FCC&IC Radio Test Report

FCC ID: MCLCS-E340W

IC: 2878D-CSE340W

This report concerns (check one): Original Grant Class II Change

Issued Date	:	Sep. 12, 2013
Project No.	:	1308C100
Equipment	:	Cisco Edge 340
Model Name	:	CS-E340W
Applicant	:	HON HAI Precision Ind. Co., Ltd.
Address	:	5F-1, 5, Hsin-An Road, Hsinchu
		Science-Based Industrial Park,
		Hsinchu, Taiwan

Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Aug. 12, 2013 Date of Test: Aug. 12, 2013 ~ Sep. 11, 2013

Neutron Engineering Inc.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000 FAX: 0769-8319-6000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **CHINA**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents Page	age
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
	-
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	10
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	D 11
3.5 DESCRIPTION OF SUPPORT UNITS	12
4 . EMC EMISSION TEST	13
4.1 CONDUCTED EMISSION MEASUREMENT	13
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING	13
4.1.3 TEST PROCEDURE	14
4.1.4 DEVIATION FROM TEST STANDARD 4.1.5 TEST SETUP	14 14
4.1.6 EUT OPERATING CONDITIONS	14
4.1.7 TEST RESULTS	15
4.2 RADIATED EMISSION MEASUREMENT	22
4.2.1 RADIATED EMISSION LIMITS	22
4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING	23
4.2.3 TEST PROCEDURE	24
4.2.4 DEVIATION FROM TEST STANDARD 4.2.5 TEST SETUP	24 25
4.2.6 EUT OPERATING CONDITIONS	26
4.2.7 TEST RESULTS: 30MHZ - 1000MHZ	27
4.2.8 TEST RESULTS (ABOVE 1000 MHZ)	46
5 . NUMBER OF HOPPING CHANNEL	70
5.1 APPLIED PROCEDURES	70
5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	70
5.1.2 TEST PROCEDURE	70 70
5.1.3 DEVIATION FROM STANDARD 5.1.4 TEST SETUP	70 70
5.1.5 EUT OPERATION CONDITIONS	70
5.1.6 TEST RESULTS	71
6 . AVERAGE TIME OF OCCUPANCY	73

STUN Noutron Engineering Inc.	
Table of Contents	Page
	-
6.1 APPLIED PROCEDURES / LIMIT	73
6.1.1 MEASUREMENT INSTRUMENTS LIST	73
6.1.2 TEST PROCEDURE	73
6.1.3 DEVIATION FROM STANDARD	73
6.1.4 TEST SETUP	74
6.1.5 EUT OPERATION CONDITIONS	74
6.1.6 TEST RESULTS	75
7 . HOPPING CHANNEL SEPARATION MEASUREMENT	87
7.1 APPLIED PROCEDURES / LIMIT	87
7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	87
7.1.2 TEST PROCEDURE	87
7.1.3 DEVIATION FROM STANDARD	87
7.1.4 TEST SETUP 7.1.5 EUT OPERATION CONDITIONS	87 87
7.1.5 EUT OPERATION CONDITIONS 7.1.6 TEST RESULTS	88
8 . BANDWIDTH TEST	92
8.1 APPLIED PROCEDURES	92
8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	92
8.1.2 TEST PROCEDURE	92
8.1.3 DEVIATION FROM STANDARD	92 92
8.1.4 TEST SETUP 8.1.5 EUT OPERATION CONDITIONS	92 92
8.1.6 TEST RESULTS	93
9. PEAKOUTPUT POWER TEST	97
9.1 APPLIED PROCEDURES / LIMIT	97
9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	97 97
9.1.2 TEST PROCEDURE	97
9.1.3 DEVIATION FROM STANDARD	97
9.1.4 TEST SETUP	97
9.1.5 EUT OPERATION CONDITIONS	97
9.1.6 TEST RESULTS	98
10 . ANTENNA CONDUCTED SPURIOUS EMISSION	102
10.1 APPLIED PROCEDURES / LIMIT	102
10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	102
10.1.2 TEST PROCEDURE	102
10.1.3 DEVIATION FROM STANDARD	102
10.1.4 TEST SETUP	103
10.1.5 EUT OPERATION CONDITIONS	103
10.1.6 TEST RESULTS	104
11 . EUT TEST PHOTO	116

1. CERTIFICATION

Equipment :	Cisco Edge 340
Brand Name:	Cisco
Model Name:	CS-E340W
Applicant :	HON HAI Precision Ind. Co., Ltd.
Manufacturer :	Hon Hai Precision Ind Co., Ltd
Address :	Hsinchu Science Park Branch Office 5F-1 5, Hsin-an Rd Hsinchu Science
	Based Industrial Park Hsinchu, Taiwan
	HONG FU JIN PRECISION INDUSTRY (SHEN ZHEN) CO LTD
Address :	Bldg D10, F21, No 2, 2 nd DONGGUAN RD, 10 th YOUSONG INDUSTRIAL
	DISTRICT, LONGHUA TOWN, BAOAN, SHENZHEN, GUANGDONG, CHINA.
Date of Test :	Aug. 12, 2013 ~ Sep. 11, 2013
Test Item :	ENGINEERING SAMPLE
Standard(s) :	FCC Part15, Subpart C(15.247) / ANSI C63.4 : 2009 /
	FCC Public Notice DA 00-705, March 30, 2000.
	Canada RSS-210:2010
	RSS-GEN Issue 3, Dec 2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

This test report consists of 118 pages in total.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-1-1308C100) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Testing Engineer

David Mao (David Mao)

Technical Manager

(Leo Hung)

Authorized Signatory :

Ponon (Steven Lu)

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	Applied Standard(s): 47 CFR Part 15, Subpart C; Canada RSS-210:2010; RSS-GEN Issue 3, Dec 2010			
Standa 47 CFR	ard(s) Section	Test Item	ludamont	Remark
Part 15	RSS-210/RSS-GEN	iest item	Judgment	INCIDAIN
15.207	RSS-GEN Issue 3, Dec 2010 7.2.4	Conducted Emission	PASS	
15.247(d)	RSS-210, Issue 8, Annex 8, A8.5	Antenna conducted Spurious Emission	PASS	
15.247 (a)(1)	RSS-210, Issue 8, Annex 8, A8.1(b)	Hopping Channel Separation	PASS	
15.247 (b)(1)	RSS-210, Issue 8, Annex 8, A8.1(b)	Peak Output Power	PASS	
15.247(d) 15.209	RSS-210, Issue 8, Annex 8, Section 8.5	Radiated Spurious Emission	PASS	
15.247 (a)(1)(iii)	RSS-210, Issue 8, Annex 8, A8.1(d)	Number of Hopping Frequency	PASS	
15.247 (a)(1)(iii)	RSS-210, Issue 8, Annex 8, A8.1(d)	Dwell Time	PASS	
15.205	RSS-GEN Issue 3, Dec 2010 7.2.2	Restricted Bands	PASS	
15.203	-	Antenna Requirement	PASS	

Note:

(1)" N/A" denotes test is not applicable in this test report

(2) According to FCC Public Notice DA 00-705, March 30, 2000.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC: 319330

Neutron's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	Note
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	Note
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	H	3.60	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CISER	200MHz ~ 1,000MHz	H	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	H	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Cisco Edge 340		
Brand Name	Cisco		
Model Name	CS-E340W		
Model Difference	N/A		
Product Description	User's Manual.	2402~2480 MHz GFSK(1Mbps) π /4-DQPSK(2Mbps) 8-DPSK(3Mbps) 79 CH, Please see note 2.(Page 10) Please see note 3.(Page 10) 5.20 dBm (1Mbps) 3.41 dBm (3Mbps) nnical specification, please refer to the	
Power Source	DC voltage supplied from AC/DC adapter #1 Brand /Model name: LITEON /PA-1600-2A-LF #2 Brand /Model name: DELTA /EADP-60MB B #3 PoE		
Power Rating	#1 I/P 100-240V 50-60Hz 2A O/P 12V 5A #2 I/P 100-240V 50-60Hz 1.5A O/P 12V 5A #3 DC 48V		
Connecting I/O Port(s)	USB port*4 IR Extension port Console port RS232 port Audio out port Audio in port HDMI port VGA port Gigabit Ethernet port Power SD card 802.11a/b/g/n Bluetooth		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

		Chann	el List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3 Table for Filed Antenna

[Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
	1	FOXCONN	FX01G66-0G- EF	Integral	N/A	4.39

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode Note (1)
Mode 2	TX Mode

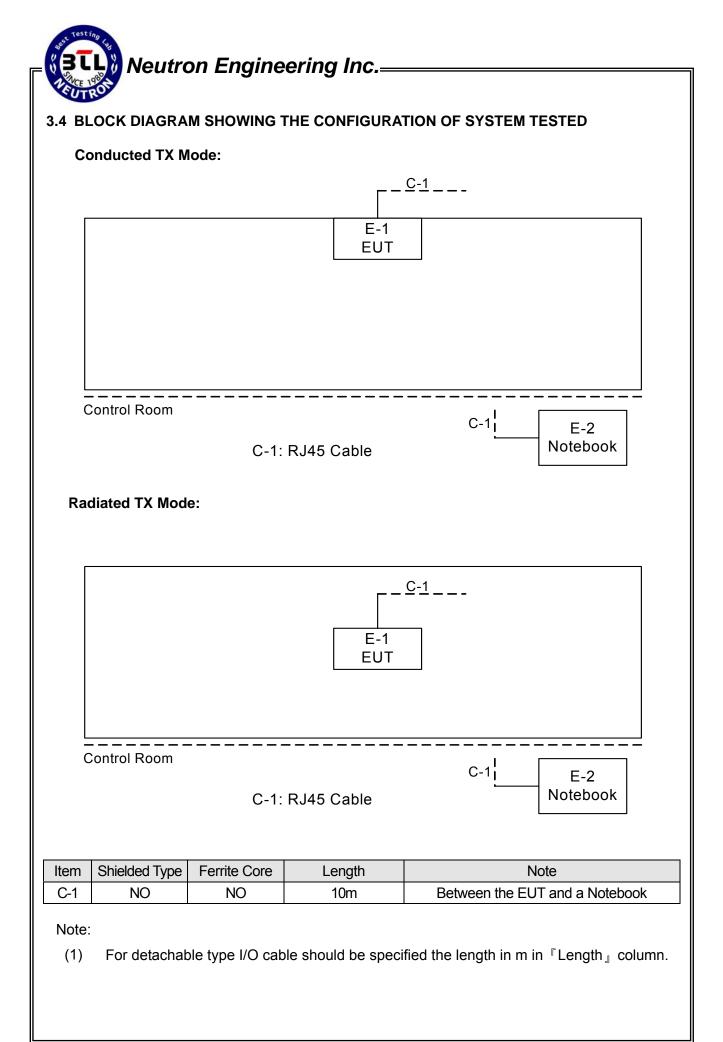
The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Emission		
Final Test Mode	Description	
Mode 2 TX Mode		
For Conducted test, the Dingle antenna is found to be the worst case and recorded		

For Conducted test, the Dipole antenna is found to be the worst case and recorded.

For Radiated Emission						
Final Test Mode	Description					
Mode 1	TX Mode Note (1)					

For Radiated Below 1G test, the 802.11a mode is found to be the worst case and recorded.


Note:

(1) The measurements are performed at the high, middle, low available channels.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software version	DOS						
Frequency	2402 MHz	2441 MHz	2480 MHz				
Parameters-1Mbps	8	8	8				
Parameters-3Mbps	4	4	4				

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ltem	Equipment	Equipment Mfr/Brand		FCC ID/IC	Series No.	Note
E-1	Cisco Edge 340	Cisco	CS-E340W	MCLCS-E340W / 2878D-CSE340W	N/A	EUT
E-2	Notebook	DELL	Inspiron 14-N4030	DOC	N/A	

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A	(dBuV)	Class B	Standard	
Frequency (MHz)	Quasi-peak Average		Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

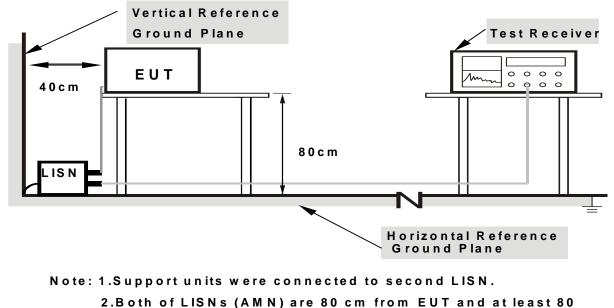
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014
2	LISN	R&S	ENV216	100087	Nov.16, 2013
3	Test Cable	N/A	C_17	N/A	Mar.15, 2014
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014
5	5 50Ω Terminator SHX		TF2-3G-A	08122902	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year. The test was performed in DG-C02.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 KHz		


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4 DEVIATION FROM TEST STANDARD

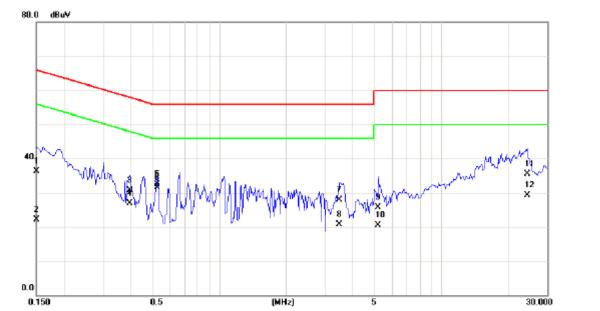
No deviation

from other units and other metal planes

4.1.6 EUT OPERATING CONDITIONS

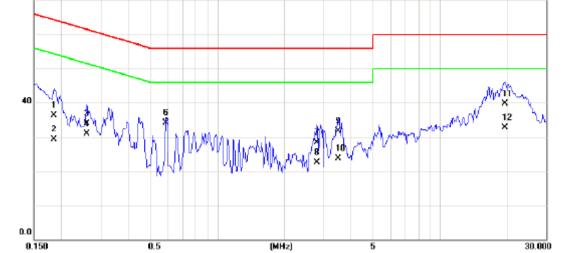
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.



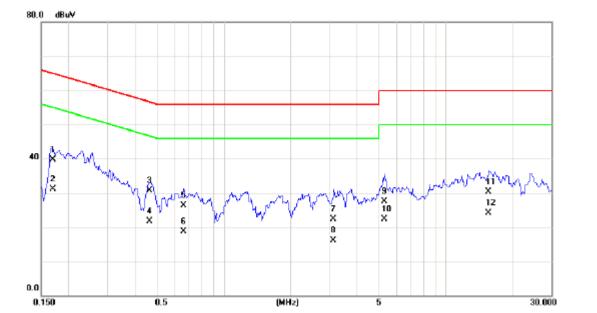
4.1.7 TEST RESULTS

Remark:


- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	TX Mode / Adapter: PA-1600-2A-LF		

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	26.75	9.61	36.36	66.00	-29.64	QP	
2		0.1500	12.45	9.61	22.06	56.00	-33.94	AVG	
3		0.3961	20.95	9.66	30.61	57.93	-27.32	QP	
4		0.3961	17.15	9.66	26.81	47.93	-21.12	AVG	
5		0.5250	22.75	9.68	32.43	56.00	-23.57	QP	
6	*	0.5250	21.85	9.68	31.53	46.00	-14.47	AVG	
7		3.4883	18.15	9.83	27.98	56.00	-28.02	QP	
8		3.4883	10.95	9.83	20.78	46.00	-25.22	AVG	
9		5.2031	15.85	9.91	25.76	60.00	-34.24	QP	
10		5.2031	10.55	9.91	20.46	50.00	-29.54	AVG	
11		24.2773	24.55	10.86	35.41	60.00	-24.59	QP	
12		24.2773	18.35	10.86	29.21	50.00	-20.79	AVG	


Cisco Edge 340	Model Name :	CS-E340W	
25 ℃	Relative Humidity:	50 %	
AC 120V/60Hz	Phase:	Neutral	
TX Mode / Adapter: PA-1600-2A-	LF		
-	25 ℃ AC 120V/60Hz	25 ℃ Relative Humidity:	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1852	26.67	9.62	36.29	64.25	-27.96	QP	
2		0.1852	19.67	9.62	29.29	54.25	-24.96	AVG	
3		0.2594	24.27	9.62	33.89	61.45	-27.56	QP	
4		0.2594	21.36	9.62	30.98	51.45	-20.47	AVG	
5		0.5914	24.47	9.69	34.16	56.00	-21.84	QP	
6	*	0.5914	24.36	9.69	34.05	46.00	-11.95	AVG	
7		2.8220	18.56	9.80	28.36	56.00	-27.64	QP	
8		2.8220	12.66	9.80	22.46	46.00	-23.54	AVG	
9		3.4922	21.86	9.83	31.69	56.00	-24.31	QP	
10		3.4922	13.86	9.83	23.69	46.00	-22.31	AVG	
11		19.5508	29.07	10.58	39.65	60.00	-20.35	QP	
12		19.5508	22.17	10.58	32.75	50.00	-17.25	AVG	

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	TX Mode / Adapter: EADP-60MB B		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1695	30.02	9.61	39.63	64.98	-25.35	QP	
2	*	0.1695	21.42	9.61	31.03	54.98	-23.95	AVG	
3		0.4625	21.12	9.67	30.79	56.65	-25.86	QP	
4		0.4625	12.02	9.67	21.69	46.65	-24.96	AVG	
5		0.6578	16.52	9.69	26.21	56.00	-29.79	QP	
6		0.6578	9.02	9.69	18.71	46.00	-27.29	AVG	
7		3.1328	12.52	9.82	22.34	56.00	-33.66	QP	
8		3.1328	6.22	9.82	16.04	46.00	-29.96	AVG	
9		5.3047	17.52	9.91	27.43	60.00	-32.57	QP	
10		5.3047	12.42	9.91	22.33	50.00	-27.67	AVG	
11		15.6953	20.02	10.38	30.40	60.00	-29.60	QP	
12		15.6953	13.82	10.38	24.20	50.00	-25.80	AVG	

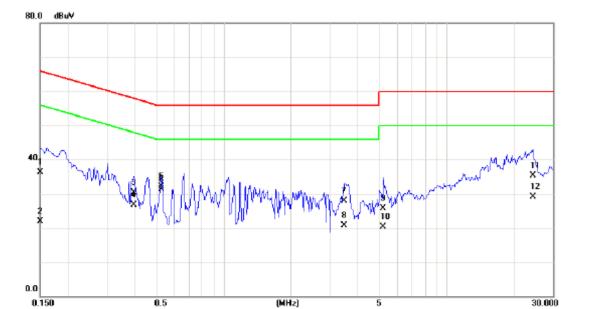
EUT:	Cisco Edge 340	Model Name :	CS-E340W	
Temperature:	25 ℃	Relative Humidity:	50 %	
Test Power:	AC 120V/60Hz	Phase:	Neutral	
Test Mode:	TX Mode / Adapter: EADP-60MB B			
80.0 dBuV				

	0.150)	0	1.5		(MHz)		5		30.000
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1508	26.72	9.60	36.32	65.96	-29.64	QP		
2		0.1508	9.32	9.60	18.92	55.96	-37.04	AVG		
3		0.1734	30.02	9.60	39.62	64.80	-25.18	QP		
4	*	0.1734	23.82	9.60	33.42	54.80	-21.38	AVG		
5		0.4470	19.92	9.66	29.58	56.93	-27.35	QP		
6		0.4470	11.92	9.66	21.58	46.93	-25.35	AVG		
7		3.3906	13.92	9.87	23.79	56.00	-32.21	QP		
8		3.3906	6.92	9.87	16.79	46.00	-29.21	AVG		
9		5.2617	18.62	9.98	28.60	60.00	-31.40	QP		
10		5.2617	13.42	9.98	23.40	50.00	-26.60	AVG		
11		15.9531	21.92	10.73	32.65	60.00	-27.35	QP		
12		15.9531	15.02	10.73	25.75	50.00	-24.25	AVG		

X 4

0.0

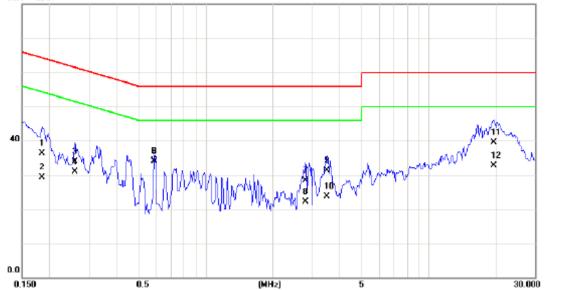
hun


Г Б Х Ϋ́,

12 X

X 10 X

7× 8 X


EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	TX Mode / POE		

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1500	26.66	9.61	36.27	66.00	-29.73	QP		
2	0.1500	12.33	9.61	21.94	56.00	-34.06	AVG		
3	0.3961	20.65	9.66	30.31	57.93	-27.62	QP		
4	0.3961	17.01	9.66	26.67	47.93	-21.26	AVG		
5	0.5250	22.45	9.68	32.13	56.00	-23.87	QP		
6 *	0.5250	21.65	9.68	31.33	46.00	-14.67	AVG		
7	3.4883	18.03	9.83	27.86	56.00	-28.14	QP		
8	3.4883	10.87	9.83	20.70	46.00	-25.30	AVG		
9	5.2031	15.76	9.91	25.67	60.00	-34.33	QP		
10	5.2031	10.39	9.91	20.30	50.00	-29.70	AVG		
11	24.2773	24.47	10.86	35.33	60.00	-24.67	QP		
12	24.2773	18.24	10.86	29.10	50.00	-20.90	AVG		

EUT:	Cisco Edge 340	Model Name :	CS-E340W
Temperature:	25 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Neutral
Test Mode:	TX Mode / POE		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1852	26.65	9.62	36.27	64.25	-27.98	QP	
2		0.1852	19.65	9.62	29.27	54.25	-24.98	AVG	
3		0.2594	24.22	9.62	33.84	61.45	-27.61	QP	
4		0.2594	21.33	9.62	30.95	51.45	-20.50	AVG	
5		0.5914	24.44	9.69	34.13	56.00	-21.87	QP	
6	*	0.5914	24.25	9.69	33.94	46.00	-12.06	AVG	
7		2.8220	18.50	9.80	28.30	56.00	-27.70	QP	
8		2.8220	12.32	9.80	22.12	46.00	-23.88	AVG	
9		3.4922	21.45	9.83	31.28	56.00	-24.72	QP	
10		3.4922	13.88	9.83	23.71	46.00	-22.29	AVG	
11		19.5508	29.00	10.58	39.58	60.00	-20.42	QP	
12		19.5508	22.11	10.58	32.69	50.00	-17.31	AVG	

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz -1000MHz)

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m) =20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014
5	Antenna	ETS	3115	00075789	Apr. 25, 2014
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014
7	Spectrum	Agilent	E4408B	US39240143	Nov. 16, 2013
8	Test Cable	HUBER+SUHNER	C-45	N/A	Apr. 30, 2014
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct. 23, 2013

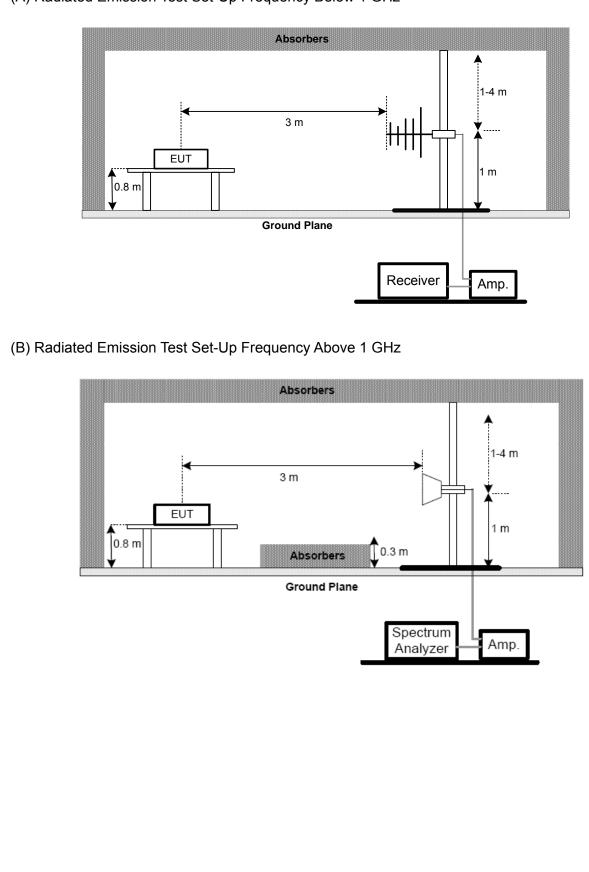
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year. The test was performed in DG-CB03.

