FCC PART 15 SUBPART C EMI MEASUREMENT AND TEST REPORT

For

AMBIT Microsystems Corporation

4-1, Ming Shen Street, Tu Chen Industrial District. Tu Chen, Taipei Hsien 236, Taiwan, R.O.C.

FCC ID: MCL-T60H42400

December 2, 2002

This Report Concerns:		Equipment Type:	
Permissive II Change		Laptop PC with MiniPCI IIIB Wireless LAN Card	
Test Engineer:	Benjamin Jing		
Report No.:	R0210253		
Test Date:	November 8, 2002		
Reviewed By:	Hans Mellberg		
Prepared By:	Bay Area Compliance Laboratory Corporation (BACI 230 Commercial Street		
	Sunnyvale, CA 94085		
	Tel: (408) 732-9162 Fax: (408) 732 9164		

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Objective	
1.3 RELATED SUBMITTAL(S)/GRANT(S)	
1.4 TEST METHODOLOGY	
1.5 TEST FACILITY 1.6 TEST EQUIPMENT LIST AND DETAILS	
1.7 HOST SYSTEM CONFIGURATION LIST AND DETAILS	6
1.8 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
1.9 EXTERNAL CABLE LIST AND DETAILS	6
2 - SYSTEM TEST CONFIGURATION	7
2.1 JUSTIFICATION	
2.2 EUT EXERCISE SOFTWARE	
2.3 SPECIAL ACCESSORIES	
2.4 SCHEMATICS / BLOCK DIAGRAM	
2.5 EQUIPMENT MODIFICATIONS	
2.6 CONFIGURATION OF TEST SYSTEM	
2.7 TEST SETUP BLOCK DIAGRAM	
3 - SUMMARY OF TEST RESULTS	9
4 - PEAK OUTPUT POWER MEASUREMENT	10
4.1 STANDARD APPLICABLE	
4.1 STANDARD APPLICABLE	
4.3 MEASUREMENT RESULT	
5 - SPURIOUS EMISSION	11
5.1 STANDARD APPLICABLE	
5.2 MEASUREMENT PROCEDURE	
5.3 MEASUREMENT DATA	
6 - PEAK POWER SPECTRAL DENSITY	15
6.1 STANDARD APPLICABLE	
6.2 MEASUREMENT PROCEDURE	
6.3 TEST RESULTS	
7 - 6 DB BANDWIDTH	18
7.1 STANDARD APPLICABLE	
7.2 MEASUREMENT PROCEDURE	
7.3 MEASUREMENT DATA	18
8 -100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT	21
8.1 STANDARD APPLICABLE	
8.2 MEASUREMENT PROCEDURE	
8.3 TEST RESULTS	21
9 - ANTENNA REQUIREMENT	25
9.1 STANDARD APPLICABLE	
9.2 ANTENNA CONNECTED CONSTRUCTION	25
10 - SPURIOUS RADIATED EMISSIONS	26
10.1 Measurement Uncertainty	
10.2 EUT SETUP	
10.3 SPECTRUM ANALYZER SETUP	
10.4 TEST PROCEDURE	
10.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
IV.U SUMMAK I UF IESI KESULIS	

11	- CONDUCTED EMISSIONS	.34
	11.1 MEASUREMENT UNCERTAINTY	34
	11.2 EUT SETUP	
	11.3 SPECTRUM ANALYZER SETUP	
	11.4 TEST PROCEDURE	34
	11.5 SUMMARY OF TEST RESULTS	35
	11.6 CONDUCTED EMISSIONS TEST DATA	35
	11.7 PLOT OF CONDUCTED EMISSIONS TEST DATA	35

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *Ambit Microsystems Corporation*'s Model: *T60H424* or the "EUT" as referred to in this report is a MINIPCI IIIB Wireless LAN Card installed in a Sony Laptop.

The EUT complies with IEEE 802.11b 11 Mbps Standard. The WLAN application is implemented via a RF module. This RF module is developed for Wireless LAN application complied with IEEE 802.11b 11Mbps standard in ISM band. It can be used to provide a variety of low-cost wireless network interfaces to build your wireless connection via simply SMT procedure to speed the time to market. Three Intersil's chips are implemented in the RF module including ISL3985, HFA3783.

The EUT has the following functions:

- · Compatible with IEEE 802.11b high rate standard to provide wireless Ethernet speeds of 11Mbps data rate
- Dynamic data rate switching with 11, 5.5, 2, and 1 Mbps
- · Allows auto fallback data rate for optimized reliability, throughput and transmission range
- Supports wireless data encryption with 64/128-bit WEP standard for security
- · Dual diversity antenna connectors supported for the multi-path environment
- · Drivers supports Windows 95, 98, 98SE, NT, ME, 2000, Win XP.

The device was installed in Sony laptop M/N: PCG-8E2R PVT, which was connected to the Sony AC/DC adapter (model: PCGA-AC19V3) and tested with two new antennas (Model: ANTB24-thin-SO and HFD04-R). Therefore, this report is for Limited Modular Approval application.

* The test data gathered is from typical production samples provided by the manufacturer.

1.2 Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992.

The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.247, 15.203, 15.209.

