

## FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

### **CERTIFICATION TEST REPORT**

**FOR** 

## **WLAN MODULE**

**MODEL NUMBER: J27H023** 

FCC ID: MCLJ27H023 IC: 2878D-J27H023

REPORT NUMBER: 11J13696-1, Revision A

**ISSUE DATE: APRIL 14, 2011** 

Prepared for

HON HAI PRECISION IND. CO., LTD. 5F-1, 5 HSIN-AN ROAD HSINCHU SCIENCE-BASED INDUSTRIAL PARK TAIWAN, R.O.C.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888



## **Revision History**

| Rev. | Issue<br>Date | Revisions                                       | Revised By |
|------|---------------|-------------------------------------------------|------------|
|      | 04/11/11      | Initial Issue                                   | F. Ibrahim |
| Α    | 04/14/11      | Revised section 5.4 "Worst-case Configurations" | F. Ibrahim |

## **TABLE OF CONTENTS**

| 1 | . ATT        | ESTATION OF TEST RESULTS                                  | 5  |
|---|--------------|-----------------------------------------------------------|----|
| 2 | . TES        | T METHODOLOGY                                             | 6  |
| 3 | . FAC        | CILITIES AND ACCREDITATION                                | 6  |
| 4 | . CAI        | IBRATION AND UNCERTAINTY                                  | 6  |
|   | 4.1.         | MEASURING INSTRUMENT CALIBRATION                          | 6  |
|   | 4.2.         | SAMPLE CALCULATION                                        | 6  |
|   | 4.3.         | MEASUREMENT UNCERTAINTY                                   | 6  |
| 5 | . EQI        | JIPMENT UNDER TEST                                        | 7  |
|   | 5.1.         | DESCRIPTION OF EUT                                        | 7  |
|   | 5.2.         | MAXIMUM OUTPUT POWER                                      | 7  |
|   | 5.3          | SOFTWARE AND FIRMWARE                                     | 7  |
|   | 5.4          | WORST-CASE CONFIGURATIONS                                 | 8  |
|   | 5.5          | DESCRIPTION OF TEST SETUP                                 |    |
| 6 | TES          | T AND MEASUREMENT EQUIPMENT                               | 12 |
| 7 | ΔΝΊ          | ENNA PORT TEST RESULTS                                    | 13 |
| • | 7.3          | 802.11b MODE IN THE 2.4 GHz BAND                          |    |
|   | 7.3<br>7.3.  |                                                           |    |
|   | 7.3.         | 2 99% BANDWIDTH                                           | 16 |
|   | 7.3.         |                                                           |    |
|   | 7.3.<br>7.3. |                                                           |    |
|   | 7.3.         |                                                           |    |
|   | 7.4          | 802.11g MODE IN THE 2.4 GHz BAND                          | 28 |
|   | 7.4.         | 1 6 dB BANDWIDTH                                          |    |
|   | 7.4.         |                                                           |    |
|   |              | 3 OUTPUT POWER<br>4 AVERAGE POWER                         |    |
|   | 7.4.<br>7.4. |                                                           |    |
|   | 7.4.         |                                                           |    |
| 8 | RAI          | DIATED TEST RESULTS                                       | 43 |
| Ĭ | 8.3          | LIMITS AND PROCEDURE                                      |    |
|   |              | TRANSMITTER ABOVE 1 GHz                                   |    |
|   | 8.4<br>8.4   | 1 TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND     |    |
|   |              | 2 TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND     |    |
|   | 8.5          | RECEIVER ABOVE 1 GHz                                      |    |
|   | 8.5.         | 1 RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 2.4 GHz BAND | 64 |
|   | 8.6          | WORST-CASE RADIATED EMISSIONS BELOW 1 GHz                 | 66 |
|   |              | Page 3 of 87                                              |    |

| REPO | DRT   | NO:  | 11J1 | 13696-1 | ۱A |
|------|-------|------|------|---------|----|
| FCC  | ID: I | MCL. | J27H | 023     |    |

IC: 2878D-J27H023

DATE: APRIL 14, 2011

| 9  | AC POWER LINE CONDUCTED EMISSIONS | 72 |
|----|-----------------------------------|----|
| 10 | MAXIMUM PERMISSIBLE EXPOSURE      | 79 |
| 11 | SETUP PHOTOS                      | 81 |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** HON HAI PRECISION IND. CO., LTD.

5F-1, 5 HSIN-AN ROAD

HSINCHU SCIENCE-BASED INDUSTRIAL PARK

TAIWAN, R.O.C.

**EUT DESCRIPTION:** WLAN MODULE

**MODEL:** J27H023

SERIAL NUMBER: Radiated: EJF100030358 Foxconn Antenna Unit

EJF100030372 Mitsumi Antenna Unit,

Conducted: EJF100030013

**DATE TESTED:** MARCH 7-9 & APRIL 9, 2011

## **APPLICABLE STANDARDS**

STANDARD

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

DAVID GARCIA EMC ENGINEER

**UL CCS** 

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <a href="http://www.ccsemc.com">http://www.ccsemc.com</a>.

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 3.52 dB     |
| Radiated Disturbance, 30 to 1000 MHz  | 4.94 dB     |

Uncertainty figures are valid to a confidence level of 95%.

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is a WLAN Module.

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode    | Output Power | Output Power |
|-----------------|---------|--------------|--------------|
| (MHz)           |         | (dBm)        | (mW)         |
| 2412 - 2472     | 802.11b | 6.18         | 4.15         |
| 2412 - 2462     | 802.11g | 10.16        | 10.38        |

The radio utilizes three different antennas as follow:

1) Mitsumi: DCA-P17 (PP2), Inverted F, -5.39 dBi.

2) Foxconn: 361.00194.005 Dipole, 1.15 dBi.

3) Foxconn: JSNT2502-15-00, Dipole, -5.1 dBi.

All tests were conducted using Mitsumi: DCA-P17 (PP2) and Foxconn: 361.00194.005.

## 5.3 SOFTWARE AND FIRMWARE

EUT Hardware version is 2.0.

Test Utility for RF: HOSTIO-ART ver. 1.8

Test Utility for EMC (link for both Game - Game / Game - AP): BASIC ver. 20100802.

## 5.4 WORST-CASE CONFIGURATIONS

The worst-case data rate for each mode is determined to be as follows, based on preliminary tests of the chipset utilized in this radio.

All final tests in the 802.11b mode were made at 1 Mb/s. All final tests in the 802.11g mode were made at 6 Mb/s.

For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

The EUT was investigated in three orthogonal orientations X,Y, and Z. Orientation Z was found to be worst-case orientation.

802.11b and 802.11 modes cover the same frequency range of 2412-2472 MHz, 802.11b output power is hogher than 802.11 and 802.11 modulation type includes 802.11b modulation type, therefore, 802.11b was used as a representative mode for the two modes.

.

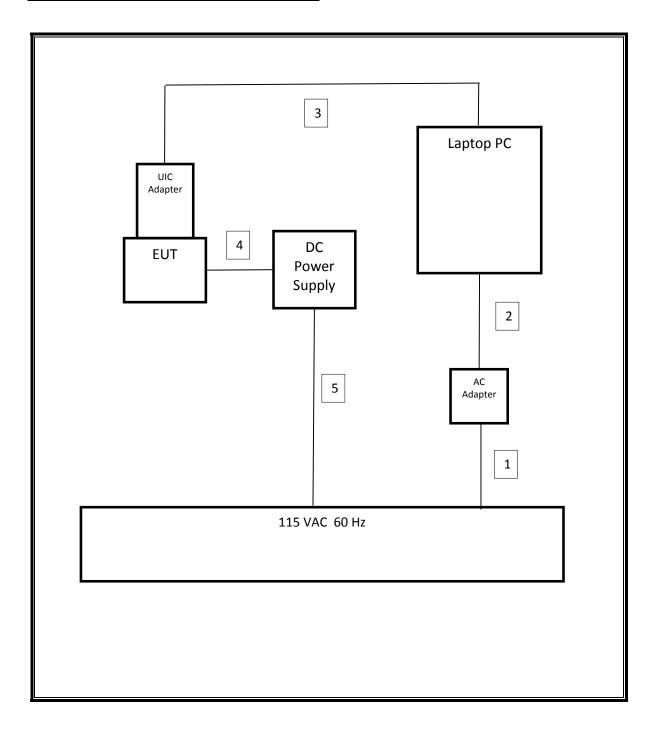
## 5.5 DESCRIPTION OF TEST SETUP

## **SUPPORT EQUIPMENT**

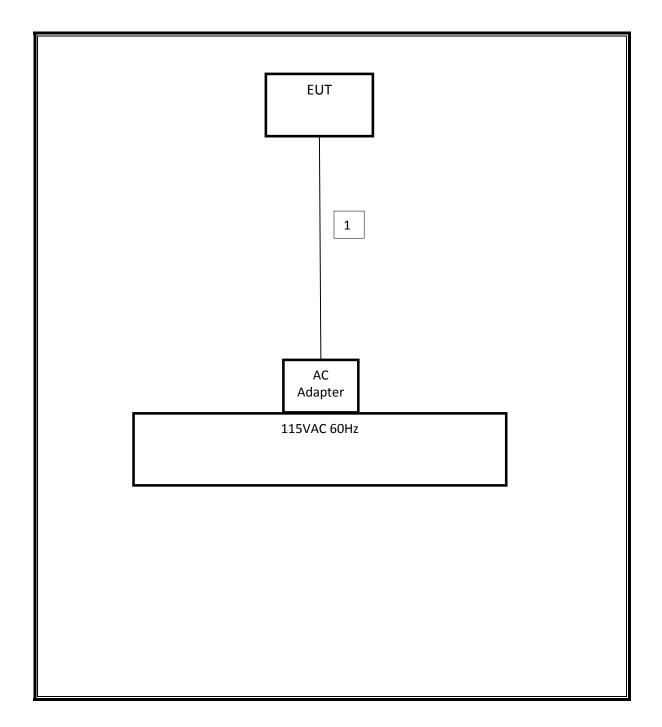
| PERIPHERAL SUPPORT EQUIPMENT LIST |                         |                  |               |        |  |  |
|-----------------------------------|-------------------------|------------------|---------------|--------|--|--|
| Description                       | Manufacturer            | Model            | Serial Number | FCC ID |  |  |
| Laptop PC                         | HP                      | Pavillion dv1000 | CNF63928VZ    | DoC    |  |  |
| AC Adapter                        | HP                      | 380467-003       | FX-0607269829 | N/A    |  |  |
| UIC-MIDI Interface                | Kyoto Microcomputer Co. | Partner CTR      | I0200120-UBA  | N/A    |  |  |
| EUT AC Adapter                    | Tabuchi                 | WAP-002(USA)     | C3ET101       | N/A    |  |  |

## I/O CABLES (ANTENNA PORT TEST CONFIGURATION)

|              | I/O CABLE LIST |                            |                   |               |                 |         |  |
|--------------|----------------|----------------------------|-------------------|---------------|-----------------|---------|--|
| Cable<br>No. | Port           | # of<br>Identical<br>Ports | Connector<br>Type | Cable<br>Type | Cable<br>Length | Remarks |  |
| 1            | AC             | 1                          | AC                | Unshielded    | 1.8m            |         |  |
| 2            | DC             | 1                          | DC                | Unshielded    | 1.8m            |         |  |
| 3            | USB            | 1                          | USB               | Shielded      | 1.5m            |         |  |
| 4            | DC             | 1                          | Battery           | Unshielded    | 1.5m            |         |  |
| 5            | AC             | 1                          | AC                | Unshielded    | 1.5m            |         |  |


## I/O CABLES (RADIATED AND LINE CONDUCTED TEST CONFIGURATION)

|              | I/O CABLE LIST |                            |                   |               |                 |         |
|--------------|----------------|----------------------------|-------------------|---------------|-----------------|---------|
| Cable<br>No. | Port           | # of<br>Identical<br>Ports | Connector<br>Type | Cable<br>Type | Cable<br>Length | Remarks |
| 1            | DC             | 1                          | DC                | Unshielded    | 1.9m            |         |


### **TEST SETUP**

The EUT is connected to a Jig card and host laptop computer via a USB cable during the tests. Test software exercised the radio card. The Jig card is removed after the setup.