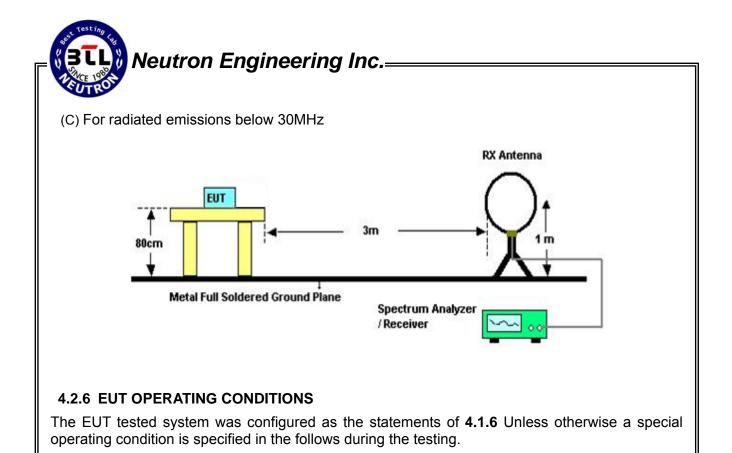
Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RBW / VBW				
(emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz ~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz ~110KHz for QP detector
Start ~ Stop Frequency	110KHz ~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz ~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.2.4 DEVIATION FROM TEST STANDARD


No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.7 TEST RESULTS: 30MHZ - 1000MHZ

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

EUT:	Cisco Edge 340)	Model Name:	CS-E340W
emperature:	28 ℃		Relative Humidity:	56 %
est Power:	AC 120V/60Hz		Phase:	Vertical
est Mode:	TX 2402MHz -0	CH00 -1Mbps / A	Adapter: PA-1600-2	A-LF
0.0 30.000 127.0	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	418.00 515.00 Measure-		5 5 7 7 7 806.00 MHz
No. Mk. Freq.	Level Factor	ment Limit	Over	
MHz 1 58.1300	dBuV dB 39.54 -14.03	dBuV/m dBuV/m 25.51 40.00	dB Detector Cor -14.49 peak	mment
2 91.1100	41.00 -16.83	24.17 43.50	-14.49 peak	
	10.00			
3 177.4400	41.87 -13.21	28.66 43.50	-14.84 peak	

46.00 -7.72

54.00 -17.76

peak

peak

40.06

36.78

-1.78

-0.54

38.28

36.24

5 * 874.8700

1000.000

6

JT:			Cisco E	Edge 340)		Model N	Name:	C	CS-E34	0W	
emper	ature	e:	28 ℃				Relative	e Humid	lity: 5	56 %		
est Po	wer:		AC 120	V/60Hz			Phase:		ŀ	lorizont	tal	
est Mc	de:		TX 240	2MHz -C	CH00 -1M	bps / A	dapter:	PA-160)0-2A-I	LF		
			-									
80	.0 dB	u¥/m										
												1
												-
												1
40							4					
												-
-		-					Î		5 X	×		
•			2 X	3				and all with	\$	Å	warder white warder	
•		,	2 X	a A			Manua della	where and the	5 July March	munit	leren bezult binnigt offi	
	, ,			all and a second second	والمتعدلة فالمستحاف ووالمؤسسية	malan	hannan	where the second	5 North Marine	a	lerenskerrede kinnersterfte	
			ž Mulanovali	a a a a a a a a a a a a a a a a a a a	souther differently	Madara	Mannan	-Aurobalish	2 hunderend	mund	in many states of the states o	
				and the second	honeska dek fan der Mar	M. John	honore and			Musam	in the states of the second	
0.0		122.00	Markeywealt						us and			MH2
0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	127.00	224.00	321.00	418.00	515.00	612.00		us and	00	1000.00	MHz
0.0	1 	127.00 Freq.	Markeywealt	321.00		515.00			us and	00		MHz
0.0 3	1 		224.00 Reading	321.00 Correct	418.00 Measure-	515.00	612.00		us and			MHz
0.0 3	0.000 1k.	Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	612.00 Over	709.00	806.			MHz
a.c 3 No. N	1k.	Freq. MHz	224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector	806.			MHz
0.0 3 No. M	178	Freq. MHz	224.00 Reading Level dBuV 38.21	321.00 Correct Factor dB -13.86	418.00 Measure- ment dBuV/m 24.35	515.00 Limit dBuV/m 40.00	612.00 Over dB -15.65	709.00 Detector peak	806.			MH2
0.0 3 No. N 1 2	1178 299	Freq. MHz .2500 .4100	224.00 Reading Level dBuV 38.21 44.63	321.00 Correct Factor dB -13.86 -13.25	418.00 Measure- ment dBuV/m 24.35 31.38	515.00 Limit dBuV/m 40.00 43.50	612.00 Over dB -15.65 -12.12	709.00 Detector peak peak	806.			MH2
0.0 3 No. M 1 2 3	11 11 11 11 11 11 11 11 11 11 11 11 11	Freq. MHz .2500 .4100 .6600	224.00 Reading Level dBuV 38.21 44.63 36.73	321.00 Correct Factor dB -13.86 -13.25 -10.97	418.00 Measure- ment dBuV/m 24.35 31.38 25.76	515.00 Limit dBuV/m 40.00 43.50 46.00	612.00 Over dB -15.65 -12.12 -20.24	709.00 Detector peak peak peak	806.			MHz

UT:		Cisco E	dge 340			Model I	Name:	CS-E340W	
empera	ature:	28 °C				Relativ	e Humidity:	56 %	
est Pov	ver:	AC 120	V/60Hz			Phase:		Vertical	
est Mo	de:	TX 244	1MHz -C	H39 -1M	bps / A	dapter:	PA-1600-2	A-LF	
40		2 Contraction of the second se		2×	"×	×			
0.0 30	.000 127.00		321.00	418.00	515.00	612.00	709.00 8	806.00 100	0.00 MHz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector Con	nment	
1	177.4400	41.87	-13.21	28.66	43.50	-14.84	peak		
2	408.3000	34.64	-9.60	25.04	46.00	-20.96	peak		
3	500.4500	37.99	-10.50	27.49	46.00	-18.51	peak		
	624.6100	44.05	-7.06	36.99	46.00	-9.01	peak		
4	749.7400	37.15	-5.30	31.85	46.00	-14.15	peak		

38.78 46.00 -7.22

peak

6 * 874.8700

40.56

-1.78

EUT:	Cisco I	Edge 340			Model I	Name:	CS-E34	W0
emperature:	28 ℃				Relative	e Humidity:	56 %	
est Power:	AC 120)V/60Hz			Phase:		Horizon	tal
est Mode:	TX 244	1MHz -C	H39 -1M	lbps / A	dapter:	PA-1600-2	2A-LF	
80.0 dBu∀/	m							
	-							
40					4		<u>6</u>	
	1					\$		and the state
	×	ž	A Line Line Line Line Line Line Line Line		L.	-Hurah Hall	Mary 10	and the state of t
When	Mul 1	forthe grander and the second	periodial management	Mader	Many Market	way walk		
	War White							
0.0								
	27.00 224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
	Reading		Measure-		0			
	eq. Level	Factor	ment	Limit	Over			
	Hz dBuV 100 44.63	dB	dBuV/m	dBuV/m	dB		mment	
4 470 4	100 44 0.5	-13.25	31.38	43.50	-12.12	peak		
1 178.4		14 07	26.00	46.00	10.01	nook		
2 250.19	900 41.86	-14.87	26.99	46.00	-19.01	peak		
	900 41.86 900 34.39	-14.87 -8.78 -7.06	26.99 25.61 39.96	46.00 46.00 46.00	-19.01 -20.39 -6.04	peak peak peak		

46.00 -11.42

46.00 -7.57

peak

peak

5

6

749.7400

874.8700

39.88

40.21

-5.30

-1.78

34.58

38.43

Bit 0 dBitW/m AC 120V/60Hz Phase: Vertical est Mode: TX 2480MHz -CH78 -1Mbps / Adapter: PA-1600-2A-LF Vertical st Mode: TX 2480MHz -CH78 -1Mbps / Adapter: PA-1600-2A-LF st Mode: TX 2480MHz -CH78 -1Mbps / Adapter: PA-1600-2A-LF st Mode: st Mode: st Mode: TX 2480MHz -CH78 -1Mbps / Adapter: PA-1600-2A-LF st Mode: st Mode: st Mode: st Mode: <t< th=""><th>EUT:</th><th></th><th>Cisco E</th><th>dge 340</th><th></th><th></th><th>Model N</th><th>Name:</th><th>CS-E340W</th></t<>	EUT:		Cisco E	dge 340			Model N	Name:	CS-E340W
TX 2480MHz -CH78 -1Mbps / Adapter: PA-1600-2A-LF 88.0 #8w/m 68.0 #8w/m 69.0 #8w/m 69.0 #8w/m 69.0 #8w/m 69.0 #8w/m 60.0 #8w/m 60.0 #8w/m 60.0 #8w/m 60.0 #8w/m 60.0 #8w/m 70.00 224.00 321.00 418.00 515.00 612.00 705.00 806.00 1000.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- Measure- Level Limit Over Correct Correct Correct Measure- Level Limit Over Correct Correct Measure- Factor Limit Over Correct Core Correct Correct	Tempera	ature:	28 ℃				Relative	e Humidity:	56 %
80.0 dBwV/m 60 dBwV/m 70 dBw 70 dBwV 70 dWV 70 dWV	Test Pov	ver:	AC 120	√/60Hz			Phase:		Vertical
No. Mk. Freq. Badding Reading Correct Level Correct Factor Measure- ment Limit Over Vector Comment 1 58.1300 39.54 -14.03 25.51 40.00 -14.49 peak 2 177.4400 42.37 -13.21 29.16 43.50 -14.34 peak 3 408.3000 34.64 -9.60 25.04 46.00 -10.51 peak	Test Mo	de:	TX 2480)MHz -C	H78 -1M	bps / A	dapter:	PA-1600-2/	A-LF
30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MH₂ No.<			3		A shill prove the			5×	American B
No. Mk. Freq. Reading Level Correct Factor Measure ment Limit Over Over MHz dBuV dB dBuV/m dB Detector Comment 1 58.1300 39.54 -14.03 25.51 40.00 -14.49 peak 2 177.4400 42.37 -13.21 29.16 43.50 -14.34 peak 3 408.3000 34.64 -9.60 25.04 46.00 -20.96 peak 4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak			. Untrankal all	Com.					
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB Detector Comment 1 58.1300 39.54 -14.03 25.51 40.00 -14.49 peak 2 177.4400 42.37 -13.21 29.16 43.50 -14.34 peak 3 408.3000 34.64 -9.60 25.04 46.00 -20.96 peak 4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak	0.0		' Untradiate	Cuter 1					
1 58.1300 39.54 -14.03 25.51 40.00 -14.49 peak 2 177.4400 42.37 -13.21 29.16 43.50 -14.34 peak 3 408.3000 34.64 -9.60 25.04 46.00 -20.96 peak 4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak			224.00				612.00	709.00	806.00 1000.00 MHz
2 177.4400 42.37 -13.21 29.16 43.50 -14.34 peak 3 408.3000 34.64 -9.60 25.04 46.00 -20.96 peak 4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak	31	0.000 127.00	224.00 Reading	321.00 Correct	Measure-			709.00	806.00 1000.00 MHz
3 408.3000 34.64 -9.60 25.04 46.00 -20.96 peak 4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak	31	0.000 127.00 k. Freq. MHz	Reading Level	321.00 Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB		
4 624.6100 42.55 -7.06 35.49 46.00 -10.51 peak	31 No. M	0.000 127.00 k. Freq. MHz 58.1300	224.00 Reading Level dBuV 39.54	321.00 Correct Factor dB -14.03	Measure- ment dBuV/m 25.51	Limit dBuV/m 40.00	Over dB -14.49	Detector Con peak	
	30 No. M	0.000 127.00 k. Freq. MHz 58.1300 177.4400	224.00 Reading Level dBuV 39.54 42.37	321.00 Correct Factor dB -14.03 -13.21	Measure- ment dBuV/m 25.51 29.16	Limit dBuV/m 40.00 43.50	Over dB -14.49 -14.34	Detector Con peak peak	
5 749.7400 37.15 -5.30 31.85 46.00 -14.15 peak	34 No. M 1 2 3	0.000 127.00 k. Freq. MHz 58.1300 177.4400 408.3000	224.00 Reading Level dBuV 39.54 42.37 34.64	321.00 Correct Factor dB -14.03 -13.21 -9.60	Measure- ment dBuV/m 25.51 29.16 25.04	Limit dBuV/m 40.00 43.50 46.00	Over dB -14.49 -14.34 -20.96	Detector Com peak peak peak	

6 * 874.8700

41.06

-1.78

39.28

46.00 -6.72

peak

EUT:			Cisco	b Edge 34	0		Model	Name:	CS-E3	340W	
emp	pera	ature:	28 °C	C			Relativ	e Humid	ity: 56 %		
Fest	Pov	ver:	AC 1	20V/60Hz	2		Phase	:	Horizo	ontal	
Fest	Mo	de:	TX 2	480MHz -	CH78 -1N	/lbps / /	Adapter	: PA-160	0-2A-LF		
	80.0	dBu¥/m]
	40		1 to the second	and the state of t		Magalacom		Marken	Ž J., u., no de se	Joneshinnes	
	0.0 30.0	00 127.0	0 224.0	0 321.00	418.00	515.00	612.00	709.00	806.00	1000.00	MH2
			Readin		Measure-	010.00	012.00	100.00	000.00	1000.00	
	Mk.	Freq.			ment	Limit	Over				
No.				dB	dBuV/m	dBuV/m	dB	Detector	Comment		
		MHz	dBuV				44.00	peak			
1		178.4100	45.13	-13.25	31.88	43.50	-11.62	pean			
1		178.4100 299.6600	45.13 37.23	-13.25 -10.97	26.26	46.00	-19.74	peak			
1 2 3		178.4100 299.6600 447.1000	45.13 37.23 32.39	-13.25 -10.97 -8.78	26.26 23.61	46.00 46.00	-19.74 -22.39	peak peak			
1 2 3 4	*	178.4100 299.6600 447.1000 624.6100	45.13 37.23 32.39 48.02	-13.25 -10.97 -8.78 -7.06	26.26 23.61 40.96	46.00 46.00 46.00	-19.74 -22.39 -5.04	peak peak peak			
1 2 3	*	178.4100 299.6600 447.1000	45.13 37.23 32.39 48.02 40.38	-13.25 -10.97 -8.78 -7.06 -5.30	26.26 23.61	46.00 46.00	-19.74 -22.39	peak peak			

UT:		Cisco E	Edge 340)		Model	Name:	CS-I	E340W	
empera	ture:	28 ℃				Relativ	e Humidit	ty: 56 %	, D	
est Pow	ver:	AC 120)V/60Hz			Phase:	:	Verti	cal	
est Moc	de:	TX 240	2MHz -0	CH00 -1N	/lbps / /	Adapter	: EADP-6	OMB B		
80.0	dBu∀/m									
Γ										
-										
						3				
40						×				
ļ								4	Š 2	
ł	Wally a				×		3	- Martin Harle	and and all the for	
- P	1. 100291									
	Will AM	uA.		د بالد .	he lan	much	plant Weiner Wyener	Marine Court	1999 -	
-	w W	May	Marth Martin	Webel thomas	malin	manyah	polinter Martine Contractions	Lawrence		
-	w W	When when	er ten the Marine	without the providence and	malum	- warden	plant-whenever the Vieway	Lunder Consta		
-	w W	Whong where	enter and the second	weekel Alexand	honlin	re-respected	plant Market Without and	lower cover		
0.0	.000 127.	Tor Vintaday	~	418.00	515.00	612.00	р ^{уу, д «Анние Алууны, _{Ар}}	806.00	1000.00	MHz
0.0 30.	.000 127.	00 224.00 Reading	321.00 Correct		-		рекМ-Чение Минила) 709.00			MHz
0.0	.000 127.	00 224.00 Reading Level	321.00 Correct Factor	418.00 Measure ment	- Limit	Over		806.00		MH2
0.0 30. No. Mk	.000 127. K. Freq. MHz	00 224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure ment dBuV/m	- Limit dBuV/m	Over dB	Detector			MH2
0.0 30. No. Mk	.000 127. . Freq. MHz 30.9700	00 224.00 Reading Level dBuV 0 44.70	321.00 Correct Factor dB -15.01	418.00 Measure ment dBuV/m 29.69	Limit dBuV/m 40.00	Over dB -10.31	Detector peak	806.00		MHz
0.0 30. No. Mk	000 127. . Freq. MHz 30.9700 500.4500	00 224.00 Reading Level dBuV 0 44.70 0 39.92	321.00 Correct Factor dB -15.01 -10.50	418.00 Measure ment dBuV/m 29.69 29.42	Limit dBuV/m 40.00 46.00	Over dB -10.31 -16.58	Detector peak peak	806.00		MHz
0.0 30. No. Mk	.000 127. Freq MHz 30.9700 500.4500 624.6100	00 224.00 Reading Level dBuV 0 44.70 0 39.92 0 48.91	321.00 Correct Factor dB -15.01 -10.50 -7.06	418.00 Measure ment dBuV/m 29.69 29.42 41.85	Limit dBuV/m 40.00 46.00 46.00	Over dB -10.31 -16.58 -4.15	Detector peak peak peak	806.00		MHz
n.0 30. No. Mk 1 2 3 * 4	000 127. K. Freq MHz 30.9700 500.4500 624.6100 749.7400	00 224.00 Reading Level dBuV 0 44.70 0 39.92 0 48.91 0 36.36	321.00 Correct Factor dB -15.01 -10.50 -7.06 -5.30	418.00 Measure ment dBuV/m 29.69 29.42 41.85 31.06	Limit dBuV/m 40.00 46.00 46.00 46.00	Over dB -10.31 -16.58 -4.15 -14.94	Detector peak peak peak peak	806.00		MHz
0.0 30. No. Mk	.000 127. Freq MHz 30.9700 500.4500 624.6100	00 224.00 Reading Level 0 44.70 0 39.92 0 48.91 0 36.36 0 36.81	321.00 Correct Factor dB -15.01 -10.50 -7.06	418.00 Measure ment dBuV/m 29.69 29.42 41.85	Limit dBuV/m 40.00 46.00 46.00	Over dB -10.31 -16.58 -4.15	Detector peak peak peak	806.00		MHz