1.3 Related Submittal(s)/Grant(s)

This Class II permissive change device was originally granted on 3/20/03. Please refer to BACL report R0302123. The manufacturer did not make any modification on the EUT. For marketing purpose, the device was installed in Sony laptop and tested with two new antennas (Model: ANTB24-THIN-SO and HFD04-R, please refer to antenna specifications for detailed information).

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at BACL. The radiated testing was performed at an antenna-to-EUT distance of 3 Meters.

1.5 Test Facility

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI).

The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method – 47 CFR Part15 – Digital Devices, CISPR 22: 1997: Electronmagnetic Interference – Limits and Methods of Measurement of Information Technology Equipment test methods.

1.6 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8568B	2610A02165	12/6/03
HP	Spectrum Analyzer	8593B	2919A00242	12/20/03
HP	Amplifier	8349B	2644A02662	12/20/03
HP	Quasi-Peak Adapter	85650A	917059	12/6/03
HP	Amplifier	8447E	1937A01046	12/6/03
A.H. System	Horn Antenna	SAS0200/571	261	12/27/03
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/03
Com-Power	Biconical Antenna	AB-100	14012	11/2/03
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/03
Com-Power	LISN	LI-200	12208	12/20/03
Com-Power	LISN	LI-200	12005	12/20/03
BACL	Data Entry Software	DES1	0001	12/20/03

^{*} Statement of Traceability: Bay Area Compliance Laboratory Corp. certifies that all calibration has been performed using suitable standards traceable to the NIST.

1.7 Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Sony	AC Adapter	PCGA-AC19V3	None	DoC
Sony	Laptop	PCG-8E2R PVT	None	DoC

1.8 Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Sony	Laptop	PCG-8E2R PVT	N/a	DoC
Citizen	Printer	LSP-10	5047999-82	DLK66TLSP-10

1.9 External Cable List and Details

Manufacturer	Length (M)	From	То
Shielded Printer Cable	2.0	Parallel Port/Laptop	Printer

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The host system was configured for testing in a typical fashion (as normally used by a typical user).

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

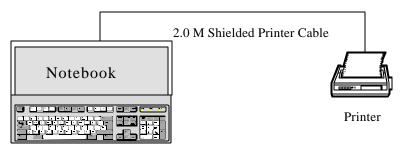
The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The test software, Prism Test Utility (Version 3.0.22), provided by the customer, is started the Windows 98 terminal program under the Windows 98 operating system.

Once loaded, the program sequentially exercises each system component, and the Prism Test Utility icon appears in the PC screen. By the icon, select the channel to be tested, set the mode as "Host BSS". After the setting, click the "Continuous TX" button for transmitting the RF power.

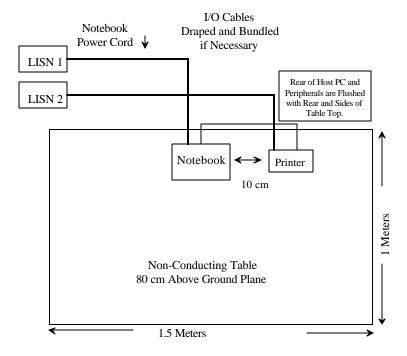
Repeat above steps for other channels to be tested.

2.3 Special Accessories

As shown in section 2.7, all interface cables used for compliance testing are shielded as normally supplied by INMAC and their respective support equipment manufacturers. The host pc and other peripherals featured shielded metal connectors.


2.4 Schematics / Block Diagram

Please refer to Exhibit D.


2.5 Equipment Modifications

No modifications were made by BACL to ensure the EUT to comply with the applicable limits and requirements.

2.6 Configuration of Test System

2.7 Test Setup Block Diagram

3 - SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.205	Restricted Bands	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	Conducted Emission	Compliant
§15.209 (a)	Radiated Emission	Compliant
§15.209 (f)	Spurious Emission	Compliant
§15.247 (a) (2)	6 dB Bandwidth	Compliant
§15.247 (b) (2)	Peak Output Power	Compliant
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edges	Compliant
§15.247 (d)	Peak Power Spectral Density	Compliant

Attestation: The testing was performed or supervised by BACL Corp. that the test measurements were made in accordance with the referred department standard(s); and that the radio equipment identified in this application has been subject to all the applicable test conditions specified in the department standards and all of the requirement standards have been met.

4 - PEAK OUTPUT POWER MEASUREMENT

4.1 Standard Applicable

According to $\S15.247(b)$ (3), for all direct sequence systems, the maximum peak output power of the intentional radiator shall not exceed 1 Watt.

4.2 Measurement Procedure

- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

4.3 Measurement Result

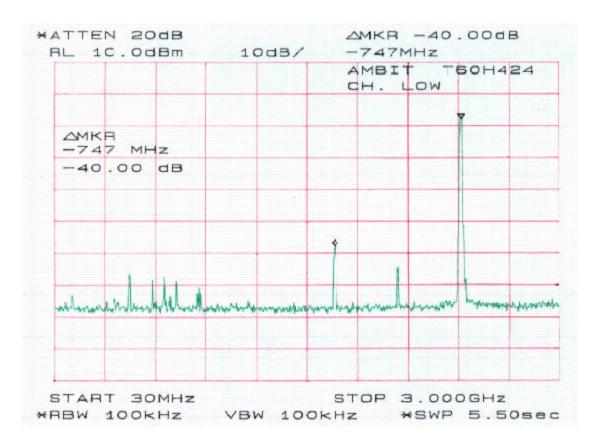
Frequency (MHz)	Output Power in dBm	Output Power in W	Standard	Result
2412.00	13.74	0.024	≤1W	Compliant
2442.00	13.57	0.023	≤1W	Compliant
2462.00	12.32	0.017	≤ 1W	Compliant

