	•••••••••			Max Hold
LgAv												Min Hold
A A	vrinde									histophia		View
£(f): _ FTun Swp _												Blank
Center 2 #Res BW File Ope	1 MH	Z			BW 3 M 1154.6			veep 1		00 MHz 01 pts)		More 1 of 2

2400 MHz -2483.5 MHz

3.10. Spurious RF Conducted Emissions

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. RBW and VBW are set to 100 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

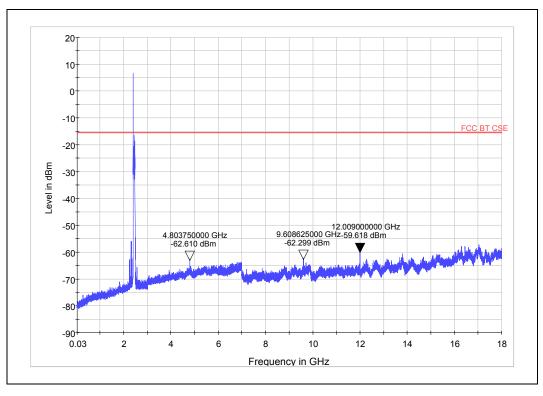
Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power."

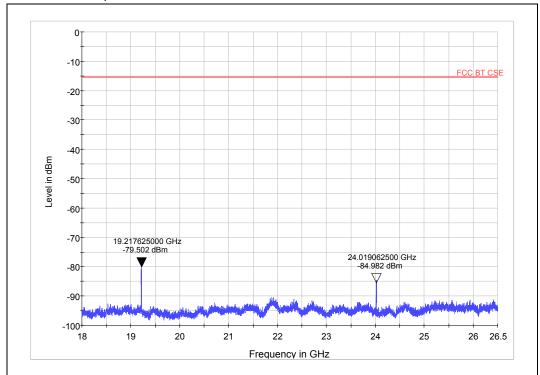
Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
	2402	3.63	≤-16.37
DH5	2441	3.83	≤-16.17
	2480	4.06	≪-15.94
	2402	5.79	≤-14.21
EDR	2441	5.99	≪-14.01
	2480	6.00	≪-14.00

Report No.: RXA1301-0014RF01R4

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB


Report No.: RXA1301-0014RF01R4

Page 58 of 86

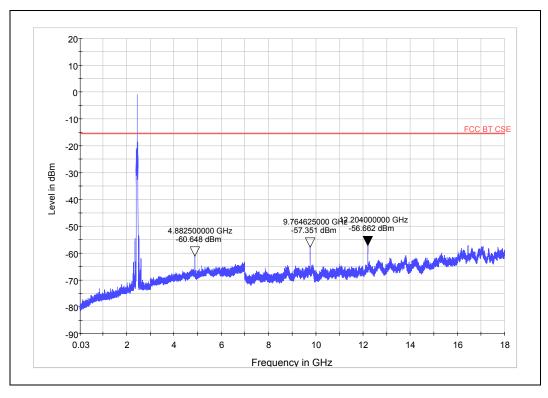
Test Results: DH5-CH0:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2402 Spurious RF conducted emissions from 30MHz to 18GHz

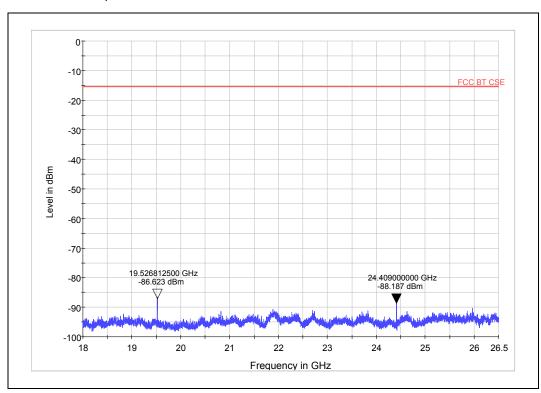
Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXA1301-0014RF01R4

Page 59 of 86


Harmonic	TX ch.0	Level	Limit			
Harmonic	Frequency (MHz)	(dBm)	(dBm)			
2	4804	-62.610	-16.37			
3	7206	Nf	-16.37			
4	9609	-62.299	-16.37			
5	12009	-59.618	-16.37			
6	14412	Nf	-16.37			
7	16814	Nf	-16.37			
8	19218	-79.502	-16.37			
9	21618	Nf	-16.37			
10	24019	-84.982	-16.37			
Nf: noise floor	Nf: noise floor					

Note: The other Spurious RF conducted emissions level is no more than noise floor.