## **SETUP DIAGRAM FOR ANTENNA PORT TESTS**



## SETUP DIAGRAM FOR RADIATED EMISSIONS TESTS



## **6 TEST AND MEASUREMENT EQUIPMENT**

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST         |               |                  |        |            |            |
|-----------------------------|---------------|------------------|--------|------------|------------|
| Description                 | Manufacturer  | Model            | Asset  | Cal Date   | Cal Due    |
| Spectrum Analyzer, 26.5 GHz | Agilent / HP  | E4440A           | C01179 | 1/19/2011  | 4/19/2012  |
| Antenna, Bilog, 2 GHz       | Sund Sciences | JB1              | C01011 | 7/12/2010  | 7/12/2011  |
| Antenna, Horn, 18 GHz       | EMCO          | 3115             | C00945 | 6/29/2010  | 6/29/2011  |
| Antenna, Horn 26 GHz        | ARA           | MWH-1826/B       | C00589 | 6/26/2010  | 6/25/2011  |
| Preamplifier, 1300 MHz      | Agilent / HP  | 8447D            | C00885 | 1/27/2011  | 1/27/2012  |
| Preamplifier, 26.5 GHz      | Agilent / HP  | 8449B            | C01052 | 7/14/2010  | 7/14/2011  |
| EMI Test Receiver, 30 MHz   | R&S           | ESHS 20          | N02396 | 8/6/2009   | 5/6/2011   |
| USN, 30 MHz                 | FCC           | LISN-50/250-25-2 | N02625 | 11/10/2010 | 11/10/2011 |
| Peak Power Meter            | Boonton       | 4541             | C01186 | 3/1/2010   | 3/1/2011   |
| Peak Power Sensor           | Boonton       | 57006            | C01203 | 2/24/2010  | 2/24/2011  |

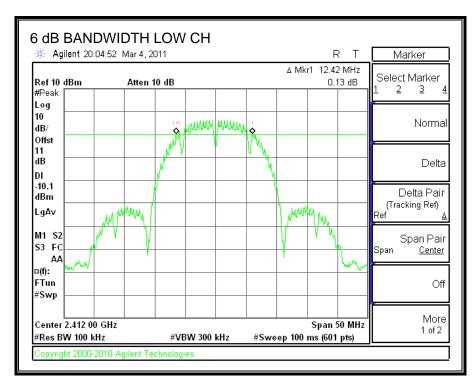
# 7 ANTENNA PORT TEST RESULTS 7.3 802.11b MODE IN THE 2.4 GHz BAND

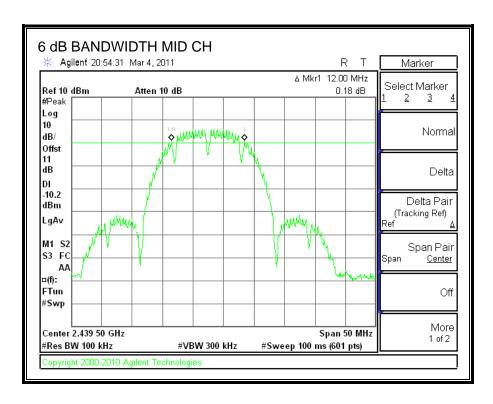
## 7.3.1 6 dB BANDWIDTH

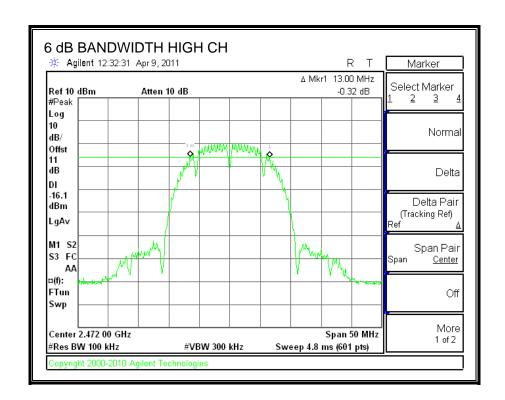
### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


## **TEST PROCEDURE**


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2412               | 12.42                   | 0.5                    |
| Middle  | 2437               | 12.00                   | 0.5                    |
| High    | 2472               | 13.00                   | 0.5                    |

## **6 dB BANDWIDTH**

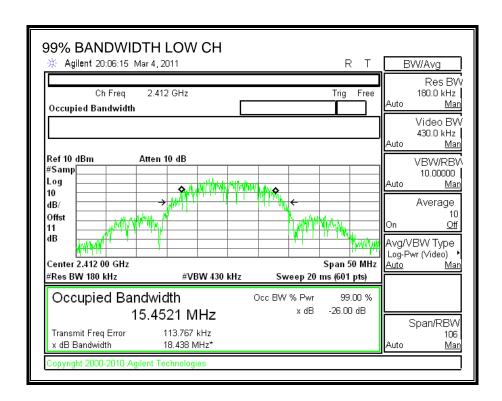


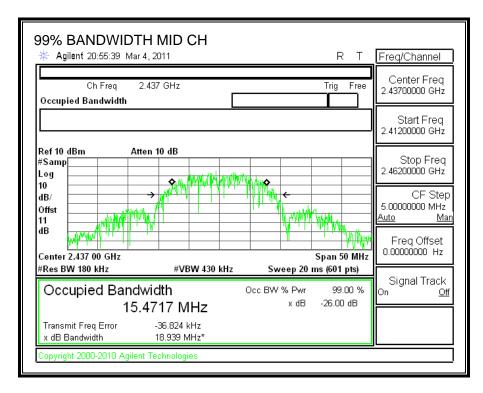




## 7.3.2 99% BANDWIDTH

### **LIMITS**


None; for reporting purposes only.


## **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 15.4521       |
| Middle  | 2437      | 15.4717       |
| High    | 2472      | 15.2722       |

#### 99% BANDWIDTH





pyright 2000-2010 Agilent Technologies

DATE: APRIL 14, 2011

IC: 2878D-J27H023

## 7.3.3 OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using a wide bandwidth Peak Power Meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Power         | Limit | Margin |
|---------|-----------|---------------|-------|--------|
|         |           | Meter Reading |       |        |
|         | (MHz)     | (dBm)         | (dBm) | (dB)   |
| Low     | 2412      | 6.01          | 30    | -23.99 |
| Middle  | 2437      | 6.18          | 30    | -23.82 |
| High    | 2472      | 0.84          | 30    | -29.16 |

## 7.3.4 AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

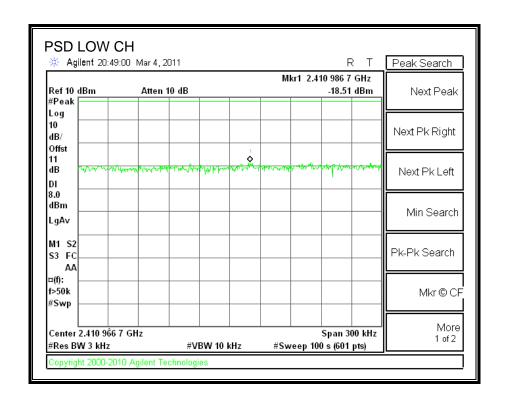
| Channel | Frequency Power |       |
|---------|-----------------|-------|
|         | (MHz)           | (dBm) |
| Low     | 2412            | 5.81  |
| Middle  | 2437            | 5.95  |
| High    | 2472            | -0.24 |

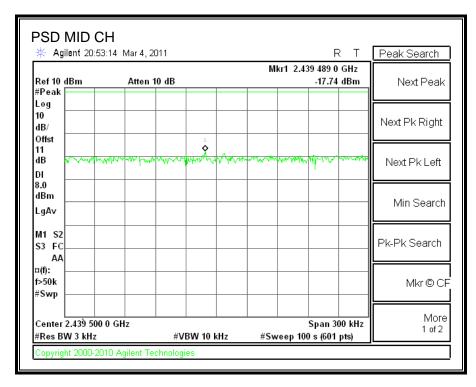
### 7.3.5 POWER SPECTRAL DENSITY

#### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


## **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

| Channel | Frequency | PPSD   | Limit | Margin |
|---------|-----------|--------|-------|--------|
|         | (MHz)     | (dBm)  | (dBm) | (dB)   |
| Low     | 2412      | -18.51 | 8     | -26.51 |
| Middle  | 2437      | -17.74 | 8     | -25.74 |
| High    | 2472      | -23.48 | 8     | -31.48 |

#### **POWER SPECTRAL DENSITY**





DATE: APRIL 14, 2011

IC: 2878D-J27H023

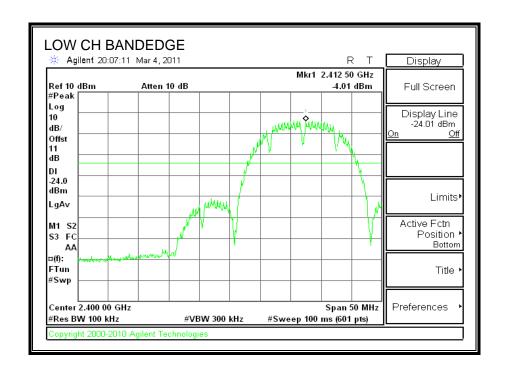
## 7.3.6 CONDUCTED SPURIOUS EMISSIONS

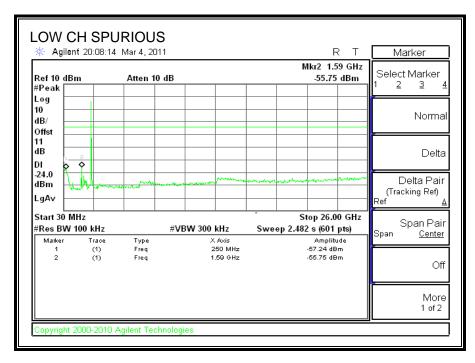
### **LIMITS**

FCC §15.247 (d)

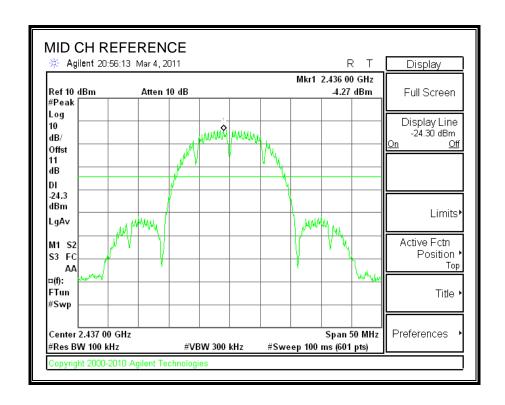
IC RSS-210 A8.5

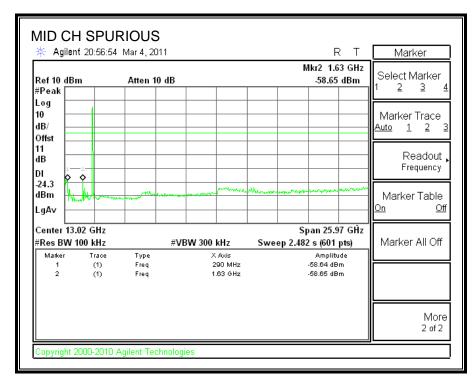
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.


## **TEST PROCEDURE**

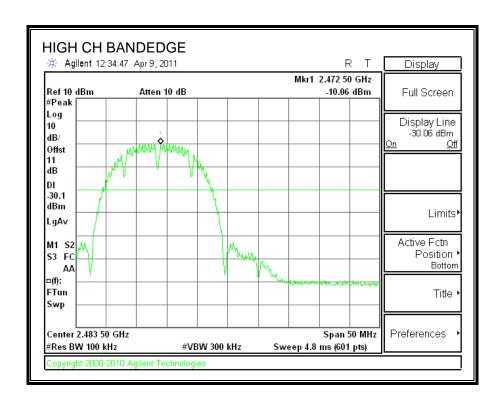

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

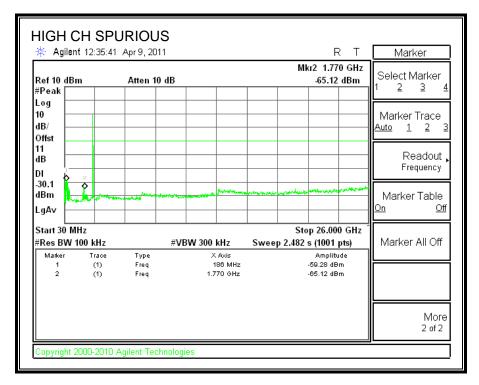
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


#### **RESULTS**


## **SPURIOUS EMISSIONS, LOW CHANNEL**







### **SPURIOUS EMISSIONS, MID CHANNEL**





## **SPURIOUS EMISSIONS, HIGH CHANNEL**





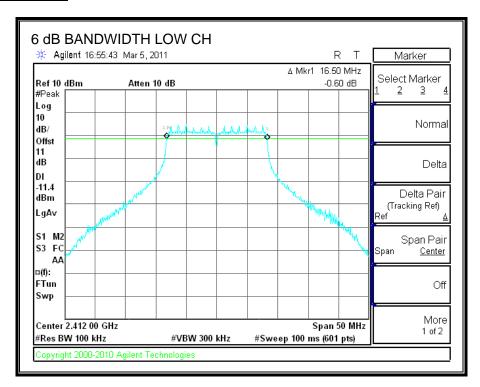
## 7.4 802.11g MODE IN THE 2.4 GHz BAND

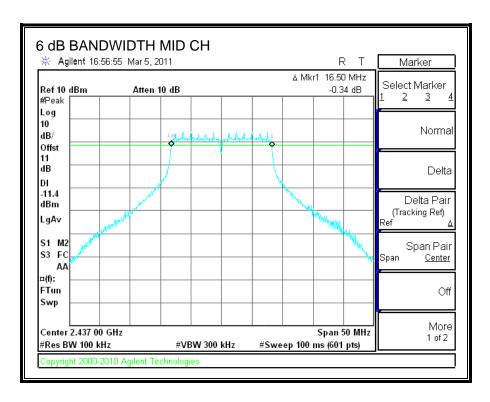
## 7.4.1 6 dB BANDWIDTH

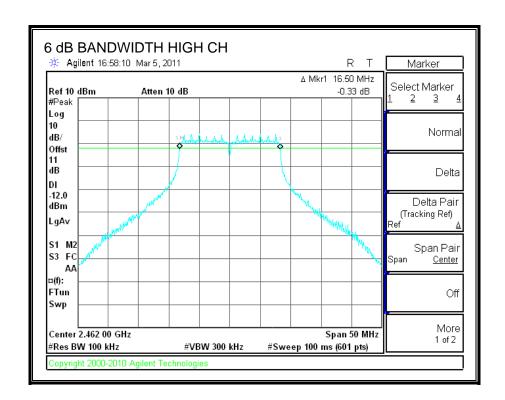
## **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