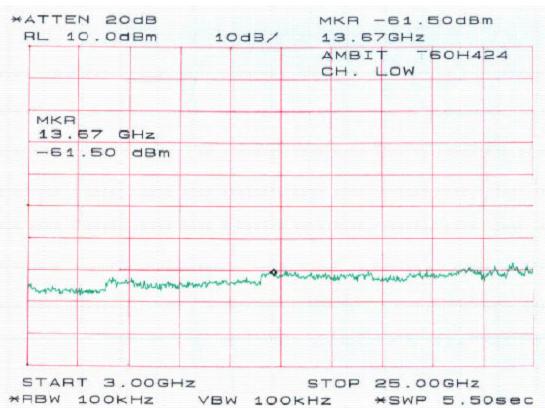
4.4 Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Due Date
Agilent	E4419b	GB40202891	4/8/03
Agilent	E4412a	US38486529	4/8/03

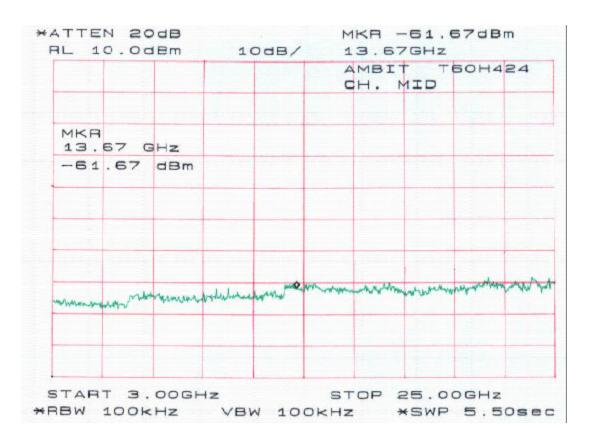
5 - SPURIOUS EMISSION

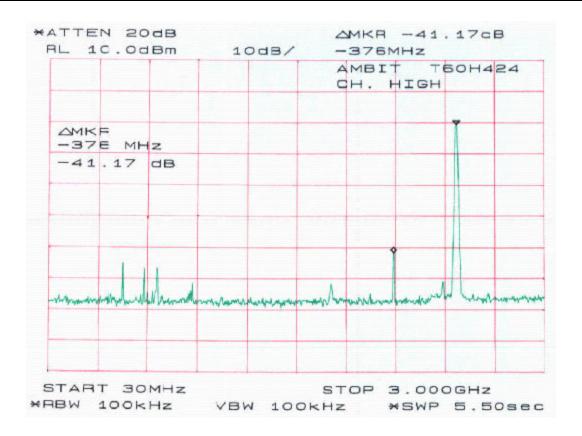
5.1 Standard Applicable


According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation f a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.


5.2 Measurement Procedure

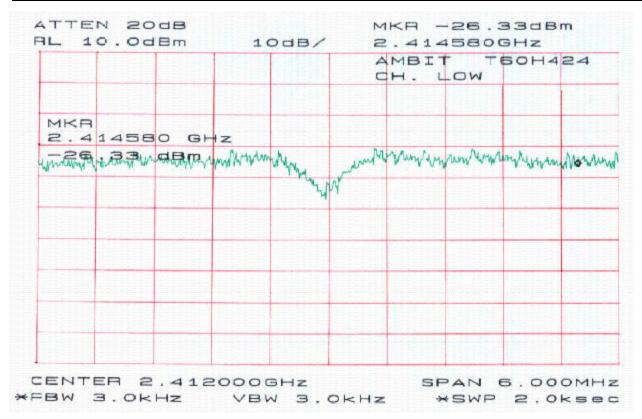
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Placed the EUT on a bench. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

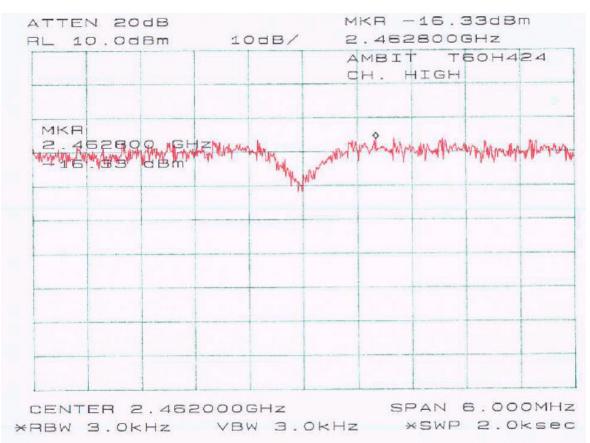

5.3 Measurement Data

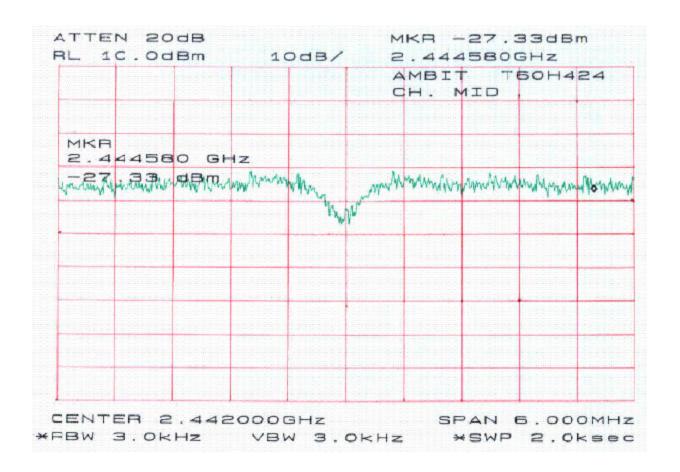

Please refer to the appending for more information.

