-		_	-
leutron	Engin	oorina	Ina
<i>Yeuuon</i>	EIIUIII	eermu	1116.=

FCC&I	C Radio Test Report
	ID: MCLCS-E340W 2878D-CSE340W
This report concerns (check one): Original Grant Class II Change
	: Sep. 12, 2013 : 1308C100 : Cisco Edge 340

Project No.: 1308C100Equipment: Cisco Edge 340Model Name: CS-E340WApplicant: HON HAI Precision Ind. Co., Ltd.Address: 5F-1, 5, Hsin-An Road, Hsinchu
Science-Based Industrial Park,
Hsinchu, Taiwan

Tested by: Neutron Engineering Inc. EMC Laboratory **Date of Receipt:** Aug. 12, 2013 **Date of Test:** Aug. 12, 2013 ~ Sep. 11, 2013

Neutron Engineering Inc.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000 FAX: 0769-8319-6000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents Pa	ge
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
	-
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
3.5 DESCRIPTION OF SUPPORT UNITS	13
4 . EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING	14
4.1.3 TEST PROCEDURE	15
4.1.4 DEVIATION FROM TEST STANDARD 4.1.5 TEST SETUP	15 15
4.1.6 EUT OPERATING CONDITIONS	15
4.1.7 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	23
4.2.1 RADIATED EMISSION LIMITS	23
4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING	24
4.2.3 TEST PROCEDURE	25
4.2.4 DEVIATION FROM TEST STANDARD 4.2.5 TEST SETUP	25 26
4.2.5 TEST SETUP 4.2.6 EUT OPERATING CONDITIONS	26 27
4.2.7 TEST RESULTS-BETWEEN 30MHZ AND 1000MHZ	28
4.2.8 TEST RESULTS (ABOVE 1000 MHZ)	47
5. BANDWIDTH TEST	59
5.1 APPLIED PROCEDURES / LIMIT	59
5.1.1 MEASUREMENT INSTRUMENTS LIST	59
5.1.2 TEST PROCEDURE	59
5.1.3 DEVIATION FROM STANDARD	59
5.1.4 TEST SETUP 5.1.5 EUT OPERATION CONDITIONS	59 59
5.1.6 TEST RESULTS	59 60
6 . MAXIMUM OUTPUT POWER TEST	62

- Neutron Engineering Inc.	
Table of Contents	Page
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 MEASUREMENT INSTRUMENTS LIST 6.1.2 TEST PROCEDURE 6.1.3 DEVIATION FROM STANDARD 6.1.4 TEST SETUP 6.1.5 EUT OPERATION CONDITIONS 6.1.6 TEST RESULTS	62 62 62 62 62 62 63
7 . ANTENNA CONDUCTED SPURIOUS EMISSION 7.1 APPLIED PROCEDURES / LIMIT 7.1.1 MEASUREMENT INSTRUMENTS LIST 7.1.2 TEST PROCEDURE 7.1.3 DEVIATION FROM STANDARD 7.1.4 TEST SETUP 7.1.5 EUT OPERATION CONDITIONS 7.1.6 TEST RESULTS	64 64 64 64 64 64 65
8 . POWER SPECTRAL DENSITY TEST 8.1 APPLIED PROCEDURES / LIMIT 8.1.1 MEASUREMENT INSTRUMENTS LIST 8.1.2 TEST PROCEDURE 8.1.3 DEVIATION FROM STANDARD 8.1.4 TEST SETUP 8.1.5 EUT OPERATION CONDITIONS 8.1.6 TEST RESULTS	70 70 70 70 70 70 70 70 71
9 . EUT TEST PHOTO	73

1. CERTIFICATION

	Cisco Edge 340
Brand Name :	Cisco
Model Name :	CS-E340W
Applicant :	HON HAI Precision Ind. Co., Ltd.
Manufacturer :	Hon Hai Precision Ind Co., Ltd
Address :	Hsinchu Science Park Branch Office 5F-1 5, Hsin-an Rd Hsinchu Science
	Based Industrial Park Hsinchu, Taiwan
Factory :	HONG FU JIN PRECISION INDUSTRY (SHEN ZHEN) CO LTD
Address :	Bldg D10, F21, No 2, 2 nd DONGGUAN RD, 10 th YOUSONG INDUSTRIAL
	DISTRICT, LONGHUA TOWN, BAOAN, SHENZHEN, GUANGDONG, CHINA.
Date of Test :	Aug. 12, 2013 ~ Sep. 11, 2013
Test Item :	ENGINEERING SAMPLE
Standard(s) :	FCC Part15, Subpart C(15.247) / ANSI C63.4-2009
	Canada RSS-210:2010
	RSS-GEN Issue 3, Dec 2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

This test report consists of 75 pages in total.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-2-1308C100) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Testing Engineer

David Mao (David Mao)

Technical Manager

(Leo Hung)

Authorized Signatory :

(Steven Lu)

ener

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247) , Subpart C Canada RSS-210:2010; RSS-GEN Issue 3, Dec 2010

Standard	(s) Section	Test Item	Judgment	Remark
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	
15.247(d)	RSS-210 Annex 8 (A8.5)	Antenna conducted Spurious Emission	PASS	
15.247(a)(2)	RSS-210 Annex 8 (A8.2(a))	6dB Bandwidth	PASS	
15.247(b)(3)	RSS-210 Annex 8 (A8.4(4))	Peak Output Power	PASS	
15.247(e)	RSS-210 Annex 8 (A8.2(b))	Power Spectral Density	PASS	
15.203	-	Antenna Requirement	PASS	
15.209/15.205	RSS-210 Annex 8 (A8.5)	Transmitter Radiated Emissions	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r01 (Measurement Guidelines of DTS)

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC: 319330

Neutron's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y $~\pm~$ U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~ k=2 , providing a level of confidence of approximately 95 % $^\circ$

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.60	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CIOPK	200MHz ~ 1,000MHz	Н	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Cisco Edge 340		
Brand Name	Cisco		
Model Name	CS-E340W		
Model Difference	N/A		
	Operation Frequency Modulation Technology	2402~2480 MHz GFSK(1Mbps)	
	Bit Rate of Transmitter Number of Channel	40CH, Please see note 2.(Page 9)	
Product Description	Antenna Designation Antenna Gain(Peak)	Please see note 3.(Page 9)	
	Peak Output Power	4.81 dBm (1Mbps)	
	More details of EUT technical specification, please refer to the User's Manual.		
Power Source	DC voltage supplied from AC/DC adapter #1 Brand /Model name: LITEON /PA-1600-2A-LF #2 Brand /Model name: DELTA /EADP-60MB B #3 PoE		
Power Rating	#1 I/P 100-240V 50-60Hz 2A O/P 12V 5A #2 I/P 100-240V 50-60Hz 1.5A O/P 12V 5A #3 DC 48V		
Connecting I/O Port(s)	USB port*4 IR Extension port Console port RS232 port Audio out port Audio in port HDMI port VGA port Gigabit Ethernet port Power SD card 802.11a/b/g/n Bluetooth		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

v

Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	20	2442	
01	2404	21	2444	
02	2406	22	2446	
03	2408	23	2448	
04	2410	24	2450	
05	2412	25	2452	
06	2414	26	2454	
07	2416	27	2456	
08	2418	28	2458	
09	2420	29	2460	
10	2422	30	2462	
11	2424	31	2464	
12	2426	32	2466	
13	2428	33	2468	
14	2430	34	2470	
15	2432	35	2472	
16	2434	36	2474	
17	2436	37	2476	
18	2438	38	2478	
19	2440	39	2480	

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	FOXCONN	FX01G66-0G-EF	Integral	N/A	4.39

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode NOTE (1)
Mode 2	TX Mode

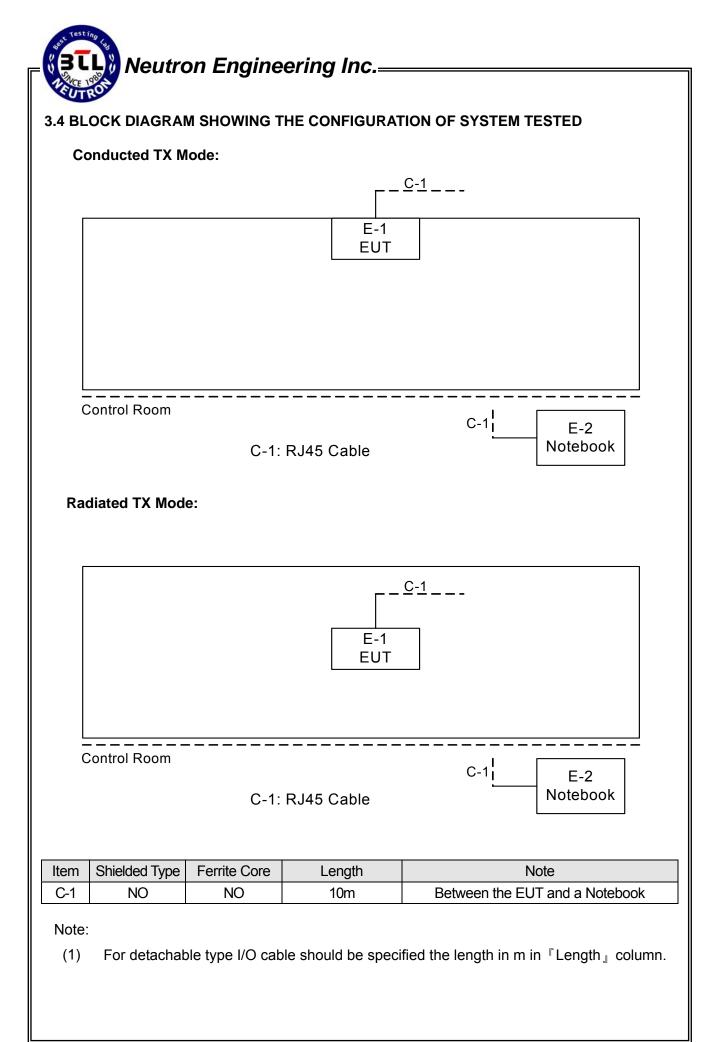
The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

	For Conducted Test
Final Test Mode	Description
Mode 2	TX Mode

For Conducted test, the Dipole antenna is found to be the worst case and recorded.

	For Radiated Test
Final Test Mode	Description
Mode 1	TX Mode NOTE (1)

For Radiated Below 1G test, the 802.11a mode is found to be the worst case and recorded. Note:


(1) The measurements are performed at the high, middle, low available channels.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version		DOS	
Frequency	2402MHz	2440 MHz	2480MHz
GFSK-1Mbps	0	0	0

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID/IC	Series No.	Note
E-1	Cisco Edge 340	Cisco	CS-E340W	MCLCS-E340W / 2878D-CSE340W	N/A	EUT
E-2	Notebook	DELL	Inspiron 14-N4030	DOC	N/A	

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A	(dBuV)	Class B	(dBuV)	Standard
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

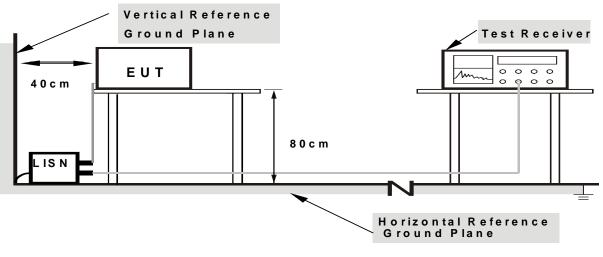
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014
2	LISN	R&S	ENV216	100087	Nov.16, 2013
3	Test Cable	N/A	C_17	N/A	Mar.15.2014
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year. The test was performed in DG-C02.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

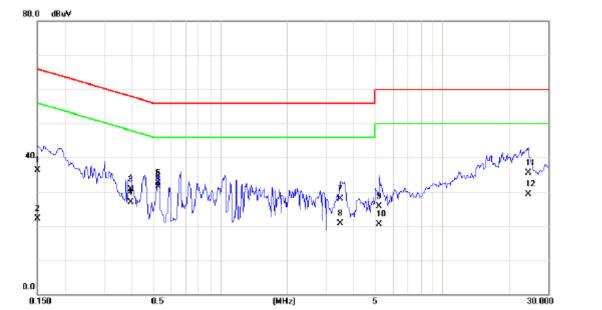
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80

from other units and other metal planes

4.1.6 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting mode.



4.1.7 TEST RESULTS

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) " N/A" denotes test is not applicable in this test report.