-												
EUT:				Edge 340	0		Model I			S-E340V	Ν	
Temper	ature	e:	28 ℃					e Humidi		%		
Test Po	wer:		AC 120	0V/60Hz			Phase:		Ho	orizontal		
Test Mo	ode:		TX 240)2MHz -(CH00 -1N	lbps / A	Adapter:	EADP-6	60MB B	5		
80.	LO dB	u¥/m										
]
												1
			_									1
40							ş					
		-					1			<u>ь</u>		é .
							Î		4	X	1	6
			ſ			2	Î		*	M	where the set	ŝ
			k	akud	يت الجرية	x x	man	and a state of the	timethe	Marson Mark	where have	
		Ŵ	K .	ye Mentania	muladharm	x x	mannakak	and a state of the	In the	men and the	where have	
	n.the W	i www.	K Marriell	1 M	, and and the second		manhunkalk	and and a start and a second	that	mar so the	alana hang	ŝ.
	nshell	i www.	have a second	1 M			mahudah	when the stand and st	* Junul 40	run sh	above here	
0.0	nshed ^y	127.00		llun musuu	have been a second s	him for the			806.00	www.soliwe	1000.00	MHz
0.0	nshell	127.00	224.00	0 321.00	418.00	515.00	612.00		806.00	www.soliwe	1000.00	MH2
0.0	10 000	127.00 Freq.		0 321.00	418.00	515.00			806.00	www.soliwe	1000.00	MHz
0.0	p	Freq. MHz	224.00 Reading Level dBuV	0 321.00 Correct Factor dB	418.00 Measure	515.00	612.00 Over dB		\$ S06.00	ren sol for	1000.00	MH2
0.0	150	Freq. MHz	224.00 Reading Level	0 321.00 Correct Factor	418.00 Measure ment	515.00	612.00 Over	709.00		ren sol for	1000.00	MHz
8.0 3 No. M	150	Freq. MHz	224.00 Reading Level dBuV	0 321.00 Correct Factor dB	418.00 Measure ment dBuV/m	515.00 Limit	612.00 Over dB	709.00 Detector		ren sol for	1000.00	MH2
0.0 3 No. M	150 624	Freq. MHz 0.2800 0.4500	224.00 Reading Level dBuV 43.61	0 321.00 Correct Factor dB -13.51	418.00 Measure ment dBuV/m 30.10	515.00 Limit dBuV/m 43.50	612.00 Over dB -13.40	709.00 Detector peak		ren sol for	1000.00	MH2
No. M	150 624	Freq. MHz 0.2800 0.4500	224.00 Reading Level dBuV 43.61 36.81	0 321.00 Correct Factor dB -13.51 -10.50	418.00 Measure ment dBuV/m 30.10 26.31	515.00 Limit dBuV/m 43.50 46.00	612.00 Over dB -13.40 -19.69	709.00 Detector peak peak		ren sol hok	1000.00	MH2
No. M	150 500 624 749 874	Freq. MHz 0.2800 0.4500	224.00 Reading Level dBuV 43.61 36.81 47.47	0 321.00 Correct Factor dB -13.51 -10.50 -7.06	418.00 Measure ment dBuV/m 30.10 26.31 40.41	515.00 515.00 Limit dBuV/m 43.50 46.00 46.00	612.00 Over dB -13.40 -19.69 -5.59	709.00 Detector peak peak peak		ren sol hok	1000.00	MH2

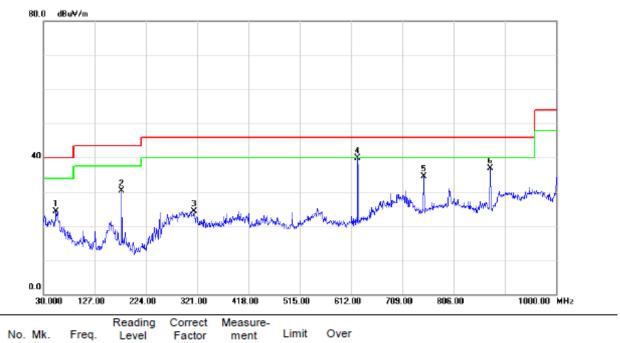
UT:		Cisco E	dge 340			Model I	Name:	CS-E340W
emper	ature:	28 °C				Relative	e Humidity	r: 56 %
est Po	wer:	AC 120	V/60Hz			Phase:		Vertical
est Mo	ode:	TX 244	IMHz -C	H39 -1N	lbps / A	dapter:	EADP-60	MB B
80. 40			J. Manner	webeitherman	ž	×.	an Min Manalo	and and a second s
0.0	0.000 127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00 1000.00
		Reading Level	Correct Factor	Measure- ment		Over		
No. M	ik. Fiey.					dB	Detector C	Comment
No. M	MHz	dBuV	dB	dBuV/m	dBuV/m		Detector	
1	MHz 65.8900	dBuV 45.42	-15.25	30.17	40.00	-9.83	peak	
1 2	MHz 65.8900 500.4500	dBuV 45.42 40.92	-15.25 -10.50	30.17 30.42	40.00 46.00	-9.83 -15.58	peak peak	
1 2 3 *	MHz 65.8900 500.4500 624.6100	dBuV 45.42 40.92 48.41	-15.25 -10.50 -7.06	30.17 30.42 41.35	40.00 46.00 46.00	-9.83 -15.58 -4.65	peak peak peak	
1 2	MHz 65.8900 500.4500	dBuV 45.42 40.92	-15.25 -10.50	30.17 30.42	40.00 46.00	-9.83 -15.58	peak peak	

UT:			Cisco E	dge 340)		Model I	Name [.]	CS-	E340W
emper	atur	œ.	28 ℃	uge 0+0)			e Humidit		
est Po			AC 120V/60Hz				Phase:			izontal
		•								izuntai
est Mo	ae:		1 X 244	TIMHZ -C	H39 - 11VI	ops / P	Adapter:	EADP-6	UNIB B	
80.	0 dE	But¥/m								
							3			
40	-						×			3 \$
		- i.	3				1	1	ł.	Marman L.
		,	č.							mul
		m N	3	MA.		Jun	mander			when
	Marken V	n de la compañía de l	Z m m m m m m m m m m m m m m m m m m m	Mention	yuludlaum	mber	yhn chron giftedit			mmut
	n.the W	mp Å	A Contraction of the second se	Mr. har	guladdrawn	-Jaw	ward and the	: Yana Manana	l. Munu	in the main t
	n she V	m N	Contraction of the second seco	M	noluddrawa	-Jaw	marmonak			mmut
0.0 3	a.u.v	127.00	224.00	321.00	418.00	515.00	512.00	709.00	806.00	1000.00 MHz
		127.00		321.00 Correct	418.00	515.00	612.00	209.00	806.00	read for the second
	0.000	127.00 Freq.	Z 224.00 Reading Level		×***	515.00 Limit	612.00 Over	209.00	806.00	read for the second
3	0.000 k.	Freq. MHz	Reading Level dBuV	Correct Factor dB	418.00 Measure- ment dBuV/m	Limit dBuV/m	Over dB	709.00 Detector	806.00 Comment	read for the second
3	0.000 k. 121	Freq. MHz 7.0000	Reading Level dBuV 43.84	Correct Factor dB -13.85	418.00 Measure- ment dBuV/m 29.99	Limit dBuV/m 43.50	Over dB -13.51	Detector peak		read for the second
3 No. M 1 2	k. 12 15(Freq. MHz 7.0000 0.2800	Reading Level dBuV 43.84 44.61	Correct Factor dB -13.85 -13.51	418.00 Measure- ment dBuV/m 29.99 31.10	Limit dBuV/m 43.50 43.50	Over dB -13.51 -12.40	Detector peak peak		read for the second
3 No. M	k. 127 150 624	Freq. MHz 7.0000 0.2800 4.6100	Reading Level dBuV 43.84 44.61 47.97	Correct Factor dB -13.85 -13.51 -7.06	418.00 Measure- ment dBuV/m 29.99 31.10 40.91	Limit dBuV/m 43.50 43.50 46.00	Over dB -13.51 -12.40 -5.09	Detector peak peak peak		read for the second
3 No. M 1 2	k. 127 150 624 749	Freq. MHz 7.0000 0.2800 4.6100 9.7400	Reading Level dBuV 43.84 44.61 47.97 40.39	Correct Factor -13.85 -13.51 -7.06 -5.30	418.00 Measure- ment dBuV/m 29.99 31.10 40.91 35.09	Limit dBuV/m 43.50 43.50 46.00 46.00	Over dB -13.51 -12.40 -5.09 -10.91	Detector peak peak		read for the second
3 No. M 1 2 3 *	k. 127 150 624 749	Freq. MHz 7.0000 0.2800 4.6100	Reading Level dBuV 43.84 44.61 47.97	Correct Factor dB -13.85 -13.51 -7.06	418.00 Measure- ment dBuV/m 29.99 31.10 40.91	Limit dBuV/m 43.50 43.50 46.00	Over dB -13.51 -12.40 -5.09	Detector peak peak peak		read for the second

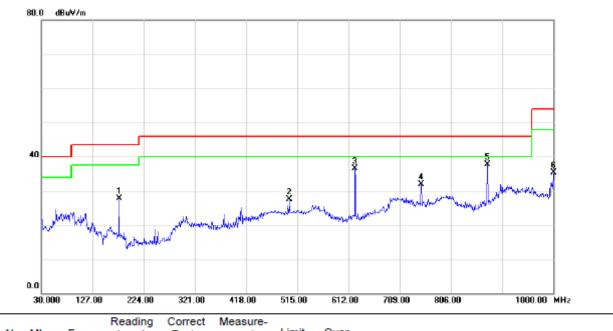


UT:		Cisco Eo	dge 340			Model N	Name:	CS-E3	40W
empera	ature:	28 °C				Relative	e Humidity	: 56 %	
est Pov	wer:	AC 120V/60Hz				Phase:		Vertica	ıl
est Mo	de:	TX 2480)MHz -C	H78 -1M	bps / A	dapter:	EADP-60	MB B	
80.0	0 dBu∀/m								
40						а Х			
								5	
					ş		*	5	Low when the second
	WARAN AND			الحد ل	ž	(Maple - Nameda - Labort		sul war would	and with strates
	hann yar	her way	North Colored States	Webbel Maganak	3 mlun	(ingen verging half th	an Martinal	5 Martin Marth	(international)
	holy Mar	her way	North Martine	Wetnesdaterannak	ž mlum	(ingen segural de tet	h. M. Maria	s. And and a second	(marking)
	Wayn War	her some for	North Charles	whether the second	ž mlanu	1440 Vargin-Jap	an a	5 Martinetard	(manakana)
0.0					mlaw	512.00			
0.0	.000 127.00	224.00	321.00	418.00	515.00	612.00		806.00	1000.00 MHz
0.0	.000 127.00				mlaw	612.00 Over			
0.0 31	.000 127.00	224.00 Reading	321.00 Correct	418.00 Measure-	515.00		709.00		
0.0 31	0.000 127.00 k. Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	Over	709.00	806.00	
0.0 31 No. M		224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit	Over dB	709.00 Detector C	806.00	
0.0 31 No. MI	0.000 127.00 k. Freq. MHz 30.9700	224.00 Reading Level dBuV 45.20	321.00 Correct Factor dB -15.01	418.00 Measure- ment dBuV/m 30.19	515.00 Limit dBuV/m 40.00	Over dB -9.81	709.00 Detector C peak	806.00	
0.0 34 No. MI 1 2	x. Freq. MHz 30.9700 500.4500	224.00 Reading Level dBuV 45.20 40.92	321.00 Correct Factor dB -15.01 -10.50	418.00 Measure- ment dBuV/m 30.19 30.42	515.00 Limit dBuV/m 40.00 46.00	Over dB -9.81 -15.58	709.00 Detector C peak peak	806.00	
0.0 31 No. MI 1 2 3 *	0.000 127.00 k. Freq. MHz 30.9700 500.4500 624.6100	224.00 Reading Level dBuV 45.20 40.92 48.41	321.00 Correct Factor dB -15.01 -10.50 -7.06	418.00 Measure- ment dBuV/m 30.19 30.42 41.35	515.00 Limit dBuV/m 40.00 46.00	Over dB -9.81 -15.58 -4.65	709.00 Detector C peak peak peak	806.00	

EUT:	Cisco	Edge 340	0		Model	Name:	CS-E	340W	
Temperature:	28 ℃				Relativ	e Humid	lity: 56 %	56 %	
Test Power:	AC 12	AC 120V/60Hz				:	Horiz	Horizontal	
Test Mode:	TX 248	30MHz -(CH78 -1N	/lbps / /	Adapter	: EADP-	60MB B		
80.0 dBu∀/m									
]
									•
									1
40					4			6	
							5×	× .	
	X	2 X		3 X		. www.mannew	. Alexander	Marken and a second	
- mm ^N	han	Ment	1 Mummin		mound	Maria Maria	Aller and a second second		
- Marth	A Strange	e Natio	and a second second	- Alter					1
P**									
0.0 30.000 127.	00 224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00	MHz
	Reading	Correct	Measure-						
No. Mk. Freq.	Level	Factor	ment	Limit	Over				
		-10	dBuV/m	dBuV/m	dB	Detector	Comment		
MHz	dBuV	dB							
1 150.2800	43.61	-13.51	30.10	43.50	-13.40	peak			
1 150.2800 2 272.5000) 43.61) 41.19	-13.51 -13.70	30.10 27.49	46.00	-18.51	peak			
1 150.2800 2 272.5000 3 500.4500	43.6141.1936.81	-13.51 -13.70 -10.50	30.10 27.49 26.31	46.00 46.00	-18.51 -19.69	peak peak			
1 150.2800 2 272.5000 3 500.4500 4 * 624.6100	 43.61 41.19 36.81 46.97 	-13.51 -13.70 -10.50 -7.06	30.10 27.49 26.31 39.91	46.00 46.00 46.00	-18.51 -19.69 -6.09	peak peak peak			
1 150.2800 2 272.5000 3 500.4500	 43.61 41.19 36.81 46.97 38.89 	-13.51 -13.70 -10.50	30.10 27.49 26.31	46.00 46.00	-18.51 -19.69	peak peak			

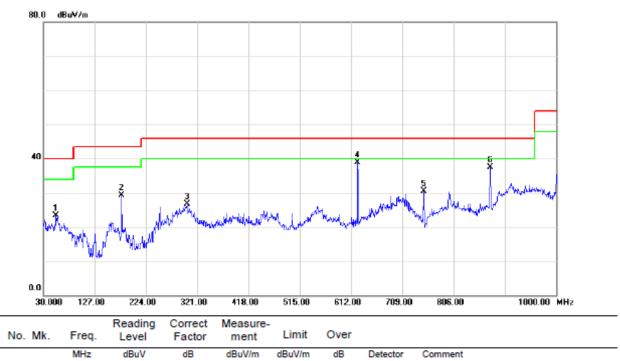

EUT:	Cisco Edge 340	Model Name:	CS-E340W				
Temperature:	28 ℃	Relative Humidity:	56 %				
Test Power:	AC 120V/60Hz	Phase:	Vertical				
Test Mode:	TX 2402MHz -CH00 -1Mbps / POE						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	1	177.4400	40.87	-13.21	27.66	43.50	-15.84	peak	
2	4	408.3000	34.64	-9.60	25.04	46.00	-20.96	peak	
3	ę	500.4500	36.99	-10.50	26.49	46.00	-19.51	peak	
4	6	624.6100	43.05	-7.06	35.99	46.00	-10.01	peak	
5	7	749.7400	35.65	-5.30	30.35	46.00	-15.65	peak	
6	* 8	874.8700	39.06	-1.78	37.28	46.00	-8.72	peak	

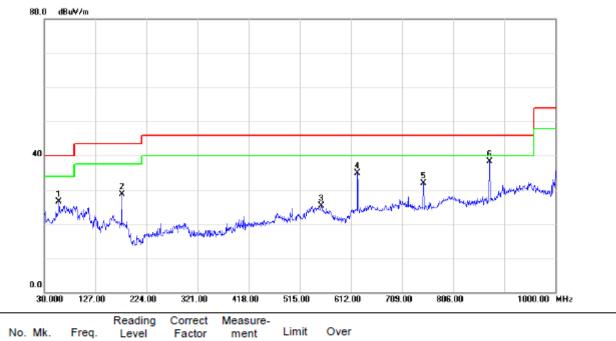


EUT:	Cisco Edge 340	Model Name:	CS-E340W			
Temperature:	28 ℃	Relative Humidity:	56 %			
Test Power:	AC 120V/60Hz	Phase:	Horizontal			
Test Mode:	TX 2402MHz -CH00 -1Mbps / POE					

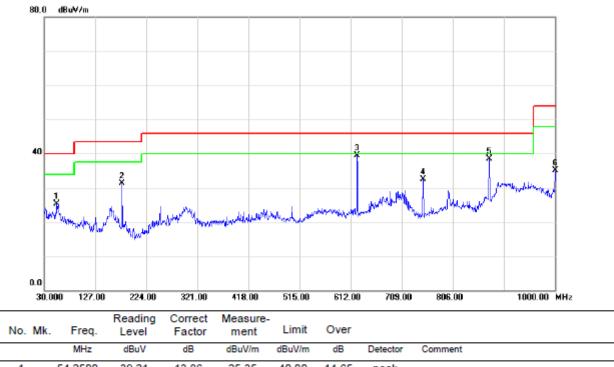
140.	with.	rioq.	Level	racior	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		54.2500	38.21	-13.86	24.35	40.00	-15.65	peak	
2	1	78.4100	43.63	-13.25	30.38	43.50	-13.12	peak	
3	3	15.1800	35.42	-11.08	24.34	46.00	-21.66	peak	
4	* 6	24.6100	47.02	-7.06	39.96	46.00	-6.04	peak	
5	7	49.7400	39.88	-5.30	34.58	46.00	-11.42	peak	
6	8	74.8700	38.71	-1.78	36.93	46.00	-9.07	peak	


EUT:	Cisco Edge 340	Model Name:	CS-E340W			
Temperature:	28 ℃	Relative Humidity:	56 %			
Test Power:	AC 120V/60Hz	Phase:	Vertical			
Test Mode:	TX 2441MHz -CH39 -1Mbps / POE					

No.	Mk.	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		177.4400	40.87	-13.21	27.66	43.50	-15.84	peak	
2		500.4500	37.99	-10.50	27.49	46.00	-18.51	peak	
3		624.6100	43.55	-7.06	36.49	46.00	-9.51	peak	
4		749.7400	37.15	-5.30	31.85	46.00	-14.15	peak	
5	*	874.8700	39.56	-1.78	37.78	46.00	-8.22	peak	
6		1000.000	35.78	-0.54	35.24	54.00	-18.76	peak	


EUT:	Cisco Edge 340	Model Name:	CS-E340W			
Temperature:	28 ℃	Relative Humidity:	56 %			
Test Power:	AC 120V/60Hz	Phase:	Horizontal			
Test Mode:	TX 2441MHz -CH39 -1Mbps / POE					

		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		54.2500	37.21	-13.86	23.35	40.00	-16.65	peak	
2		178.4100	42.63	-13.25	29.38	43.50	-14.12	peak	
3		301.6000	37.61	-10.97	26.64	46.00	-19.36	peak	
4	*	624.6100	46.02	-7.06	38.96	46.00	-7.04	peak	
5		749.7400	35.88	-5.30	30.58	46.00	-15.42	peak	
6		874.8700	39.21	-1.78	37.43	46.00	-8.57	peak	



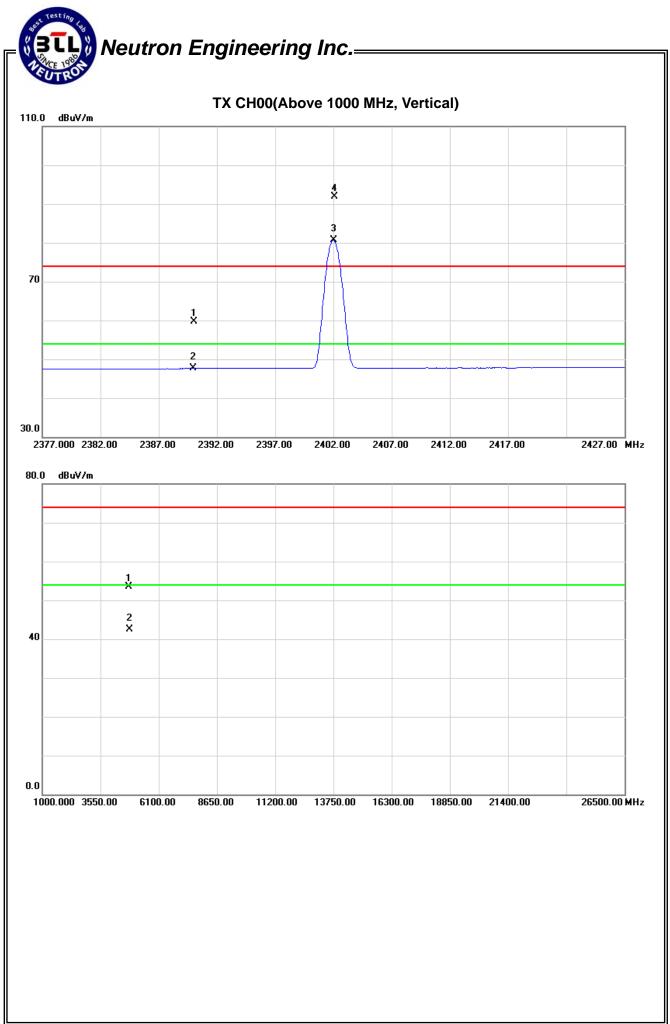
EUT:	Cisco Edge 340	Model Name:	CS-E340W			
Temperature:	28 ℃	Relative Humidity:	56 %			
Test Power:	AC 120V/60Hz	Phase:	Vertical			
Test Mode:	TX 2480MHz -CH78 -1Mbps / POE					

INO.	WIK.	Fleq.	Level	Factor	ment	Linu	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		58.1300	40.54	-14.03	26.51	40.00	-13.49	peak	
2		177.4400	41.87	-13.21	28.66	43.50	-14.84	peak	
3		555.7400	31.52	-6.12	25.40	46.00	-20.60	peak	
4		624.6100	42.05	-7.06	34.99	46.00	-11.01	peak	
5		749.7400	37.15	-5.30	31.85	46.00	-14.15	peak	
6	*	874.8700	40.06	-1.78	38.28	46.00	-7.72	peak	