6 - PEAK POWER SPECTRAL DENSITY

6.1 Standard Applicable


According to §15.247 (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


6.2 Measurement Procedure


- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Placed the EUT on a bench. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 6MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Repeat above procedures until all frequencies measured were complete.

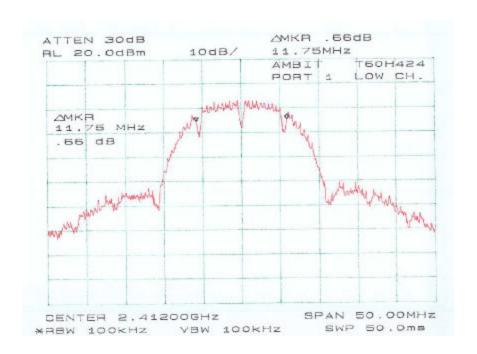
6.3 Test Results

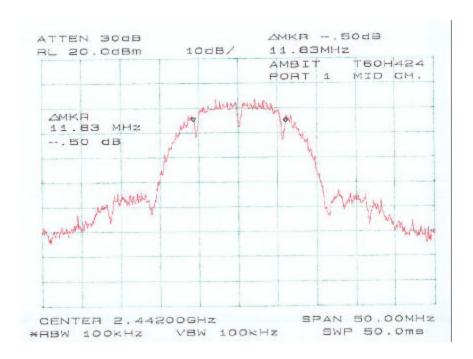
Please refer to the attached plot(s).

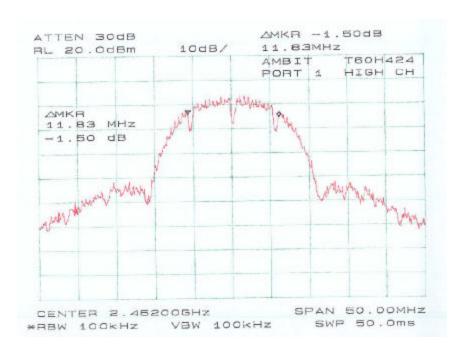
7 - 6 DB BANDWIDTH

7.1 Standard Applicable

According to §15.247(a)(2), for digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.


7.2 Measurement Procedure


- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Placed the EUT on a bench. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

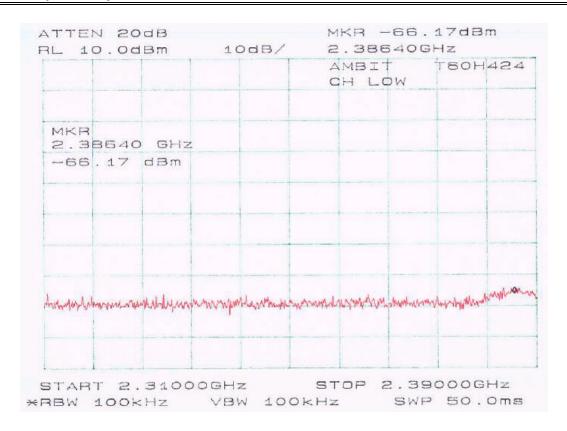

7.3 Measurement Data

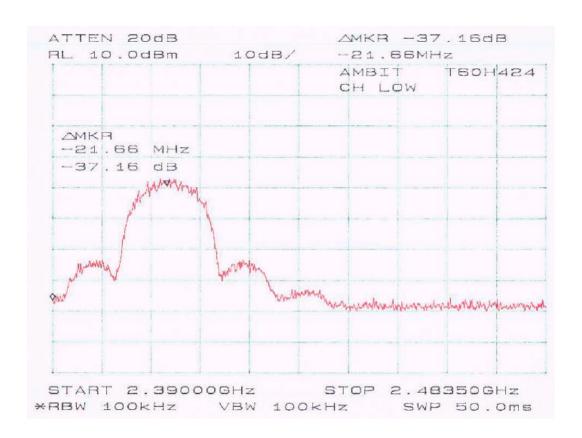
Frequency (MHz)	6dB Bandwidth (MHz)	Standard (kHz)	Result
2412	11.75	500	Compliant
2442	11.83	500	Compliant
2462	11.83	500	Compliant

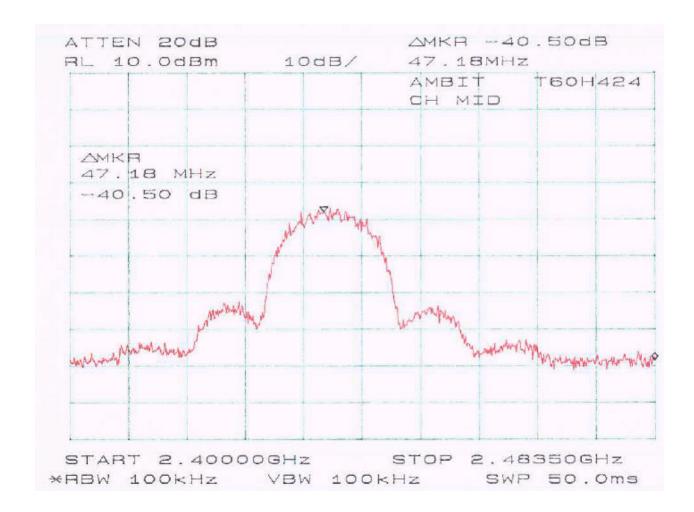
Please refer to appending plot for more information.