Report No.: RXA1301-0014RF01R4

Page 60 of 86

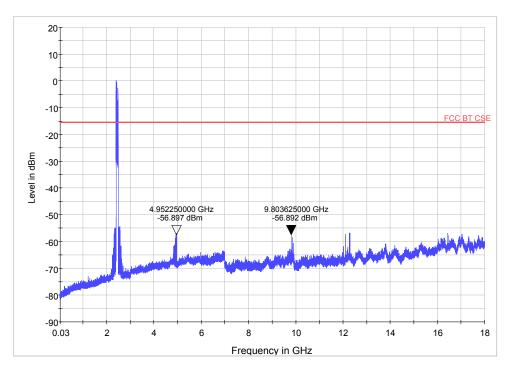
DH5-CH39:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2441 Spurious RF conducted emissions from 30MHz to 18GHz

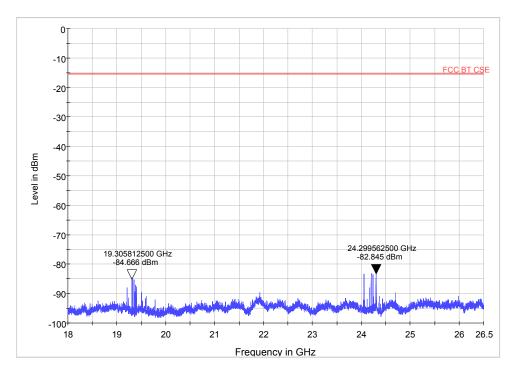
Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXA1301-0014RF01R4

Page 61 of 86


Harmonic	TX ch.39 Frequency (MHz)	Level (dBm)	Limit (dBm)
2	4883	-60.648	-16.17
3	7323	Nf	-16.17
4	9765	-57.351	-16.17
5	12204	-56.662	-16.17
6	14646	Nf	-16.17
7	17087	Nf	-16.17
8	19527	-86.623	-16.17
9	21969	Nf	-16.17
10	24409	-88.187	-16.17
Nf: noise floor			

Note: The other Spurious RF conducted emissions level is no more than noise floor.


Report No.: RXA1301-0014RF01R4

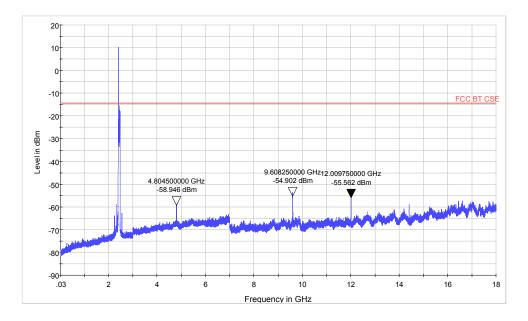
Page 62 of 86

DH5-CH78:

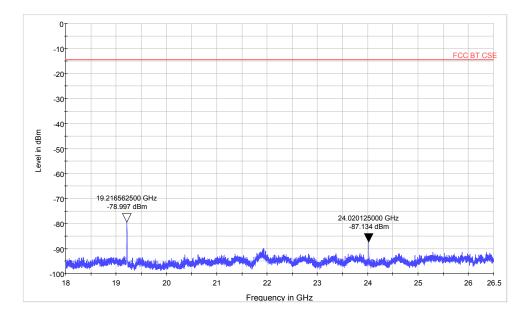
Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2480 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXA1301-0014RF01R4


Page 63 of 86

Llormonio	TX ch.78	Level	Limit
Harmonic	Frequency (MHz)	(dBm)	(dBm)
2	4952	-56.897	-15.94
3	7440	Nf	-15.94
4	9804	-56.892	-15.94
5	12400	Nf	-15.94
6	14880	Nf	-15.94
7	17360	Nf	-15.94
8	19306	-84.666	-15.94
9	22320	Nf	-15.94
10	24300	-82.845	-15.94
Nf: noise floor			


Note: The other Spurious RF conducted emissions level is no more than noise floor.