### **TEST PROCEDURE**


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 2412      | 16.5           | 0.5           |
| Middle  | 2437      | 16.5           | 0.5           |
| High    | 2462      | 16.5           | 0.5           |

### **6 dB BANDWIDTH**

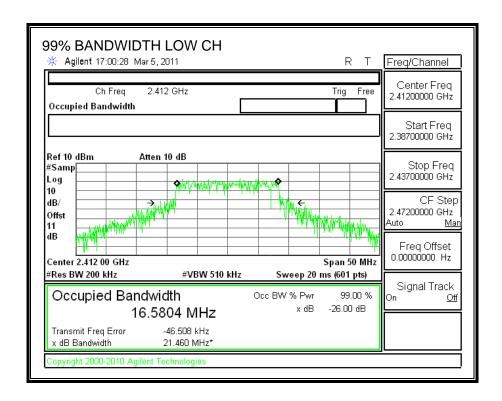


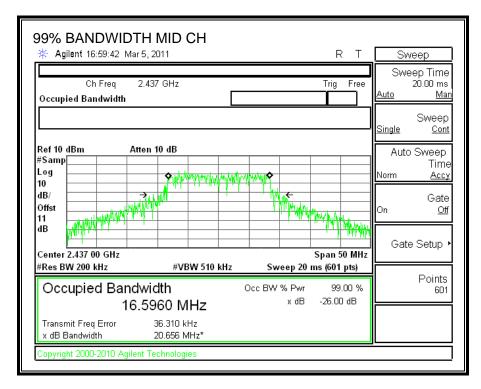




## 7.4.2 99% BANDWIDTH

## **LIMITS**


None; for reporting purposes only.


## **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 16.5804       |
| Middle  | 2437      | 16.5960       |
| High    | 2462      | 16.5110       |

#### 99% BANDWIDTH





DATE: APRIL 14, 2011

IC: 2878D-J27H023

## 7.4.3 OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using a wide bandwidth Peak Power Meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Spectrum         | Limit | Margin |
|---------|-----------|------------------|-------|--------|
|         |           | Analyzer Reading |       |        |
|         | (MHz)     | (dBm)            | (dBm) | (dB)   |
| Low     | 2412      | 10.16            | 30    | -19.84 |
| Middle  | 2437      | 10.15            | 30    | -19.85 |
| High    | 2462      | 9.83             | 30    | -20.17 |

## 7.4.4 AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

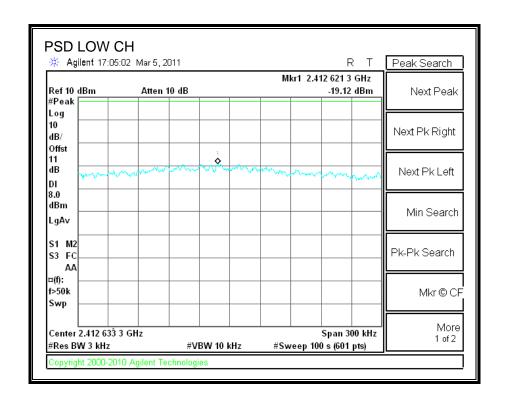
| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 5.76  |
| Middle  | 2437      | 5.74  |
| High    | 2462      | 5.15  |

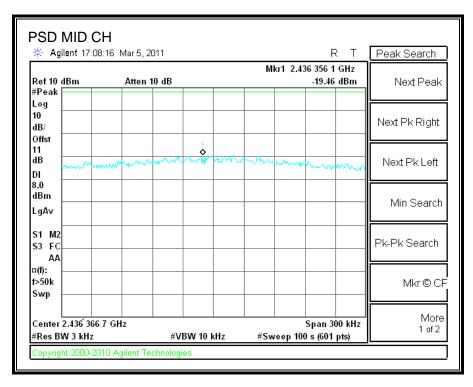
### 7.4.5 POWER SPECTRAL DENSITY

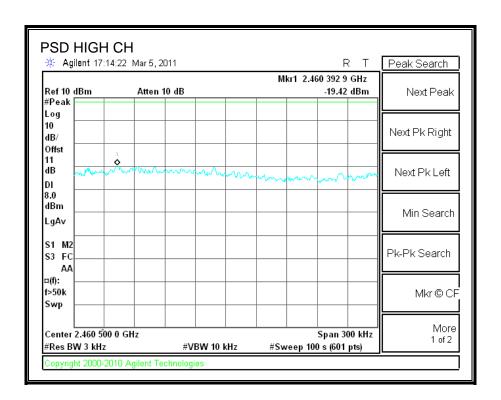
#### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


## **TEST PROCEDURE**


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

| Channel | Frequency | PPSD   | Limit | Margin |
|---------|-----------|--------|-------|--------|
|         | (MHz)     | (dBm)  | (dBm) | (dB)   |
| Low     | 2412      | -19.12 | 8     | -27.12 |
| Middle  | 2437      | -19.46 | 8     | -27.46 |
| High    | 2462      | -19.42 | 8     | -27.42 |

#### **POWER SPECTRAL DENSITY**







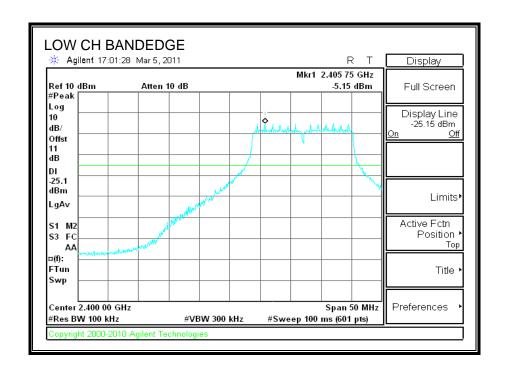
## 7.4.6 CONDUCTED SPURIOUS EMISSIONS

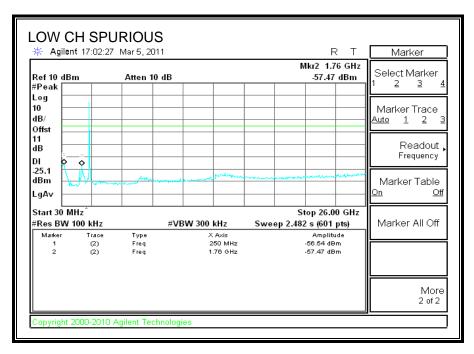
#### **LIMITS**

FCC §15.247 (d)

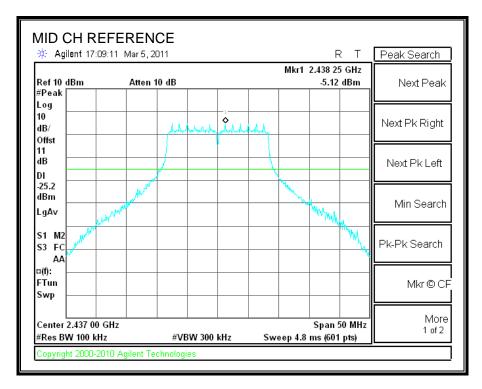
IC RSS-210 A8.5

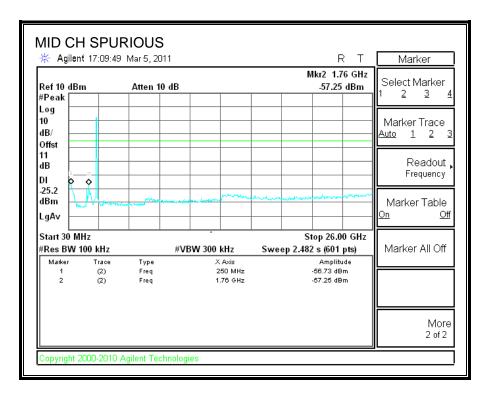
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.


## **TEST PROCEDURE**

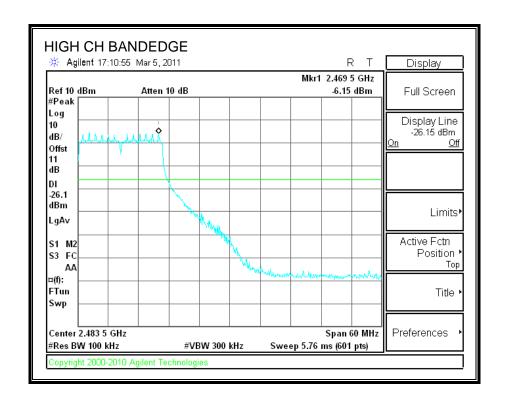

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

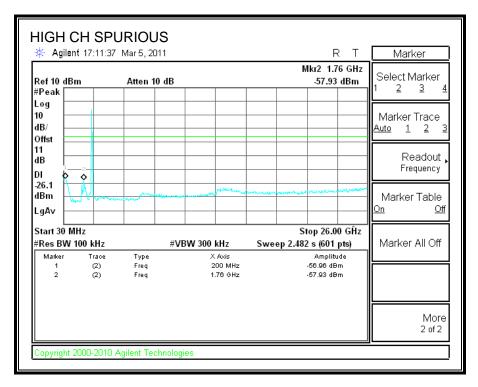
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


#### **RESULTS**


## **SPURIOUS EMISSIONS, LOW CHANNEL**







### **SPURIOUS EMISSIONS, MID CHANNEL**





### **SPURIOUS EMISSIONS, HIGH CHANNEL**





## 8 RADIATED TEST RESULTS

## 8.3 LIMITS AND PROCEDURE

#### **LIMITS**

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range (MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit (dBuV/m) at 3 m |
|-----------------------|---------------------------------------|--------------------------------------|
| 30 - 88               | 100                                   | 40                                   |
| 88 - 216              | 150                                   | 43.5                                 |
| 216 - 960             | 200                                   | 46                                   |
| Above 960             | 500                                   | 54                                   |

#### **TEST PROCEDURE**

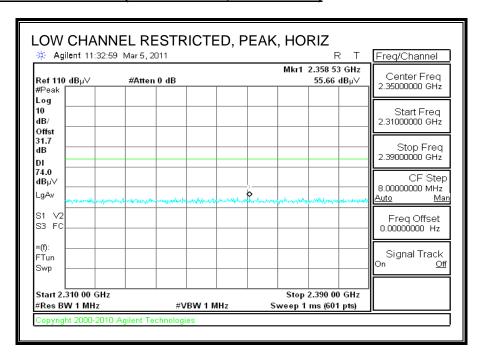
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

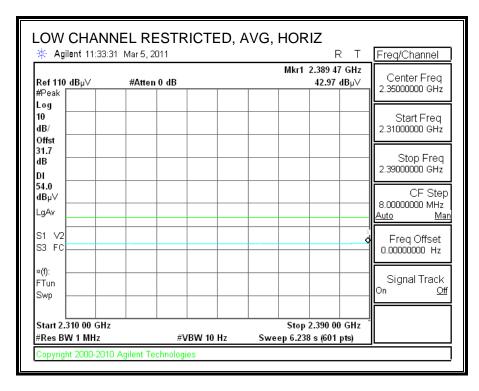
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

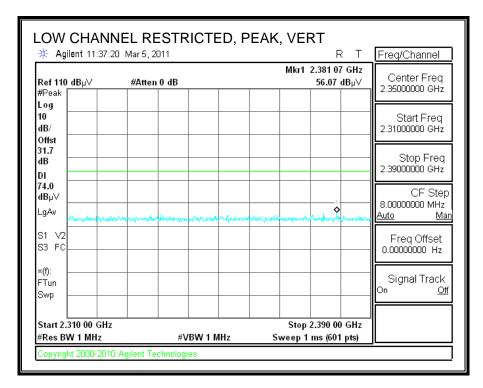
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

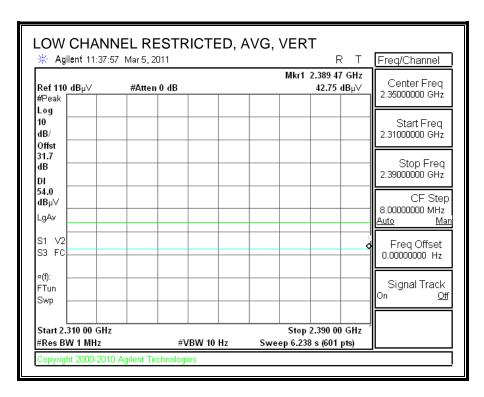
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