EUT:	Cisco Edge 340	Model Name:	CS-E340W					
Temperature:	28 ℃	Relative Humidity:	56 %					
Test Power:	AC 120V/60Hz	Phase:	Horizontal					
Test Mode:	TX 2480MHz -CH78 -1M	TX 2480MHz -CH78 -1Mbps / POE						

1	54.2500	39.21	-13.86	25.35	40.00	-14.65	peak
2	178.4100	44.63	-13.25	31.38	43.50	-12.12	peak
3 *	624.6100	46.52	-7.06	39.46	46.00	-6.54	peak
4	749.7400	37.88	-5.30	32.58	46.00	-13.42	peak
5	874.8700	40.21	-1.78	38.43	46.00	-7.57	peak
6	1000.000	35.64	-0.54	35.10	54.00	-18.90	peak

4.2.8 TEST RESULTS (ABOVE 1000 MHZ)


EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2402MHz -CH00 -1Mbps		

Freq.	Ant.Pol. R		ding	Ant./CF	Act.		Limit		
TTEQ.	Ant.i OI.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	25.60	13.61	34.09	59.69	47.70	74.00	54.00	X/E
2402.10	V	57.82	46.55	34.12	91.94	80.67			X/F
4803.95	V	47.18	36.11	6.38	53.56	42.49	74.00	54.00	X/H

Remark:

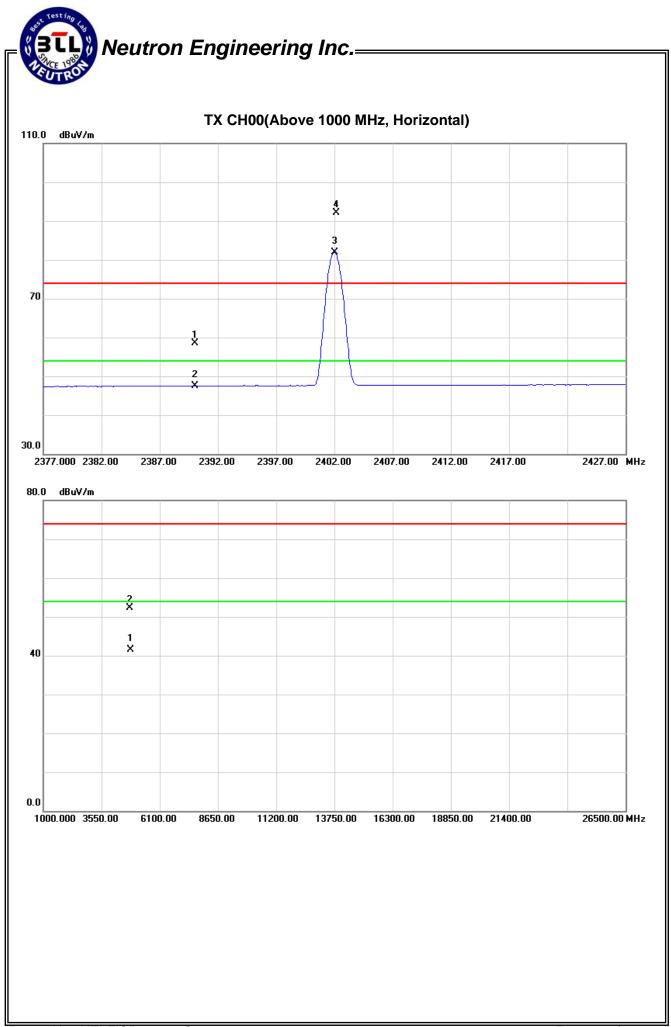
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 °C	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2402MHz -CH00 -1Mbps		

ſ	Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
			Peak	AV		Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
	2390.00	Н	24.32	13.41	34.09	58.41	47.50	74.00	54.00	X/E
	2402.15	Н	57.97	47.77	34.12	92.09	81.89			X/F
	4804.35	Н	45.94	35.15	6.38	52.32	41.53	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

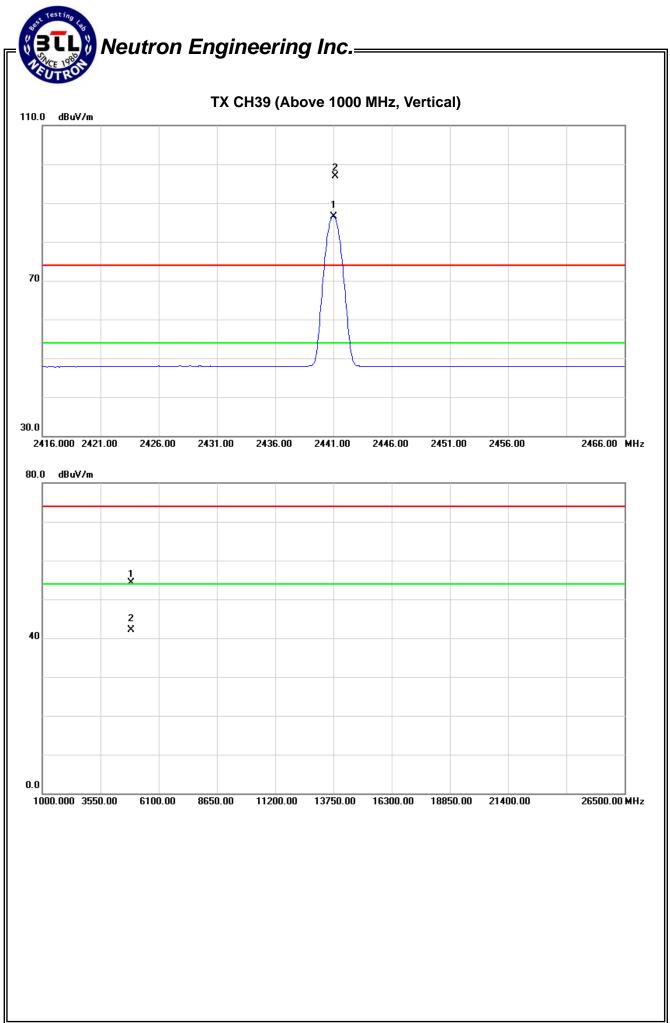

(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

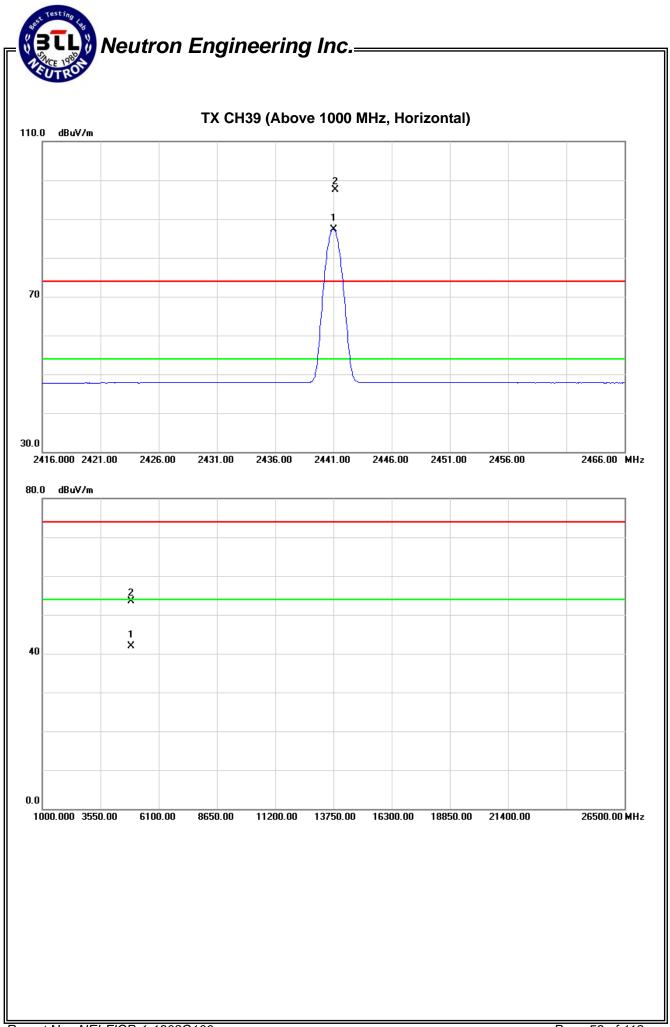
"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 °C	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2441MHz -CH39 -1Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2441.15	V	62.62	52.34	34.25	96.87	86.59			X/F
4882.45	V	47.64	35.43	6.61	54.25	42.04	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 °C	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2441MHz -CH39 -1Mbps		

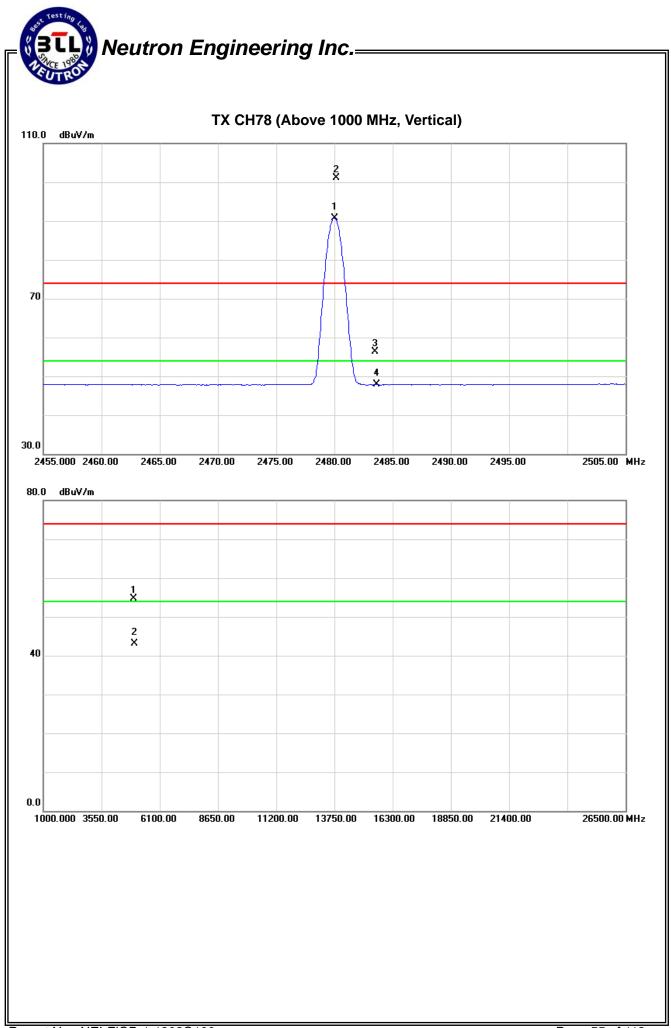
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2441.15	Н	63.25	53.06	34.25	97.50	87.31			X/F
4882.35	Н	46.87	35.20	6.61	53.48	41.81	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2480MHz -CH78 -1Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2480.15	V	66.66	56.39	34.36	101.02	90.75			X/F
2483.50	V	21.95	13.45	34.37	56.32	47.82	74.00	54.00	X/E
4959.96	V	47.91	36.35	6.83	54.74	43.18	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.


(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

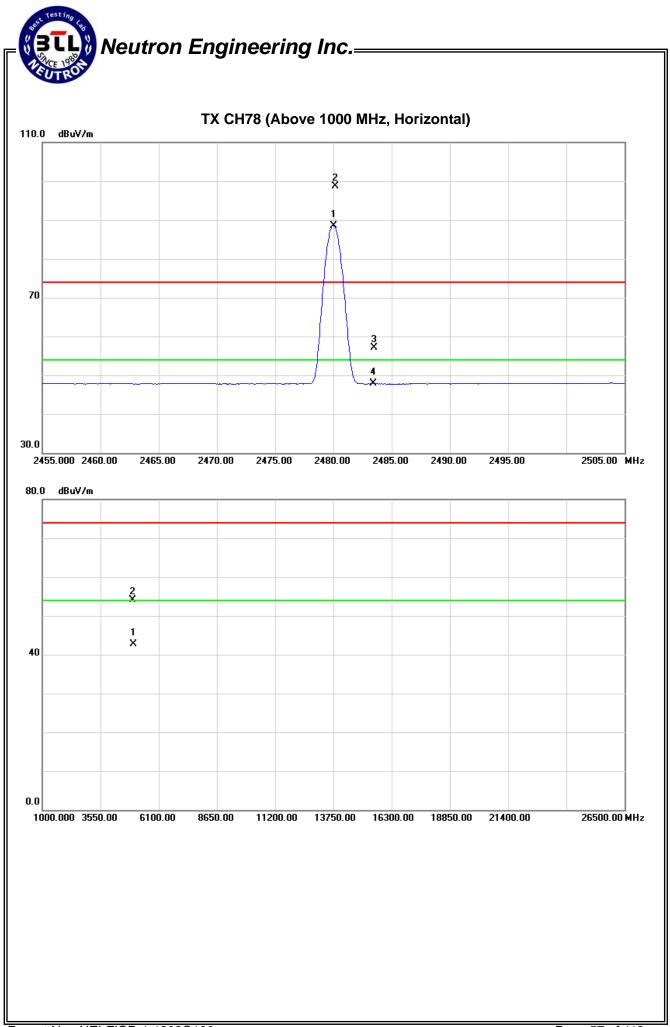
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2480MHz -CH78 -1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2480.15	Н	64.44	54.18	34.36	98.80	88.54			X/F
2483.50	Н	22.65	13.44	34.37	57.02	47.81	74.00	54.00	X/E
4960.12	Н	47.34	35.82	6.83	54.17	42.65	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

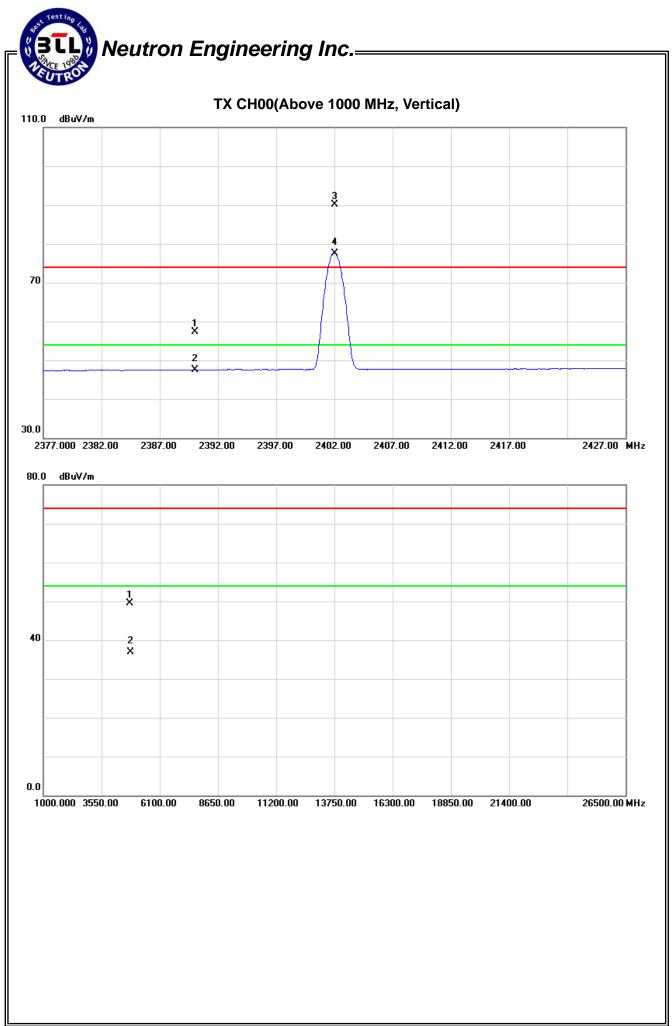

(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2402MHz -CH00 -3Mbps		

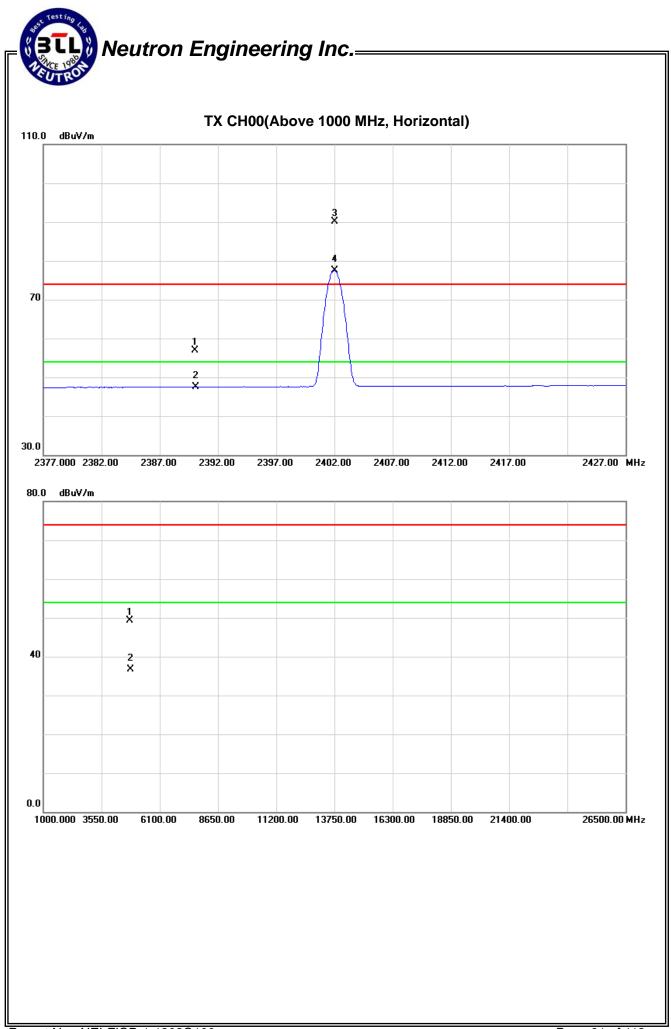
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	23.14	13.48	34.09	57.23	47.57	74.00	54.00	X/E
2402.00	V	56.01	43.42	34.12	90.13	77.54			X/F
4804.23	V	43.17	30.56	6.38	49.55	36.94	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2402MHz -CH00 -3Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	22.88	13.41	34.09	56.97	47.50	74.00	54.00	X/E
2402.00	Н	55.94	43.31	34.12	90.06	77.43			X/F
4803.94	Н	43.01	30.40	6.38	49.39	36.78	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

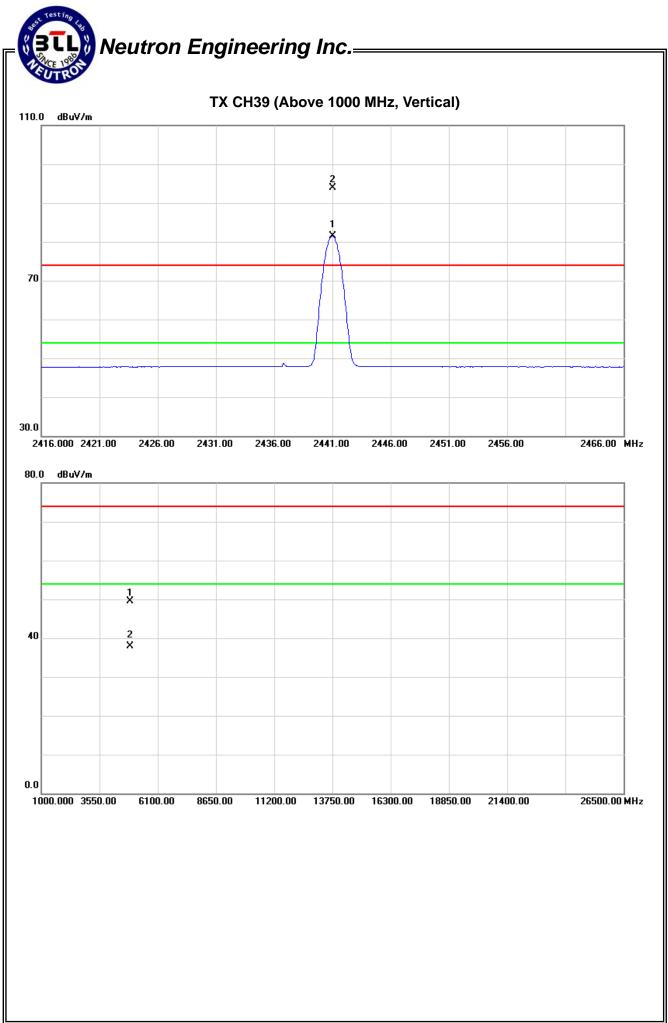

(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

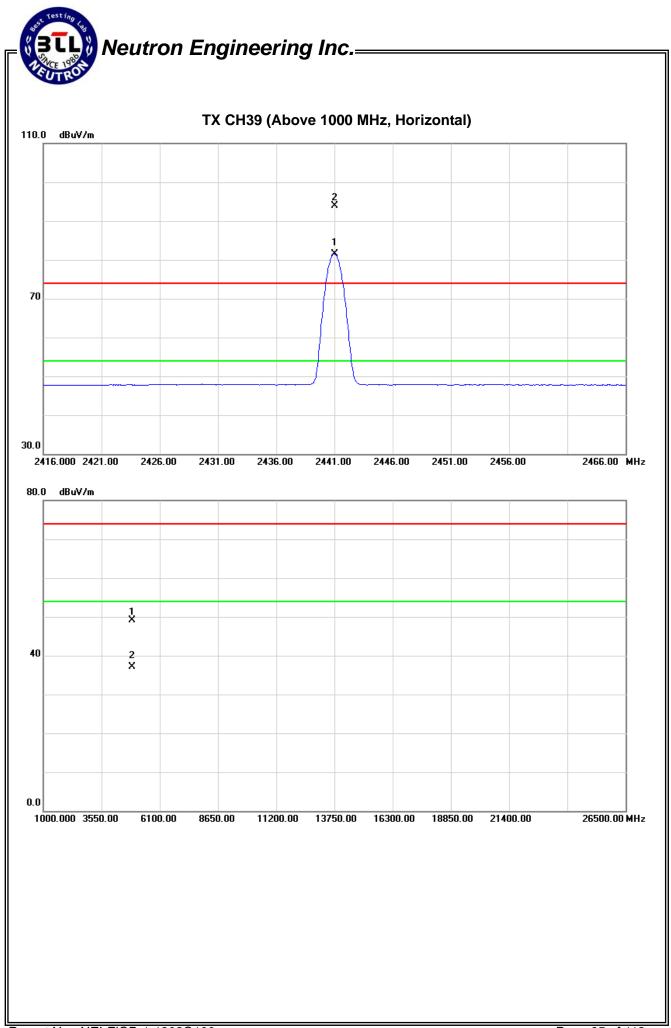
"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2441MHz -CH39 -3Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2441.05	V	59.61	47.19	34.25	93.86	81.44			X/F
4881.98	V	42.89	31.36	6.61	49.50	37.97	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2441MHz -CH39 -3Mbps		