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	TX Mode / Adapter: PA-1600-2A-LF		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	26.75	9.61	36.36	66.00	-29.64	QP	
2		0.1500	12.45	9.61	22.06	56.00	-33.94	AVG	
3		0.3961	20.95	9.66	30.61	57.93	-27.32	QP	
4		0.3961	17.15	9.66	26.81	47.93	-21.12	AVG	
5		0.5250	22.75	9.68	32.43	56.00	-23.57	QP	
6	*	0.5250	21.85	9.68	31.53	46.00	-14.47	AVG	
7		3.4883	18.15	9.83	27.98	56.00	-28.02	QP	
8		3.4883	10.95	9.83	20.78	46.00	-25.22	AVG	
9		5.2031	15.85	9.91	25.76	60.00	-34.24	QP	
10		5.2031	10.55	9.91	20.46	50.00	-29.54	AVG	
11		24.2773	24.55	10.86	35.41	60.00	-24.59	QP	
12		24.2773	18.35	10.86	29.21	50.00	-20.79	AVG	

40

0.0

2 2 X mity

MAN

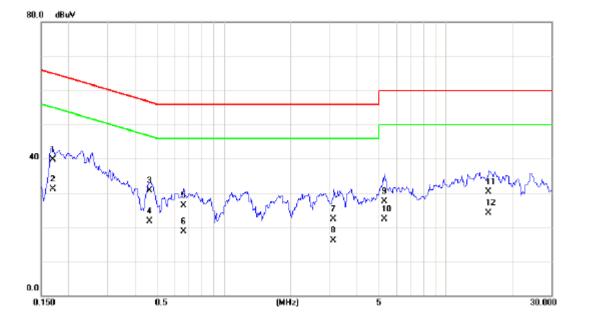
∩∆*M*

Test Power: AC 120V/60Hz Phase: Neutral	EUT:	Cisco Edge 340	Model Name :	CS-E340W	
Test Mode: TX Mode / Adapter: PA-1600-2A-LF	Temperature:	25 ℃	Relative Humidity:	50 %	
	Test Power:	AC 120V/60Hz	Phase:	Neutral	
80.0 dBuV	Test Mode:	TX Mode / Adapter: PA-1600-2A-LF			
	00.0 40.47				

10 X

× 8 ×

r-Mik


Mart

12 X

0.15	0	0	1.5		(MHz)		5		30.000
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1852	26.67	9.62	36.29	64.25	-27.96	QP		
2	0.1852	19.67	9.62	29.29	54.25	-24.96	AVG		
3	0.2594	24.27	9.62	33.89	61.45	-27.56	QP		
4	0.2594	21.36	9.62	30.98	51.45	-20.47	AVG		
5	0.5914	24.47	9.69	34.16	56.00	-21.84	QP		
6 *	0.5914	24.36	9.69	34.05	46.00	-11.95	AVG		
7	2.8220	18.56	9.80	28.36	56.00	-27.64	QP		
8	2.8220	12.66	9.80	22.46	46.00	-23.54	AVG		
9	3.4922	21.86	9.83	31.69	56.00	-24.31	QP		
10	3.4922	13.86	9.83	23.69	46.00	-22.31	AVG		
11	19.5508	29.07	10.58	39.65	60.00	-20.35	QP		
12	19.5508	22.17	10.58	32.75	50.00	-17.25	AVG		

EUT:	Cisco Edge 340	Model Name :	CS-E340W	
Temperature:	25 ℃	Relative Humidity:	50 %	
Test Power:	AC 120V/60Hz Phase: Line			
Test Mode: TX Mode / Adapter: EADP-60MB B				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1695	30.02	9.61	39.63	64.98	-25.35	QP	
2	*	0.1695	21.42	9.61	31.03	54.98	-23.95	AVG	
3		0.4625	21.12	9.67	30.79	56.65	-25.86	QP	
4		0.4625	12.02	9.67	21.69	46.65	-24.96	AVG	
5		0.6578	16.52	9.69	26.21	56.00	-29.79	QP	
6		0.6578	9.02	9.69	18.71	46.00	-27.29	AVG	
7		3.1328	12.52	9.82	22.34	56.00	-33.66	QP	
8		3.1328	6.22	9.82	16.04	46.00	-29.96	AVG	
9		5.3047	17.52	9.91	27.43	60.00	-32.57	QP	
10		5.3047	12.42	9.91	22.33	50.00	-27.67	AVG	
11		15.6953	20.02	10.38	30.40	60.00	-29.60	QP	
12		15.6953	13.82	10.38	24.20	50.00	-25.80	AVG	

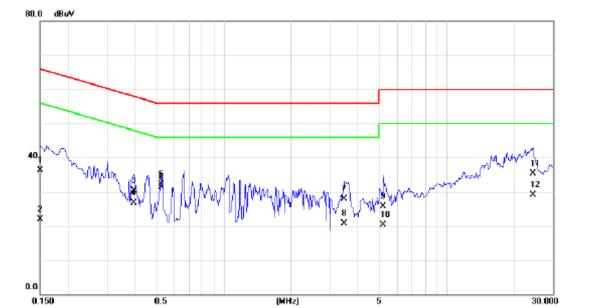
EUT:	Cisco Edge 340	Model Name :	CS-E340W	
Temperature:	25 ℃	Relative Humidity:	50 %	
Test Power:	AC 120V/60Hz	Phase:	Neutral	
Test Mode:	TX Mode / Adapter: EADP-60ME	B B	-	
80.0 dBu∀				

h X

12 X

9 X 10 X

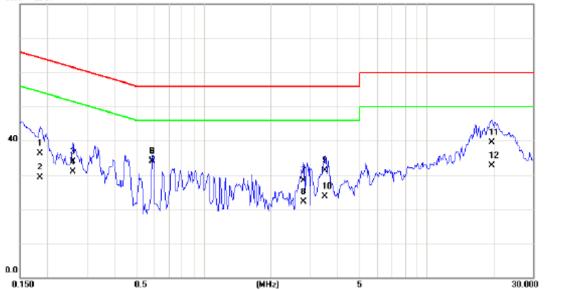
7× 8 X


	0.0	D	0	.5		(MHz)		5		30.000
lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1508	26.72	9.60	36.32	65.96	-29.64	QP		
2		0.1508	9.32	9.60	18.92	55.96	-37.04	AVG		
3		0.1734	30.02	9.60	39.62	64.80	-25.18	QP		
4	*	0.1734	23.82	9.60	33.42	54.80	-21.38	AVG		
5		0.4470	19.92	9.66	29.58	56.93	-27.35	QP		
6		0.4470	11.92	9.66	21.58	46.93	-25.35	AVG		
7		3.3906	13.92	9.87	23.79	56.00	-32.21	QP		
8		3.3906	6.92	9.87	16.79	46.00	-29.21	AVG		
9		5.2617	18.62	9.98	28.60	60.00	-31.40	QP		
10		5.2617	13.42	9.98	23.40	50.00	-26.60	AVG		
11		15.9531	21.92	10.73	32.65	60.00	-27.35	QP		
12		15.9531	15.02	10.73	25.75	50.00	-24.25	AVG		

4 4 X

ma

۲ ۲


EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	TX Mode / POE		

No. Mk	From	Reading	Correct					
	. Freq.	Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	26.66	9.61	36.27	66.00	-29.73	QP	
2	0.1500	12.33	9.61	21.94	56.00	-34.06	AVG	
3	0.3961	20.65	9.66	30.31	57.93	-27.62	QP	
4	0.3961	17.01	9.66	26.67	47.93	-21.26	AVG	
5	0.5250	22.45	9.68	32.13	56.00	-23.87	QP	
6 *	0.5250	21.65	9.68	31.33	46.00	-14.67	AVG	
7	3.4883	18.03	9.83	27.86	56.00	-28.14	QP	
8	3.4883	10.87	9.83	20.70	46.00	-25.30	AVG	
9	5.2031	15.76	9.91	25.67	60.00	-34.33	QP	
10	5.2031	10.39	9.91	20.30	50.00	-29.70	AVG	
11	24.2773	24.47	10.86	35.33	60.00	-24.67	QP	
12	24.2773	18.24	10.86	29.10	50.00	-20.90	AVG	

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Neutral
Test Mode:	TX Mode / POE		

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1852	26.65	9.62	36.27	64.25	-27.98	QP	
2	0.1852	19.65	9.62	29.27	54.25	-24.98	AVG	
3	0.2594	24.22	9.62	33.84	61.45	-27.61	QP	
4	0.2594	21.33	9.62	30.95	51.45	-20.50	AVG	
5	0.5914	24.44	9.69	34.13	56.00	-21.87	QP	
6 *	0.5914	24.25	9.69	33.94	46.00	-12.06	AVG	
7	2.8220	18.50	9.80	28.30	56.00	-27.70	QP	
8	2.8220	12.32	9.80	22.12	46.00	-23.88	AVG	
9	3.4922	21.45	9.83	31.28	56.00	-24.72	QP	
10	3.4922	13.88	9.83	23.71	46.00	-22.29	AVG	
11	19.5508	29.00	10.58	39.58	60.00	-20.42	QP	
12	19.5508	22.11	10.58	32.69	50.00	-17.31	AVG	

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Section 15.33 Frequency range of radiated measurements.

Unless otherwise noted in the specific rule section under which the equipment operates for an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules

(4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014
5	Antenna	ETS	3115	00075789	Apr. 25, 2014
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014
7	Spectrum	Agilent	E4408B	US39240143	Nov. 16, 2013
8	Test Cable	HUBER+SUHNE R	C-45	N/A	Apr. 30, 2014
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct.23, 2013

4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

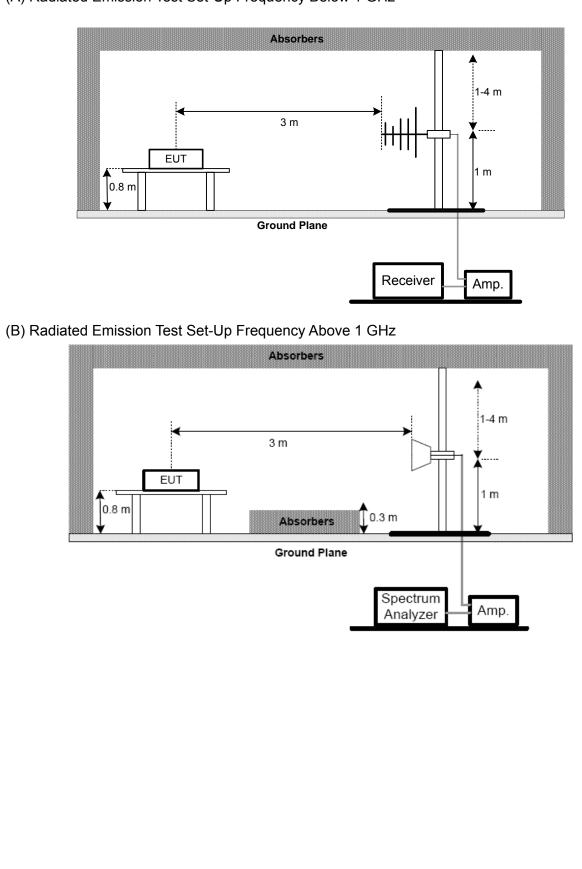
Remark: "N/A" denotes no model name, serial no. or calibration specified.