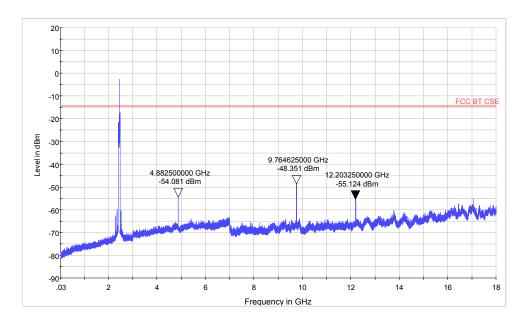
Report No.: RXA1301-0014RF01R4

EDR-CH0:

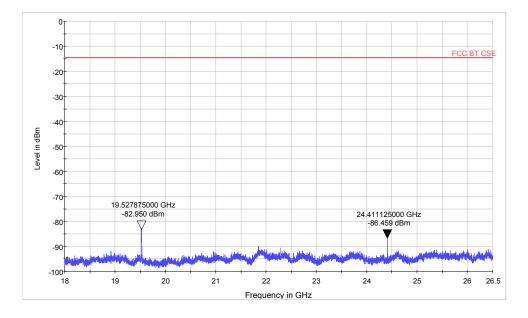
Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2402 Spurious RF conducted emissions from 30MHz to 18GHz

Report No.: RXA1301-0014RF01R4

Page 65 of 86


Harmonic	TX ch.0	Level	Limit
Harmonic	Frequency (MHz)	(dBm)	(dBm)
2	4805	-58.946	-14.21
3	7206	Nf	-14.21
4	9608	-54.902	-14.21
5	12010	-55.562	-14.21
6	14412	Nf	-14.21
7	16814	Nf	-14.21
8	19217	-78.997	-14.21
9	21618	Nf	-14.21
10	24020	-87.134	-14.21
Nf: noise floor			

Note: The other Spurious RF conducted emissions level is no more than noise floor.


Report No.: RXA1301-0014RF01R4

Page 66 of 86

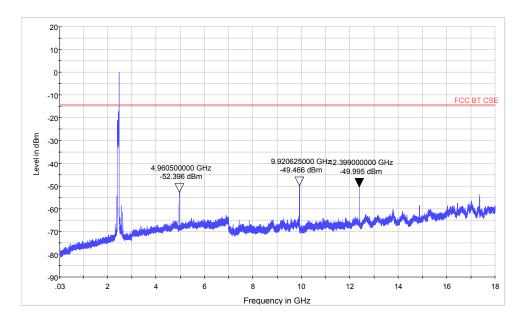
EDR-CH39:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2441 Spurious RF conducted emissions from 30MHz to 18GHz

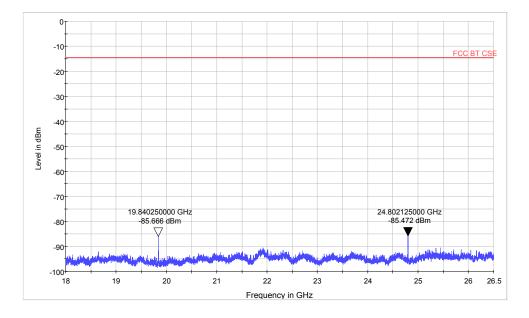
Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXA1301-0014RF01R4

Page 67 of 86


Harmonic	TX ch.39	Level	Limit
Haimonic	Frequency (MHz)	(dBm)	(dBm)
2	4883	-54.081	-14.01
3	7323	Nf	-14.01
4	9765	-48.351	-14.01
5	12203	-55.124	-14.01
6	14646	Nf	-14.01
7	17087	Nf	-14.01
8	19528	-82.950	-14.01
9	21969	Nf	-14.01
10	24411	-86.459	-14.01
Nf: noise floor			

Note: The other Spurious RF conducted emissions level is no more than noise floor.


Report No.: RXA1301-0014RF01R4

Page 68 of 86

EDR-CH78:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2480 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXA1301-0014RF01R4

Page 69 of 86

Harmonic	TX ch.78	Level	Limit
паппопіс	Frequency (MHz)	(dBm)	(dBm)
2	4961	-52.396	-14.00
3	7440	Nf	-14.00
4	9921	-49.466	-14.00
5	12399	-49.995	-14.00
6	14880	Nf	-14.00
7	17360	Nf	-14.00
8	19840	-85.666	-14.00
9	22320	Nf	-14.00
10	24802	-85.472	-14.00
Nf: noise floor			

Note: The other Spurious RF conducted emissions level is no more than noise floor.