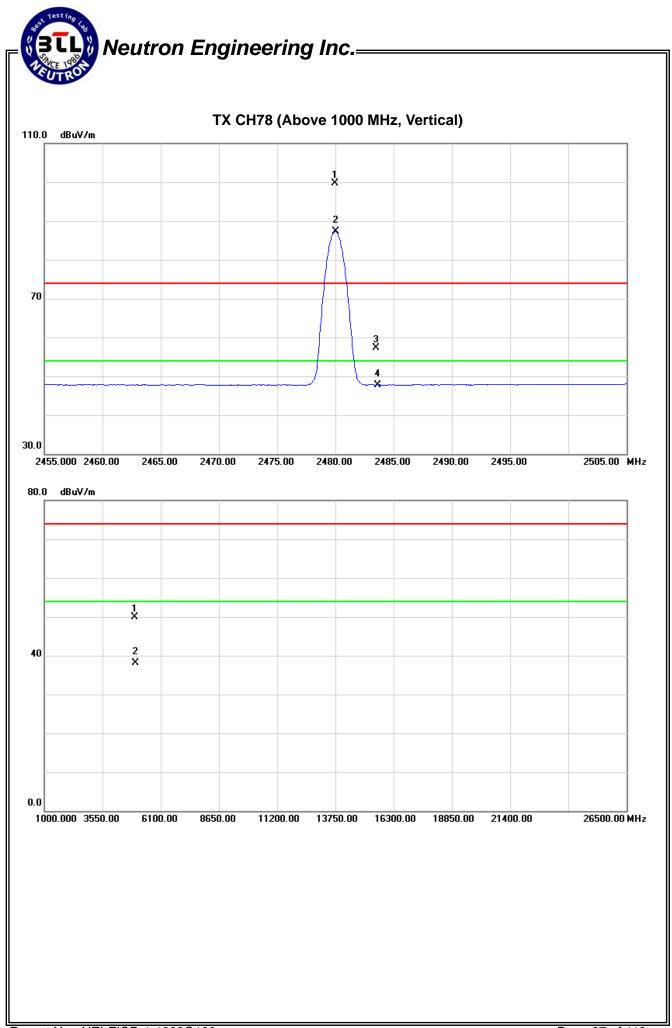
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2441.05	Н	59.68	47.24	34.25	93.93	81.49			X/F
4881.96	Н	42.43	30.55	6.61	49.04	37.16	74.00	54.00	X/H

- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2480MHz -CH78 -3Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.95	V	65.32	52.87	34.36	99.68	87.23			X/F
2483.50	V	22.88	13.38	34.37	57.25	47.75	74.00	54.00	X/E
4959.86	V	42.98	31.26	6.83	49.81	38.09	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.


(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

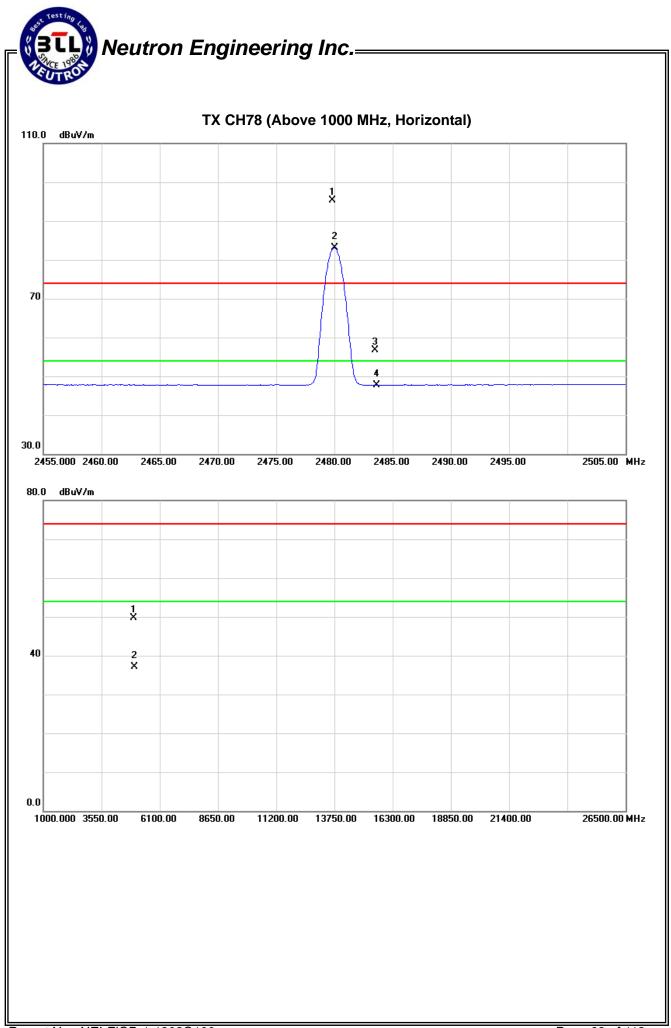
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX 2480MHz -CH78 -3Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.85	Н	61.04	48.68	34.36	95.40	83.04			X/F
2483.50	Н	22.41	13.40	34.37	56.78	47.77	74.00	54.00	X/E
4959.93	Н	42.94	30.35	6.83	49.77	37.18	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.


(2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency;"H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)

(3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission

(4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210						
Section	Test Item	Frequency Range (MHz)	Result			
15.247(a)(1)(iii) RSS-210, Issue 8, Annex 8, A8.1(d)	Number of Hopping Channel	2400-2483.5	PASS			

5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

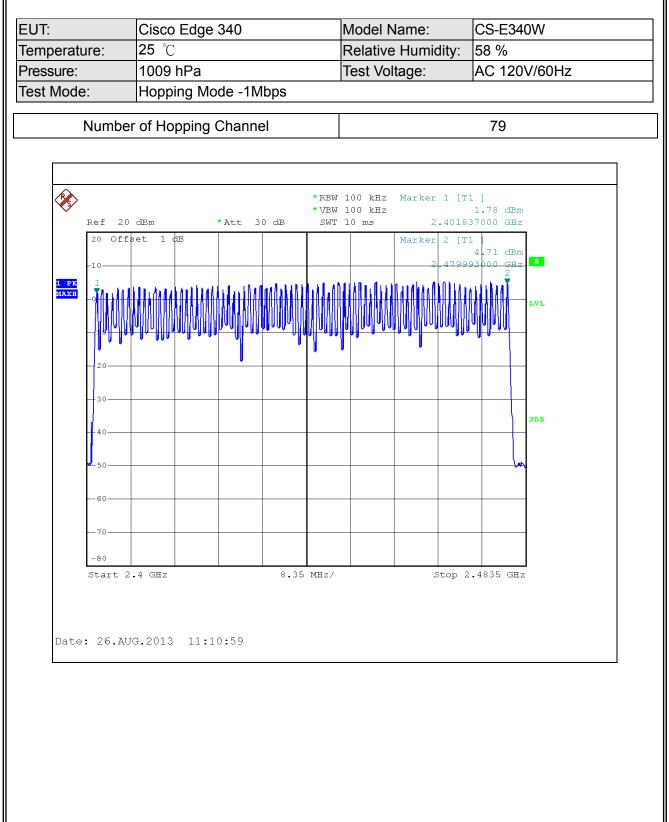
Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

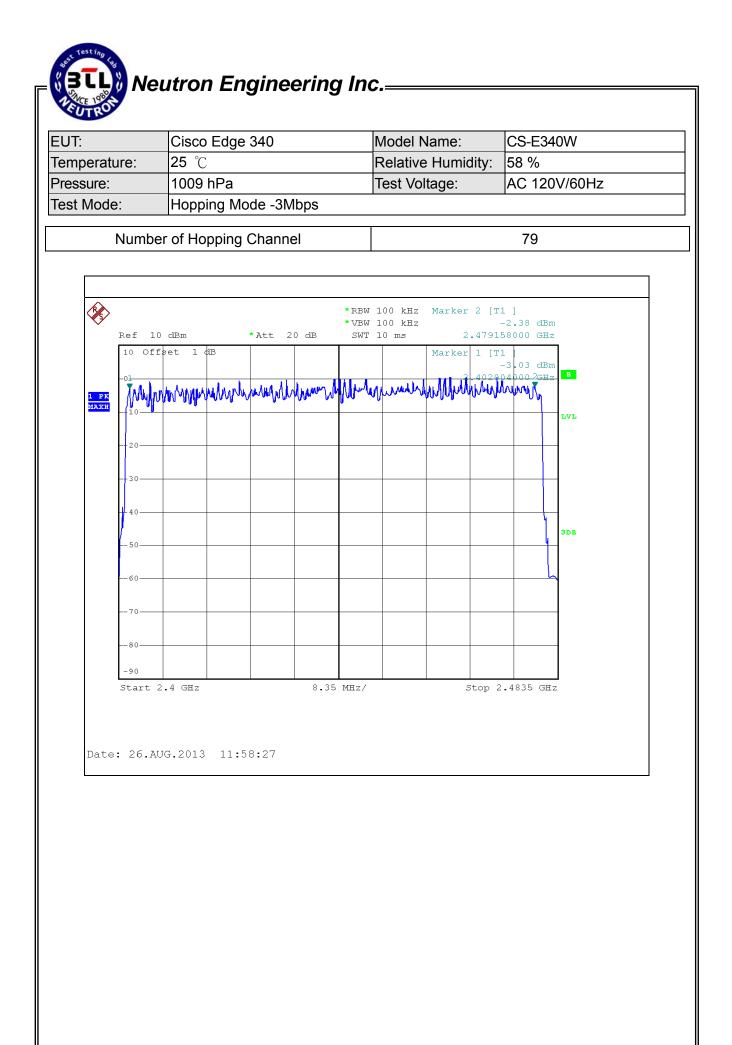
5.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.1.3 DEVIATION FROM STANDARD

No deviation.


5.1.4 TEST SETUP


EUT	SPECTRUM
	ANALYZER

5.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.6 TEST RESULTS

6. AVERAGE TIME OF OCCUPANCY

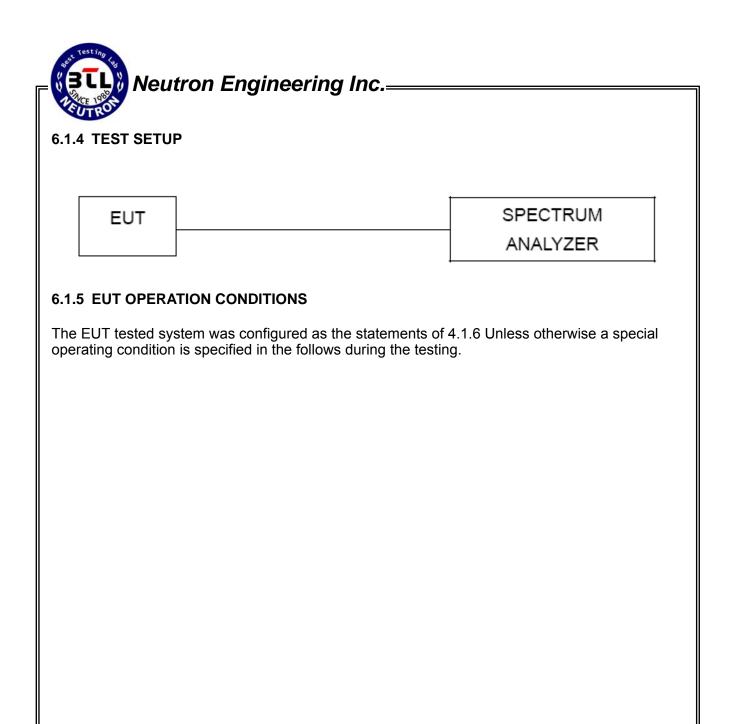
6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(1)(iii) RSS-210, Issue 8, Annex 8, A8.1(d)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

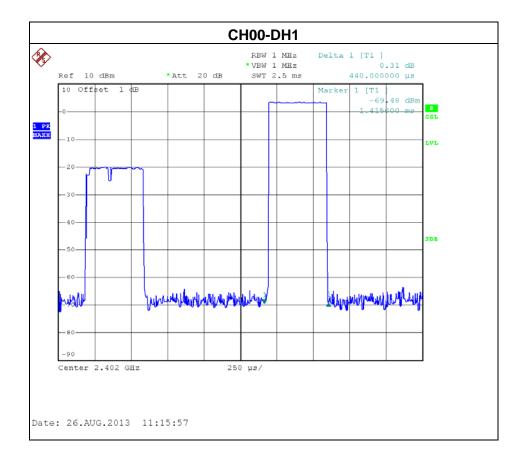

All calibration period of equipment list is one year.

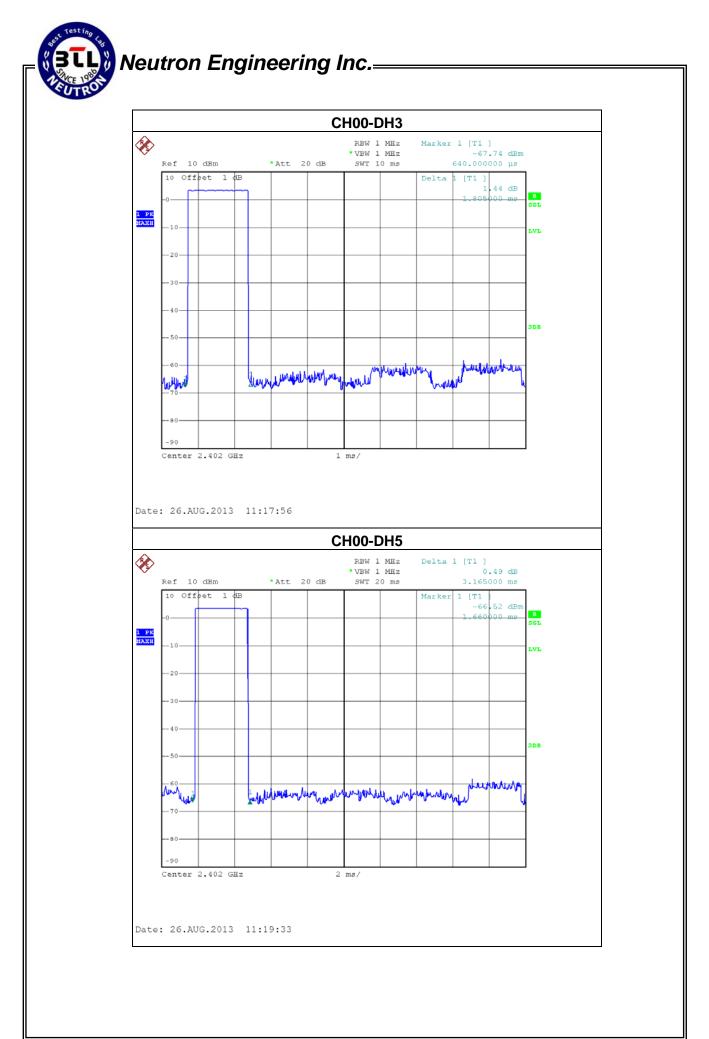
6.1.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

6.1.3 DEVIATION FROM STANDARD

No deviation.

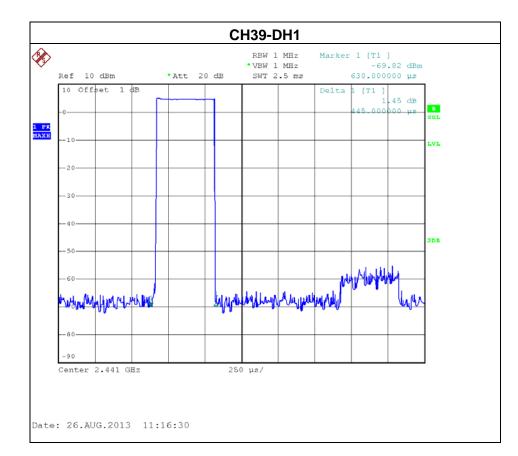


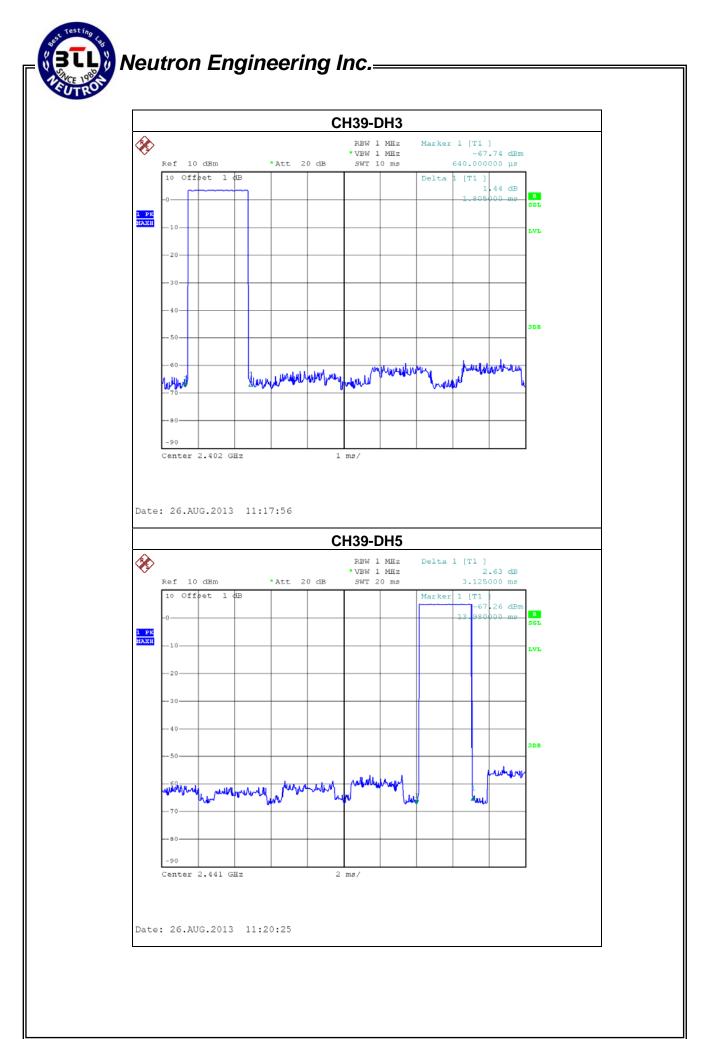


6.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00-DH1/DH3/DH5 -1Mbps		

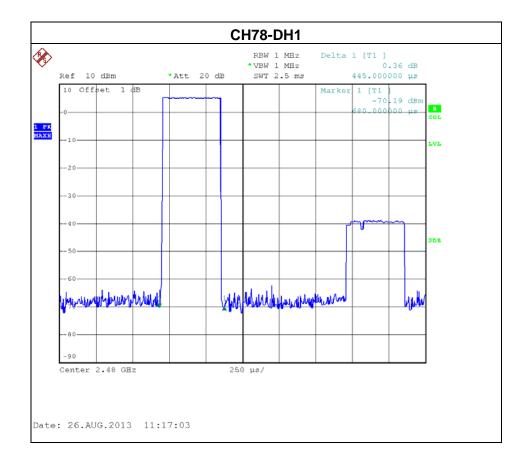
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2402	3.1650	0.3376	0.4000
DH3	2402	1.8050	0.2888	0.4000
DH1	2402	0.4400	0.1408	0.4000