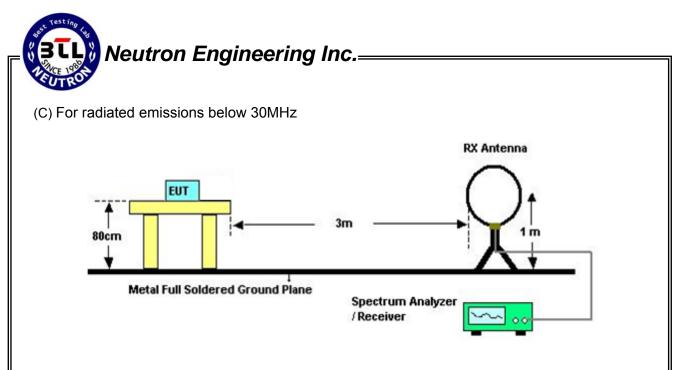
All calibration period of equipment list is one year. The test was performed in DG-CB03.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1ML = / 1ML = for Dook 1 ML = / 10L = for Average
(Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.3 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.7 TEST RESULTS-BETWEEN 30MHZ AND 1000MHZ

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

UT:			Cisco E	dge 340			Model I	Name:	CS-E34	40W
empera	ature:		28 ℃				Relative	e Humidity	: 56 %	
est Pov	wer:		AC 120	√/60Hz			Phase:		Vertica	l
est Mo	de:		TX 2402	2MHz -C	H00 -1M	bps / A	dapter:	PA-1600-2	2A-LF	
80.	0 dBu∀/	m								
40	ſ									5
							*		5	1
			1	-	3			www.www.	I	pando papero de
	اب بدر		×	2 X	allower	man delaward	when distant party	whether and the second	dir - Chr	
	No. Ward	ANMIN	hyperrykusmust	فالعراعهما والمراجع المحصور المحصوص	Mundan					
		_								
0.0										
3	0.000 1	27.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
No. M	ь г .		Reading	Correct	Measure-	Limit	Over			
No. M		eq. Hz	Level dBuV	Factor dB	ment dBuV/m	Limit dBuV/m	dB	Detector C	omment	
1	178.41		37.19	-13.25	23.94	43.50	-19.56	peak	omment	
2	298.69		34.57	-11.05	23.52	46.00	-22.48	peak		
3	408.30		34.98	-9.60	25.38	46.00	-20.62	peak		
	624.61		41.42	-7.06	34.36	46.00	-11.64	peak		
4 *				1.00	01.00	10.00	11.94	Pool		
4 * 5	874.87	700	35.10	-1.78	33.32	46.00	-12.68	peak		

UT:			Cisco E	Edge 340)		Model N	Name:	CS-E3	340W
emper	ature	:	28 ℃				Relative	e Humidity	y: 56 %	
est Po	wer:		AC 120)V/60Hz			Phase:		Horizo	ontal
est Mo	ode:		TX 240	2MHz -C	CH00 -1M	bps / A	dapter:	PA-1600-	-2A-LF	
80.	.0 dBuA	¥∕m								
40	י∟ןי						3			6
40							X		4	5 ×
40				z			x		. Auror	S. Same
40				z Luman Mar	Alpeno	المحمد لا بالالاب	nintrollalistication	www.low.down.del	and the former of the	
40		when		2 Juny Mary	mallhamo	wash Joseph 1	rate way was a second	we have the second	and the second	
40		when	aller of the second sec	ž Juhu Mara	mallham	unne Natarite	ration of the second se	on the dreads		
	unity	when	n har		weldtenn	und Jacob	rannes (herende	wester dreads	and the second	
0.0	unity	127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	
0.0			Reading	Correct	Measure-	515.00	612.00	_{iyor} u lay dagaa daga 709.00	- And and a second	James
0.0	илла во. 000	Freq.	Reading Level	Correct Factor	Measure- ment	515.00 Limit	612.00 Over		806.00	James
8.0 3 No. M	1k. F	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	Detector	- And and a second	James
0.0 3 No. M	178.4	Freq. MHz 4100	Reading Level dBuV 43.23	Correct Factor dB -13.25	Measure- ment dBuV/m 29.98	515.00 Limit dBuV/m 43.50	612.00 Over dB -13.52	Detector peak	806.00	James
No. M	178.4 250.1	Freq. MHz 4100 1900	Reading Level dBuV 43.23 43.62	Correct Factor dB -13.25 -14.87	Measure- ment dBuV/m 29.98 28.75	515.00 Limit dBuV/m 43.50 46.00	612.00 Over dB -13.52 -17.25	Detector peak peak	806.00	James
No. M	178.4 624.6	Freq. MHz 4100 1900 6100	Reading Level dBuV 43.23 43.62 44.63	Correct Factor dB -13.25 -14.87 -7.06	Measure- ment dBuV/m 29.98 28.75 37.57	515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -13.52 -17.25 -8.43	Detector peak peak peak	806.00	James
No. M 1 2 3 * 4	Mk. F 178.4 250.1 624.6 799.2	Freq. MHz 4100 1900 6100 2100	Reading Level dBuV 43.23 43.62 44.63 33.50	Correct Factor dB -13.25 -14.87 -7.06 -1.67	Measure- ment 29.98 28.75 37.57 31.83	515.00 Limit dBuV/m 43.50 46.00 46.00 46.00	612.00 Over dB -13.52 -17.25 -8.43 -14.17	Detector peak peak peak peak	806.00	James
No. M	178.4 624.6	Freq. MHz 4100 1900 6100 2100 8700	Reading Level dBuV 43.23 43.62 44.63	Correct Factor dB -13.25 -14.87 -7.06	Measure- ment dBuV/m 29.98 28.75 37.57	515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -13.52 -17.25 -8.43	Detector peak peak peak	806.00	James

UT:		Cisco	Edge 340)		Model	Name:	CS-E3	340W
empera	ature:	28 ℃				Relativ	e Humidi	ty: 56 %	
est Pov	ver:	AC 12	0V/60Hz			Phase:		Vertica	al
est Mo	de:	TX 244	40MHz -C	CH19 -1M	lbps / A	Adapter	: PA-1600)-2A-LF	
		·							
80.0) dBu∀/m								
		_							
40									
I									
						л Ж			5 X
				2		πX X			5 million
		1		2 X		×	were and the second		Spreadly and the second
	hermonth			*	and the start of the	nda kiralaan			5 formation and a second
	hermould	anght and an	ako walana	2 Annormality	and the second	North Antonia	n an		to and the master warmed
	hormally	and the part of the part	skowalasta	2 North Charles	mandanad	K.	nonanterinanterina		S prendance of the second
0.0								and the second with	
0.0		7.00 224.00) 321.00	418.00	515.00	3 			5
0.0 30	.000 127	7.00 224.00 Reading	321.00 Correct	418.00 Measure-	515.00	612.00		and the second with	
0.0	1.000 127 K. Free	2.00 224.00 Reading q. Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit			806.00	
0.0 30	1.000 123 K. Free MH2	2.00 224.00 Reading Q. Level c. dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector	and the second with	
0.0 30 No. Mi	1.000 127 K. Free	2.00 224.00 Reading Reading Level dBuV 0 38.19	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	612.00 Over	709.00	806.00	
0.0 30 No. Mi	1.000 127 K. Free MH2 178.410	2.00 224.00 Reading Level dBuV 0 38.19 0 35.98) 321.00 Correct Factor dB -13.25	418.00 Measure- ment dBuV/m 24.94	515.00 Limit dBuV/m 43.50	612.00 Over dB -18.56	709.00 Detector peak	806.00	
0.0 30 No. Mi 1 2	.000 123 K. Free MH2 178.410 408.300	2.00 224.00 Reading Level : dBuV 10 38.19 10 35.98 10 41.92	2 321.00 Correct Factor dB -13.25 -9.60	418.00 Measure- ment dBuV/m 24.94 26.38	515.00 Limit dBuV/m 43.50 46.00	612.00 Over dB -18.56 -19.62	709.00 Detector peak peak	806.00	
0.0 30 No. Mi 1 2 3 *	.000 127 к. Free MH2 178.410 408.300 624.610	2.00 224.00 Reading Level dBuV 0 38.19 0 35.98 0 41.92 0 29.81) 321.00 Correct Factor dB -13.25 -9.60 -7.06	418.00 Measure- ment dBuV/m 24.94 26.38 34.86	515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -18.56 -19.62 -11.14	709.00 Detector peak peak peak	806.00	

UT:	Cisco Edge 34	0	Model	Name:	CS-E340W	
emperature:	28 ℃		Relativ	e Humidity:	56 %	
est Power:	AC 120V/60Hz		Phase:	:	Horizontal	
est Mode:	TX 2440MHz -	CH19 -1Mbps	/ Adapter	: PA-1600-2A	\-LF	
80.0 dBu¥/m						_
						1
						1
						1
40			ź			\$
	1 z				× ×	
				www.twentherondelawe	I have been and a former wood and been in and	″
Mr. And	NU WOW	and the barrow the you	and for the second second second	New roat of the second s		
or where	واست المركزة					
						-
0.0						
30.000 127.00		418.00 515	.00 612.00	709.00 8	06.00 1000.00	MHz
No. Mk. Freq.	Reading Correct Level Factor		nit Over			
MHz	dBuV dB	dBuV/m dBuV		Detector Com	ment	
1 197.8100	45.71 -15.38	30.33 43.9		peak		
2 250.1900	44.12 -14.87	29.25 46.0	0 -16.75	peak		
3 299.6600	37.62 -10.97	26.65 46.0	0 -19.35	peak		

874.8700

1000.000

5

6

35.74

38.34

-1.78

-0.54

33.96

37.80

46.00 -12.04

54.00 -16.20

peak

peak

UT:		Cisco E	dge 340			Model N	Name:	CS-E34	-0W
emper	ature:	28 ℃				Relative	e Humidity	: 56 %	
est Po	wer:	AC 120	V/60Hz			Phase:		Vertical	
est Mo	ode:	TX 2480	MHz -C	H39 -1M	bps / A	dapter:	PA-1600-	2A-LF	
80	.0 dBu¥/m								
40									5
						*		5×	1
		1	š	3				All and a start	- haster for and
	hermonthrough	, ×	×.	and and	man Albert	and a shandperget	word and the second and a low for the second s	all and a second and all	
	de more and	Norge Way was able and	Caller States	Allester and the					
		•••							
0.0									
	, 127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
		Reading	Correct	Measure-					
No. N	1k. Freq.	Level	Factor	ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		omment	
1	178.4100	38.19	-13.25	24.94	43.50	-18.56	peak		
2	298.6900	36.57	-11.05	25.52	46.00	-20.48	peak		
	408.3000	35.48	-9.60	25.88	46.00	-20.12	peak		
3			7.00	33.86	46.00	-12.14	peak		
3 4 *	624.6100	40.92	-7.06				-		
3		40.92 35.60 37.96	-7.06 -1.78 -0.54	33.82 37.42	46.00	-12.18	peak		

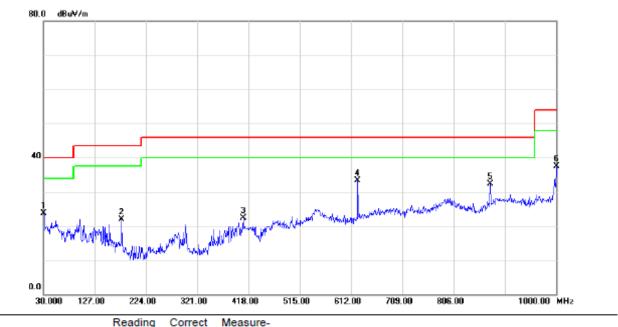
EUT:			Cisco I	Edge 34	0		Model	Name:	C	CS-E34	40W	
Гетре	rature	:	28 ℃				Relativ	e Humic	lity: 5	56 %		
Test Po	ower:		AC 120	0V/60Hz	2		Phase	:	ŀ	Horizor	ntal	
Test M	ode:		TX 248	30MHz -(CH39 -1N	Mbps /	Adapte	": PA-160)0-2A-	LF		
80.	.0dBu∀/	/m										_
												1
												1
40							3					6
40							Ř		4	5 X		6 X
40				4 			×		4		m Maketa Jacque d'M	6 X
40				usta Ma			ې ۲ ۱۱، مولايونو		humen		m suderit for fast der	ŝ
40		And		why the way	upphel haven	www.span.ou	X X Munumu	www.hamdhaa.h	Jermunalin		mandristanaadeel	\$
40	untit had	Aw		why the way	yphilipper	www.ymento	a a a a a a a a a a a a a a a a a a a	www.hamdhaand	human		n sederingen serie	6 X
40	unity	Aw		whythe	withduran	ww.ynew	a X Managarahan M	reschardenend	, Na manual dan		n rekessente	6
0.0	untit kond	122.00	white	where the second	418.00	515.00	512 00			houth		
0.0	untit kond	127.00	224.00	321.00	418.00	515.00	612.00	199.00	* ///hum	houth	1000.00	MHz
0.0		127.00 req.	white	where the second	418.00 Measure- ment		612.00 Over			houth		MHz
0.0	0.000 T		224.00 Reading	321.00 Correct	Measure-					Amerikan film		MHz
0.0	0.000 T	req. IHz	224.00 Reading Level	321.00 Correct Factor	Measure- ment	Limit	Over	709.00	806.0	Amerikan film		MHz
0.0 3 No. M	0.000 1	req. IHz 100	224.00 Reading Level dBuV	321.00 Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	709.00 Detector	806.0	Amerikan film		MHz
0.0 3 No. M	IK. Fr 178.4 250.1	req. IHz 100 900	224.00 Reading Level dBuV 43.73	321.00 Correct Factor dB -13.25	Measure- ment dBuV/m 30.48	Limit dBuV/m 43.50	Over dB -13.02	709.00 Detector peak	806.0	Amerikan film		MH2
No. M	0.000 1 178.4 250.19	req. IHz 100 900 100	224.00 Reading Level dBuV 43.73 44.12	321.00 Correct Factor dB -13.25 -14.87	Measure- ment dBuV/m 30.48 29.25	Limit dBuV/m 43.50 46.00	Over dB -13.02 -16.75	709.00 Detector peak peak	806.0	Amerikan film		MHz
n.0 3 No. M 1 2 3 *	IV. Fr 178.4 624.6	req. Hz 100 900 100 100 700	224.00 Reading Level dBuV 43.73 44.12 45.14	321.00 Correct Factor dB -13.25 -14.87 -7.06	Measure- ment dBuV/m 30.48 29.25 38.08	Limit dBuV/m 43.50 46.00 46.00	Over dB -13.02 -16.75 -7.92	709.00 Detector peak peak peak	806.0	Amerikan film		MH2