3.11. Radiates Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 30MHz to the 10th harmonic of the carrier. The height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

Below 1GHz (detector: Peak and Quasi-Peak)

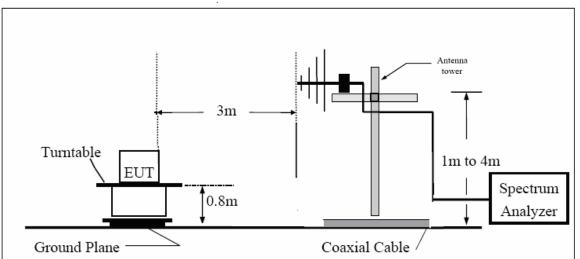
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz(detector: Peak):

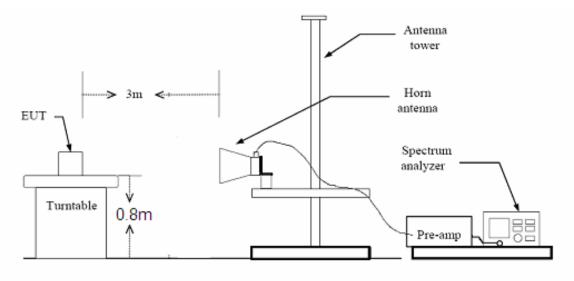
(a) PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded. Then this mode was measured in the following mode: EUT with cradle and EUT without cradle. The worst emission was found in EUT with cradle mode and the worst case was recorded.


The test is in transmitting mode.

Report No.: RXA1301-0014RF01R4


Page 71 of 86

Test setup

Above 1GHz

Report No.: RXA1301-0014RF01R4

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

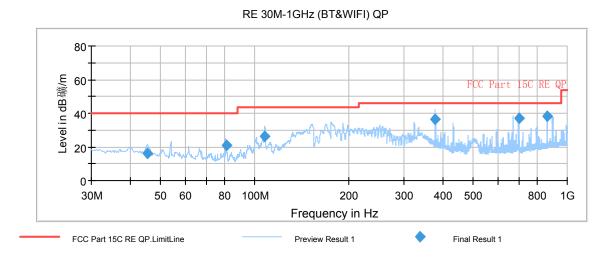
Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty	
30MHz-200MHz	4.19 dB	
200MHz-1GHz	3.63 dB	
Above 1GHz	3.68 dB	

Report No.: RXA1301-0014RF01R4

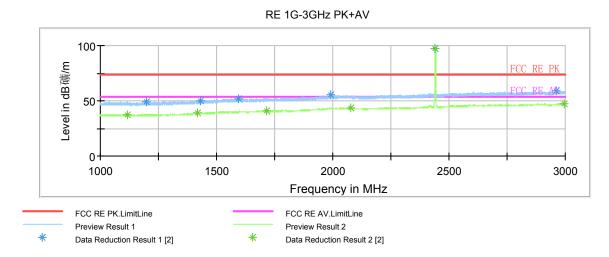
Page 73 of 86

Test result

DH5-Channel 39

Note: a font (^{Level in dB礦}m) in the test plot = (level in dBuv/m) Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
45.420000	16.0	100.0	V	20.0	40.7	-24.7	24.0	40.0
81.145000	21.0	125.0	V	97.0	52.7	-31.7	19.0	40.0
107.902500	26.4	100.0	V	267.0	54.9	-28.5	17.1	43.5
377.602500	36.2	100.0	Н	285.0	61.5	-25.3	9.8	46.0
699.402500	36.8	120.0	Н	52.0	56	-19.2	9.2	46.0
863.980000	38.5	100.0	Н	31.0	55.3	-16.8	7.5	46.0


Remark: 1. Quasi-Peak = Reading value + Correction factor

2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

3. Margin = Limit – Quasi-Peak

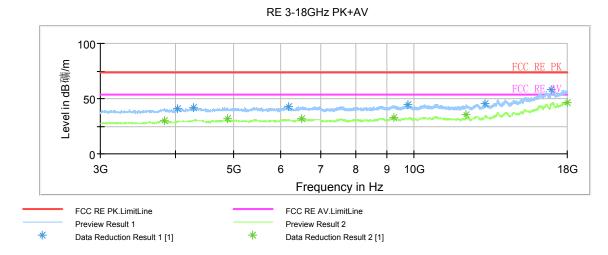
Report No.: RXA1301-0014RF01R4

Page 74 of 86

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dB姨m) in the test plot = (level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
1117.750000	46.2	100.0	Н	131.0	48.4	-2.2
1417.000000	47.4	100.0	V	0.0	48.5	-1.1
1714.000000	50.4	100.0	Н	194.0	49.1	1.3
2077.500000	54.0	100.0	Н	35.0	50.1	3.9
2441.250000	97.5	100.0	V	18.0	92.3	5.2
2996.500000	57.9	100.0	Н	289.0	49.7	8.2


Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Peak = Reading value + Correction factor

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
1198.500000	36.8	100.0	V	194.0	39	-2.2
1431.250000	38.1	100.0	V	298.0	38.9	-0.8
1594.750000	39.7	100.0	Н	233.0	38.9	0.8
1989.250000	42.7	100.0	V	0.0	39.2	3.5
2441.250000	97.1	100.0	V	18.0	91.9	5.2
2963.250000	46.8	100.0	V	129.0	38.9	7.9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Average = Reading value + Correction factor

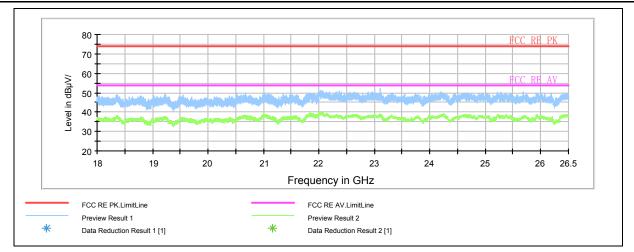
Report No.: RXA1301-0014RF01R4

Page 75 of 86

Radiates Emission from 3GHz to 18GHz Note: a font (^{Level in dB碘/m})in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
3841.875000	39.4	100.0	V	0.0	39.6	-0.2
4880.625000	41.5	100.0	Н	0.0	39.6	1.9
6498.750000	41.1	100.0	V	211.0	36.5	4.6
9240.000000	42.0	100.0	V	0.0	33.2	8.8
12206.250000	44.3	100.0	Н	46.0	33.7	10.6
17986.875000	56.7	100.0	Н	255.0	33.2	23.5

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Peak = Reading value + Correction factor

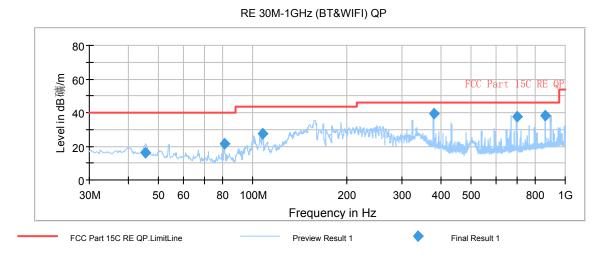

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
4040.625000	29.0	100.0	Н	46.0	29.3	-0.3
4297.500000	29.6	100.0	Н	111.0	28.1	1.5
6174.375000	30.4	100.0	V	187.0	26.4	4.0
9785.625000	31.5	100.0	Н	133.0	22.3	9.2
13149.375000	34.0	100.0	Н	25.0	21.3	12.7
16942.500000	45.2	100.0	V	119.0	24.0	21.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

2. Average = Reading value + Correction factor

Report No.: RXA1301-0014RF01R4

Page 76 of 86



Radiates Emission from 18GHz to 26.5GHz Note: a font ($^{Level\,in\,dB\bar{i}\!m}$)in the test plot =(level in dBuv/m)

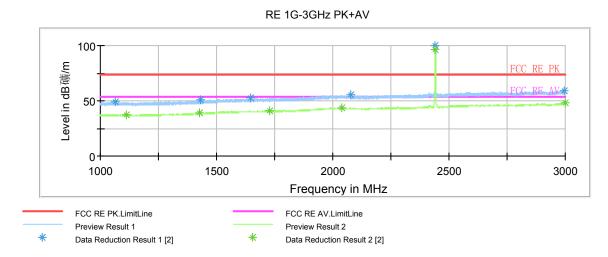
Report No.: RXA1301-0014RF01R4

Page 77 of 86

3DH5-Channel 39

Radiates Emission from 30MHz to 1GHz Note: a font ($^{Level\,in\,dB礦m}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
45.520000	21.6	100.0	V	0.0	46.3	-24.7	18.4	40.0
80.925000	24.2	100.0	V	68.0	56.0	-31.8	15.8	40.0
108.085000	30.6	100.0	Н	48.0	59.1	-28.5	12.9	43.5
378.957500	40.8	100.0	V	0.0	66.1	-25.3	5.2	46.0
699.542500	38.8	100.0	Н	48.0	58.0	-19.2	7.2	46.0
864.200000	38.0	100.0	Н	28.0	54.8	-16.8	8.0	46.0