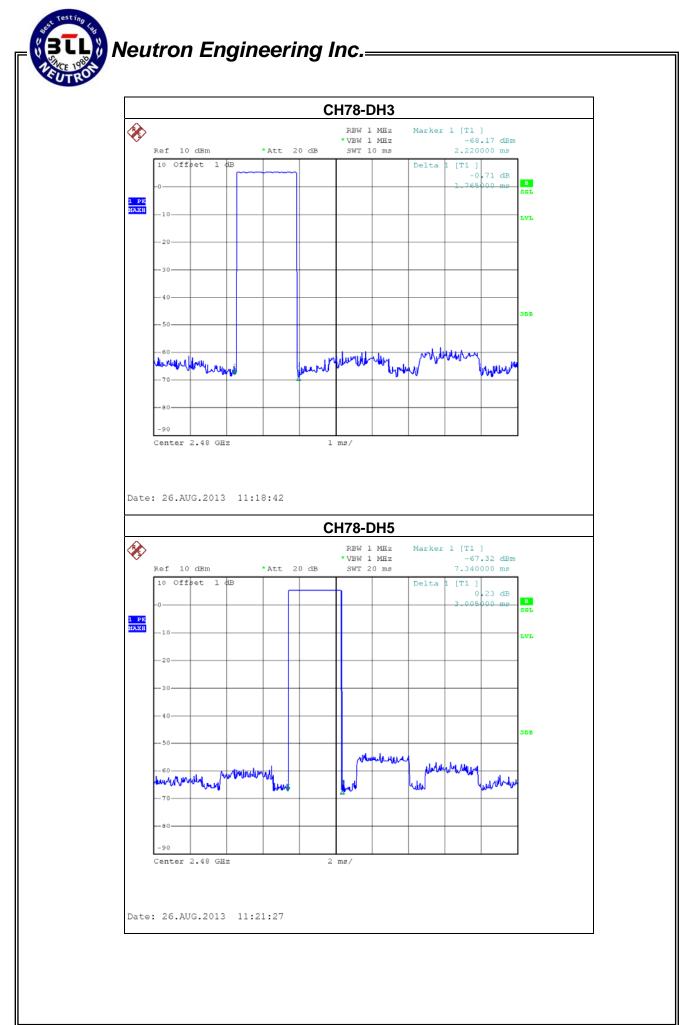




EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH39 -DH1/DH3/DH5 -1Mbps		

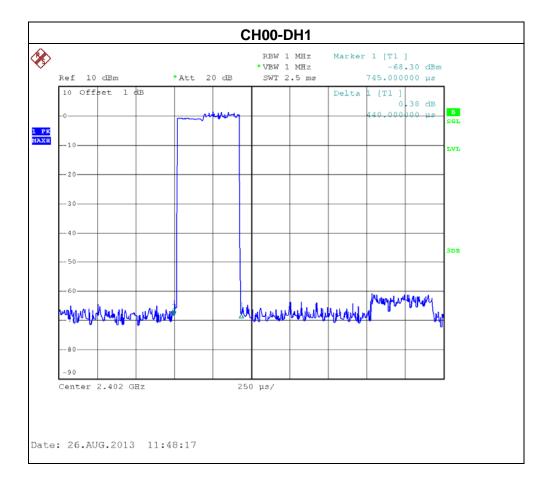
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2441	3.1250	0.3333	0.4000
DH3	2441	1.7450	0.2792	0.4000
DH1	2441	0.4450	0.1424	0.4000

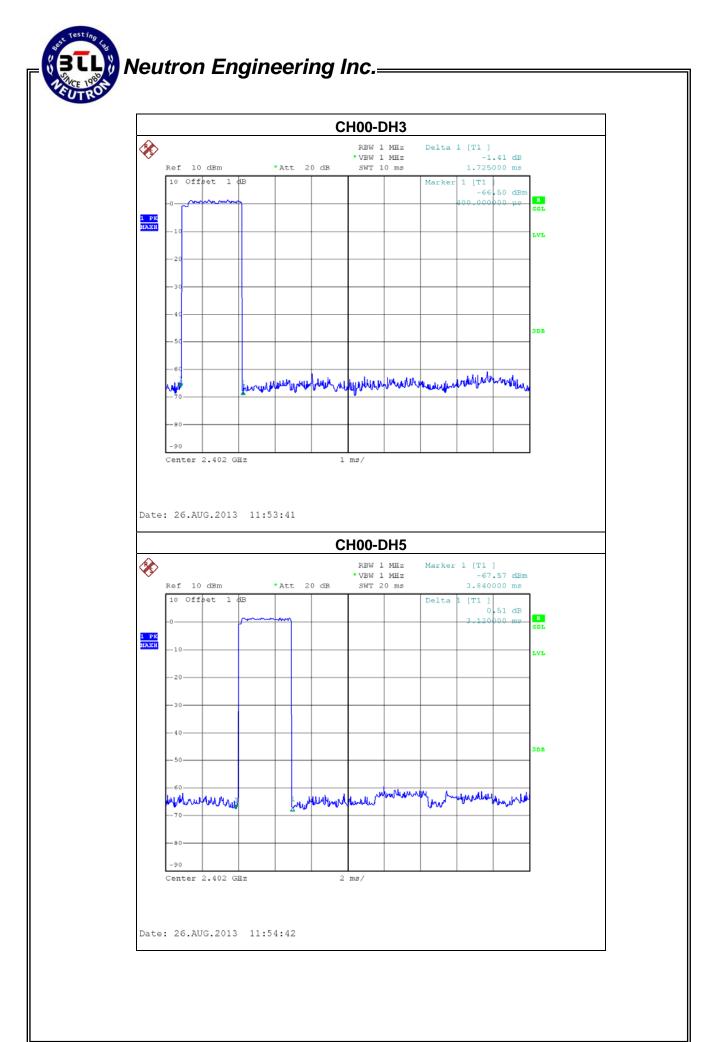




EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH78 -DH1/DH3/DH5-1Mbps		

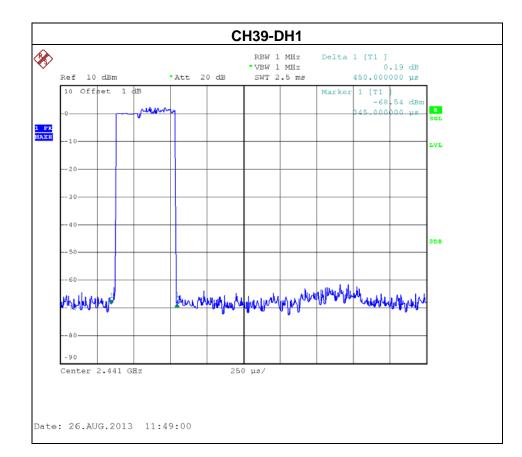
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2480	3.0050	0.3205	0.4000
DH3	2480	1.7650	0.2824	0.4000
DH1	2480	0.4450	0.1424	0.4000

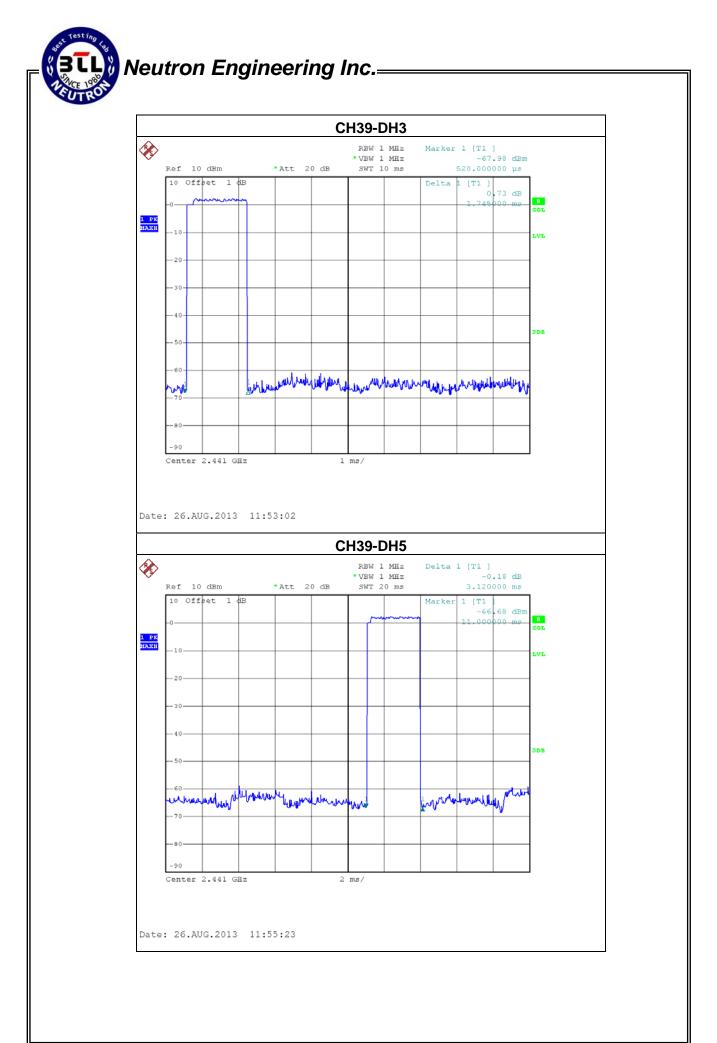




EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00-DH1/DH3/DH5-3Mbps		

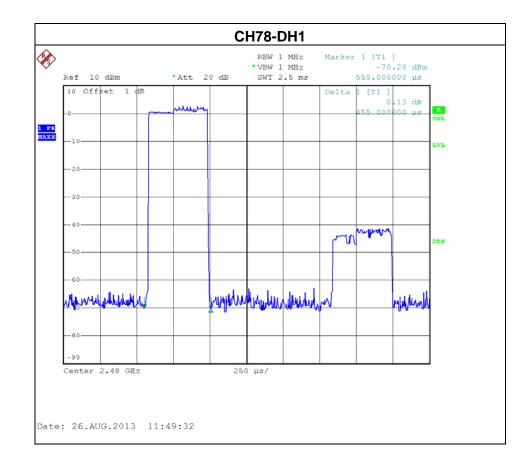
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2402	3.1200	0.3328	0.4000
DH3	2402	1.7250	0.2760	0.4000
DH1	2402	0.4400	0.1408	0.4000

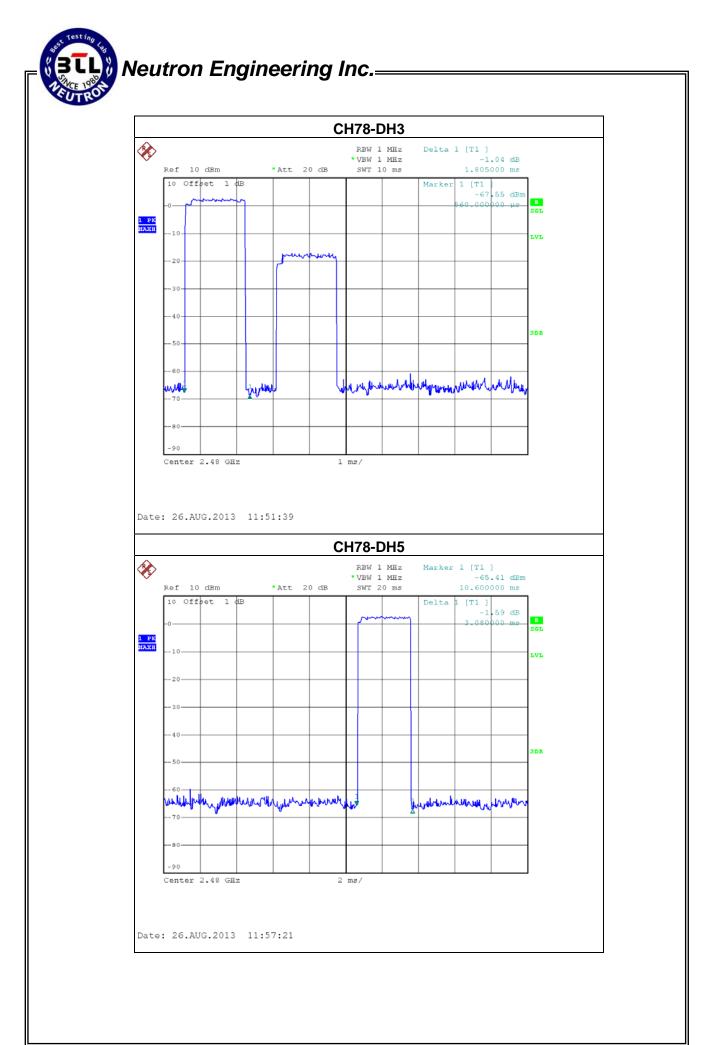




EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH39 -DH1/DH3/DH5-3Mbps		

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2441	3.1200	0.3328	0.4000
DH3	2441	1.7450	0.2792	0.4000
DH1	2441	0.4500	0.1440	0.4000





EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH78 -DH1/DH3/DH5-3Mbps		

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)
DH5	2480	3.0800	0.3285	0.4000
DH3	2480	1.8050	0.2888	0.4000
DH1	2480	0.4550	0.1456	0.4000

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

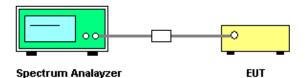
Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

ŀ	tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.1.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

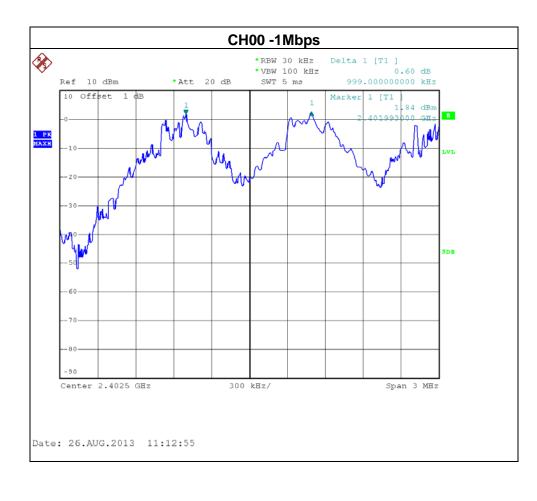
7.1.3 DEVIATION FROM STANDARD

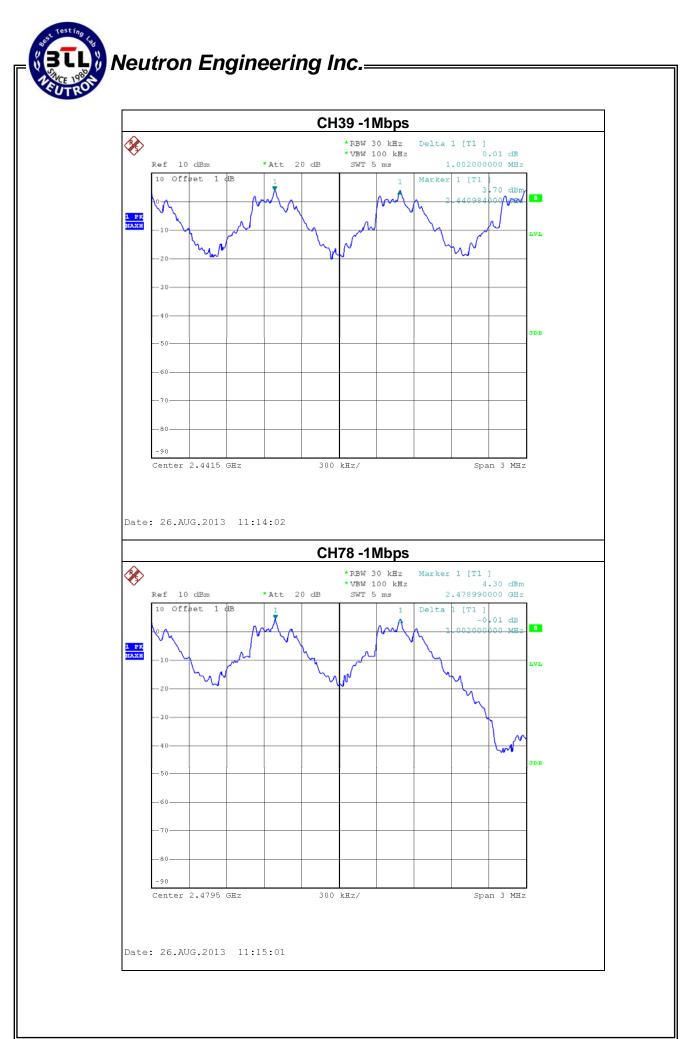
No deviation.

7.1.4 TEST SETUP

7.1.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in hopping mode.

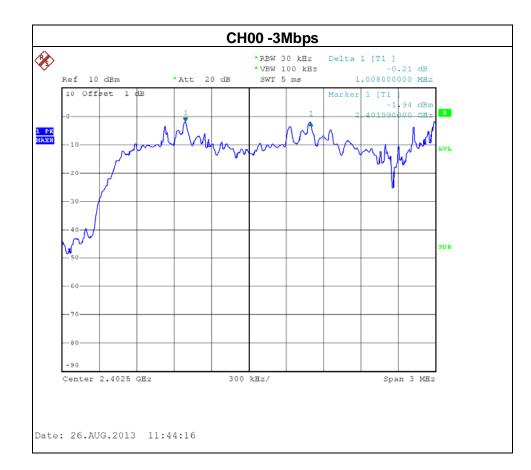


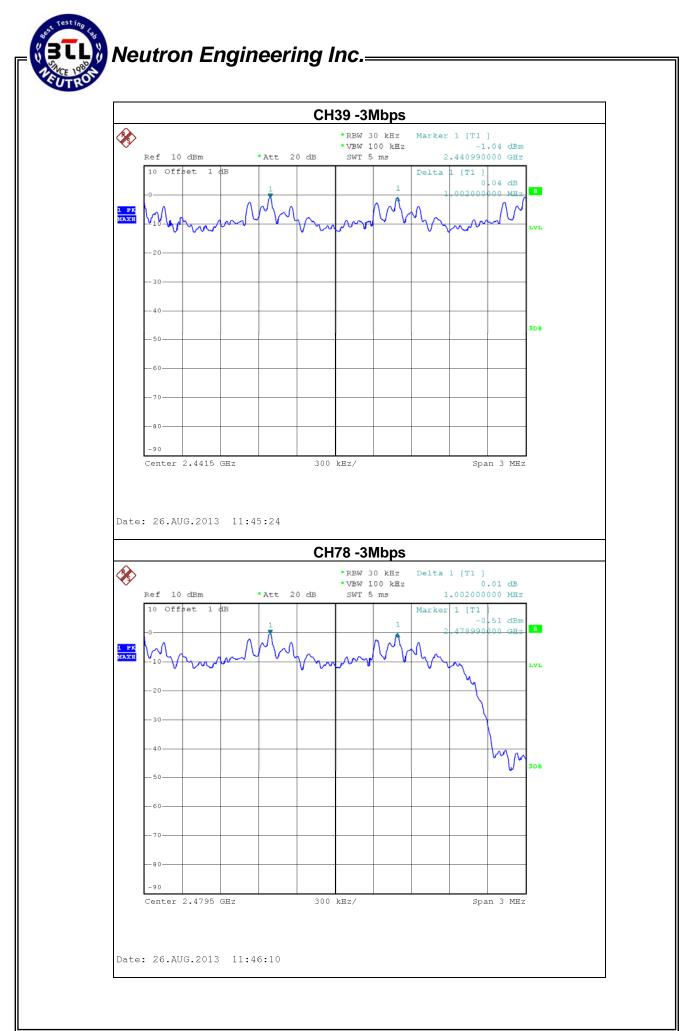

7.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Hopping on -CH00 / CH39 /CH78-1Mbps		

Frequency (MHz)	Ch. Separation (MHz)	2/3 of the 20 dB bandwidth (MHz)	Result
2402	0.999	0.620	Complies
2441	1.002	0.627	Complies
2480	1.002	0.620	Complies

Ch. Separation Limit: >20dB bandwidth or >2/3 of the 20 dB bandwidth





EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	.	Relative Humidity:	
Pressure:	1009 hPa	· · · · · · · · · · · · · · · · · · ·	AC 120V/60Hz
Test Mode:	Hopping on -CH00 / CH39 /CH78-3Mbps		

Frequency (MHz)	Ch. Separation (MHz)	2/3 of the 20 dB bandwidth (MHz)	Result
2402	1.008	0.827	Complies
2441	1.002	0.827	Complies
2480	1.002	0.827	Complies

Ch. Separation Limit: >20dB bandwidth or >2/3 of the 20 dB bandwidth

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210				
Section	Test Item	Frequency Range (MHz)		
15.247(a)(2)				
RSS-GEN section 4.6.1	Bandwidth	2400-2483.5		
RSS-210, Issue 8, Annex 8, A8.1(b)				

8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

[Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
ſ	1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.1.2 TEST PROCEDURE

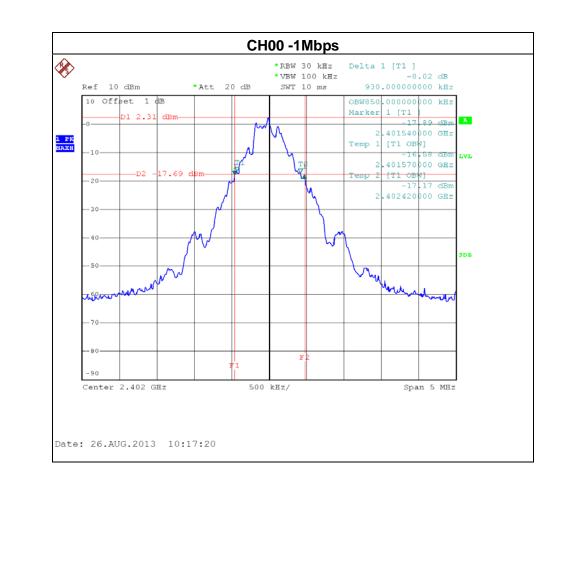
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

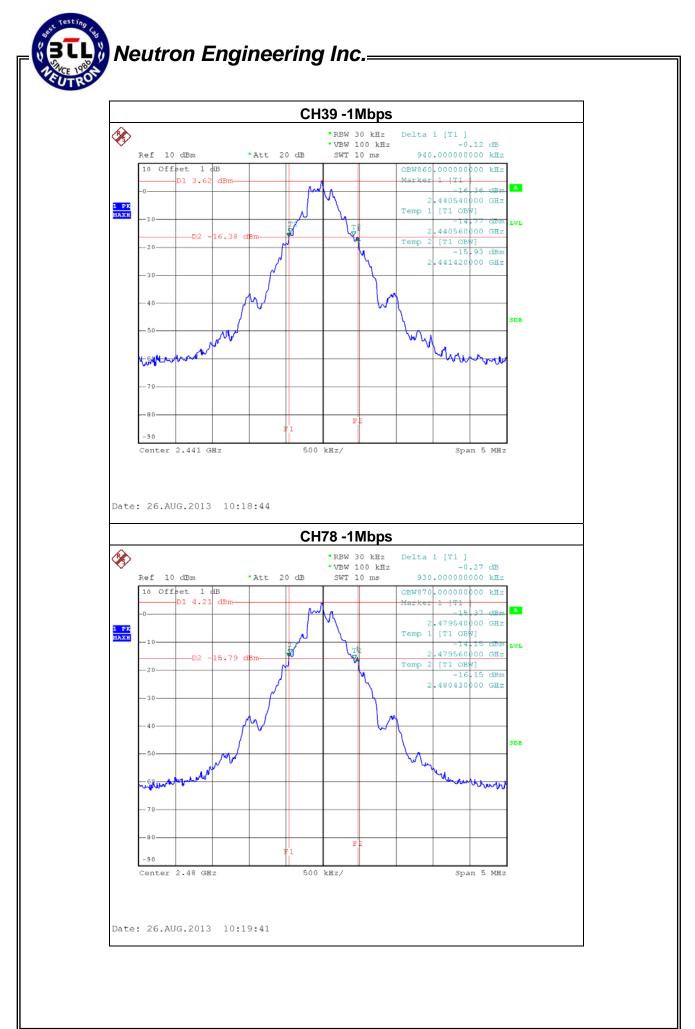
8.1.3 DEVIATION FROM STANDARD

No deviation.