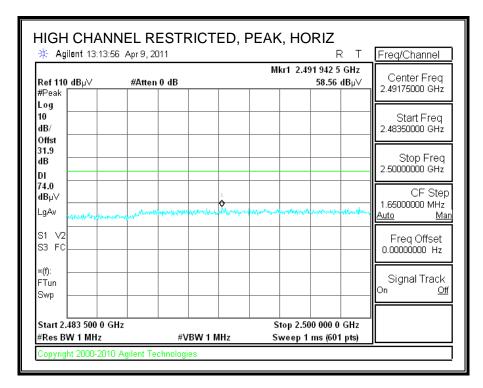

## 8.4 TRANSMITTER ABOVE 1 GHz

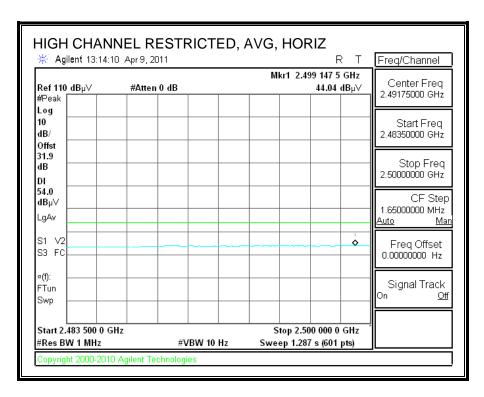
# 8.4.1 TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND


#### **FOXCONN ANTENNA**

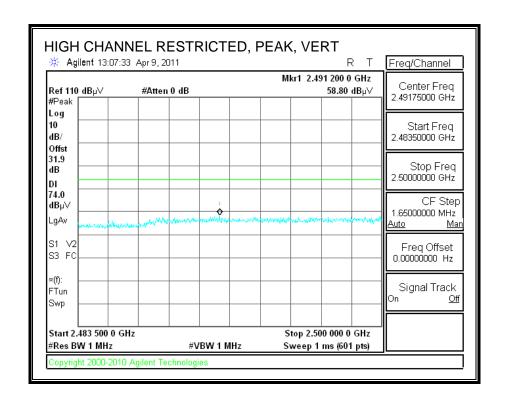

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

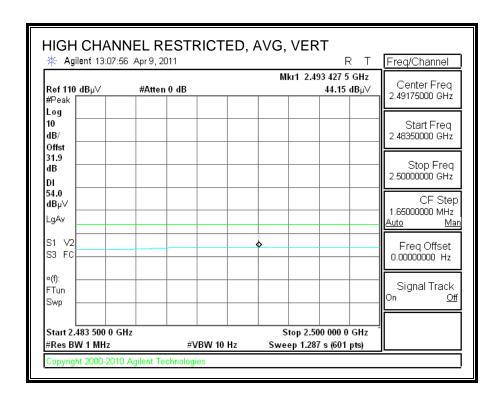






## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)







## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang
Date: 03-05-11
Project #: 11J13696
Company: Hon Hai
Test Target: FCC 15.247
Mode Oper: TX, b mode

EUT Configuration: EUT with Foxconn Antenna

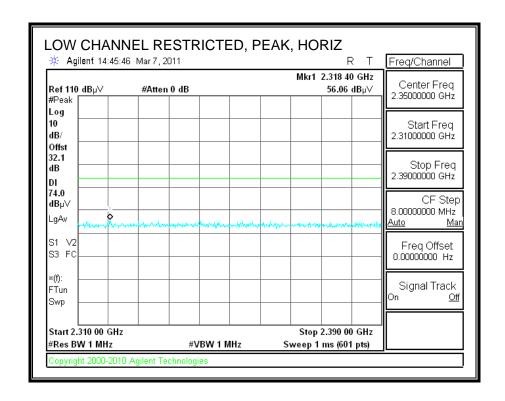
 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

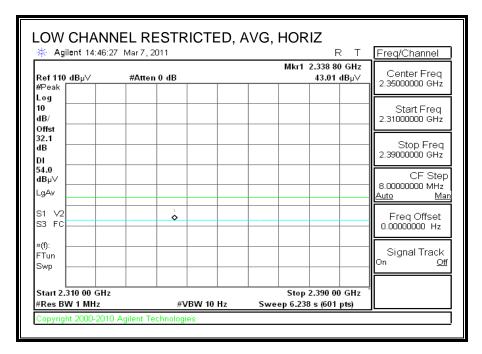
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

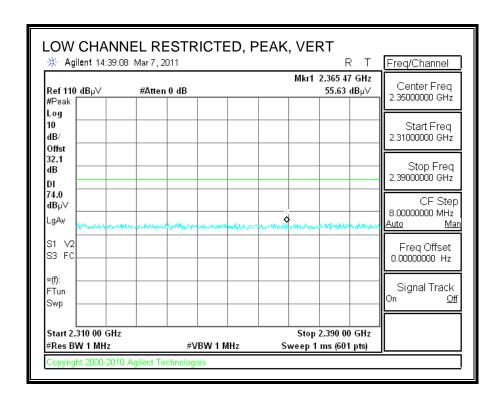
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

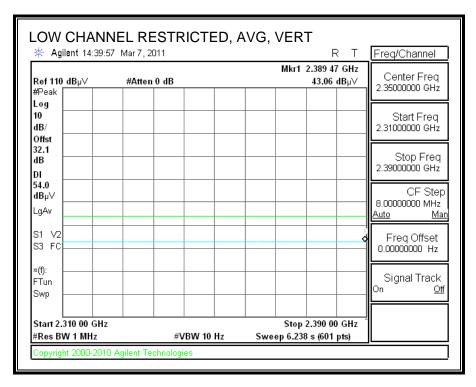
 CL
 Cable Loss
 HPF
 High Pass Filter


| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin         | Ant. Pol. | Det.   | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|----------------|-----------|--------|-------|
| GHz       | (m)     | dBuV | dB/m | dВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ             | V/H       | P/A/QP |       |
| Low Ch, 2 | 2412MHz |      |      |     |       |        |      |        |        |                |           |        |       |
| 4.824     | 3.0     | 41.1 | 32.8 | 5.8 | -34.8 | 0.0    | 0.0  | 44.8   | 74.0   | -29.2          | Н         | P      |       |
| 4.824     | 3.0     | 33.9 | 32.8 | 5.8 | -34.8 | 0.0    | 0.0  | 37.6   | 54.0   | -16.4          | H         | A      |       |
| 4.824     | 3.0     | 39.8 | 32.8 | 5.8 | -34.8 | 0.0    | 0.0  | 43.6   | 74.0   | -30.4          | V         | P      |       |
| 4.824     | 3.0     | 32.4 | 32.8 | 5.8 | -34.8 | 0.0    | 0.0  | 36.1   | 54.0   | -17.9          | V         | A      |       |
| Mid Ch, 2 | 2437MHz |      |      |     |       |        |      |        |        |                |           |        |       |
| 4.874     | 3.0     | 37.8 | 32.8 | 5.8 | -34.9 | 0.0    | 0.0  | 41.5   | 74.0   | -32.5          | V         | P      |       |
| 4.874     | 3.0     | 25.7 | 32.8 | 5.8 | -34.9 | 0.0    | 0.0  | 29.5   | 54.0   | -24.5          | V         | A      |       |
| 7.311     | 3.0     | 37.3 | 35.2 | 7.3 | -34.7 | 0.0    | 0.0  | 45.1   | 74.0   | -28.9          | V         | P      |       |
| 7.311     | 3.0     | 24.9 | 35.2 | 7.3 | -34.7 | 0.0    | 0.0  | 32.7   | 54.0   | -21.3          | V         | A      |       |
| 4.874     | 3.0     | 38.2 | 32.8 | 5.8 | -34.9 | 0.0    | 0.0  | 41.9   | 74.0   | -32.1          | H         | P      |       |
| 4.874     | 3.0     | 25.9 | 32.8 | 5.8 | -34.9 | 0.0    | 0.0  | 29.7   | 54.0   | -24.3          | H         | A      |       |
| 7.311     | 3.0     | 37.8 | 35.2 | 7.3 | -34.7 | 0.0    | 0.0  | 45.6   | 74.0   | -28.4          | H         | P      |       |
| 7.311     | 3.0     | 24.9 | 35.2 | 7.3 | -34.7 | 0.0    | 0.0  | 32.7   | 54.0   | - <b>21.</b> 3 | H         | A      |       |
| High Ch,  | 2472MH  | Z    |      |     |       |        |      |        |        |                |           |        |       |
| 4.944     | 3.0     | 37.3 | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 39.9   | 74.0   | -34.1          | V         | P      |       |
| 4.944     | 3.0     | 25.0 | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 27.6   | 54.0   | -26.4          | V         | A      |       |
| 7.416     | 3.0     | 36.6 | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9          | V         | P      |       |
| 7.416     | 3.0     | 24.5 | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 31.1   | 54.0   | -22.9          | V         | A      |       |
| 4.944     | 3.0     | 37.5 | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 40.1   | 74.0   | -33.9          | H         | P      |       |
| 4.944     | 3.0     | 25.0 | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 27.6   | 54.0   | -26.4          | H         | A      |       |
| 7.416     | 3.0     | 37.4 | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 44.0   | 74.0   | -30.0          | H         | P      |       |
| 7.416     | 3.0     | 24.5 | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 31.1   | 54.0   | -22.9          | H         | A      |       |
|           |         |      |      |     |       |        |      | .ļ     |        |                |           |        |       |
|           |         |      |      |     |       |        |      |        |        |                |           |        |       |

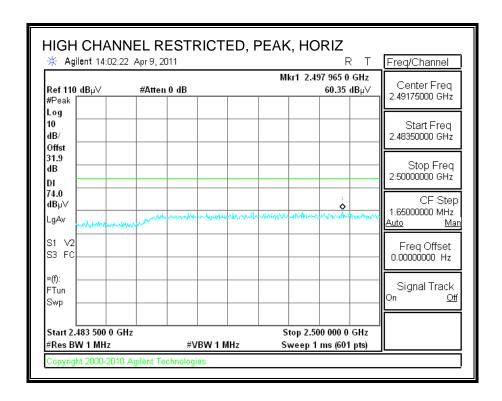

Rev. 4.1.2.7

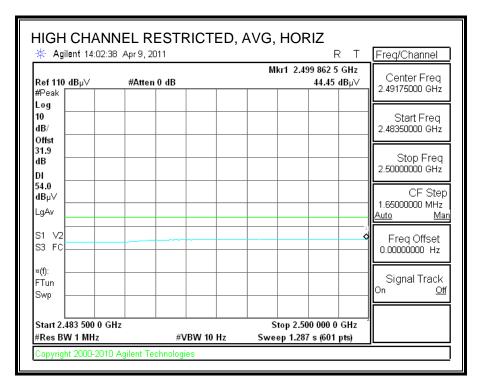
Note: No other emissions were detected above the system noise floor.


### **MITSUMI ANTENNA**

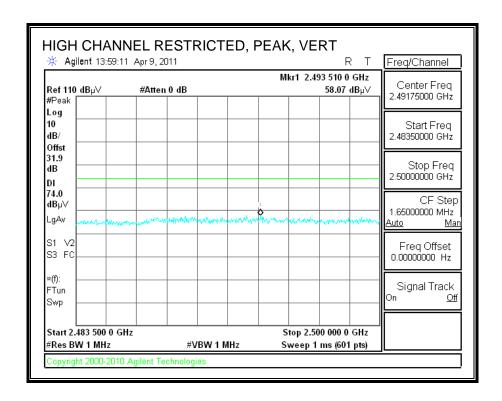

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

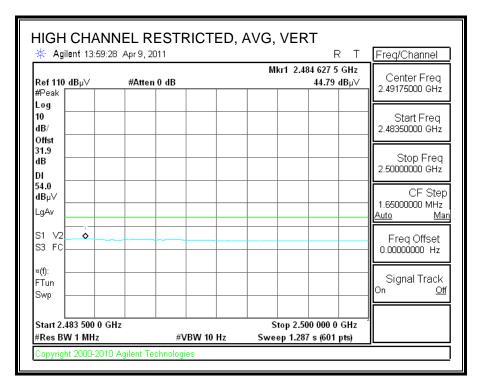






## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)







#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

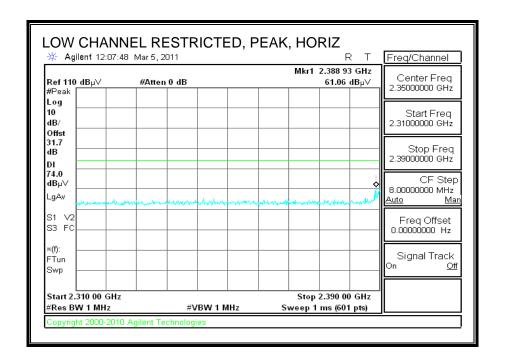
Compliance Certification Services, Fremont 5m Chamber

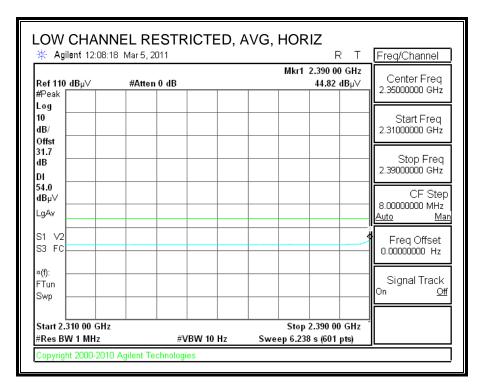
Test Engr: David Garcia
Date: 03-07-11
Project #: 11J13696
Company: Hon Hai
Test Target: FCC 15.205
Mode Oper: Tx, b mode

EUT with Mitsumi Antenna

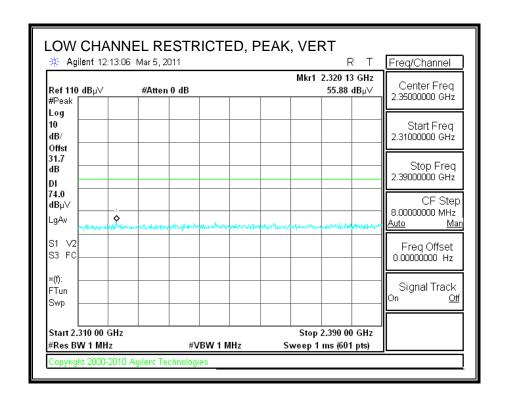
Measurement Frequency f Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit Antenna Factor Peak Calculated Peak Field Strength AF Margin vs. Peak Limit HPF High Pass Filter Cable Loss CL.