Remark: 1. Quasi-Peak = Reading value + Correction factor

2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

3. Margin = Limit – Quasi-Peak

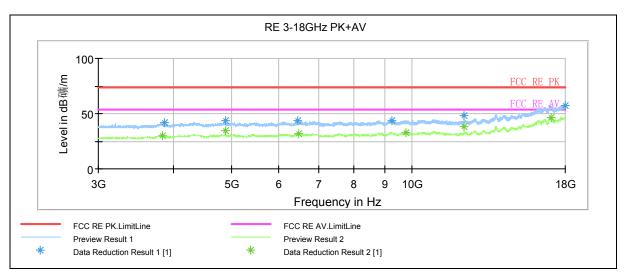
Report No.: RXA1301-0014RF01R4

Page 78 of 86

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dB礦/m)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
1113.500000	46.9	100.0	Н	105.0	49.2	-2.3
1428.000000	48.8	100.0	V	251.0	49.7	-0.9
1728.000000	49.5	100.0	V	343.0	48.5	1.0
2037.500000	53.2	100.0	Н	81.0	49.5	3.7
2441.000000	99.3	100.0	V	46.0	94.1	5.2
2998.500000	57.4	100.0	V	198.0	49.2	8.2


Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Peak = Reading value + Correction factor

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
1063.000000	36.5	100.0	Н	0.0	38.8	-2.3
1429.500000	38.2	100.0	V	198.0	39.1	-0.9
1647.000000	39.7	100.0	Н	201.0	38.8	0.9
2079.000000	42.9	100.0	V	284.0	38.9	4.0
2441.000000	95.7	100.0	Н	15.0	90.5	5.2
2996.500000	47.2	100.0	V	358.0	39.0	8.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

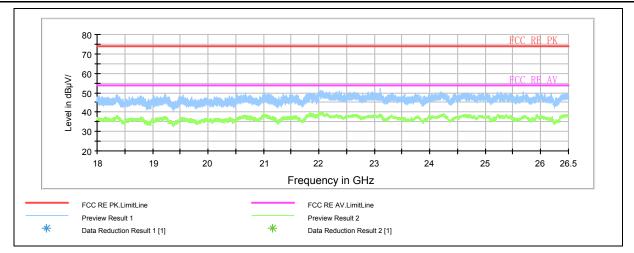
2. Average= Reading value + Correction factor

Report No.: RXA1301-0014RF01R4

Radiates Emission from 3GHz to 18GHz

Note: a font (Level in dB璉/m)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
3860.625000	42.0	100.0	Н	2.0	42.4	-0.4
4880.625000	43.5	100.0	Н	0.0	41.6	1.9
6448.125000	43.4	100.0	V	35.0	38.9	4.5
9271.875000	43.8	100.0	Н	99.0	35.2	8.6
12204.375000	48.0	100.0	Н	45.0	37.4	10.6
17979.375000	57.7	100.0	Н	109.0	34.3	23.4


Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Peak = Reading value + Correction factor

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)
3838.125000	30.0	100.0	Н	0.0	30.2	-0.2
4880.625000	34.9	100.0	Н	0.0	33	1.9
6465.000000	31.7	100.0	V	356.0	27	4.7
9765.000000	32.9	100.0	V	238.0	24	8.9
12206.250000	38.1	100.0	V	35.0	27.5	10.6
17025.000000	46.6	100.0	V	216.0	24.9	21.7

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 2. Average= Reading value + Correction factor

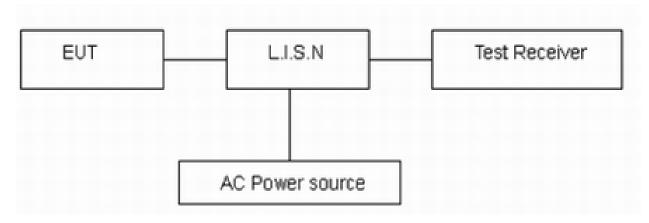
Report No.: RXA1301-0014RF01R4

Page 80 of 86

Note: a font (^{Level in dB确m})in the test plot =(level in dBuv/m) Radiates Emission from 18GHz to 26.5GHz

3.12. Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2009. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

The test is in transmitting mode.