8 -100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT

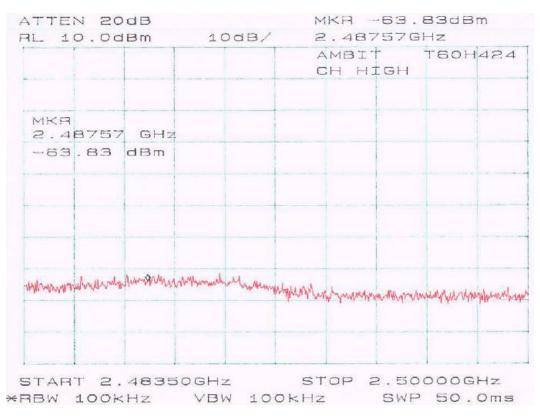
8.1 Standard Applicable


According to §15.247(c), in *any* 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) see §15.2057(c)).


8.2 Measurement Procedure


- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Placed the EUT on a bench. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 Test Results


Please refer to the appending plot for more information.

9 - ANTENNA REQUIREMENT

9.1 Standard Applicable

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.2 Antenna Connected Construction

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of the standard.

Please refer to antenna specification for antenna information.

10 - SPURIOUS RADIATED EMISSIONS

10.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is +4.0 dB.

10.2 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4-1992. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The notebook was connected with 110Vac/60Hz power source.

10.3 Spectrum Analyzer Setup

According to FCC Rules, §15.33 (a) (1), the system was tested to 26GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30 - 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

10.4 Test Procedure

For the radiated emissions test, the notebook and all support equipment power cords were connected to the AC floor outlet since the notebook power supply did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a " $\mathbf{Q}\mathbf{p}$ " in the data table.

10.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Subpart C. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Subpart C Limit

10.6 Summary of Test Results

According to the data in section 11.7, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207 and 15.247</u>, and had the worst margin of:

-6.1 dB at 2375.60 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, Low Channel, Port 1

-9.8 dB at 2326.90 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, Middle Channel, Port 1

-3.3 dB at 2487.10 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, High Channel, Port 1

-13.8 dB at 7236.30 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, Low Channel Port 2

-13.6 dB at 7314.90 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, Middle Channel, Port 2

-14.7 dB at 7389.60 MHz in the Vertical polarization, ANTB24-THIN-SO antenna, High Channel, Port 2

-3.5 dB at 246.10 MHz in the Horizontal polarization, ANTB24-THIN-SO antenna, unintentional emission

-7.8 dB at 2375.60 MHz in the Vertical polarization, HFD04-R antenna, Low Channel, Port 1

-8.3 dB at 2326.90 MHz in the Vertical polarization, HFD04-R antenna, Middle Channel, Port 1

-8.7 dB at 2487.10 MHz in the Vertical polarization, HFD04-R antenna, High Channel, Port 1

-13.9 dB at 7236.30 MHz in the Vertical polarization, HFD04-R antenna, Low Channel Port 2

-13.8 dB at 7314.90 MHz in the Vertical polarization, HFD04-R antenna, Middle Channel, Port 2

-15.0 dB at 7389.60 MHz in the Vertical polarization, HFD04-R antenna, High Channel, Port 2

-3.9 dB at 246.10 MHz in the Horizontal polarization, HFD04-R antenna, unintentional emission