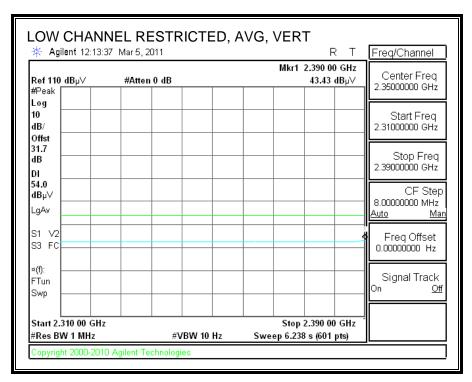
| f          | Dist      | Read  | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin        | Ant Pol | Det    | Notes |
|------------|-----------|-------|------|-----|-------|--------|------|--------|--------|---------------|---------|--------|-------|
| <b>GHz</b> | (m)       | dBuV  | dB/m | đВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ            | V/H     | P/A/QP |       |
| Low Char   | nnel: 241 | 2 MHz |      |     |       |        |      |        |        |               |         |        |       |
| 4.824      | 3.0       | 47.3  | 32.8 | 5.8 | -34.8 | 0.0    | 0.5  | 51.5   | 74.0   | -22.5         | H       | P      |       |
| 4.824      | 3.0       | 45.0  | 32.8 | 5.8 | -34.8 | 0.0    | 0.5  | 49.3   | 54.0   | -4.7          | H       | A      |       |
| 4.824      | 3.0       | 44.3  | 32.8 | 5.8 | -34.8 | 0.0    | 0.5  | 48.6   | 74.0   | -25.4         | V       | P      |       |
| 4.824      | 3.0       | 40.6  | 32.8 | 5.8 | -34.8 | 0.0    | 0.5  | 44.9   | 54.0   | -9.1          | V       | A      |       |
| Mid Char   | nnel: 243 | 7 MHz |      |     |       |        |      |        |        |               |         |        |       |
| 4.874      | 3.0       | 44.4  | 32.8 | 5.8 | -34.9 | 0.0    | 0.5  | 48.7   | 74.0   | -25.3         | H       | P      |       |
| 4.874      | 3.0       | 40.3  | 32.8 | 5.8 | -34.9 | 0.0    | 0.5  | 44.7   | 54.0   | -9.3          | H       | A      |       |
| 7.311      | 3.0       | 36.6  | 35.2 | 7.3 | -34.7 | 0.0    | 0.5  | 44.9   | 74.0   | -29.1         | H       | P      |       |
| 7.311      | 3.0       | 24.6  | 35.2 | 7.3 | -34.7 | 0.0    | 0.5  | 32.9   | 54.0   | -21.1         | H       | A      |       |
| 4.874      | 3.0       | 42.4  | 32.8 | 5.8 | -34.9 | 0.0    | 0.5  | 46.7   | 74.0   | -27.3         | V       | P      |       |
| 4.874      | 3.0       | 37.9  | 32.8 | 5.8 | -34.9 | 0.0    | 0.5  | 42.2   | 54.0   | -11.8         | V       | A      |       |
| 7.311      | 3.0       | 37.0  | 35.2 | 7.3 | -34.7 | 0.0    | 0.5  | 45.3   | 74.0   | -28.7         | V       | P      |       |
| 7.311      | 3.0       | 24.7  | 35.2 | 7.3 | -34.7 | 0.0    | 0.5  | 33.0   | 54.0   | -21.0         | v       | A      |       |
| High Cha   | nnel: 24  | 72    |      |     |       |        |      |        |        |               |         |        |       |
| 4.944      | 3.0       | 36.9  | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 39.5   | 74.0   | -34.5         | H       | P      |       |
| 4.944      | 3.0       | 24.9  | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 27.5   | 54.0   | -26.5         | H       | A      |       |
| 7.416      | 3.0       | 36.2  | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2         | H       | P      |       |
| 7.416      | 3.0       | 24.4  | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 31.0   | 54.0   | -23.0         | H       | A      |       |
| 4.944      | 3.0       | 36.9  | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 39.5   | 74.0   | -34.5         | V       | P      |       |
| 4.944      | 3.0       | 24.9  | 33.2 | 5.9 | -36.5 | 0.0    | 0.0  | 27.5   | 54.0   | -26.5         | V       | A      |       |
| 7.416      | 3.0       | 36.4  | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0         | V       | P      |       |
| 7.416      | 3.0       | 24.4  | 35.5 | 7.3 | -36.2 | 0.0    | 0.0  | 31.0   | 54.0   | - <b>23.0</b> | V       | A      |       |
|            |           |       |      |     |       |        |      |        |        | ļ             |         |        |       |
|            |           |       |      |     |       |        |      |        |        |               |         |        |       |


Rev. 4.1.2.7

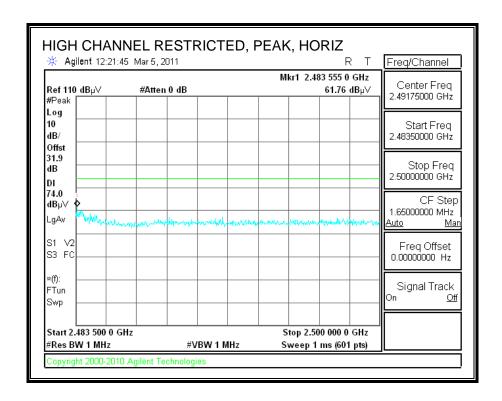

Note: No other emissions were detected above the system noise floor.

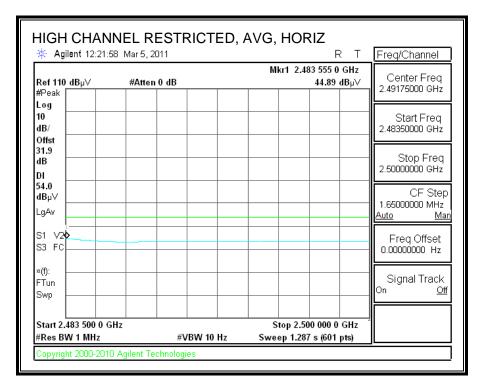
## 8.4.2 TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND


#### **FOXCONN ANTENNA**

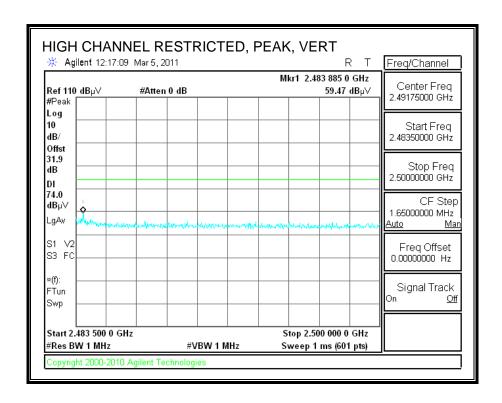

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

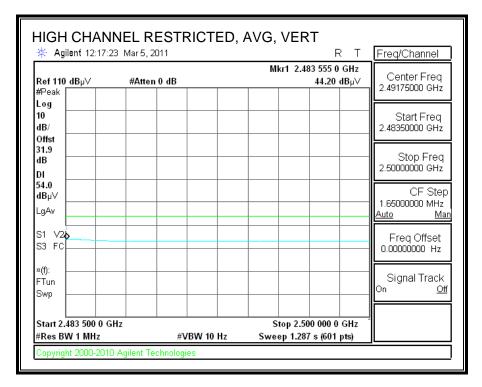






#### RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)







## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

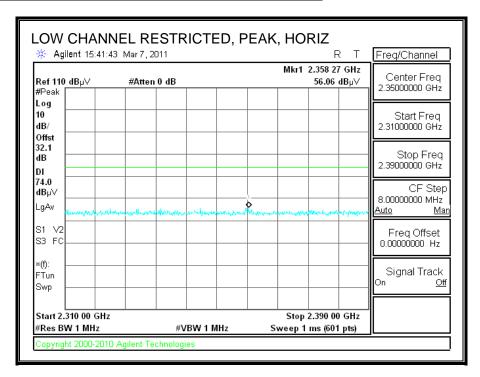
Compliance Certification Services, Fremont 5m Chamber

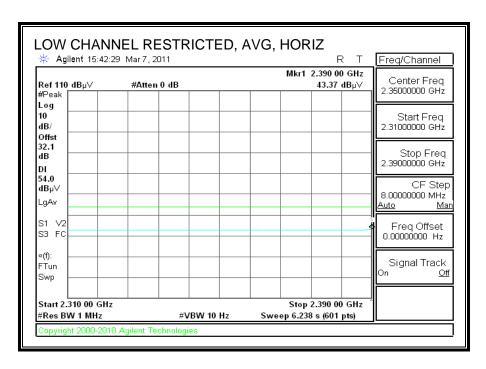
Chin Pang Test Engr: Date: 03/05/11 Project #: 11J13696 Company: Hon Hai FCC 15.247 Test Target: Mode Oper: TX, g mode

EUT Coniguration: EUT with Foxconn Antenna

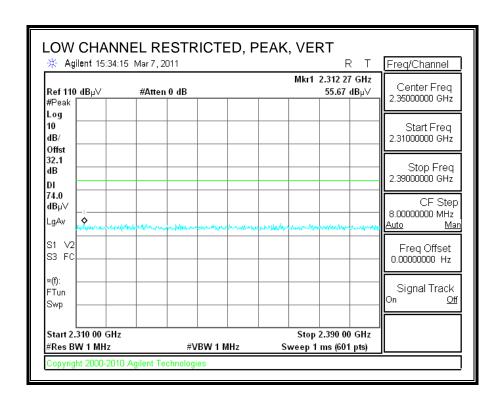
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit f Measurement
>
> Dist Distance to Antenna D Corr Distance Correct to 5 minus
>
> Dist Distance to Antenna Avg Average Field Strength @ 3 m
>
> Columbia Deak Field Strength Peak Field Strength Limit Margin vs. Average Limit Antenna Factor Peak Calculated Peak Field Strength HPF High Pass Filter Margin vs. Peak Limit