EUT:			Cisco Eo	dge 340			Model I	Name:	C	CS-E340	W	
Tempe	eratur	e:	28 ℃				Relative	e Humid	ity: 5	6 %		
lest P	ower:		AC 120\	//60Hz			Phase:		V	/ertical		
lest M	lode:		TX 2402	2MHz -C	:H00 -1M	bps / A	dapter:	EADP-6	60MB	В		
F	30.0 dE	u ∀ /m										
												1
												1
	40						- ×			6		
	1						- 1		E	Š		1
						- 3			- S		and a sheat of	4
	1 M	W1 \$				X			and when	Winderstand	southall by	
	WM	M	Wu	What -	multhemant	m lene	- server	white manufactures	na lound when	mangentine	Josephon Mary	
	Wat	m VIV	hey warman	How Walker	www.hohenand	mlum		eter Marine Wee	na hunder water	manghan	Josephantine J	
	May	W W	hy man	Kurshin Maran	www.white	mlum		with the state of the	* nalessate	mangham	unakusting, j	
ſ		m/W				mlaw		vin March 1944	* nalestade	wooden		
0		127.00	224.00	321.00	418.00	\$ 515.00	612.00	209.00	* ************************************		Jankol Majj	MHz
	0.0 30.000	127.00	224.00 Reading	321.00 Correct	418.00 Measure-	515.00	612.00 Over	709.00	* ************************************			MHz
No.	0.0 30.000	Alv.	224.00	321.00	418.00	mlaw		709.00 Detector	806.	00		MHz
	0.0 30.000 Mk.	127.00 Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	Over			00		MHz
No.	0.0 30.000 Mk.	127.00 Freq. MHz	224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	Over dB	Detector		00		MH2
No.	0.0 30.000 Mk. 65 148	127.00 Freq. MHz 5.8900	224.00 Reading Level dBuV 45.42	321.00 Correct Factor dB -15.25	418.00 Measure- ment dBuV/m 30.17	515.00 Limit 40.00	Over dB -9.83	Detector peak		00		MHz
No.	0.0 30.000 Mk. 65 148 500	127.00 Freq. MHz 5.8900 3.3400	224.00 Reading Level dBuV 45.42 40.29	321.00 Correct Factor dB -15.25 -13.71	418.00 Measure- ment dBuV/m 30.17 26.58	515.00 Limit 40.00 43.50	Over dB -9.83 -16.92	Detector peak peak		00		MHz
No.	0.0 30.000 Mk. 65 148 500 * 624	127.00 Freq. MHz 5.8900 3.3400 0.4500	224.00 Reading Level dBuV 45.42 40.29 40.42	321.00 Correct Factor dB -15.25 -13.71 -10.50	418.00 Measure- ment dBuV/m 30.17 26.58 29.92	515.00 Limit 40.00 43.50 46.00	Over dB -9.83 -16.92 -16.08	Detector peak peak peak		00		MHz

UT:			Cisco E	dge 340	ł		Model I	Name:	CS-E34	0W
empera	ature	e:	28 ℃				Relative	e Humidity:	56 %	
est Pov	ver:		AC 120	V/60Hz			Phase:		Horizont	tal
est Mod	de:		TX 240	2MHz -C	H00 -1N	1bps / A	dapter:	EADP-60N	ИВ В	
80.0 [) dBi	u¥/m								
40							3			
	and a	s nymer Med		-	und por Advances	w.Jawr	inenalti waspalle		m Hanna and H	M. Marine and
0.0	, market and a second s	127.00	1 	321.00	میرا <i>ز میلیسی</i> 418.00	515.00	612.00	709.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1000.00 MHz
0.0	0.000	127.00 Freq.	224.00 Reading Level			515.00	se anna an tha an that a start	709.00	and have so the	1000.00 MHz
0.0 30	b.000	Freq. MHz	Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure-	515.00 Limit dBuV/m	612.00 Over dB		and have so the	1000.00 MHz
0.0 30	k. 150	Freq. MHz	Reading Level dBuV 43.61	321.00 Correct Factor dB -13.51	418.00 Measure- ment dBuV/m 30.10	515.00 Limit dBuV/m 43.50	612.00 Over dB -13.40		806.00	1000.00 MHz
0.0 30 No. Mk	k. 150. 272	Freq. MHz 0.2800	Reading Level dBuV 43.61 39.19	321.00 Correct Factor dB -13.51 -13.70	418.00 Measure- ment dBuV/m 30.10 25.49	515.00 Limit dBuV/m 43.50 46.00	612.00 Over dB -13.40 -20.51	Detector Co	806.00	1000.00 MHz
0.0 30 No. Mk	150 272 624	Freq. MHz .2800 .5000 .6100	Reading Level dBuV 43.61 39.19 46.47	321.00 Correct Factor dB -13.51 -13.70 -7.06	418.00 Measure- ment dBuV/m 30.10 25.49 39.41	515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -13.40 -20.51 -6.59	Detector Co peak peak peak	806.00	1000.00 MHz
0.0 30 No. Mk 1 2 3 * 4	k. 150 272 624 749	Freq. MHz .2800 .5000 .6100 .7400	Reading Level dBuV 43.61 39.19 46.47 37.89	321.00 Correct Factor dB -13.51 -13.70 -7.06 -5.30	418.00 Measure- ment dBuV/m 30.10 25.49 39.41 32.59	515.00 Limit dBuV/m 43.50 46.00 46.00 46.00	612.00 Over dB -13.40 -20.51 -6.59 -13.41	Detector Co peak peak peak peak	806.00	1000.00 MHz
n.0 30 No. Mk 1 2 3 *	k. 150 272 624 749 874	Freq. MHz .2800 .5000 .6100	Reading Level dBuV 43.61 39.19 46.47	321.00 Correct Factor dB -13.51 -13.70 -7.06	418.00 Measure- ment dBuV/m 30.10 25.49 39.41	515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -13.40 -20.51 -6.59	Detector Co peak peak peak	806.00	1000.00 MHz

EUT:			Cisco E	dge 340)		Model I	Name:	CS-E34	40W	
Tempe	ratur	e:	28 ℃				Relativ	e Humidity	r: 56 %		
Test Po	wer	:	AC 120	V/60Hz			Phase:		Vertica	I	
Fest M	ode:		TX 244(OMHz -C	CH19 -1M	bps / A	dapter:	EADP-60	MB B		
84).0 d	Bu∀/m									1
			_				3				
4	o						*		5	,	ļ.
	-					ž		*	5X	insight that	
	۱.,	44			L.			man	Marine Wall		
		Whaper	haim Der Vermanne	provinte provin	winderfully	milian	a service and a service and a service a s				
0.	a 30.000	127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00	
	0.000	127.00				515.00	012.00	765.00	000.00	1000.00	MIIZ
No. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector C	omment		
		0.9700	44.70	-15.01	29.69	40.00	-10.31	peak			
1		0.4500	40.42	-10.50	29.92	46.00	-16.08	peak			
2						46.00	-3.65	peak			
2	62	4.6100	49.41	-7.06	42.35			· ·			
2 3 4	* 62 74	4.6100 9.7400	37.86	-5.30	32.56	46.00	-13.44	peak			
2	* 62 74 87	4.6100						· ·			

		Cisco E	dge 340)		Model I	Name:	CS-E3	40W
emperatu	ure:	28 ℃				Relativ	e Humidity	/: 56 %	
est Powe	er:	AC 120	V/60Hz			Phase:		Horizo	ntal
est Mode	:	TX 244	0MHz -C	CH19 -1N	lbps / A	dapter:	EADP-60	MB B	
80.0	dBuV/m	·							
						J			
40						Î	*	3	× ×
	-	ł						1	por money
	M	6	MÅ			and the second	and the stand of the second lites and the second	way to the water way	
	N° '	" marked	1 have	Vindleman	" had paper	TANL.			
q.eke	ar	-fet -							
0.0	0 403.00	004.00	004.00	44.0.00	545.00	010.00	700.00	000.00	1000 00 100
30.00	0 127.00		321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
No. Mk.					dBuV/m	dB	Detector C	Comment	
No. Mk.	MHz	dBuV	dB	dBuV/m	abuv/m				
	MHz 50.2800	dBuV 45.11	dB -13.51	dBuV/m 31.60	43.50	-11.90	peak		
1 1	50.2800 99.6600	45.11 37.97	-13.51 -10.97	31.60 27.00	43.50 46.00	-11.90 -19.00	peak peak		
1 1: 2 2: 3 * 6:	50.2800 99.6600 24.6100	45.11 37.97 49.47	-13.51 -10.97 -7.06	31.60 27.00 42.41	43.50 46.00 46.00	-11.90 -19.00 -3.59	peak peak peak		
1 1 2 2 3 * 6 4 7	50.2800 99.6600 24.6100 49.7400	45.11 37.97 49.47 42.89	-13.51 -10.97 -7.06 -5.30	31.60 27.00 42.41 37.59	43.50 46.00 46.00 46.00	-11.90 -19.00 -3.59 -8.41	peak peak peak peak		
1 1 2 2 3 * 6 4 7 5 8	50.2800 99.6600 24.6100	45.11 37.97 49.47	-13.51 -10.97 -7.06	31.60 27.00 42.41	43.50 46.00 46.00	-11.90 -19.00 -3.59	peak peak peak		

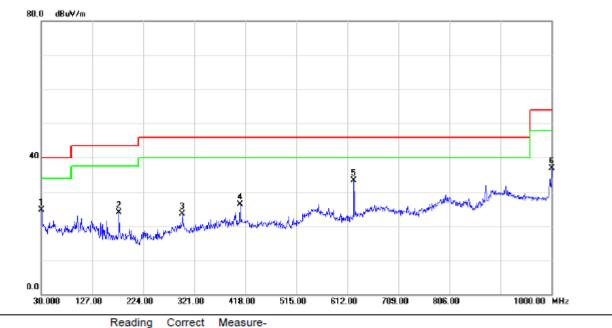


UT:			Cisco E	dge 340)		Model I	Name:	CS-E340	W
empe	eratu	re:	28 ℃				Relative	e Humidity	56 %	
est Po	owei	r:	AC 120	V/60Hz			Phase:		Vertical	
est M	lode	:	TX 2480)MHz -C	H39 -1M	bps / A	dapter:	EADP-60	MB B	
8	30.0 d	1Butγ/m								
	40						3X			6
-		_								
						2		4	57	, , , , , , , , , , , , , , , , , , ,
-		MAD .				ŝ		×	a sold and the sold and the	unations.
		mmun	her way		hall like another	ž ml m	Manager and		And Way Ann	uhukung)
		Mynum	han the state of t	y marker berger	wyshiel/Yoursen	, k	an a	And a start and a low	and we will an	unahing)
		M Marcelow N	her and the	rijente ^{an} lektorigen	unphiel/Alexande	ž mluv	an a	de a construction de la construcción de la construc	and we wanted	unahana)
		M. Winner	here and the second	y wellen	wybheljAfragenaurb	ž mluv	(men-regionality)	normer Marcolle	and we have the	unanhina)
D).0					mlaw	512.00			
D			224.00	321.00	418.00	515.00	612.00		806.00	чни (лиц) 1000.00 MHz
D	30.000					mlaw	612.00 Over			
D	30.000) 127.00	224.00 Reading	321.00 Correct	418.00 Measure-	515.00		709.00		
D	.0 30.000 Mk.) 127.00 Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	Over	709.00	806.00	
No. 1	0.0 30.000 Mk.	0 127.00 Freq. MHz	224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit	Over dB	709.00 Detector Co	806.00	
No. 1	0.0 30.000 Mk. 6 50	0 127.00 Freq. MHz 55.8900	224.00 Reading Level dBuV 46.42	321.00 Correct Factor dB -15.25	418.00 Measure- ment dBuV/m 31.17	515.00 Limit dBuV/m 40.00	Over dB -8.83	709.00 Detector Co peak	806.00	
No. 1	Mk. 6 50 * 62	0 127.00 Freq. MHz 55.8900 00.4500	224.00 Reading Level dBuV 46.42 41.92	321.00 Correct Factor dB -15.25 -10.50	418.00 Measure- ment dBuV/m 31.17 31.42	515.00 Limit dBuV/m 40.00 46.00	Over dB -8.83 -14.58	709.00 Detector Co peak peak	806.00	
No. 1 1 2 3	Mk. 6 50 * 62 74	0 127.00 Freq. MHz 65.8900 00.4500 24.6100	224.00 Reading Level dBuV 46.42 41.92 47.91	321.00 Correct Factor dB -15.25 -10.50 -7.06	418.00 Measure- ment dBuV/m 31.17 31.42 40.85	515.00 Limit dBuV/m 40.00 46.00 46.00	Over dB -8.83 -14.58 -5.15	709.00 Detector Co peak peak peak	806.00	