8.1.4 TEST SETUP

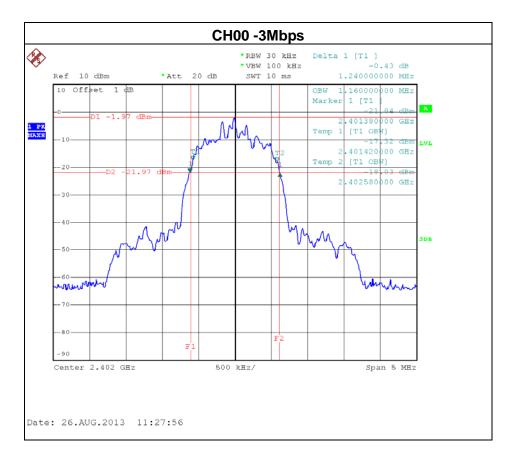
EUT	SPECTRUM
	ANALYZER

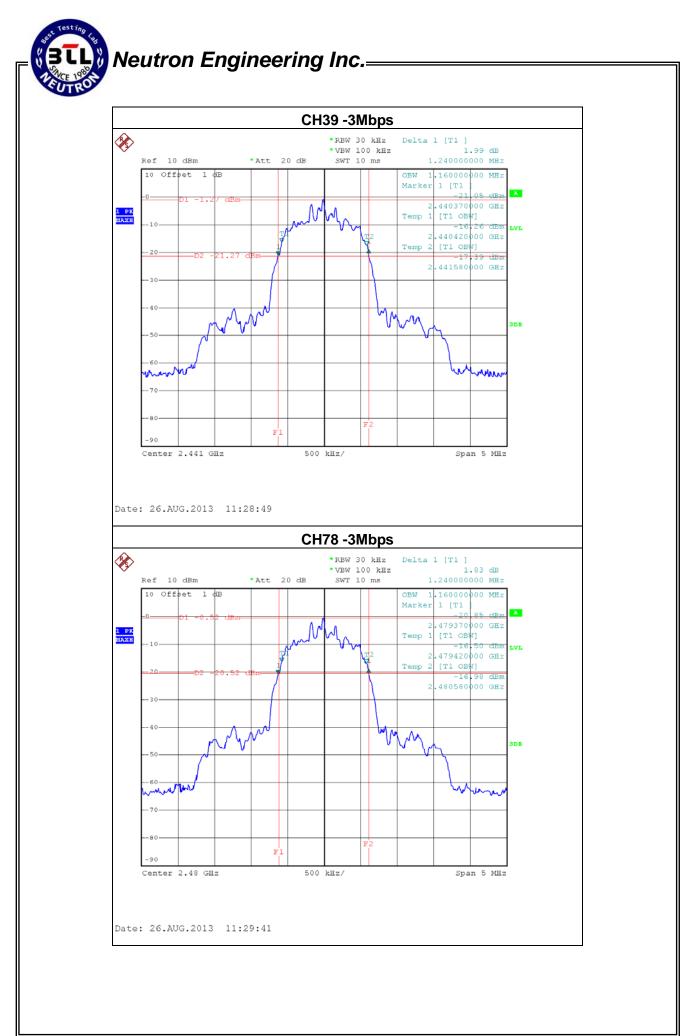

8.1.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00 / CH39 /CH78-1Mbps		


Test Channel	Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Result
CH00	2402	0.93	0.85	PASS
CH39	2441	0.94	0.86	PASS
CH78	2480	0.93	0.87	PASS



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00 / CH39 /CH78-3Mbps		

Test Channel	Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Result
CH00	2402	1.24	1.16	PASS
CH39	2441	1.24	1.16	PASS
CH78	2480	1.24	1.16	PASS

9. PEAKOUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1) RSS-GEN section 4.8 RSS-210, Issue 8, Annex 8, A8.1(b)	Peak Output Power	0.125 Watt or 21dBm	2400-2483.5	PASS

9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

9.1.2 TEST PROCEDURE

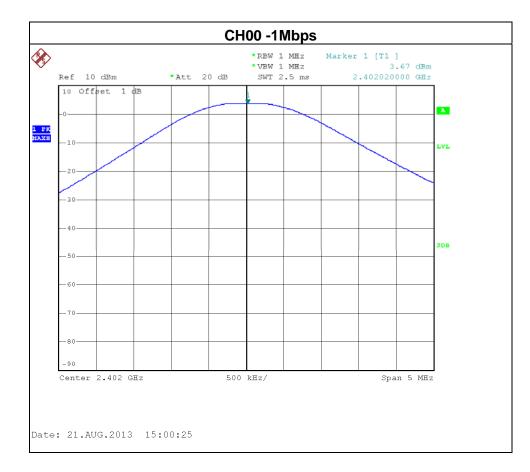
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

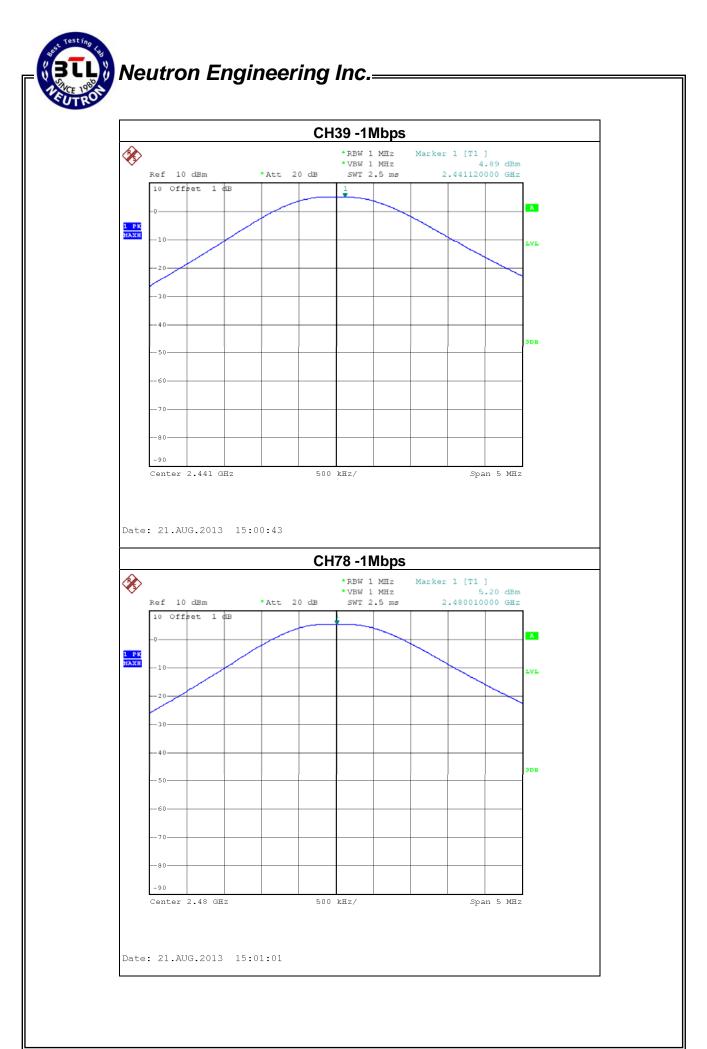
9.1.3 DEVIATION FROM STANDARD

No deviation.

9.1.4 TEST SETUP

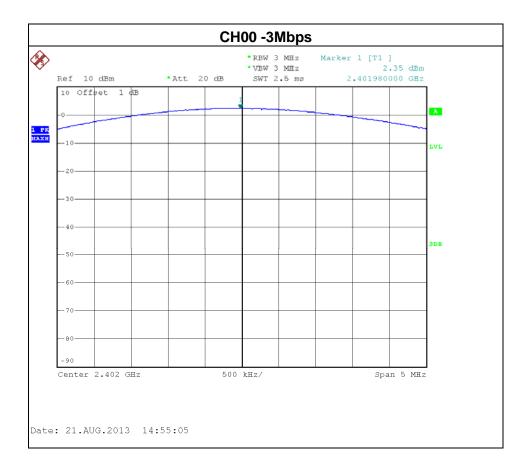
EUT	SPECTRUM
	ANALYZER

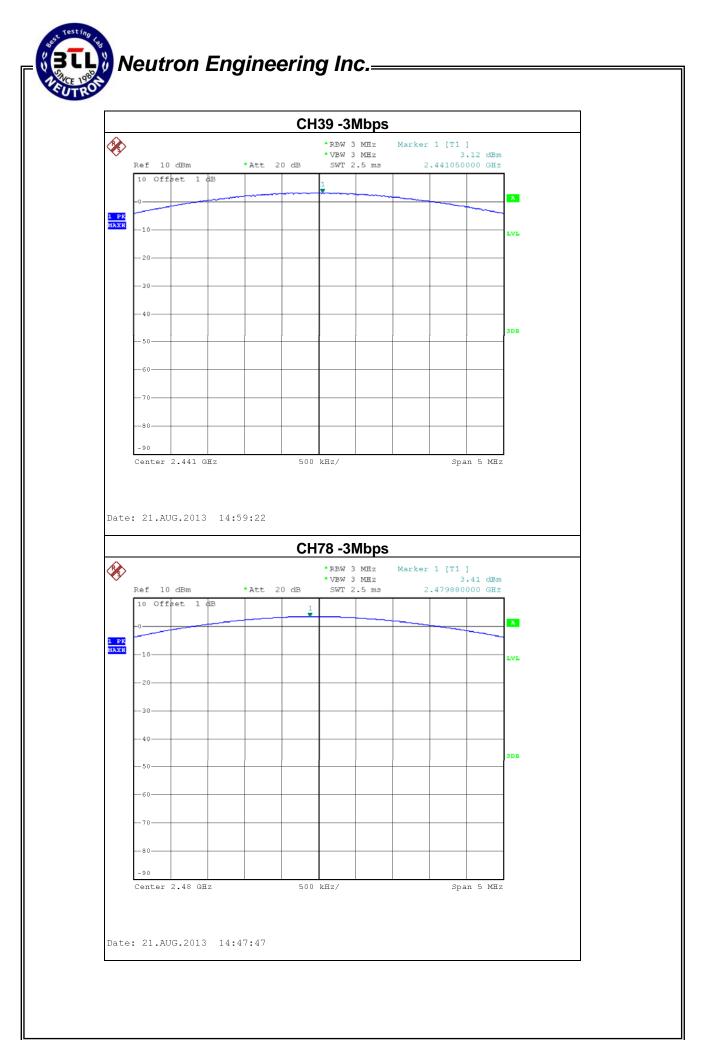

9.1.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

9.1.6 TEST RESULTS

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 °C	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00/ CH39 /CH78 -1Mbps		


Test Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH00	2402	3.67	21	0.125
CH39	2441	4.89	21	0.125
CH78	2480	5.20	21	0.125



EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00/ CH39 /CH78 -3Mbps		

Test Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH00	2402	2.35	21	0.125
CH39	2441	3.12	21	0.125
CH78	2480	3.41	21	0.125

10. ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

20dB in any 100 KHz bandwidth outside the operating frequency band, In case the emission fall within the restricted band specified on 15.205(a) & RSS-210 section 2.2& Annex 8, A8.5, then the 15.209(a) & RSS-GEN limit in the table below has to be followed.

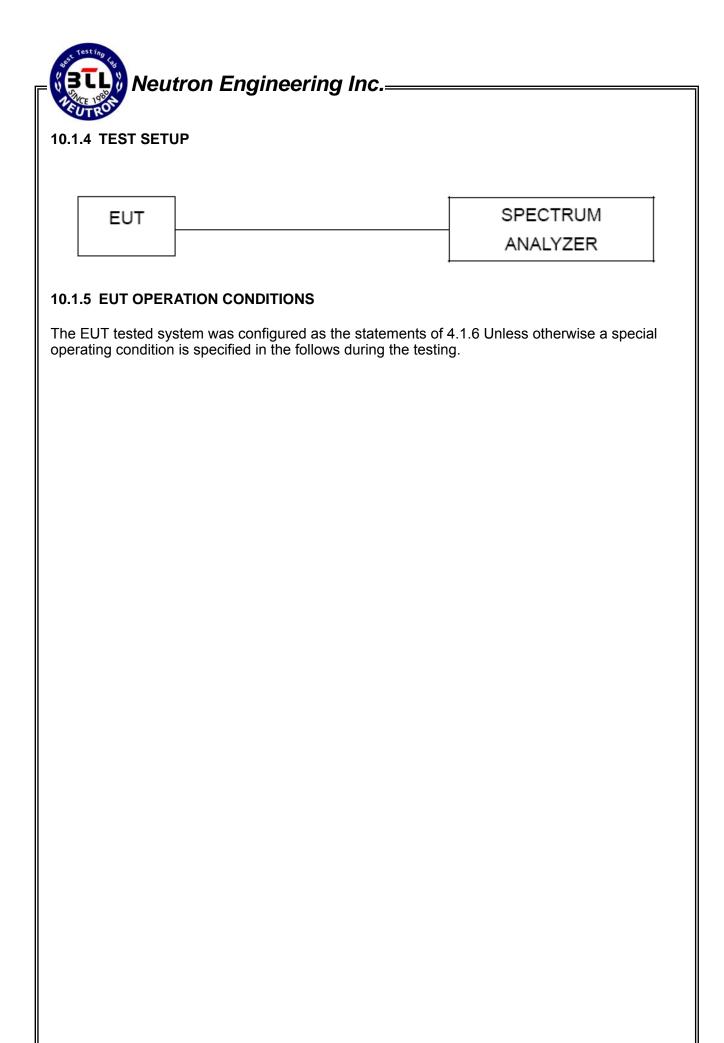
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

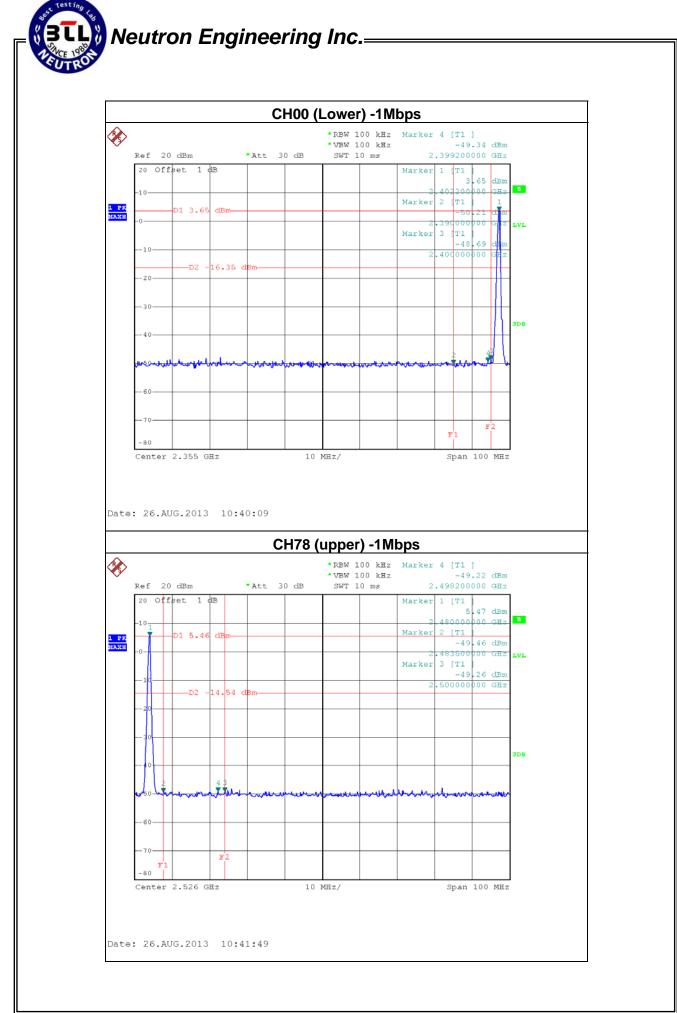

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

10.1.2 TEST PROCEDURE

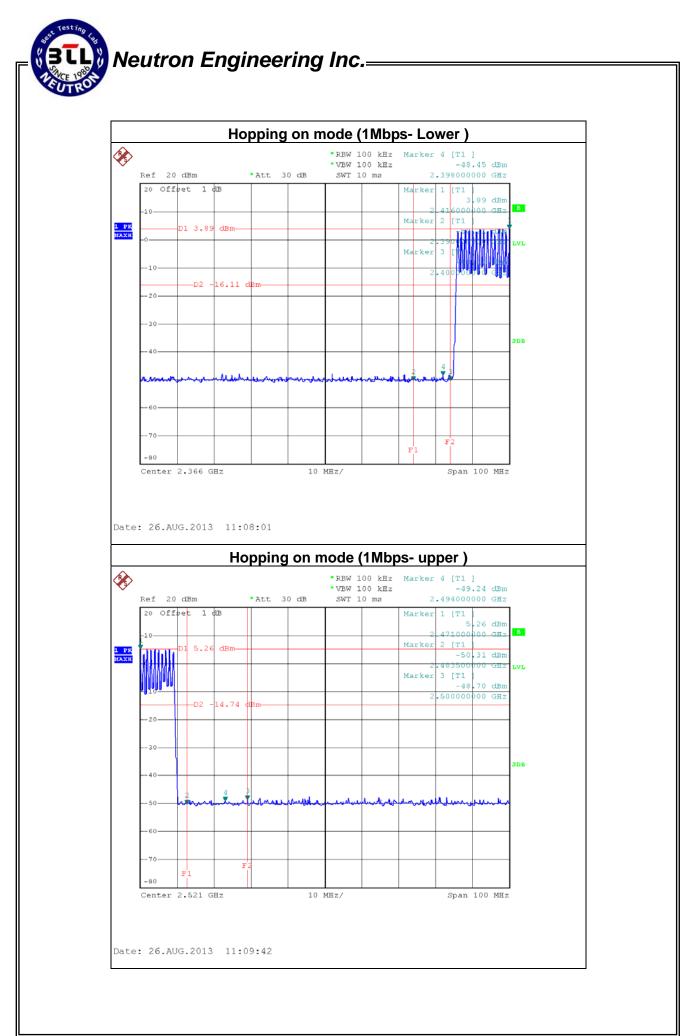
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

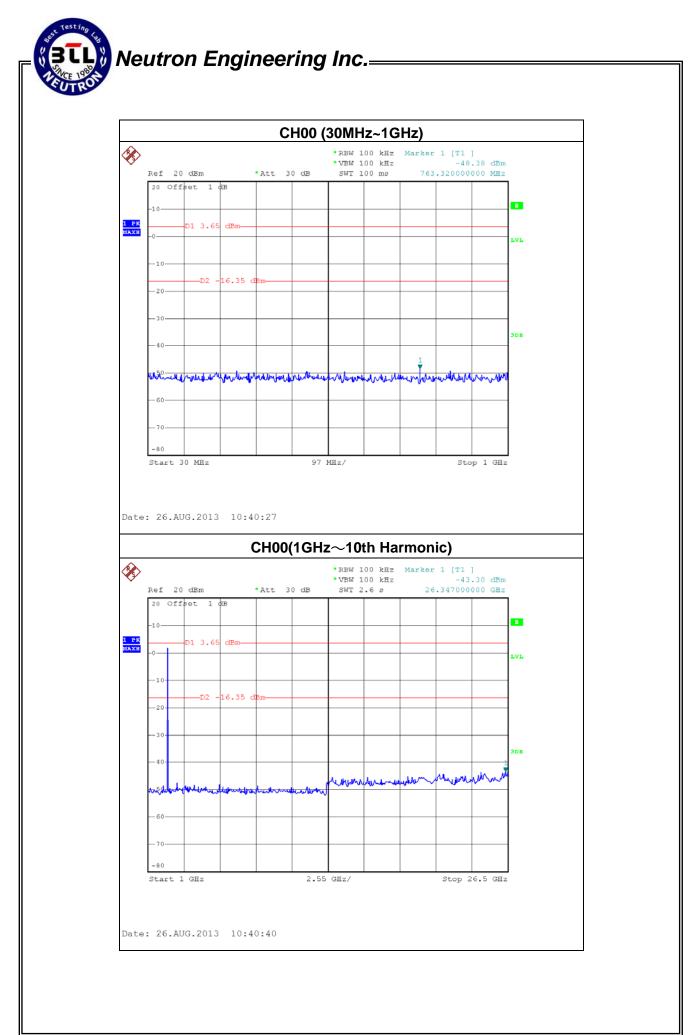
10.1.3 DEVIATION FROM STANDARD

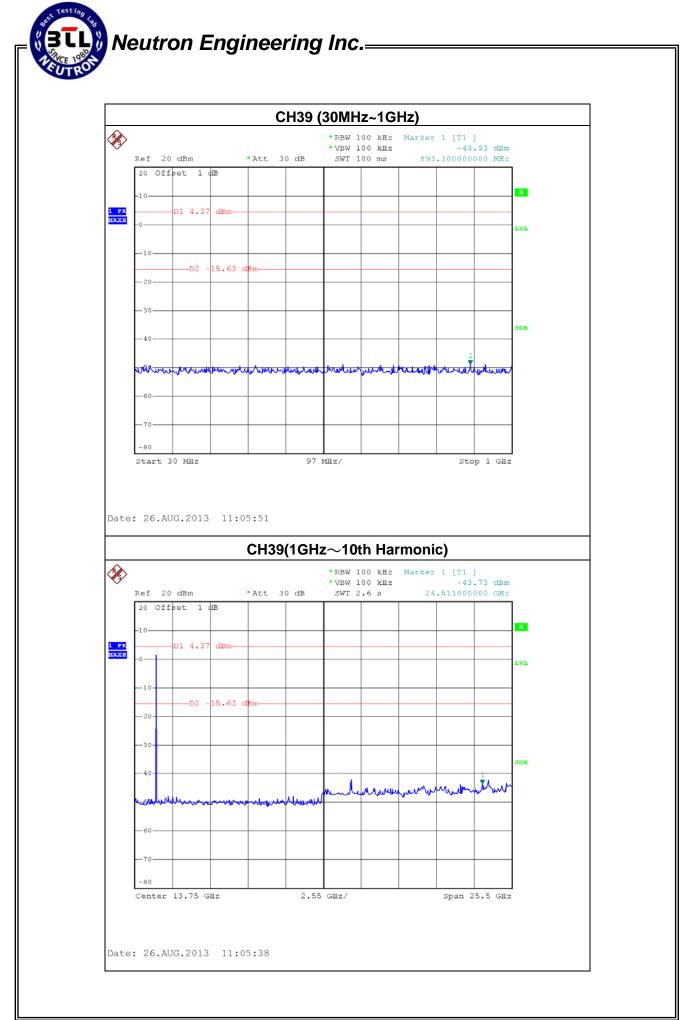
No deviation.