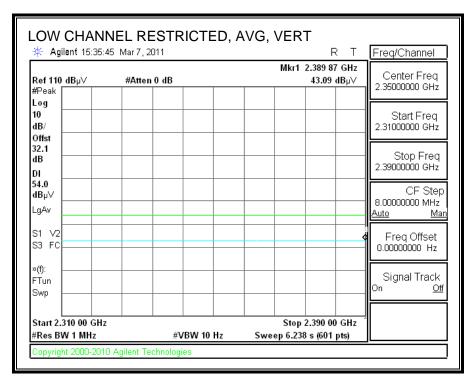
CI. Cable Loss


| f         | Dist   | Read | AF   | CL  | Amp   |     |     | 1      |        | _     | Ant. Pol. |        | Notes |
|-----------|--------|------|------|-----|-------|-----|-----|--------|--------|-------|-----------|--------|-------|
| GHz       | (m)    | dBuV | dB/m | dB  | dB    | dB  | dВ  | dBuV/m | dBuV/m | dB    | V/H       | P/A/QP |       |
| Low Ch, 2 | 412MH: | Z    |      |     |       |     |     |        |        |       |           |        |       |
| 4.824     | 3.0    | 38.2 | 32.8 | 5.8 | -34.8 | 0.0 | 0.0 | 41.9   | 74.0   | -32.1 | H         | P      |       |
| 4.824     | 3.0    | 25.8 | 32.8 | 5.8 | -34.8 | 0.0 | 0.0 | 29.5   | 54.0   | -24.5 | H         | A      |       |
| 4.824     | 3.0    | 37.8 | 32.8 | 5.8 | -34.8 | 0.0 | 0.0 | 41.5   | 74.0   | -32.5 | V         | P      |       |
| 4.824     | 3.0    | 25.8 | 32.8 | 5.8 | -34.8 | 0.0 | 0.0 | 29.5   | 54.0   | -24.5 | V         | A      |       |
| Mid Ch, 2 | 437MH2 | 5    |      |     |       |     |     |        |        |       |           |        |       |
| 4.874     | 3.0    | 38.8 | 32.8 | 5.8 | -34.9 | 0.0 | 0.0 | 42.6   | 74.0   | -31.4 | H         | P      |       |
| 4.874     | 3.0    | 25.7 | 32.8 | 5.8 | -34.9 | 0.0 | 0.0 | 29.5   | 54.0   | -24.5 | H         | A      |       |
| 7.311     | 3.0    | 36.8 | 35.2 | 7.3 | -34.7 | 0.0 | 0.0 | 44.6   | 74.0   | -29.4 | H         | P      |       |
| 7.311     | 3.0    | 24.8 | 35.2 | 7.3 | -34.7 | 0.0 | 0.0 | 32.6   | 54.0   | -21.4 | H         | A      |       |
| 4.874     | 3.0    | 36.4 | 32.8 | 5.8 | -34.9 | 0.0 | 0.0 | 40.2   | 74.0   | -33.8 | V         | A      |       |
| 4.874     | 3.0    | 25.4 | 32.8 | 5.8 | -34.9 | 0.0 | 0.0 | 29.2   | 54.0   | -24.8 | V         | A      |       |
| 7.311     | 3.0    | 36.7 | 35.2 | 7.3 | -34.7 | 0.0 | 0.0 | 44.5   | 74.0   | -29.5 | V         | P      |       |
| 7.311     | 3.0    | 24.8 | 35.2 | 7.3 | -34.7 | 0.0 | 0.0 | 32.6   | 54.0   | -21.4 | V         | A      |       |
| High Ch,  | 2462MI | [z   |      |     |       |     |     |        |        |       |           |        |       |
| 4.924     | 3.0    | 37.3 | 32.8 | 5.9 | -34.9 | 0.0 | 0.0 | 41.2   | 74.0   | -32.8 | H         | P      |       |
| 4.924     | 3.0    | 25.6 | 32.8 | 5.9 | -34.9 | 0.0 | 0.0 | 29.5   | 54.0   | -24.5 | H         | A      |       |
| 7.386     | 3.0    | 37.0 | 35.3 | 7.3 | -34.6 | 0.0 | 0.0 | 45.0   | 74.0   | -29.0 | H         | P      |       |
| 7.386     | 3.0    | 24.6 | 35.3 | 7.3 | -34.6 | 0.0 | 0.0 | 32.5   | 54.0   | -21.5 | H         | A      |       |
| 4.924     | 3.0    | 37.9 | 32.8 | 5.9 | -34.9 | 0.0 | 0.0 | 41.8   | 74.0   | -32.2 | V         | P      |       |
| 4.924     | 3.0    | 25.6 | 32.8 | 5.9 | -34.9 | 0.0 | 0.0 | 29.4   | 54.0   | -24.6 | V         | A      |       |
| 7.386     | 3.0    | 37.4 | 35.3 | 7.3 | -34.6 | 0.0 | 0.0 | 45.4   | 74.0   | -28.6 | V         | P      |       |
| 7.386     | 3.0    | 24.5 | 35.3 | 7.3 | -34.6 | 0.0 | 0.0 | 32.5   | 54.0   | -21.5 | V         | A      |       |
|           |        |      |      |     |       |     |     |        |        |       |           |        |       |
|           |        |      |      |     |       |     |     |        |        |       |           |        |       |

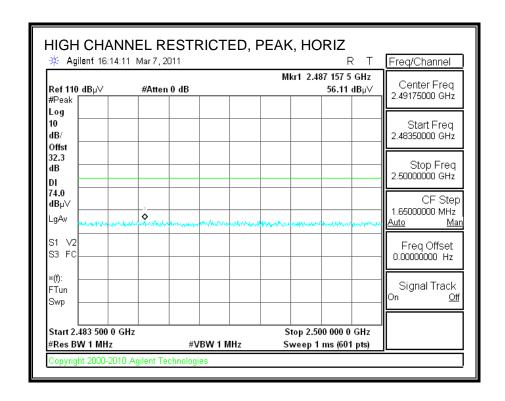

Rev. 4.1.2.7

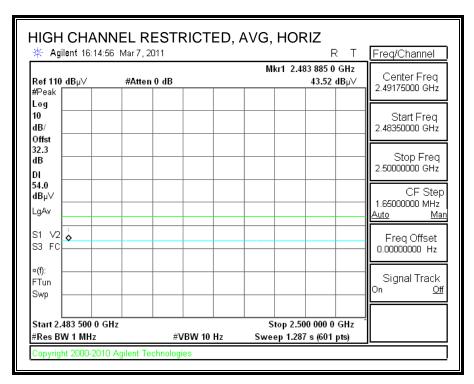
Note: No other emissions were detected above the system noise floor.


### **MITSUMI ANTENNA**

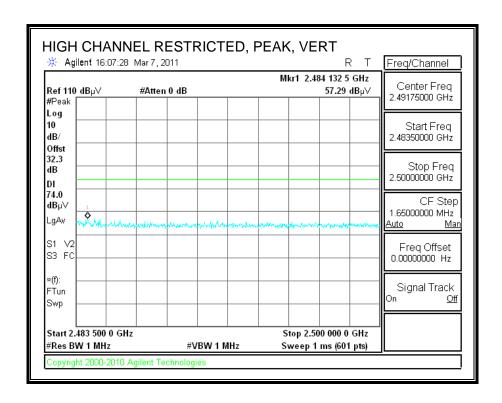

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

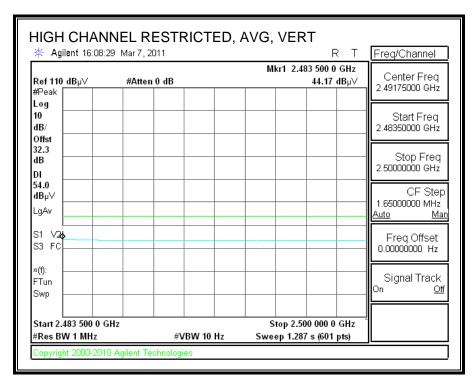






## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)







#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

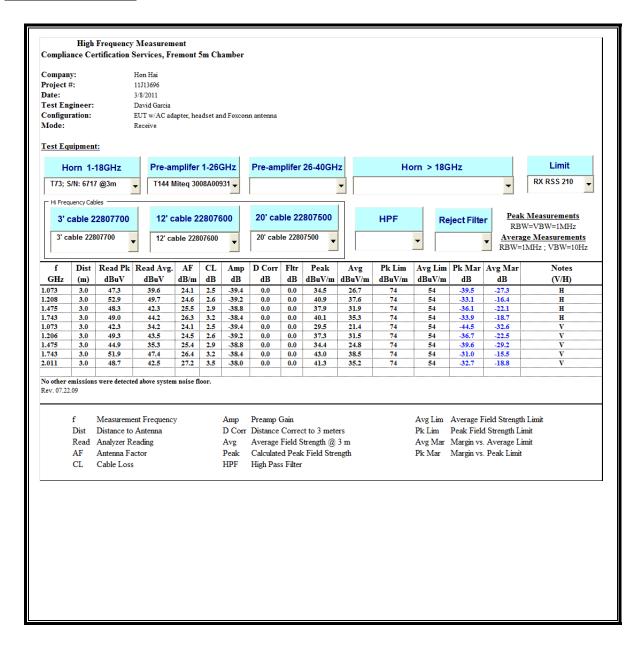
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

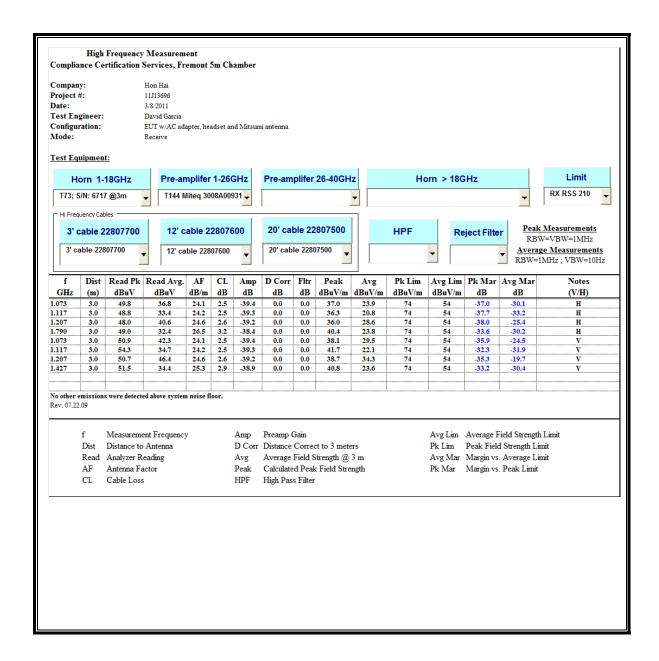
Test Engr: David Garcia Date: 03/08/11 Project #: 11J13696 Company: Hon Hai FCC 15.205 Test Target: Tx,gmode Mode Oper:

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average \_\_ Margin vs. Peak Limit Margin vs. Average Limit

| f        | Dist     | Read    | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|----------|----------|---------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz      | (m)      | dBuV    | dB/m | dΒ  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| ow Cha   | nnel: 24 | 12 MHz  |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824    | 3.0      | 43.2    | 33.0 | 5.8 | -36.5 | 0.0    | 0.5  | 46.0   | 74.0   | -28.0  | H         | P      | 143.1    | 217.4       |       |
| 4.824    | 3.0      | 30.1    | 33.0 | 5.8 | -36.5 | 0.0    | 0.5  | 33.0   | 54.0   | -21.0  | H         | A      | 143.1    | 217.4       |       |
| 4.824    | 3.0      | 40.0    | 33.0 | 5.8 | -36.5 | 0.0    | 0.5  | 42.9   | 74.0   | -31.1  | V         | P      | 113.6    | 175.6       |       |
| 4.824    | 3.0      | 28.2    | 33.0 | 5.8 | -36.5 | 0.0    | 0.5  | 31.1   | 54.0   | -22.9  | V         | A      | 113.6    | 175.6       |       |
| Mid Char | nel: 243 | 37 MHz  |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874    | 3.0      | 40.7    | 33.1 | 5.8 | -36.5 | 0.0    | 0.5  | 43.7   | 74.0   | -30.3  | H         | P      | 100.3    | 233.7       |       |
| 4.874    | 3.0      | 28.2    | 33.1 | 5.8 | -36.5 | 0.0    | 0.5  | 31.2   | 54.0   | -22.8  | H         | A      | 100.3    | 233.7       |       |
| 7.311    | 3.0      | 37.8    | 35.3 | 7.3 | -36.2 | 0.0    | 0.5  | 44.6   | 74.0   | -29.4  | H         | P      | 171.2    | 120.5       |       |
| 7.311    | 3.0      | 24.9    | 35.3 | 7.3 | -36.2 | 0.0    | 0.5  | 31.8   | 54.0   | -22.2  | H         | A      | 171.2    | 120.5       |       |
| 4.874    | 3.0      | 40.8    | 33.1 | 5.8 | -36.5 | 0.0    | 0.5  | 43.8   | 74.0   | -30.2  | V         | P      | 100.7    | 143.3       |       |
| 4.874    | 3.0      | 27.4    | 33.1 | 5.8 | -36.5 | 0.0    | 0.5  | 30.4   | 54.0   | -23.6  | V         | A      | 100.7    | 143.3       |       |
| 7.311    | 3.0      | 37.9    | 35.3 | 7.3 | -36.2 | 0.0    | 0.5  | 44.8   | 74.0   | -29.2  | V         | P      | 104.2    | 251.0       |       |
| 7.311    | 3.0      | 24.9    | 35.3 | 7.3 | -36.2 | 0.0    | 0.5  | 31.8   | 54.0   | -22.2  | V         | A      | 104.2    | 251.0       |       |
| High Cha | nnel: 24 | 462 MHz |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924    | 3.0      | 40.1    | 33.1 | 5.9 | -36.5 | 0.0    | 0.5  | 43.2   | 74.0   | -30.8  | H         | P      | 100.0    | 219.5       |       |
| 4.924    | 3.0      | 28.0    | 33.1 | 5.9 | -36.5 | 0.0    | 0.5  | 31.1   | 54.0   | -22.9  | H         | A      | 100.0    | 219.5       |       |
| 7.386    | 3.0      | 37.9    | 35.4 | 7.3 | -36.2 | 0.0    | 0.5  | 44.9   | 74.0   | -29.1  | H         | P      | 163.6    | 55.4        |       |
| 7.386    | 3.0      | 24.7    | 35.4 | 7.3 | -36.2 | 0.0    | 0.5  | 31.7   | 54.0   | -22.3  | H         | A      | 163.6    | 55.4        |       |
| 4.924    | 3.0      | 40.6    | 33.1 | 5.9 | -36.5 | 0.0    | 0.5  | 43.7   | 74.0   | -30.3  | V         | P      | 128.1    | 240.3       |       |
| 4.924    | 3.0      | 27.9    | 33.1 | 5.9 | -36.5 | 0.0    | 0.5  | 31.0   | 54.0   | -23.0  | V         | A      | 128.1    | 240.3       |       |
| 7.386    | 3.0      | 37.7    | 35.4 | 7.3 | -36.2 | 0.0    | 0.5  | 44.7   | 74.0   | -29.3  | V         | P      | 101.8    | 261.9       |       |
| 7.386    | 3.0      | 24.8    | 35.4 | 7.3 | -36.2 | 0.0    | 0.5  | 31.8   | 54.0   | -22.2  | V         | A      | 101.8    | 261.9       |       |