10.6.1 Intentional Emission for Sony Laptop with ANTB24-THIN-SO antenna, 30MHz ~ 26 GHz, 3 Meters, Port 1

II '	Indicated		Table	An	tenna	Сс	orrection Fac	tor	FC	CC 15 Subpa	ırt C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB	
					Low (Channel					
2412.1	99.20	30	1.8	V	28.1	3.4	30.0	100.7			AVG
2412.1	94.5	90	1.5	Н	28.1	3.4	30.0	96.0			AVG
											AVG
2375.60	46.5	160	1.2	V	28.1	3.4	30.0	48.0	54	-6.1	RB
7236.30	35.9	45	1.5	V	35.1	5.6	30.0	46.6	54	-7.4	AVG
2375.60	43.7	180	1.2	Н	28.1	3.4	30.0	45.2	54	-8.8	AVG RB
7236.30	31.7	180	1.5	Н	35.1	5.6	30.0	42.4	54	-11.6	AVG
4824.20	33.4	180	1.2	V	32.5	4.9	30.0	40.8	54	-13.2	AVG
9648.40	29.8	0	1.2	V	35.1	5.6	30.0	40.5	54	-13.5	AVG
9648.40	27.1	30	1.2	Н	35.1	5.6	30.0	37.8	54	-16.2	AVG
4824.20	29.1	45	1.2	Н	32.5	4.9	30.0	36.5	54	-17.5	AVG
		-									PEAK
2375.60	49.3	160	1.2	V	28.1	3.4	30.0	50.8	74	-23.3	RB
7236.30	38.2	45	1.0	V	35.1	5.6	30.0	48.9	74	-25.1	PEAK
2275 (0	167	100	1.2	37	20.1	2.4	20.0	40.2	74	25.0	PEAK
2375.60	46.7	180	1.2	V	28.1	3.4	30.0	48.2	74	-25.9	RB
7236.30 4824.20	34.5 35.9	180 180	1.0	H V	35.1 32.5	5.6 4.9	30.0	45.2 43.3	74 74	-28.8 -30.7	PEAK PEAK
9648.40	32.3	0	1.2	V	35.1	5.6	30.0	43.0	74	-30.7	PEAK
9648.40	30.6	30	1.2	H	35.1	5.6	30.0	41.3	74	-31.0	PEAK
4824.20	32.6	45	1.5	Н	32.5	4.9	30.0	40.0	74	-34.0	PEAK
1021.20	32.0	15	1.5	11		Channel	30.0	10.0	, ,	31.0	1 Di III
2438.30	98.7	110	1.5	V	28.1	3.4	30.0	100.2			AVG
2438.30	96.4	135	1.2	H	28.1	3.4	30.0	97.9			AVG
2.50.60	, , , ,	100	1.2		20.1		20.0	77.15			AVG
2326.90	42.80	0	1.5	V	28.1	3.4	30.0	44.3	54	-9.8	RB
7314.90	32.5	90	1.5	Н	35.1	5.6	30.0	43.2	54	-10.8	AVG
9753.20	32.5	90	1.5	Н	35.1	5.6	30.0	43.2	54	-10.8	AVG
4876.60	34.9	130	1.0	H	32.5	4.9	30.0	42.3	54	-11.7	AVG
7314.90	31.60	150	1.5	V	35.1	5.6	30.0	42.3	54	-11.7	AVG
9753.20	31.60	150	1.5	V	35.1	5.6	30.0	42.3	54	-11.7	AVG
2326.90	40.5	60	1.5	Н	28.1	3.4	30.0	42.0	54	-12.1	AVG RB
4876.60	33.1	90	1.0	V	32.5	4.9	30.0	40.5	54	-13.5	AVG
1515,00			0	•			23.0	13.0		-2.0	PEAK
2326.90	45.90	0	1.5	V	28.1	3.4	30.0	47.4	74	-26.7	RB
7314.90	34.8	90	1.2	Н	35.1	5.6	30.0	45.5	74	-28.5	PEAK
4876.60	37.9	130	1.0	Н	32.5	4.9	30.0	45.3	74	-28.7	PEAK
9753.20	34.6	90	1.5	Н	35.1	5.6	30.0	45.3	74	-28.7	PEAK
2226.00	12.0	60	1 5	11	20.1	2.4	20.0	45.2	74	20.0	PEAK
2326.90 9753.20	43.8 33.70	60 150	1.5	H V	28.1	3.4	30.0	45.3 44.4	74 74	-28.8 -29.6	RB PEAK
7314.90	33.60	150	1.5	V	35.1 35.1	5.6 5.6	30.0	44.4	74	-29.6	PEAK

A	MBIT Micro	systems (Corporation						FCC II	D: MCL-T	60H42400)
	4876.60	35.8	90	1.0	V	32.5	49	30.0	43.2	74	-30.8	PEAK

					High (Channel					
2463.20	98.1	45	1.5	V	28.1	3.4	30.0	99.6			AVG
2463.20	95.4	120	1.4	Н	28.1	3.4	30.0	96.9			AVG
2487.1	49.30	110	1.5	V	28.1	3.4	30.0	50.8	54	-3.3	AVG
2487.1	45.1	140	1.5	Н	28.1	3.4	30.0	46.6	54	-7.5	AVG
7389.60	31.2	45	1.5	V	35.1	5.6	30.0	41.9	54	-12.1	AVG
9852.8	30.70	150	1.5	V	35.1	5.6	30.0	41.4	54	-12.6	AVG
4926.40	32.9	45	1.5	V	32.5	4.9	30.0	40.3	54	-13.7	AVG
7389.60	29.40	180	1.4	Н	35.1	5.6	30.0	40.1	54	-13.9	AVG
4926.40	31.6	180	1.4	Н	32.5	4.9	30.0	39.0	54	-15.0	AVG
9852.8	28.1	90	1.5	Н	35.1	5.6	30.0	38.8	54	-15.2	AVG
2487.1	53.60	110	1.5	V	28.1	3.4	30.0	55.1	74	-19.0	PEAK
2487.1	48.7	140	1.5	Н	28.1	3.4	30.0	50.2	74	-23.9	PEAK
7389.60	32.8	45	1.5	V	35.1	5.6	30.0	43.5	74	-30.5	PEAK
9852.8	32.20	150	1.5	V	35.1	5.6	30.0	42.9	74	-31.1	PEAK
7389.60	31.90	180	1.4	Н	35.1	5.6	30.0	42.6	74	-31.4	PEAK
4926.40	34.1	45	1.5	V	32.5	4.9	30.0	41.5	74	-32.5	PEAK
9852.8	30.5	90	1.5	Н	35.1	5.6	30.0	41.2	74	-32.8	PEAK
4926.40	33.7	180	1.4	Н	32.5	4.9	30.0	41.1	74	-32.9	PEAK