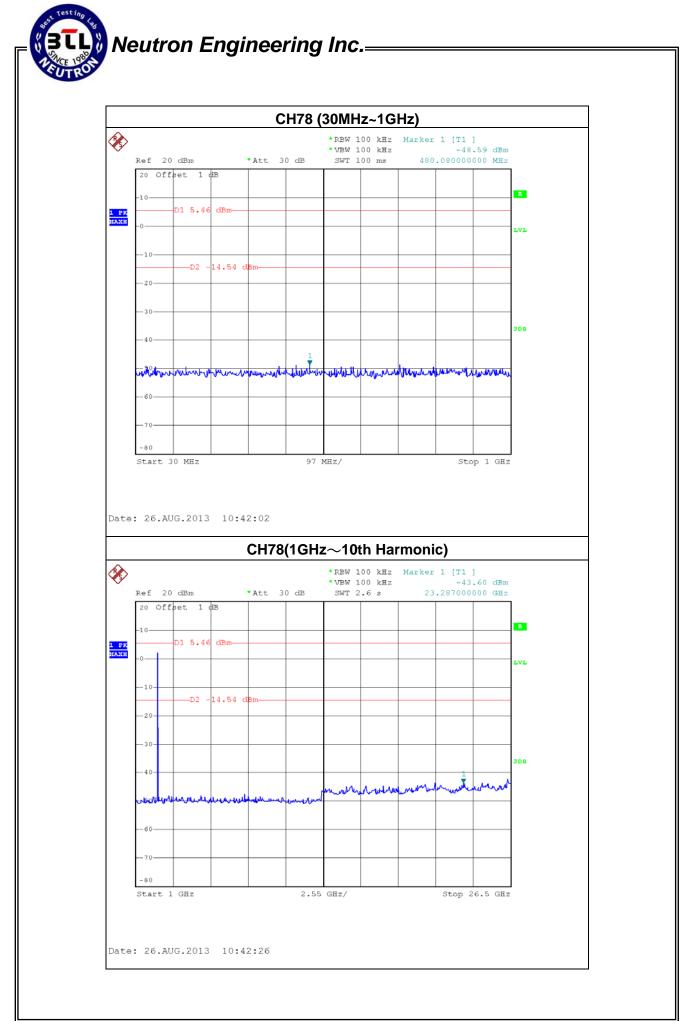


10.1.6 TEST RESULTS

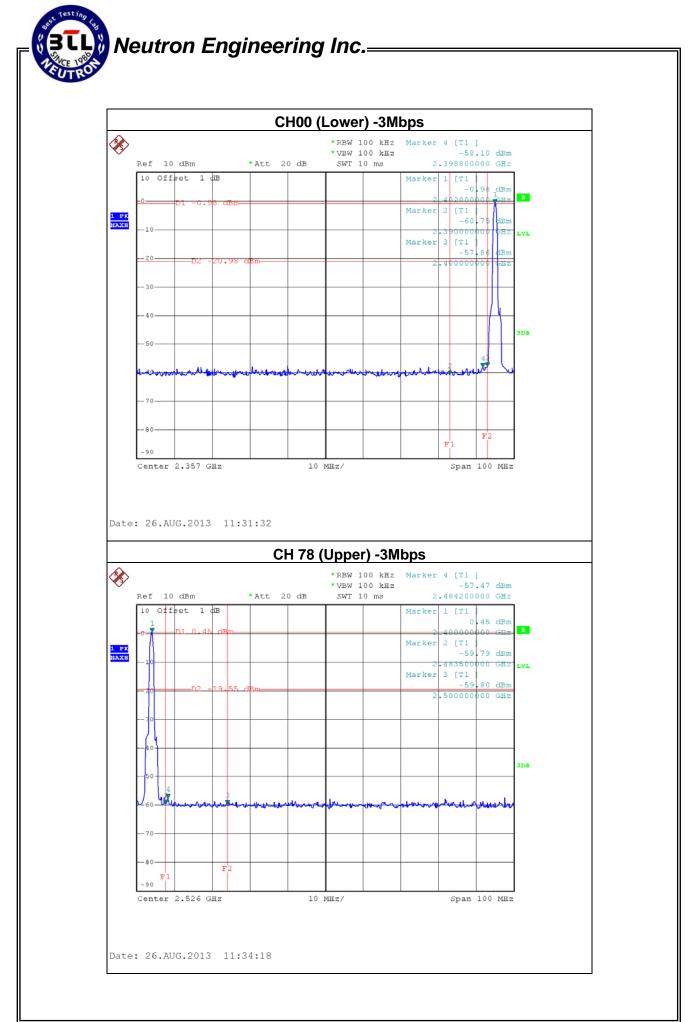

EUT:	Cisco Edge 340	Model Name:	CS-E340W	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1009 hPa	Test Voltage: AC 120V/60Hz		
Test Mode:	CH00 / CH39/ CH78-1Mbps & Hopping on mode (1Mbps)			

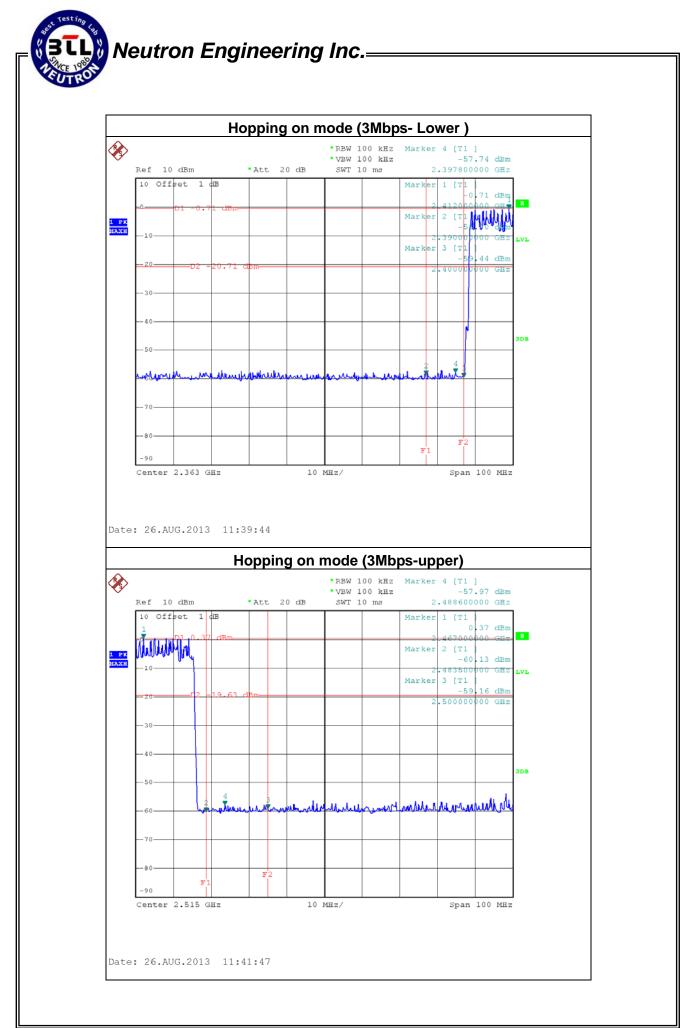

	cy power in any 100KHz he frequency band	The max. radio frequency power in any 100 KHz bandwidth within the frequency band.	
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)
2400.00	-48.69	2498.20	-49.22
Result			

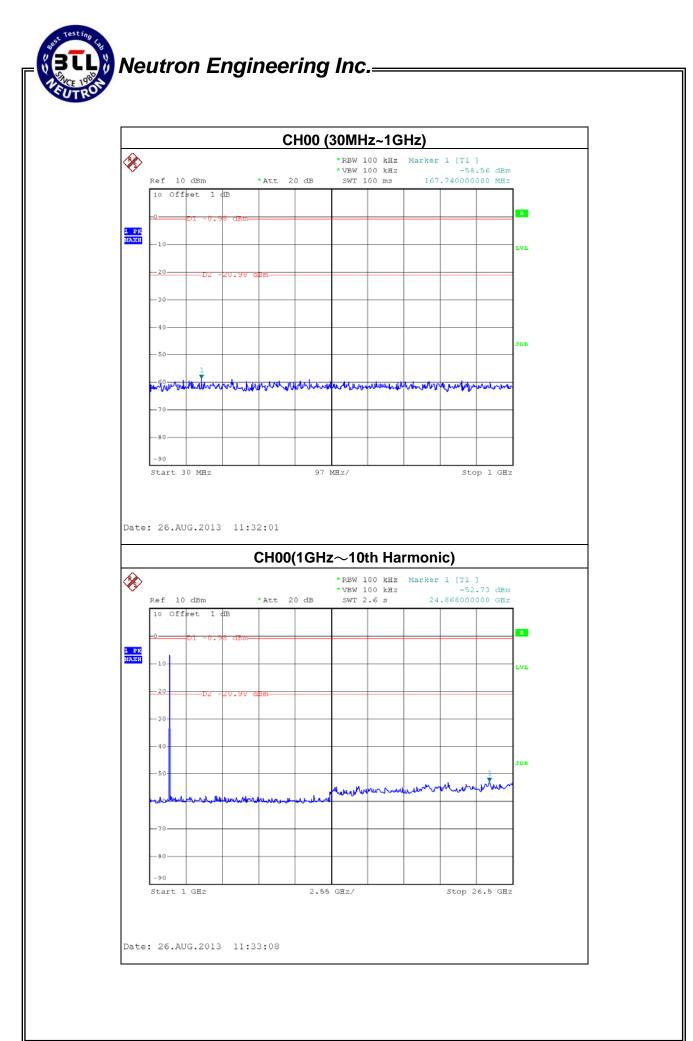

In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.

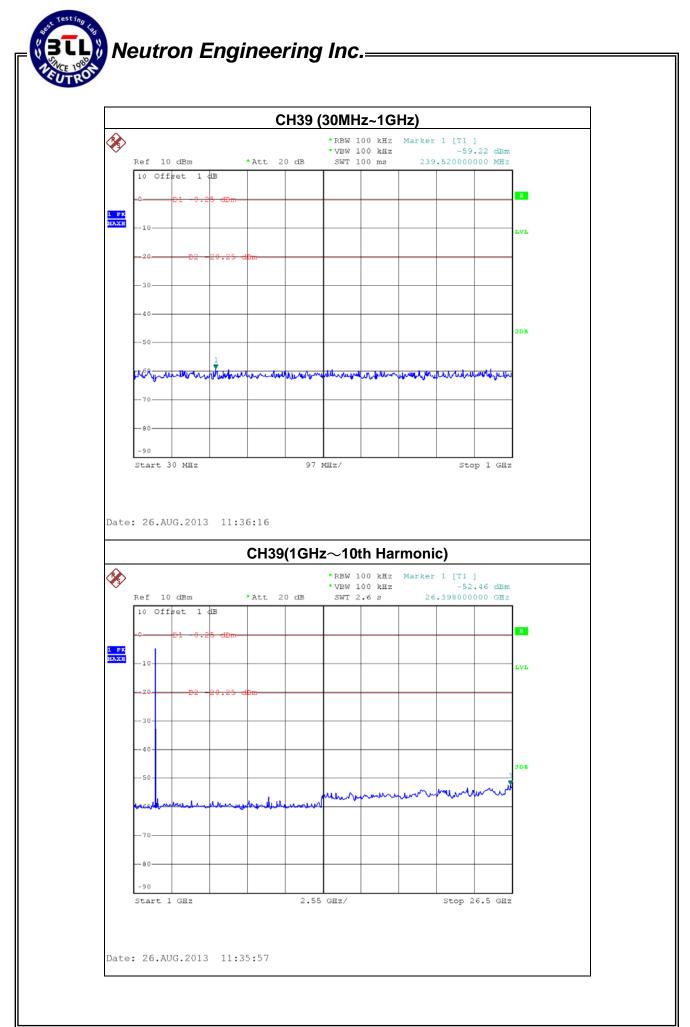


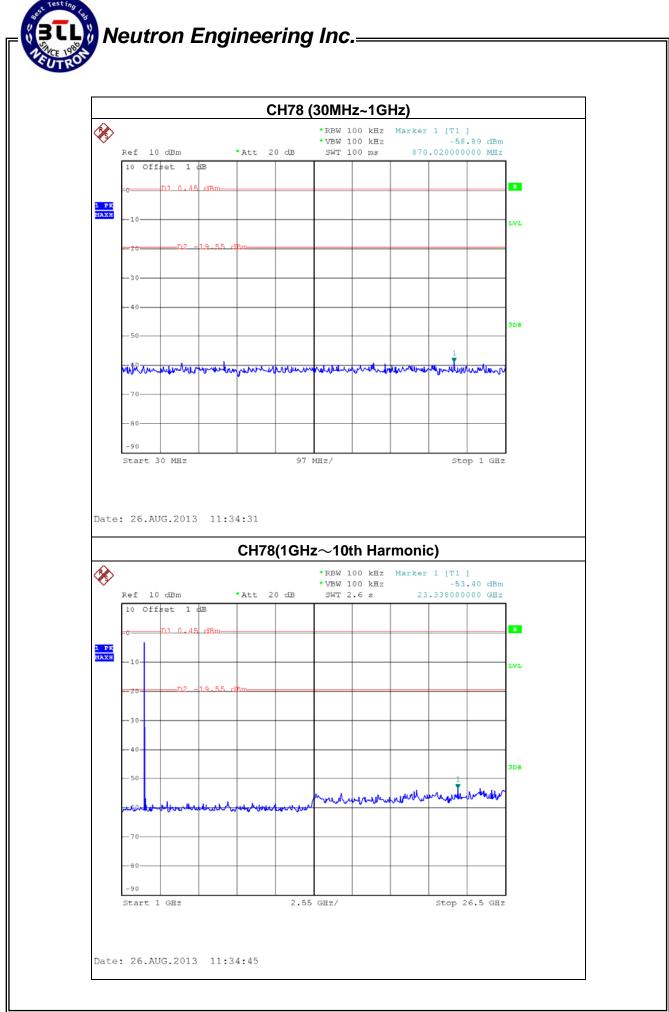
Report No.: NEI-FICP-1-1308C100

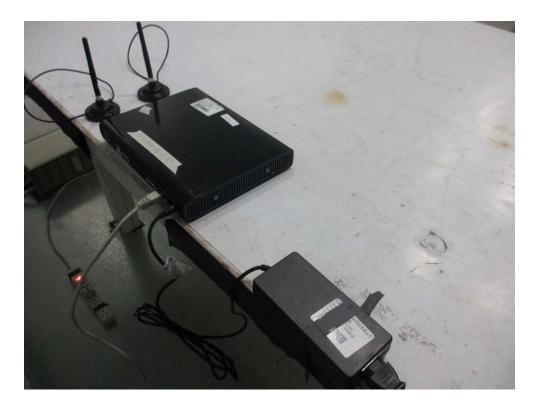


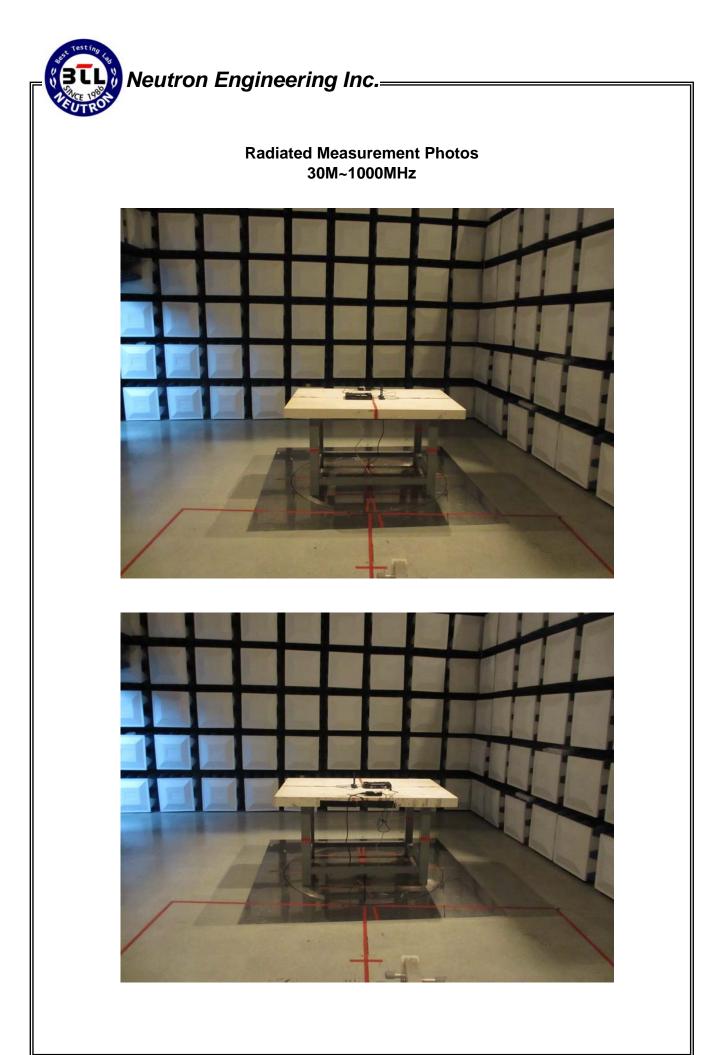

EUT:	Cisco Edge 340	Model Name:	CS-E340W
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1009 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	CH00 / CH39/ CH78 -3Mbps & Hopping on mode (3Mbps)		

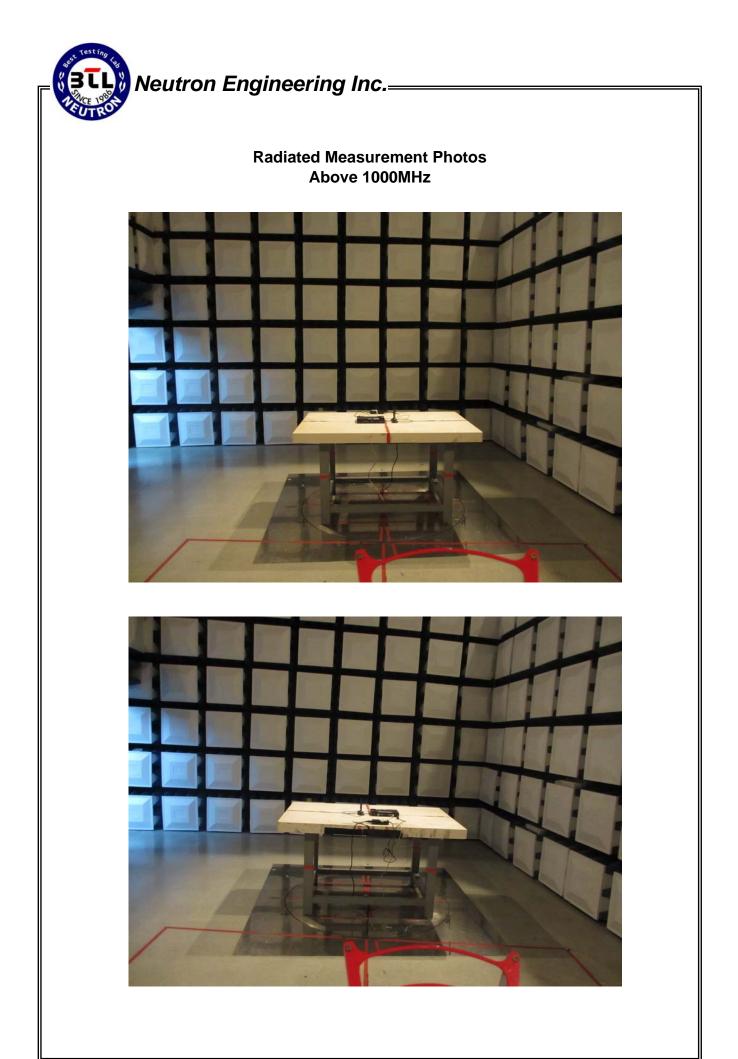

The max. radio frequency power in any 100KHz bandwidth outside the frequency band		The max. radio frequency power in any 100 KHz bandwidth within the frequency band.	
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)
2400.00	-57.86	2484.20	-57.47


Result


In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.


Report No.: NEI-FICP-1-1308C100




11. EUT TEST PHOTO

Conducted Measurement Photos