Rev. 4.1.2.7

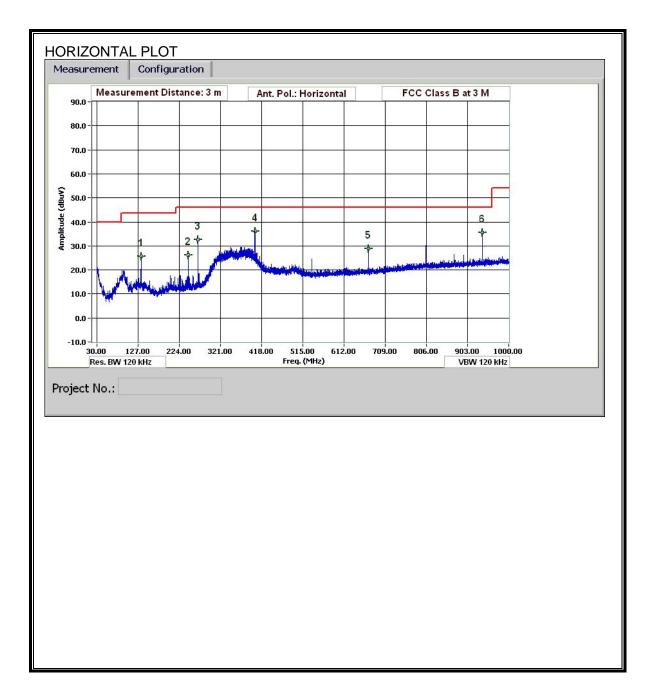
Note: No other emissions were detected above the system noise floor.


## 8.5 RECEIVER ABOVE 1 GHz

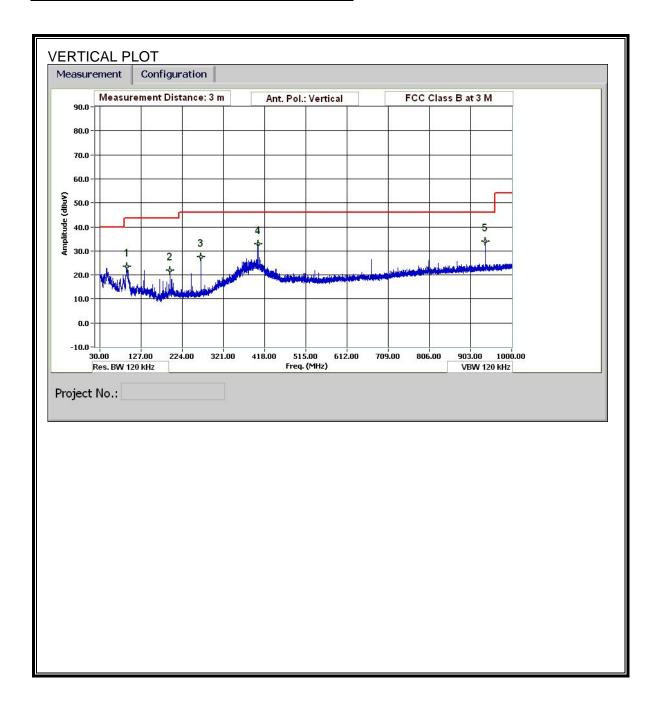
#### 8.5.1 RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 2.4 GHz BAND

#### **FOXCONN ANTENNA**




#### **MITSUMI ANTENNA**




## 8.6 WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

## **FOXCONN ANTENNA**

## SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)



#### SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)



## HORIZONTAL AND VERTICAL DATA

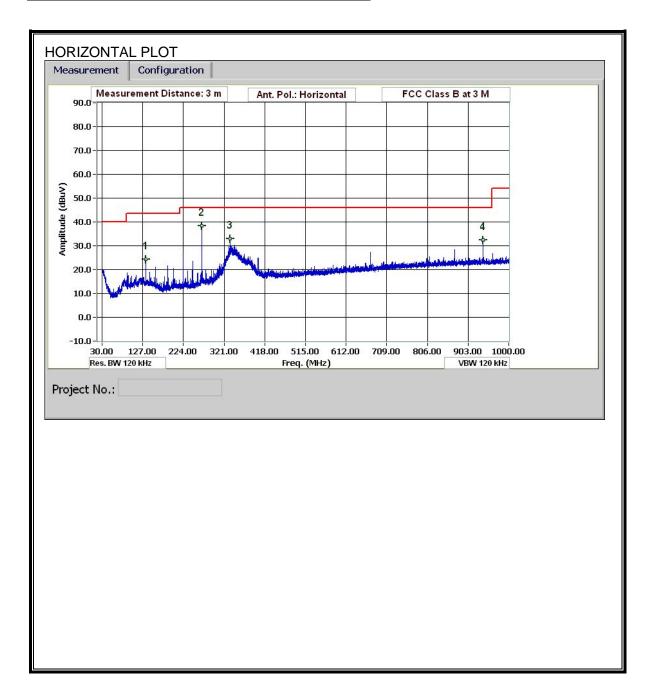
30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

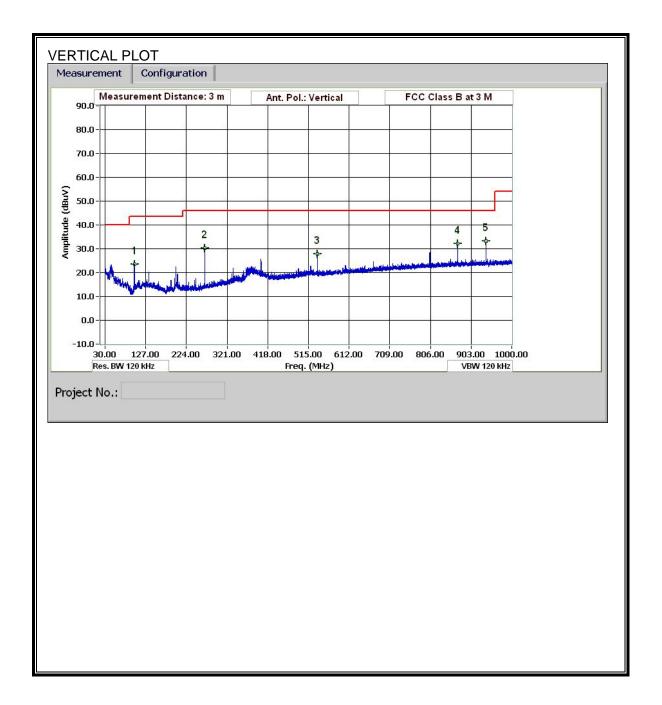
EUT with Foxconn Antenna

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit


| f       | Dist | Read | AF   | CL  | Amp  | D Corr | Pad | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Notes |
|---------|------|------|------|-----|------|--------|-----|--------|--------|--------|-----------|--------|-------|
| MHz     | (m)  | dBuV | dB/m | dB  | dB   | dB     | dB  | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP |       |
| horiz   |      |      |      |     |      |        |     |        |        |        |           |        |       |
| 134.044 | 3.0  | 40.4 | 13.5 | 1.0 | 29.4 | 0.0    | 0.0 | 25.5   | 43.5   | -18.0  | H         | P      |       |
| 245.769 | 3.0  | 41.8 | 11.8 | 1.4 | 28.8 | 0.0    | 0.0 | 26.2   | 46.0   | -19.8  | H         | P      |       |
| 268.09  | 3.0  | 47.6 | 12.3 | 1.5 | 28.8 | 0.0    | 0.0 | 32.6   | 46.0   | -13.4  | H         | P      |       |
| 402.135 | 3.0  | 48.3 | 15.1 | 1.9 | 29.3 | 0.0    | 0.0 | 36.0   | 46.0   | -10.0  | H         | P      |       |
| 670.226 | 3.0  | 36.9 | 18.9 | 2.5 | 29.6 | 0.0    | 0.0 | 28.8   | 46.0   | -17.2  | Н         | P      |       |
| 938.317 | 3.0  | 39.0 | 21.9 | 3.1 | 28.5 | 0.0    | 0.0 | 35.5   | 46.0   | -10.5  | H         | P      |       |
| 93.243  | 3.0  | 43.7 | 8.3  | 0.9 | 29.6 | 0.0    | 0.0 | 23.4   | 43.5   | -20.1  | V         | P      |       |
| 195.367 | 3.0  | 37.8 | 11.6 | 1.3 | 28.9 | 0.0    | 0.0 | 21.8   | 43.5   | -21.7  | V         | P      |       |
| 268.09  | 3.0  | 42.5 | 12.3 | 1.5 | 28.8 | 0.0    | 0.0 | 27.6   | 46.0   | -18.4  | V         | P      |       |
| 402.135 | 3.0  | 45.3 | 15.1 | 1.9 | 29.3 | 0.0    | 0.0 | 33.0   | 46.0   | -13.0  | V         | P      |       |
| 938.317 | 3.0  | 37.6 | 21.9 | 3.1 | 28.5 | 0.0    | 0.0 | 34.1   | 46.0   | -11.9  | V         | P      |       |
|         |      |      |      |     |      |        |     |        |        |        |           |        |       |
| •••••   |      |      |      |     |      | 1      |     | •      |        | •      |           |        |       |

Rev. 1.27.09


Note: No other emissions were detected above the system noise floor.

### **MITSUMI ANTENNA**

## SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)



#### SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)



## HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

David Garcia Test Engr: 03/08/11 Date: Project #: 11J13696 Hon Hai Company: Test Target: Mode Oper: FCC Class B Tx Worst Case

f Measurement Frequency Amp Preamp Gain

Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Filter Filter Insert Loss

AF Antenna Factor Corr. Calculated Field Strength

CL Cable Loss Limit Field Strength Limit

| f       | Dist | Read | AF   | CL  | Amp  | D Corr | Pad | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant. High | Table Angle | Notes   |
|---------|------|------|------|-----|------|--------|-----|--------|--------|--------|-----------|--------|-----------|-------------|---------|
| MHz     | (m)  | dBuV | dB/m | dB  | dB   | dB     | dB  | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm        | Degree      |         |
| 134.044 | 3.0  | 38.2 | 13.4 | 1.1 | 28.3 | 0.0    | 0.0 | 24.4   | 43.5   | -19.1  | H         | P      | 100.0     | 0 - 360     | Prescan |
| 268.09  | 3.0  | 52.8 | 12.4 | 1.4 | 28.2 | 0.0    | 0.0 | 38.4   | 46.0   | -7.6   | H         | P      | 100.0     | 0 - 360     | Prescan |
| 335.173 | 3.0  | 45.6 | 13.9 | 1.6 | 28.1 | 0.0    | 0.0 | 33.0   | 46.0   | -13.0  | H         | P      | 100.0     | 0 - 360     | Prescan |
| 938.317 | 3.0  | 35.2 | 22.1 | 2.9 | 27.8 | 0.0    | 0.0 | 32.3   | 46.0   | -13.7  | H         | P      | 100.0     | 0 - 360     | Prescan |
| 99.843  | 3.0  | 41.0 | 9.9  | 0.9 | 28.3 | 0.0    | 0.0 | 23.5   | 43.5   | -20.0  | V         | P      | 100.0     | 0 - 360     | Prescan |
| 268.09  | 3.0  | 44.6 | 12.4 | 1.4 | 28.2 | 0.0    | 0.0 | 30.2   | 46.0   | -15.8  | V         | P      | 100.0     | 0 - 360     | Prescan |
| 536.181 | 3.0  | 36.0 | 17.3 | 2.1 | 27.7 | 0.0    | 0.0 | 27.7   | 46.0   | -18.3  | V         | P      | 100.0     | 0 - 360     | Prescan |
| 871.355 | 3.0  | 35.4 | 21.6 | 2.8 | 27.7 | 0.0    | 0.0 | 32.0   | 46.0   | -14.0  | V         | P      | 100.0     | 0 - 360     | Prescan |
| 938.437 | 3.0  | 36.0 | 22.1 | 2.9 | 27.8 | 0.0    | 0.0 | 33.1   | 46.0   | -12.9  | V         | P      | 100.0     | 0 - 360     | Prescan |
|         |      |      |      |     | Ĭ    |        |     |        |        |        | Ĭ         |        |           |             |         |