Intentional Emission for Sony Laptop with ANTB24-THIN-SO antenna, 30MHz ~ 26 GHz, 3 Meters, Port 2

	Indicated		Table	An	itenna	Сс	orrection Fac	tor	FC	CC 15 Subpa	rt C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB	
					Low (Channel				•	
2412.1	50.50	90	1.8	V	28.1	3.4	30.0	52.0			AVG
2412.1	50.1	225	1.2	Н	28.1	3.4	30.0	51.6			AVG
7236.30	29.5	90	1.8	V	35.1	5.6	30.0	40.2	54	-13.8	AVG
4824.20	31.6	90	1.8	V	32.5	4.9	30.0	39.0	54	-15.0	AVG
7236.30	27.4	210	1.2	Н	35.1	5.6	30.0	38.1	54	-15.9	AVG
4824.20	30.2	225	1.2	Н	32.5	4.9	30.0	37.6	54	-16.4	AVG
7236.30	31.5	90	1.8	V	35.1	5.6	30.0	42.2	74	-31.8	PEAK
4824.20	33.8	90	1.8	V	32.5	4.9	30.0	41.2	74	-32.8	PEAK
4824.20	32.6	225	1.2	Н	32.5	4.9	30.0	40.0	74	-34.0	PEAK
7236.30	29.1	210	1.2	Н	35.1	5.6	30.0	39.8	74	-34.2	PEAK
					Middle	Channel					
2438.30	51.4	225	1.2	V	28.1	3.4	30.0	52.9			AVG
2438.30	49.1	135	1.5	Н	28.1	3.4	30.0	50.6			AVG
7314.90	29.7	225	1.2	V	35.1	5.6	30.0	40.4	54	-13.6	AVG
4876.60	31.5	225	1.2	V	32.5	4.9	30.0	38.9	54	-15.1	AVG
7314.90	26.6	135	1.5	Н	35.1	5.6	30.0	37.3	54	-16.7	AVG
4876.60	28.5	135	1.5	Н	32.5	4.9	30.0	35.9	54	-18.1	AVG
7314.90	31.8	225	1.2	V	35.1	5.6	30.0	42.5	74	-31.5	PEAK
4876.60	33.9	225	1.2	V	32.5	4.9	30.0	41.3	74	-32.7	PEAK

FCC ID: MCL-T60H42400

7314.90	28.4	135	1.5	Н	35.1	5.6	30.0	39.1	74	-34.9	PEAK
4876.60	30.2	135	1.5	Н	32.5	4.9	30.0	37.6	74	-36.4	PEAK
					High (Channel					
2463.20	46.7	45	1.5	V	28.1	3.4	30.0	48.2			AVG
2463.20	48.2	0	1.3	Н	28.1	3.4	30.0	49.7			AVG
7389.60	28.6	90	1.5	V	35.1	5.6	30.0	39.3	54	-14.7	AVG
4926.40	30.5	270	1.5	V	32.5	4.9	30.0	37.9	54	-16.1	AVG
7389.60	27.10	120	1.2	Н	35.1	5.6	30.0	37.8	54	-16.2	AVG
4926.40	29.8	220	1.2	Н	32.5	4.9	30.0	37.2	54	-16.8	AVG
7389.60	30.6	90	1.5	V	35.1	5.6	30.0	41.3	74	-32.7	PEAK
7389.60	29.30	120	1.2	Н	35.1	5.6	30.0	40.0	74	-34.0	PEAK
4926.40	32.2	270	1.5	V	32.5	4.9	30.0	39.6	74	-34.4	PEAK
4926.40	31.9	220	1.2	Н	32.5	4.9	30.0	39.3	74	-34.7	PEAK

Unintentional Emission for Sony Laptop with ANTB24-THIN-SO antenna, $30 MHz \sim 26$ GHz, 3 Meters

	Indicated		Table	An	itenna	Co	orrection Fac	tor	FCC 15 S	Subpart C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB
246.10	51.5	130	1.2	Н	13.8	2.2	25.0	42.5	46	-3.5
220.30	50.6	130	1.5	Н	11.8	2.2	25.0	39.6	46	-6.4
659.99	40.2	310	1.5	Н	20.6	2.8	25.0	38.6	46	-7.4
132.60	47.1	220	1.0	V	12.0	1.6	25.0	35.7	43.5	-7.8
308.40	44.3	280	1.2	Н	14.4	2.3	25.0	36.0	46	-10.0
395.77	41.7	45	1.2	Н	16.4	2.5	25.0	35.6	46	-10.4
88.20	46.9	350	1.8	V	9.8	1.2	25.0	32.9	43.5	-10.6
177.40	42.2	180	1.5	V	13.1	1.9	25.0	32.2	43.5	-11.3
150.06	40.3	310	1.2	V	12.7	1.7	25.0	29.7	43.5	-13.8