UT:			Cisco E	Edge 340	C		Model	Name:	(CS-E34	0W	
Temp	peratu	re:	28 ℃				Relativ	e Humidi	ty: १	56 %		
Test I	Powe	r:	AC 120)V/60Hz			Phase	:	ł	Horizon	tal	
Test I	Mode	:	TX 248	OMHz -(CH39 -1N	lbps / A	Adapter	: EADP-6	60MB	В		
	80.0 dE	Bukγ/m										
]
												-
							3					
	40											
	40						Î	2	\$ 5	ĺ.		
				3				-		martin	Konnorm	
		- And Mad	horn marking	3 Mary	d when we	~ Jam	erponnek	, www.manney		house the for	Kennin	
		www.	horm manufity	And the second	July	~/~	en junnek	, www.www.w	Louit	hour has the	Norman	
		n n n n n n n n n n n n n n n n n n n	horn manager	And we	July	-Jarra	er jun mit	, www.www.w		haven had free	hanna	
	n.sheed	n de la composition de la comp	Winner Workshop (M	An an	-dyddawra	~/~	en jerne ale	manana		have to V	hourse	
			224.00	321.00	418.00	515.00	612.00	709.00	806.1		1000.00	MH2
	0.0 30.000		224.00	2 321.00 Correct		515.00	612.00	709.00	806.0			MH2
	0.0				418.00	515.00 Limit	612.00 Over	709.00	806.0			MH2
No.	0.0 30.000 Mk.	127.00 Freq. MHz	224.00 Reading Level dBuV	Correct Factor dB	418.00 Measure- ment dBuV/m	Limit dBuV/m	Over dB	Detector	806.1			MH2
No.	0.0 30.000 Mk.	127.00 Freq. MHz 8.3400	224.00 Reading Level dBuV 44.38	Correct Factor dB -13.71	418.00 Measure- ment dBuV/m 30.67	Limit dBuV/m 43.50	Over dB -12.83	Detector peak				MHz
No. 1 2	0.0 30.000 Mk. 148 272	127.00 Freq. MHz 8.3400 2.5000	224.00 Reading Level dBuV 44.38 42.69	Correct Factor dB -13.71 -13.70	418.00 Measure- ment dBuV/m 30.67 28.99	Limit dBuV/m 43.50 46.00	Over dB -12.83 -17.01	Detector peak peak				MH2
No.	0.0 30.000 Mk. 148 272 * 624	127.00 Freq. MHz 8.3400 2.5000 4.6100	224.00 Reading Level dBuV 44.38 42.69 47.97	Correct Factor dB -13.71 -13.70 -7.06	418.00 Measure- ment dBuV/m 30.67 28.99 40.91	Limit dBuV/m 43.50 46.00 46.00	Over dB -12.83 -17.01 -5.09	Detector peak peak peak				MHz
No.	0.0 30.000 Mk. 148 277 * 624 748	127.00 Freq. MHz 8.3400 2.5000 4.6100 9.7400	224.00 Reading Level dBuV 44.38 42.69 47.97 39.39	Correct Factor dB -13.71 -13.70 -7.06 -5.30	418.00 Measure- ment dBuV/m 30.67 28.99 40.91 34.09	Limit dBuV/m 43.50 46.00 46.00 46.00	Over dB -12.83 -17.01 -5.09 -11.91	Detector peak peak peak peak				MH2
No.	0.0 30.000 Mk. 148 272 * 624 749	127.00 Freq. MHz 8.3400 2.5000 4.6100	224.00 Reading Level dBuV 44.38 42.69 47.97	Correct Factor dB -13.71 -13.70 -7.06	418.00 Measure- ment dBuV/m 30.67 28.99 40.91	Limit dBuV/m 43.50 46.00 46.00	Over dB -12.83 -17.01 -5.09	Detector peak peak peak				MH2

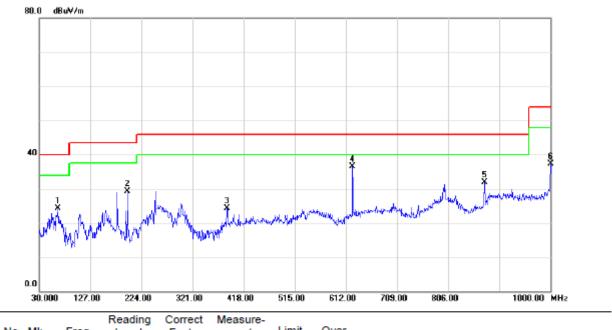
EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	28 ℃	Relative Humidity:	56 %
Test Power:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	TX 2402MHz -CH00 -1Mbps /	POE	

Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	30.9700	38.66	-15.01	23.65	40.00	-16.35	peak	
	178.4100	35.19	-13.25	21.94	43.50	-21.56	peak	
	408.3000	31.98	-9.60	22.38	46.00	-23.62	peak	
*	624.6100	40.42	-7.06	33.36	46.00	-12.64	peak	
	874.8700	34.10	-1.78	32.32	46.00	-13.68	peak	
	1000.000	37.96	-0.54	37.42	54.00	-16.58	peak	
	*	MHz 30.9700 178.4100 408.3000	Mk. Freq. Level MHz dBuV 30.9700 38.66 178.4100 35.19 408.3000 31.98 * 624.6100 40.42 874.8700 34.10	Mk. Freq. Level Factor MHz dBuV dB 30.9700 38.66 -15.01 178.4100 35.19 -13.25 408.3000 31.98 -9.60 * 624.6100 40.42 -7.06 874.8700 34.10 -1.78	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 30.9700 38.66 -15.01 23.65 178.4100 35.19 -13.25 21.94 408.3000 31.98 -9.60 22.38 * 624.6100 40.42 -7.06 33.36 874.8700 34.10 -1.78 32.32	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 30.9700 38.66 -15.01 23.65 40.00 178.4100 35.19 -13.25 21.94 43.50 408.3000 31.98 -9.60 22.38 46.00 * 624.6100 40.42 -7.06 33.36 46.00 874.8700 34.10 -1.78 32.32 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 30.9700 38.66 -15.01 23.65 40.00 -16.35 178.4100 35.19 -13.25 21.94 43.50 -21.56 408.3000 31.98 -9.60 22.38 46.00 -23.62 * 624.6100 40.42 -7.06 33.36 46.00 -12.64 874.8700 34.10 -1.78 32.32 46.00 -13.68	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 30.9700 38.66 -15.01 23.65 40.00 -16.35 peak 178.4100 35.19 -13.25 21.94 43.50 -21.56 peak 408.3000 31.98 -9.60 22.38 46.00 -23.62 peak * 624.6100 40.42 -7.06 33.36 46.00 -12.64 peak 874.8700 34.10 -1.78 32.32 46.00 -13.68 peak

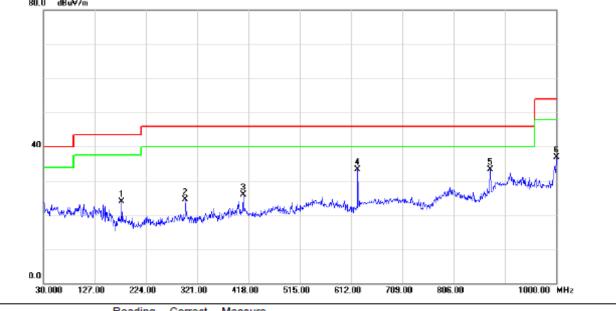


Cisco Edge 340	Model Name:	CS-E340W
28 ℃	Relative Humidity:	56 %
AC 120V/60Hz	Phase:	Horizontal
TX 2402MHz -CH00 -1Mbps / F	POE	
	28 °C AC 120V/60Hz	28 °C Relative Humidity:

No.	Mk.	Freq.	Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		64.9200	38.85	-15.13	23.72	40.00	-16.28	peak	
2		178.4100	42.23	-13.25	28.98	43.50	-14.52	peak	
3		250.1900	42.62	-14.87	27.75	46.00	-18.25	peak	
4		385.9900	34.54	-10.23	24.31	46.00	-21.69	peak	
5	*	624.6100	44.14	-7.06	37.08	46.00	-8.92	peak	
6		874.8700	34.74	-1.78	32.96	46.00	-13.04	peak	


EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	28 ℃	Relative Humidity:	56 %
Test Power:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	TX 2440MHz -CH19 -1Mbps / F	POE	

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		30.9700	39.66	-15.01	24.65	40.00	-15.35	peak	
2		178.4100	37.19	-13.25	23.94	43.50	-19.56	peak	
3		298.6900	34.57	-11.05	23.52	46.00	-22.48	peak	
4		408.3000	35.98	-9.60	26.38	46.00	-19.62	peak	
5	*	624.6100	40.42	-7.06	33.36	46.00	-12.64	peak	
6		1000.000	37.46	-0.54	36.92	54.00	-17.08	peak	



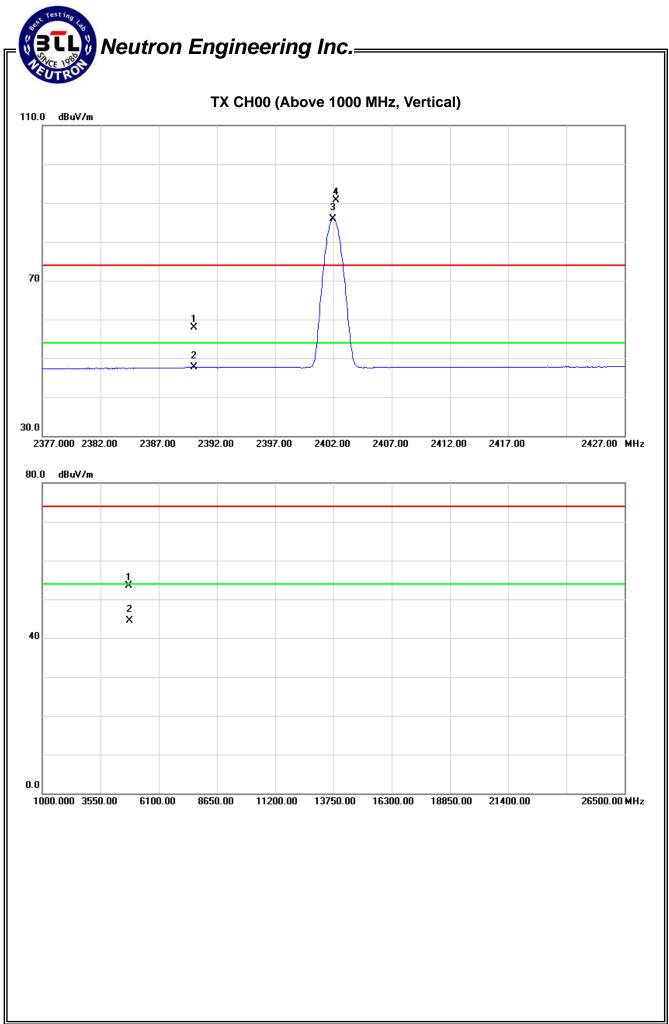
EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	28 ℃	Relative Humidity:	56 %
Test Power:	AC 120V/60Hz	Phase:	Horizontal
Test Mode:	TX 2440MHz -CH19 -1Mbps	/ POE	


No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		64.9200	39.35	-15.13	24.22	40.00	-15.78	peak	
2		197.8100	44.71	-15.38	29.33	43.50	-14.17	peak	
3		385.9900	34.54	-10.23	24.31	46.00	-21.69	peak	
4	* (624.6100	43.64	-7.06	36.58	46.00	-9.42	peak	
5	1	874.8700	33.74	-1.78	31.96	46.00	-14.04	peak	
6		1000.000	37.84	-0.54	37.30	54.00	-16.70	peak	