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

# 9 AC POWER LINE CONDUCTED EMISSIONS

#### **LIMITS**

FCC §15.207 (a)

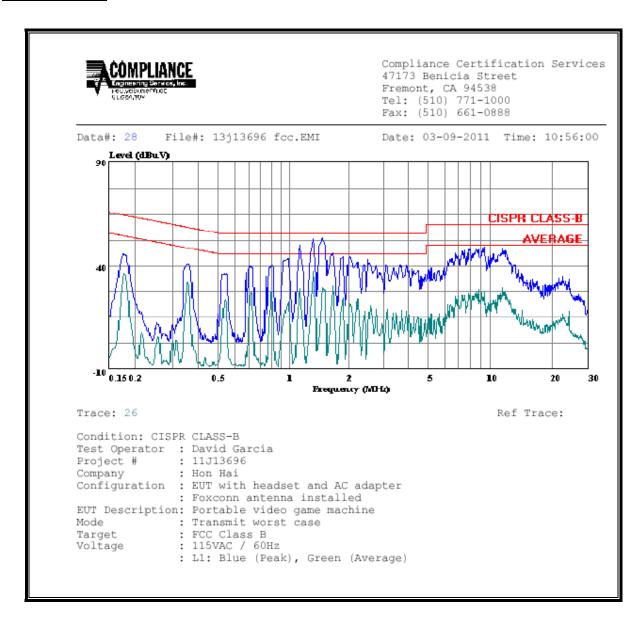
RSS-Gen 7.2.2

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|--|
|                             | Quasi-peak             | Average    |  |  |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |  |

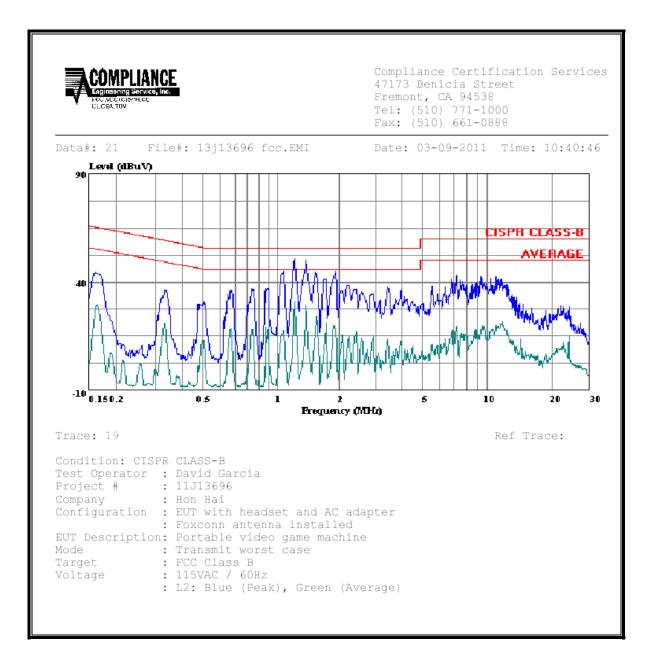
Decreases with the logarithm of the frequency.

## **TEST PROCEDURE**

**ANSI C63.4** 


## **RESULTS**

## **FOXCONN ANTENNA**

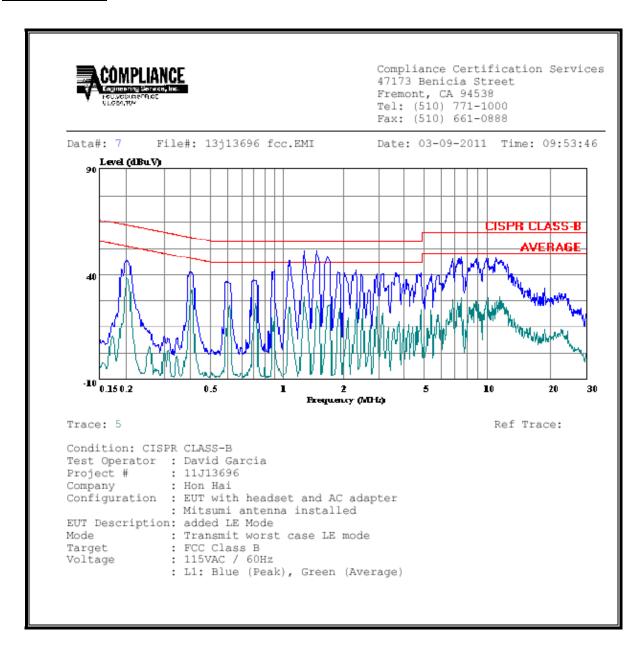

## **6 WORST EMISSIONS**

|         | CONDUCTED EMISSIONS DATA (115VAC 60Hz) |           |           |      |       |       |         |         |        |  |  |  |  |  |
|---------|----------------------------------------|-----------|-----------|------|-------|-------|---------|---------|--------|--|--|--|--|--|
| Freq.   |                                        | Reading   |           |      | Limit | FCC_B | Marg    | in      | Remark |  |  |  |  |  |
| (MHz)   | PK (dBuV)                              | QP (dBuV) | AV (dBuV) | (dB) | QP    | AV    | QP (dB) | AV (dB) | L1/L2  |  |  |  |  |  |
| 1.23    | 50.25                                  |           | 29.05     | 0.00 | 56.00 | 46.00 | -5.75   | -16.95  | L1     |  |  |  |  |  |
| 1.43    | 53.41                                  |           | 37.13     | 0.00 | 56.00 | 46.00 | -2.59   | -8.87   | L1     |  |  |  |  |  |
| 1.58    | 53.73                                  |           | 29.25     | 0.00 | 56.00 | 46.00 | -2.27   | -16.75  | L1     |  |  |  |  |  |
| 1.32    | 51.07                                  |           | 30.82     | 0.00 | 56.00 | 46.00 | -4.93   | -15.18  | L2     |  |  |  |  |  |
| 1.49    | 50.01                                  |           | 29.23     | 0.00 | 56.00 | 46.00 | -5.99   | -16.77  | L2     |  |  |  |  |  |
| 2.04    | 44.99                                  |           | 20.06     | 0.00 | 56.00 | 46.00 | -11.01  | -25.94  | L2     |  |  |  |  |  |
| 6 Worst | Data                                   |           |           |      |       |       |         |         |        |  |  |  |  |  |

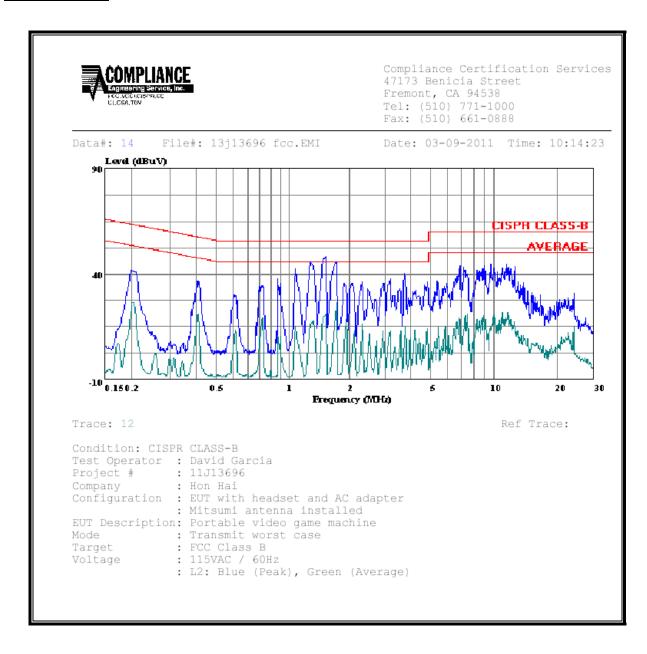
#### **LINE 1 RESULTS**



### **LINE 2 RESULTS**




## **MITSUMI ANTENNA**


## **6 WORST EMISSIONS**

|         | CONDUCTED EMISSIONS DATA (115VAC 60Hz) |           |           |       |       |       |         |         |        |  |  |  |  |  |
|---------|----------------------------------------|-----------|-----------|-------|-------|-------|---------|---------|--------|--|--|--|--|--|
| Freq.   |                                        | Reading   |           | Closs | Limit | FCC_B | Marg    | in      | Remark |  |  |  |  |  |
| (MHz)   | PK (dBuV)                              | QP (dBuV) | AV (dBuV) | (dB)  | QP    | AV    | QP (dB) | AV (dB) | L1/L2  |  |  |  |  |  |
| 1.37    | 51.66                                  |           | 29.45     | 0.00  | 56.00 | 46.00 | -4.34   | -16.55  | L1     |  |  |  |  |  |
| 1.58    | 51.28                                  |           | 27.10     | 0.00  | 56.00 | 46.00 | -4.72   | -18.90  | L1     |  |  |  |  |  |
| 1.78    | 48.67                                  |           | 25.95     | 0.00  | 56.00 | 46.00 | -7.33   | -20.05  | L1     |  |  |  |  |  |
| 1.37    | 45.71                                  |           | 17.49     | 0.00  | 56.00 | 46.00 | -10.29  | -28.51  | L2     |  |  |  |  |  |
| 1.64    | 48.31                                  |           | 21.24     | 0.00  | 56.00 | 46.00 | -7.69   | -24.76  | L2     |  |  |  |  |  |
| 1.84    | 46.06                                  |           | 18.64     | 0.00  | 56.00 | 46.00 | -9.94   | -27.36  | L2     |  |  |  |  |  |
| 6 Worst | Data                                   |           |           |       |       |       |         |         |        |  |  |  |  |  |

#### **LINE 1 RESULTS**



#### **LINE 2 RESULTS**



## 10 MAXIMUM PERMISSIBLE EXPOSURE

#### **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range<br>(MHz)                                | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²)                | Averaging time<br>(minutes) |
|---------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------|
| (A) Lim                                                 | its for Occupational                | /Controlled Exposu                  | res                                      |                             |
| 0.3–3.0<br>3.0–30<br>30–300<br>300–1500<br>1500–100,000 | 614<br>1842#<br>61.4                | 1.63<br>4.89/f<br>0.163             | *(100)<br>*(900/f²)<br>1.0<br>f/300<br>5 | 6<br>6<br>6<br>6            |
| (B) Limits                                              | for General Populati                | on/Uncontrolled Exp                 | posure                                   |                             |
| 0.3–1.34<br>1.34–30                                     | 614<br>824/f                        | 1.63<br>2.19/f                      | *(100)<br>*(180/f²)                      | 30<br>30                    |

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

| Frequency range<br>(MHz)           | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time<br>(minutes) |
|------------------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|
| 30–300<br>300–1500<br>1500–100,000 | 27.5                                | 0.073                               | 0.2<br>f/1500<br>1.0      | 30<br>30<br>30              |

f = frequency in MHz
\* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

#### **IC RULES**

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

| 1<br>Frequency<br>(MHz) | 2<br>Electric Field<br>Strength; rms<br>(V/m) | 3<br>Magnetic Field<br>Strength; rms<br>(A/m) | 4<br>Power<br>Density<br>(W/m <sup>2</sup> ) | 5<br>Averaging<br>Time<br>(min) |
|-------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------|
| 0.003–1                 | 280                                           | 2.19                                          |                                              | 6                               |
| 1–10                    | 280/f                                         | 2.19/f                                        |                                              | 6                               |
| 10–30                   | 28                                            | 2.19/f                                        |                                              | 6                               |
| 30–300                  | 28                                            | 0.073                                         | 2*                                           | 6                               |
| 300–1 500               | 1.585 $f^{0.5}$                               | 0.0042f <sup>0.5</sup>                        | f/150                                        | 6                               |
| 1 500–15 000            | 61.4                                          | 0.163                                         | 10                                           | 6                               |
| 15 000–150 000          | 61.4                                          | 0.163                                         | 10                                           | 616 000 /f <sup>1.2</sup>       |
| 150 000–300 000         | 0.158f <sup>0.5</sup>                         | 4.21 x 10 <sup>-4</sup> f <sup>0.5</sup>      | 6.67 x 10 <sup>-5</sup> f                    | 616 000 /f <sup>1.2</sup>       |

<sup>\*</sup> Power density limit is applicable at frequencies greater than 100 MHz.

**Notes:** 1. Frequency, f, is in MHz.

2. A power density of 10 W/m<sup>2</sup> is equivalent to 1 mW/cm<sup>2</sup>.

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

#### **EQUATIONS**

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

S = Power density in W/m^2

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$ 

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power \* Gain product (in linear units) of each transmitter.

Total EIRP = 
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

## **LIMITS**

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

## **RESULTS**

(MPE distance equals 20 cm)

| Band | Mode | Separation | Output   | Antenna | IC Power   | FCC Power       |
|------|------|------------|----------|---------|------------|-----------------|
|      |      | Distance   | AV Power | Gain    | Density    | Density         |
|      |      | (m)        | (dBm)    | (dBi)   | (W/m^2)    | (mW/cm^2)       |
|      |      | (m)        | (ubiii)  | (ubi)   | (**/111 2) | (IIIVV/CIII**2) |