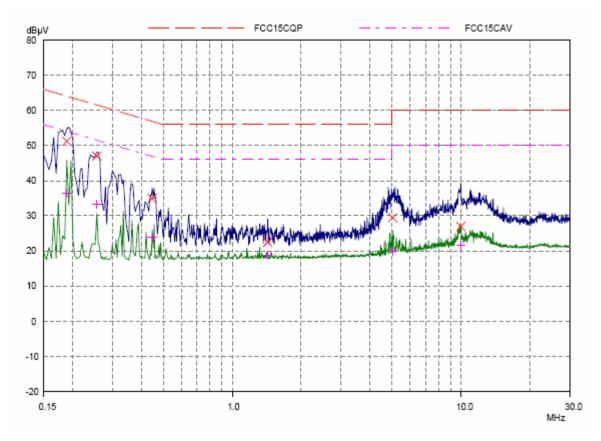
Test Setup

Note: AC Power source is used to change the voltage from 220V/50Hz to 110V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30	60 50					
* [:] Decreases wit	h the logarithm of the frequency.					

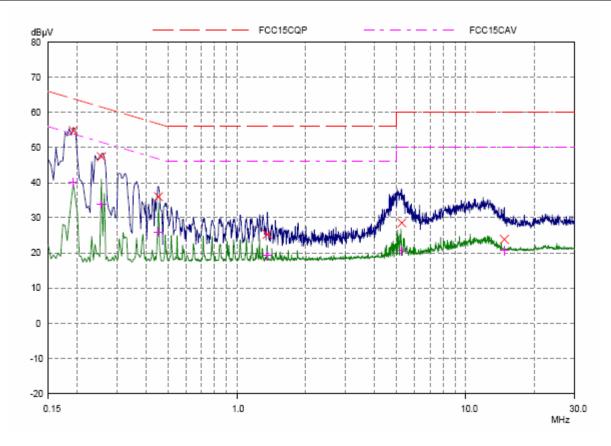
Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U= 2.69 dB.

Report No.: RXA1301-0014RF01R4

Page 82 of 86

Test Results:


Basic Rate-CH39

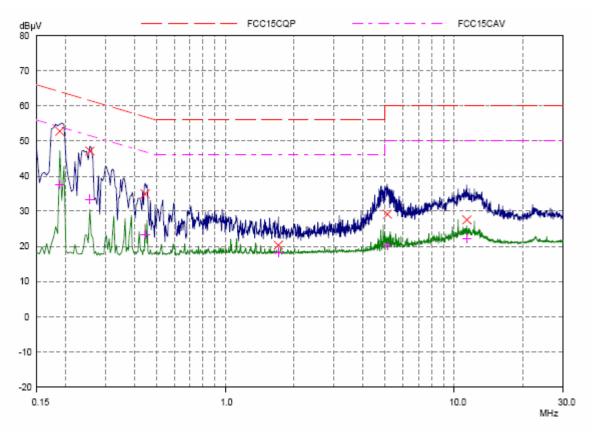
Final Measurement Results								
Frequency	QP Level	QP Limit	QP Delta	Phase	PE			
MHz	dBµV	dBµV	dB	-	-			
0.18906	51.22	64.08	12.86	L1	gnd			
0.25546	46.98	61.58	14.60	L1	gnd			
0.44687	34.95	56.93	21.98	L1	gnd			
1.42734	22.46	56.00	33.54	L1	gnd			
5.03281	29.39	60.00	30.61	L1	gnd			
9.98203	26.95	60.00	33.05	L1	gnd			
Frequency	AV Level	AV Limit	AV Delta	Phase	PE			
MHz	dBµV	dBµV	dB	-	-			
0.18906	36.42	54.08	17.66	L1	gnd			
0.25546	33.23	51.58	18.35	L1	gnd			
0.44687	23.94	46.93	22.99	L1	gnd			
1.42734	18.68	46.00	27.32	L1	gnd			
5.03281	19.89	50.00	30.11	L1	gnd			
9.98203	21.71	50.00	28.29	L1	gnd			

Report No.: RXA1301-0014RF01R4

Page 83 of 86

Final Measurement Results

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBµV	dBµV	dB	-	-
0.19298 0.25548 0.45468 1.36093 5.25156 14.76328	54.78 47.38 35.99 25.27 28.56 23.87	63.91 61.58 56.79 56.00 60.00 60.00	9.13 14.20 20.80 30.73 31.44 36.13	N N N N N	gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	РЕ
MHz	dBµV	dBµV	dB	-	-
0.19296 0.25546 0.45468 1.36093 5.25156 14.76328	40.02 33.91 26.00 19.27 20.56 20.66	53.91 51.58 46.79 46.00 50.00 50.00	13.89 17.67 20.79 26.73 29.44 29.34	N N N N	gnd gnd gnd gnd gnd