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	28 ℃	Relative Humidity:	56 %
Test Power:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	TX 2480MHz -CH39 -1Mbps / F	POE	
Test Mode:		JOE	

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		178.4100	37.19	-13.25	23.94	43.50	-19.56	peak	
2	:	298.6900	35.57	-11.05	24.52	46.00	-21.48	peak	
3	4	408.3000	35.48	-9.60	25.88	46.00	-20.12	peak	
4	* (624.6100	40.42	-7.06	33.36	46.00	-12.64	peak	
5	1	874.8700	35.10	-1.78	33.32	46.00	-12.68	peak	
6		1000.000	37.46	-0.54	36.92	54.00	-17.08	peak	

EUT:	Cisco Edge 340	Model Name:	CS-E340W				
Temperature:	28 ℃	Relative Humidity:	56 %				
Test Power:	AC 120V/60Hz	Phase:	Horizontal				
Test Mode:	TX 2480MHz -CH39 -1Mbps / POE						

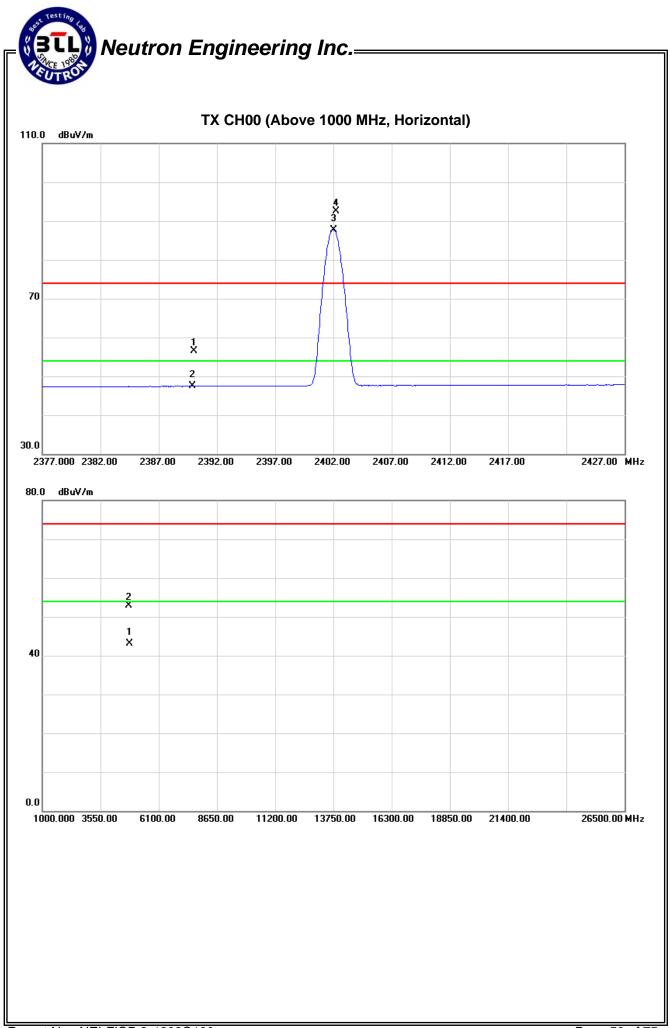

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		64.9200	37.85	-15.13	22.72	40.00	-17.28	peak	
2		178.4100	42.73	-13.25	29.48	43.50	-14.02	peak	
3	:	299.6600	36.62	-10.97	25.65	46.00	-20.35	peak	
4	*	624.6100	44.64	-7.06	37.58	46.00	-8.42	peak	
5		874.8700	35.24	-1.78	33.46	46.00	-12.54	peak	
6		1000.000	37.34	-0.54	36.80	54.00	-17.20	peak	

4.2.8 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2402MHz -CH00 -1Mbps		

Freg.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
rieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	23.75	13.62	34.09	57.84	47.71	74.00	54.00	X/E
2402.25	V	56.50	51.79	34.12	90.62	85.91			X/F
4804.36	V	47.06	38.14	6.38	53.44	44.52	74.00	54.00	X/H

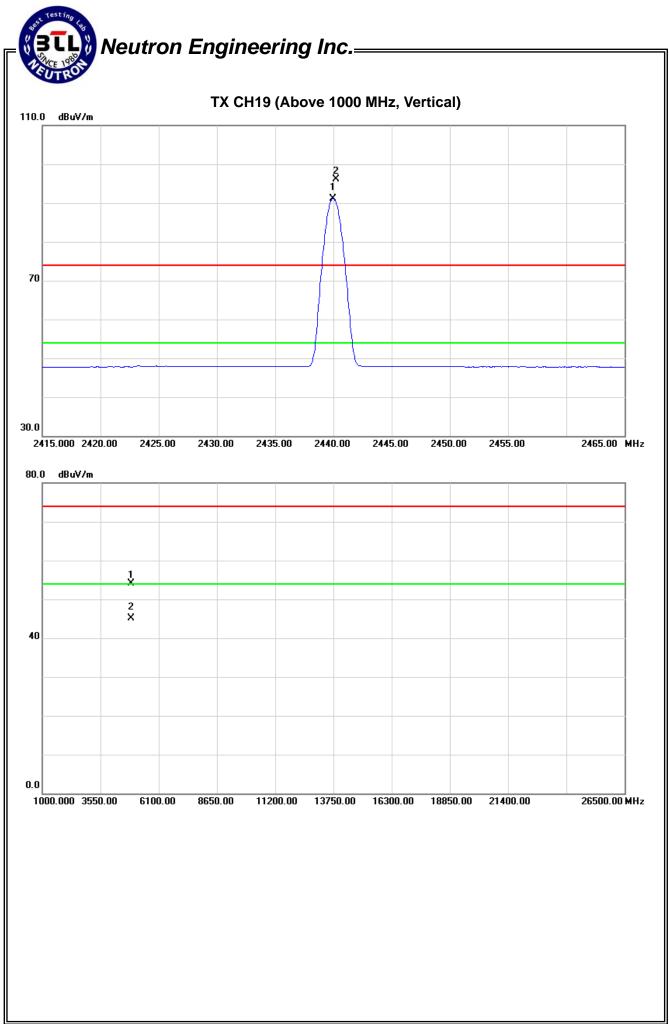
- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2402MHz -CH00 -1Mbps		

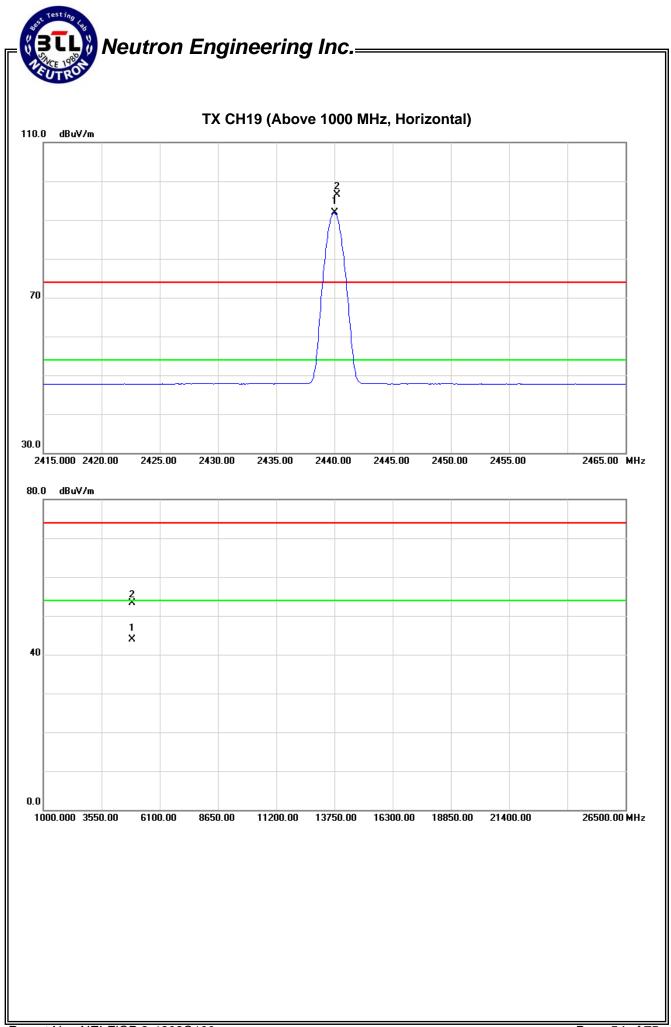
Freq.	Ant.Pol.	Rea	ding	Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	22.38	13.34	34.09	56.47	47.43	74.00	54.00	X/E
2402.25	Н	58.35	53.65	34.12	92.47	87.77			X/F
4804.25	Н	46.62	36.76	6.38	53.00	43.14	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2440MHz -CH19 -1Mbps		

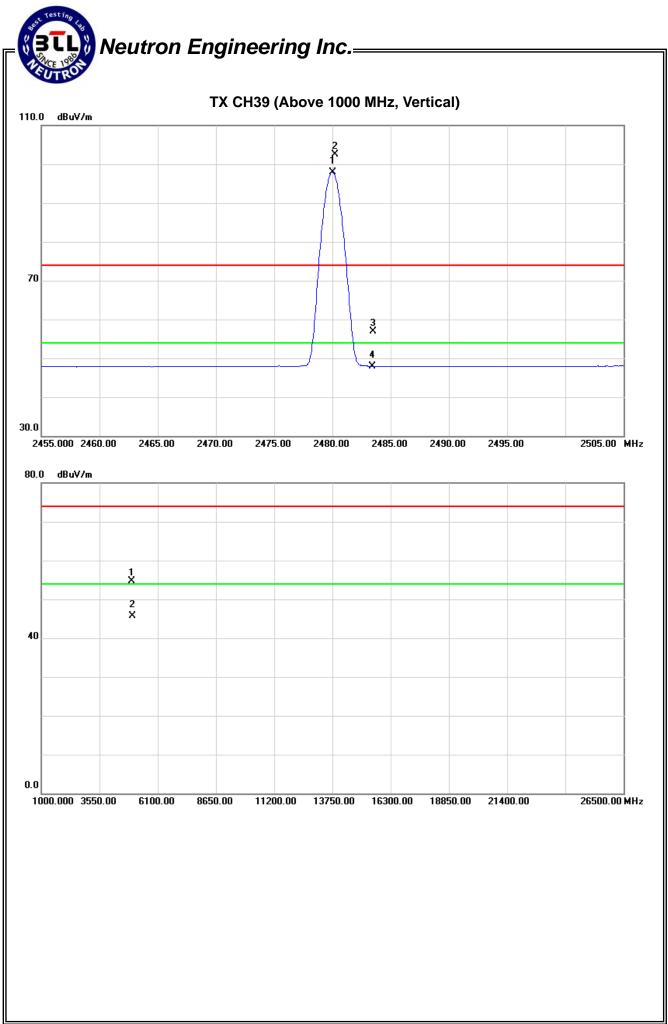
Freq.	Ant.Pol.	Reading		Ant./CF	A	Act.		Limit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2440.25	V	61.86	56.93	34.24	96.10	91.17			X/F
4880.25	V	47.52	38.54	6.61	54.13	45.15	74.00	54.00	X/H


- (1) All readings are Peak unless otherwise stated QP in column of <code>"Note_"</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 °C	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2440MHz -CH19 -1Mbps		

Freq. A	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2440.25	Н	62.26	57.60	34.24	96.50	91.84			X/F
4880.76	Н	46.72	37.35	6.61	53.33	43.96	74.00	54.00	X/H