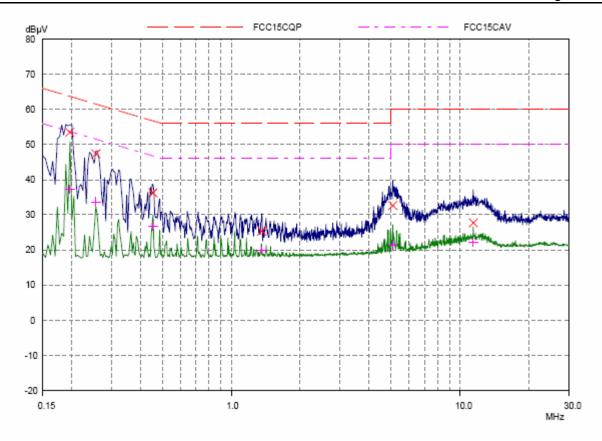

N Line

Conducted Emission from 150 KHz to 30 MHz

Report No.: RXA1301-0014RF01R4

Page 84 of 86

EDR-CH39


Final Measurement Results

Frequency MHz	QP Level dBµV	QP Limit dBµV	QP Delta dB	Phase	PE
0.18908 0.25548 0.44687 1.70859 5.11484 11.38046	52.80 47.14 34.95 20.33 29.14 27.52	64.08 61.58 56.93 56.00 60.00 60.00	11.28 14.44 21.98 35.67 30.86 32.48	L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd
Frequency MHz	AV Level dBµV	AV Limit dBµV	AV Delta dB	Phase -	PE -
0.18908 0.25548 0.44687 1.70859 5.11484 11.38046	37.56 33.36 23.35 18.27 20.15 22.27	54.08 51.58 46.93 46.00 50.00 50.00	16.52 18.22 23.58 27.73 29.85 27.73	L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd

L Line

Report No.: RXA1301-0014RF01R4

Page 85 of 86

Final Measurement Results

Frequency	QP Level	QP Limit	QP Delta	Phase	РЕ
MHz	dBµV	dBµV	dB	-	-
0.19687 0.25546 0.45468 1.36093 5.0914 11.43125	53.51 47.38 36.21 25.37 32.64 27.70	63.74 61.58 56.79 56.00 60.00 60.00	10.23 14.22 20.58 30.63 27.36 32.30	N N N N	gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	РЕ
MHz	dBµV	dBµV	dB	-	-
0.19687 0.25546 0.45468 1.36093 5.0914 11.43125	37.36 33.73 26.72 19.84 21.22 22.20	53.74 51.58 46.79 46.00 50.00 50.00	16.38 17.85 20.07 26.16 28.78 27.80	N N N N	gnd gnd gnd gnd gnd

N Line

Conducted Emission from 150 KHz to 30 MHz

Page 86 of 86

4. Main Test Instruments

No.	Name	Туре	Manufacturer	Serial Number	Calibration Date	Valid Period
01	BT Base Station Simulator	СВТ	R&S	100271	2012-06-30	One year
02	EMI Test Receiver	ESCS30	R&S	100138	2013-01-15	One year
03	LISN	ENV216	R&S	101171	2010-04-16	Three years
04	EMI Test Receiver	ESCI	R&S	100948	2012-06-30	One year
05	TRILOG Broadband Antenna	VULB 9163	Schwarzbeck	9163-201	2010-06-20	Three years
06	Double Ridged Waveguide Horn Antenna	HF907	R&S	100126	2012-07-02	Three years
07	PSG Analog Signal Generator	E8257D	Agilent	MY49281101	2012-06-30	One year
08	ESG Vector Signal Generator	E4438C	Agilent	MY49070900	2012-06-30	One year
09	Spectrum Analyzer	E4445A	Agilent	MY46181146	2012-06-30	One year
10	Power Splitter	SHX-GF2-2-13	Hua Xiang	10120101	NA	NA
11	MOB COMMS DC SUPPLY	66319D	Agilent	MY43004105	2012-06-30	One year
12	Power Sensor	E9304A	Agilent	MY50220022	2012-06-30	One year
13	Power Meter	E4418B	Agilent	MY50000623	2012-06-30	One year
14	Vibration table	ESS-050-120	dongling	D1007126	2010-08-23	Three years
15	Universal Radio Communication Tester	E5515C	Agilent	MY48367192	2012-06-30	One year

*****END OF REPORT *****