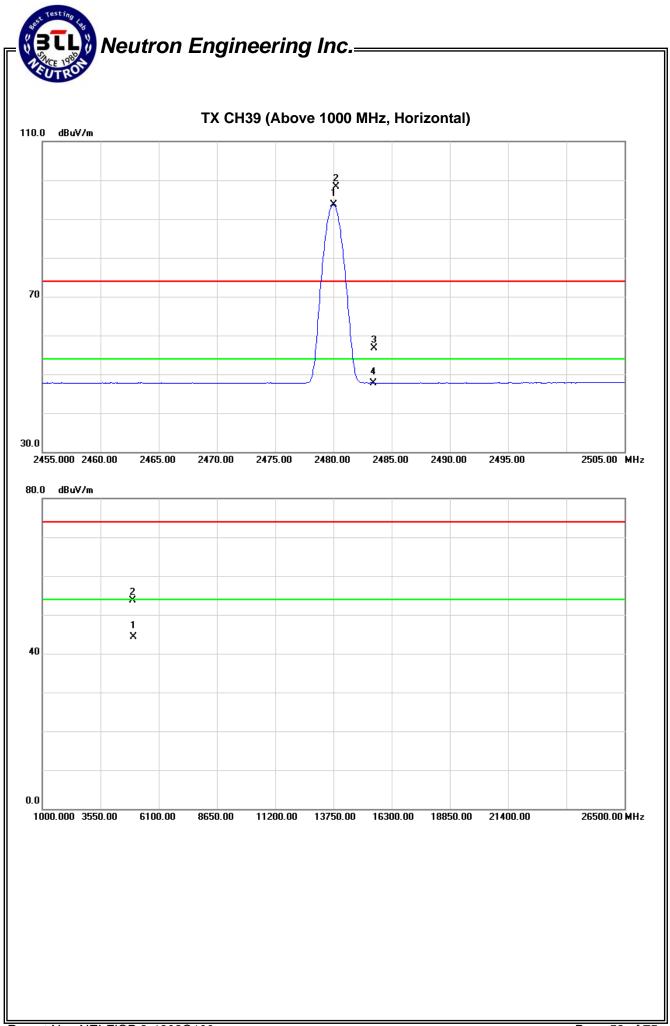
- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 °C	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2480MHz -CH39 -1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2480.00	V	63.53	68.06	34.36	97.89	102.42			X/F
2483.50	V	22.54	13.55	34.37	56.91	47.92	74.00	54.00	X/E
4959.46	V	47.85	38.85	6.83	54.68	45.68	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	23 °C	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX 2480MHz -CH39 -1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2480.25	Н	63.88	59.27	34.36	98.24	93.63			X/F
2483.50	Н	22.35	13.41	34.37	56.72	47.78	74.00	54.00	X/E
4960.26	Н	46.84	37.39	6.83	53.67	44.22	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

5. BANDWIDTH TEST

5.1 Applied procedures / limit

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2) RSS-GEN section 4.6.1 RSS-210 Annex 8 (A8.2(a))	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

5.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov.16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

5.1.2 TEST PROCEDURE

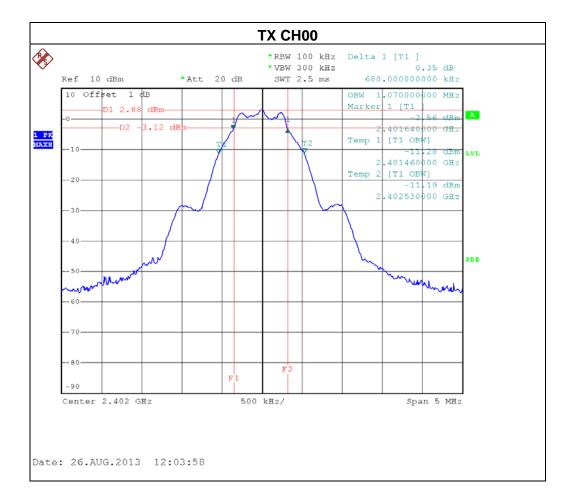
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

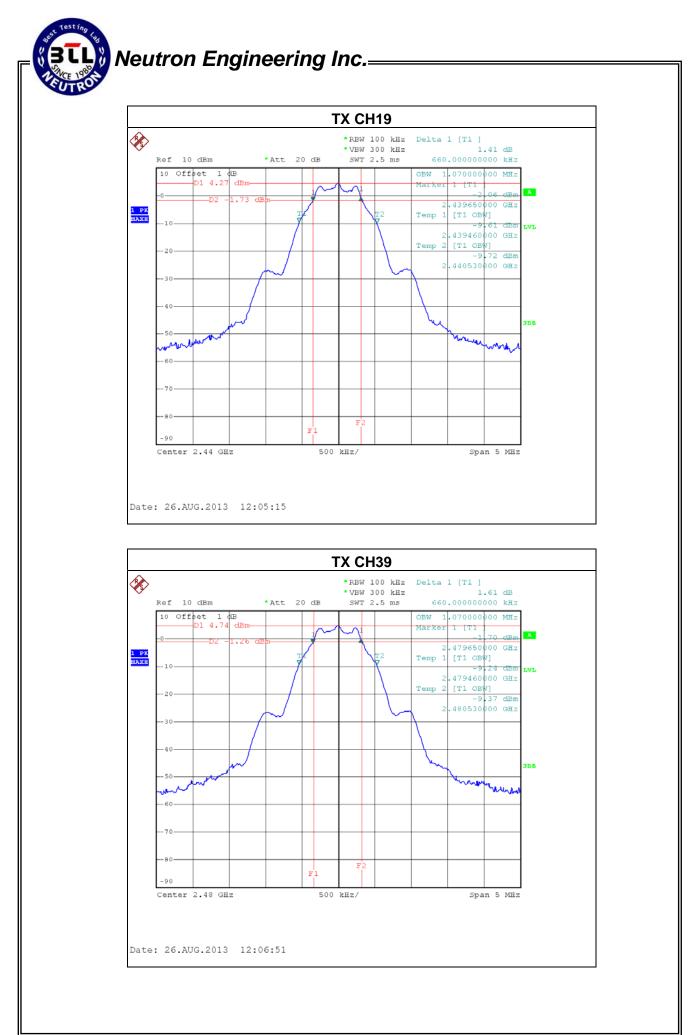
5.1.3 DEVIATION FROM STANDARD

No deviation.

5.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER


5.1.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name. :	CS-E340W
Temperature:	28 °C	Relative Humidity:	60 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	CH00, CH19, CH39 - 1Mbps		

Test Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% OBW (MHz)	LIMIT (MHz)
CH00	2402MHz	0.68	1.07	>=500KHz
CH19	2440MHz	0.66	1.07	>=500KHz
CH39	2480MHz	0.66	1.07	>=500KHz

6. MAXIMUM OUTPUT POWER TEST

6.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C/ RSS-210				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3) RSS-210 Annex 8.4(4)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS

6.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	P-series Power meter	Agilent	N1911A	MY45100473	Apr. 25, 2014
2	Wireband Power sensor	Agilent	N1921A	MY51100041	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

6.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.3.1 of FCC KDB 558074

6.1.3 DEVIATION FROM STANDARD

No deviation.

6.1.4 TEST SETUP

EUT	Power Meter

6.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	28 °C	Relative Humidity:	60 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	CH00, CH19, CH39 - 1Mbps		

Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH00	2402MHz	3.16	30	1
CH19	2440MHz	4.54	30	1
CH39	2480MHz	4.81	30	1

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 Applied procedures / limit

20dB in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified 15.205(a) & RSS-210 section 2.2& Annex 8 (A8.5), then the 15.209(a) & RSS-GEN limit in the table below has to be followed.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

7.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov.16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

7.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

7.1.3 DEVIATION FROM STANDARD

No deviation.

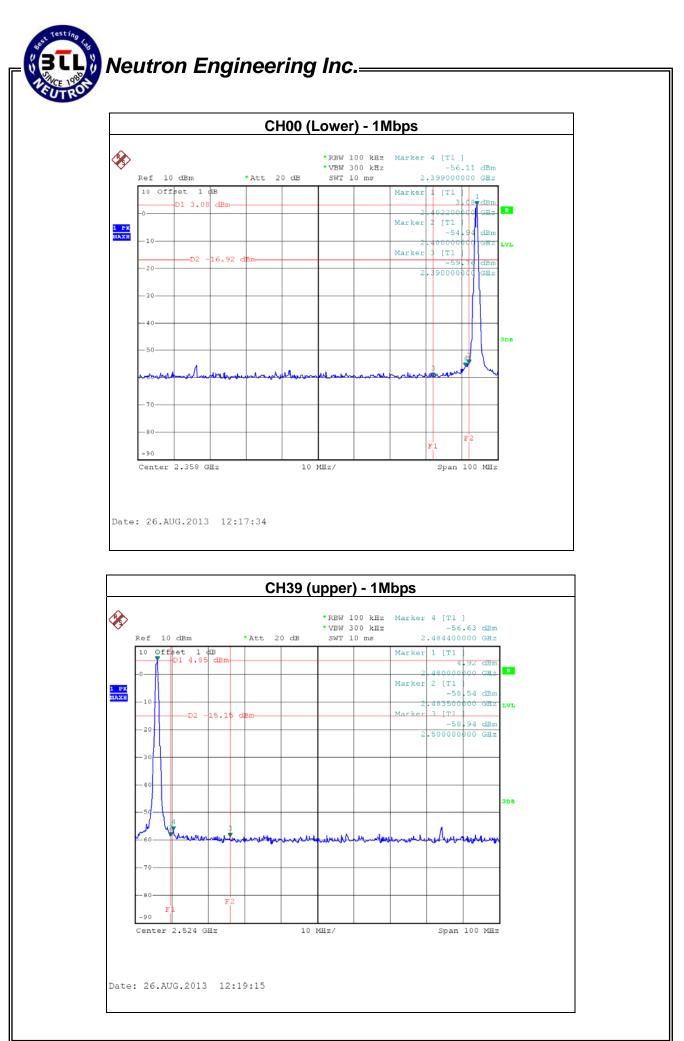
7.1.4 TEST SETUP

EUT

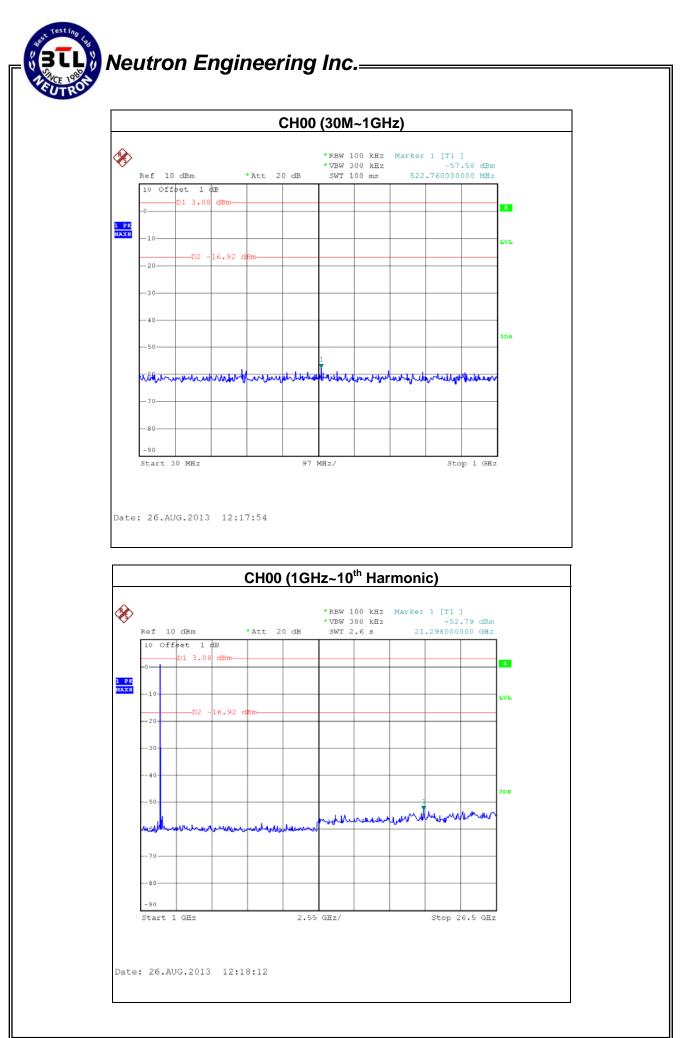
SPECTRUM ANALYZER

7.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

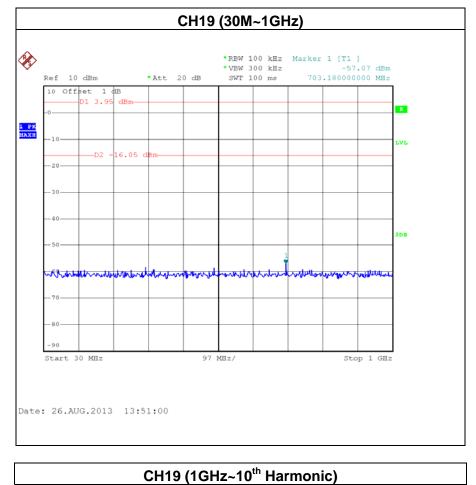


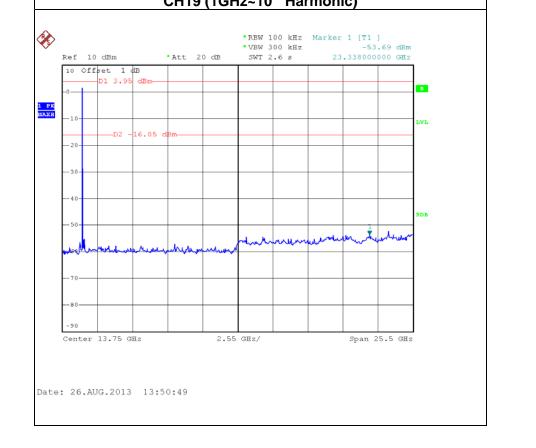
7.1.6 TEST RESULTS

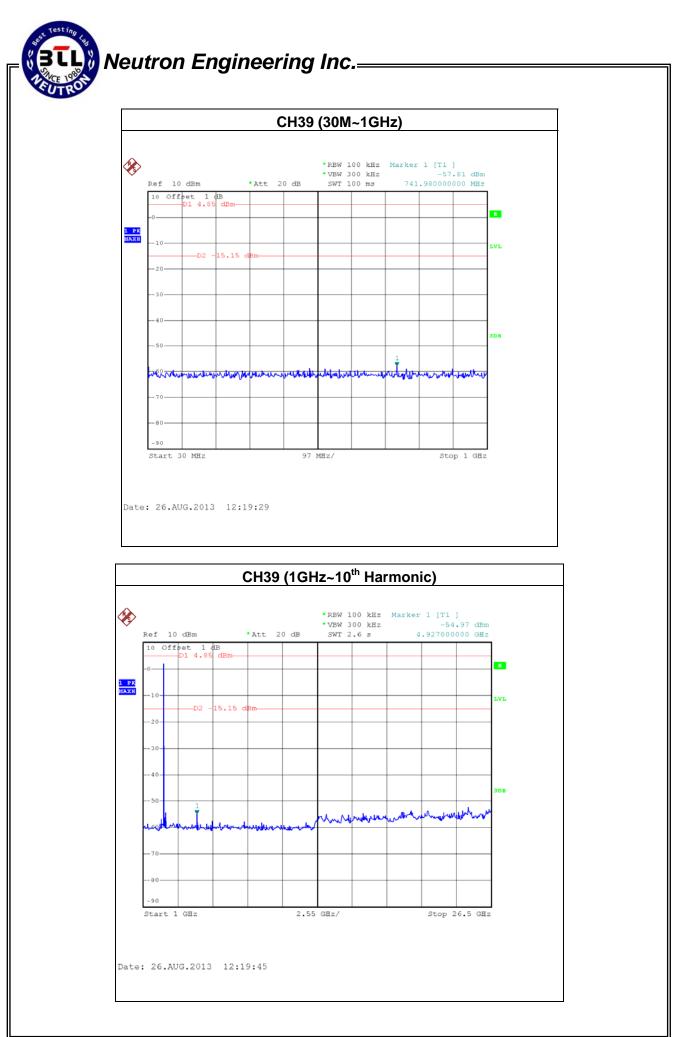

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	28 ℃	Relative Humidity:	60 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	CH00, CH19 , CH39 - 1Mbps		

Channel of Worst Data: CH39				
	cy power in any 100kHz the frequency band	The max. radio frequency power in any 100 kHz bandwidth within the frequency band.		
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)	
2400.00	-54.94	2484.40	-56.63	
Result				

In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.




Report No.: NEI-FICP-2-1308C100



Report No.: NEI-FICP-2-1308C100

Report No.: NEI-FICP-2-1308C100

8. POWER SPECTRAL DENSITY TEST

8.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C / RSS-210					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(e) RSS-210 Annex 8(A8.2(b))	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

8.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov.16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

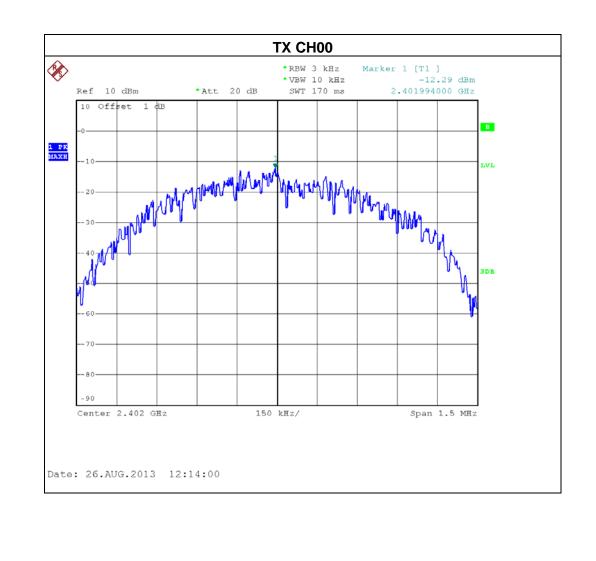
8.1.2 TEST PROCEDURE

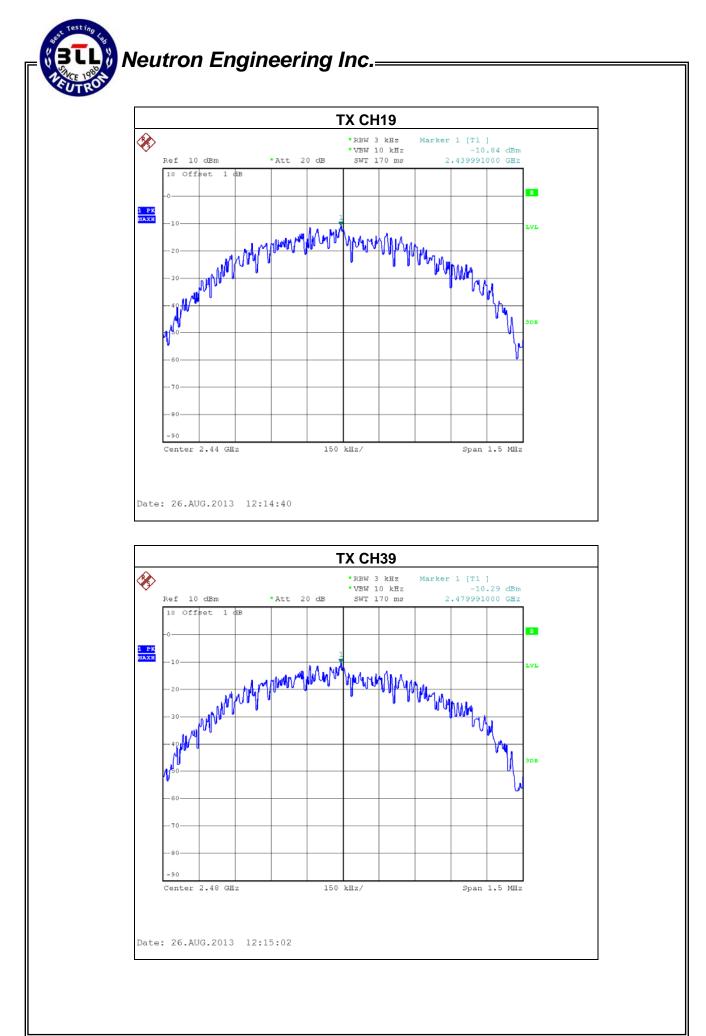
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

8.1.3 DEVIATION FROM STANDARD

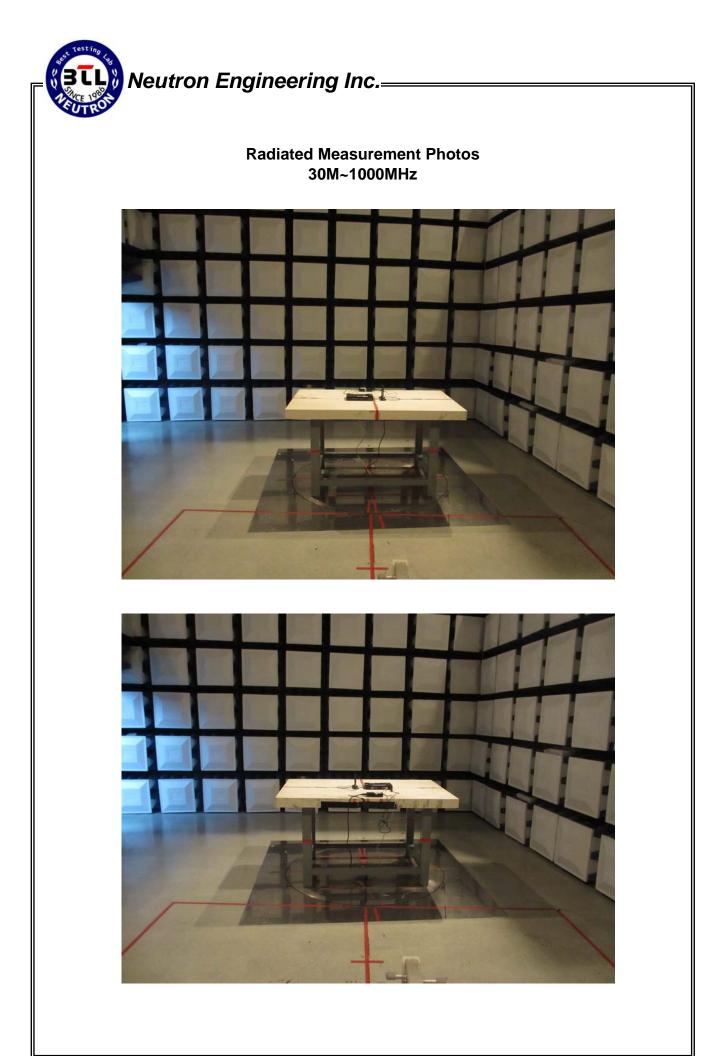
No deviation.

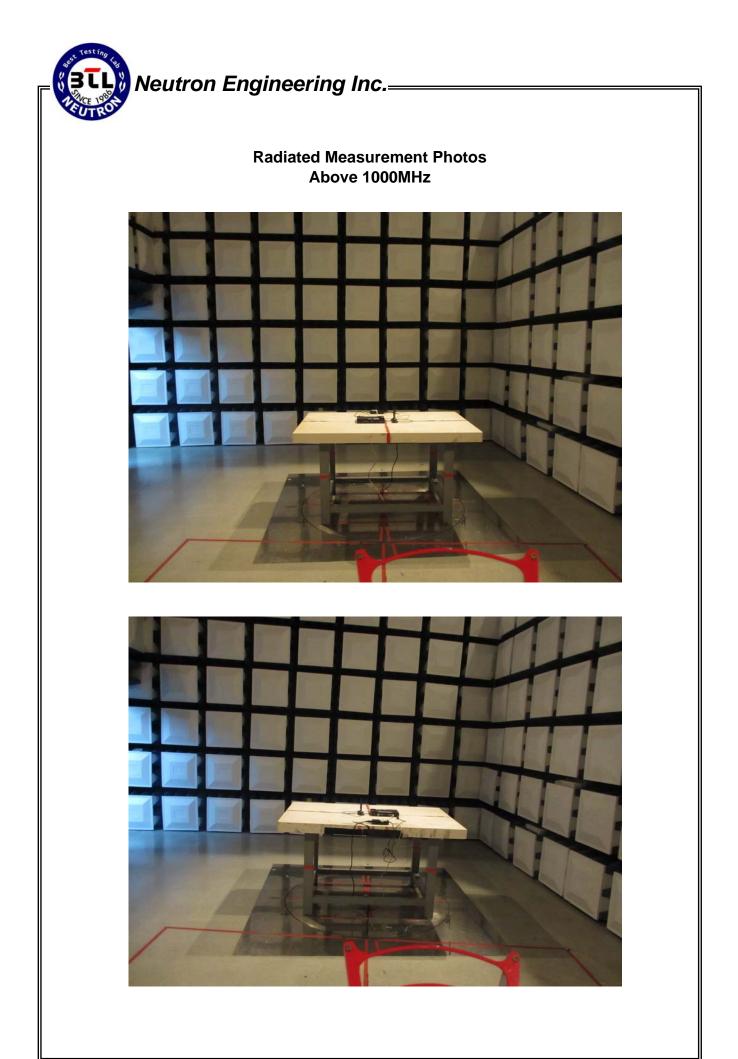
8.1.4 TEST SETUP


8.1.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.6 TEST RESULTS


EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	28 ℃	Relative Humidity:	60 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	CH00, CH19, CH39 -1Mbps		


Test Channel	Frequency (MHz)	Power Density (dBm)	LIMIT (dBm)
CH00	2402MHz	-12.29	8
CH19	2440MHz	-10.84	8
CH39	2480MHz	-10.29	8

Report No.: NEI-FICP-2-1308C100