10.6.2 Intentional Emission for Sony Laptop with HFD04-R antenna, 30MHz ~ 26 GHz, 3 Meters, Port 1

	Indicated		Table	An	itenna	Сс	orrection Fac	tor	FC	CC 15 Subpa	ırt C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB	
	·				Low (Channel		1	•		
2412.1	93.10	30	1.8	V	28.1	3.4	30.0	94.6			AVG
2412.1	91.2	90	1.5	Н	28.1	3.4	30.0	92.7			AVG
2.12.1	71.2	, , ,	1.0		20.1		20.0	, ,2.,			AVG
2375.60	44.7	270	1.2	V	28.1	3.4	30.0	46.2	54	-7.8	RB
7236.30	34.6	45	1.5	V	35.1	5.6	30.0	45.3	54	-8.7	AVG
											RB
2375.60	41.5	250	1.2	Н	28.1	3.4	30.0	43.0	54	-11.1	AVG
7236.30	31.2	180	1.5	Н	35.1	5.6	30.0	41.9	54	-12.1	AVG
4824.20	33.1	180	1.2	V	32.5	4.9	30.0	40.5	54	-13.5	AVG
9648.40	29.3	0	1.2	V	35.1	5.6	30.0	40.0	54	-14.0	AVG
9648.40	26.8	30	1.2	Н	35.1	5.6	30.0	37.5	54	-16.5	AVG
4824.20	28.7	45	1.2	Н	32.5	4.9	30.0	36.1	54	-17.9	AVG
7236.30	36.9	45	1.0	V	35.1	5.6	30.0	47.7	74	-26.3	PEAK
2375.60	44.7	270	1.2	V	28.1	3.4	30.0	46.2	74	-27.9	PEAK RB
7236.30	33.1	180	1.0	Н	35.1	5.6	30.0	43.8	74	-30.2	PEAK
7230.30	33.1	100	1.0	11	33.1	3.0	30.0	13.0	7.1	30.2	PEAK
2375.60	41.5	250	1.2	Н	28.1	3.4	30.0	43.0	74	-31.1	RB
4824.20	35.4	180	1.2	V	32.5	4.9	30.0	42.8	74	-31.2	PEAK
9648.40	31.5	0	1.2	V	35.1	5.6	30.0	42.2	74	-31.8	PEAK
9648.40	28.3	30	1.2	Н	35.1	5.6	30.0	39.0	74	-35.0	PEAK
4824.20	30.8	45	1.5	Н	32.5	4.9	30.0	38.2	74	-35.8	PEAK
					Middle	Channel					
2438.30	92.5	110	1.5	V	28.1	3.4	30.0	94.0			AVG
2438.30	90.7	135	1.2	Н	28.1	3.4	30.0	92.2			AVG
											AVG
2326.90	44.3	0	1.5	V	28.1	3.4	30.0	45.8	54	-8.3	RB
2326.90	41.2	30	1.5	Н	28.1	3.4	30.0	42.7	54	-11.4	AVG RB
7314.90	31.3	90	1.5	Н	35.1	5.6	30.0	42.0	54	-11.4	AVG
9753.20	31.3	90	1.5	Н	35.1	5.6	30.0	41.9	54	-12.0	AVG
4876.60	33.7	130	1.0	Н	32.5	4.9	30.0	41.1	54	-12.1	AVG
7314.90	30.40	150	1.5	V	35.1	5.6	30.0	41.1	54	-12.9	AVG
9753.20	30.40	150	1.5	V	35.1	5.6	30.0	40.8	54	-12.9	AVG
4876.60	32.2	90	1.0	V	32.5	4.9	30.0	39.6	54	-14.4	AVG
70,000	32.2	70	1.0	,	32.3	7.7	50.0	37.0) ,	17.7	PEAK
2326.90	46.5	0	1.5	V	28.1	3.4	30.0	48.0	74	-26.1	RB
											PEAK
2326.90	43.9	30	1.5	Н	28.1	3.4	30.0	45.4	74	-28.7	RB
7314.90	33.7	90	1.2	Н	35.1	5.6	30.0	44.4	74	-29.6	PEAK
9753.20	33.4	90	1.5	Н	35.1	5.6	30.0	44.1	74	-29.9	PEAK
4876.60	36.6	130	1.0	Н	32.5	4.9	30.0	44.0	74	-30.0	PEAK
7314.90	32.80	150	1.2	V	35.1	5.6	30.0	43.5	74	-30.5	PEAK
9753.20	32.20	150	1.5	V	35.1	5.6	30.0	42.9	74	-31.1	PEAK

AM	BIT Micro	systems C	orporation						FCC II	D: MCL-T	60H42400	<u> </u>
	4876.60	34.5	90	1.0	V	32.5	4.9	30.0	41.9	74	-32.1	PEAK

					High (Channel					
2463.20	92.1	45	1.5	V	28.1	3.4	30.0	93.6			AVG
2463.20	90.4	120	1.4	Н	28.1	3.4	30.0	91.9			AVG
2487.1	43.9	110	1.5	V	28.1	3.4	30.0	45.4	54	-8.7	AVG
7389.60	34.4	45	1.5	V	35.1	5.6	30.0	45.1	54	-8.9	AVG
2487.1	41.0	140	1.5	Н	28.1	3.4	30.0	42.5	54	-11.6	AVG
4926.40	34.9	45	1.5	V	32.5	4.9	30.0	42.3	54	-11.7	AVG
9852.8	29.60	150	1.5	V	35.1	5.6	30.0	40.3	54	-13.7	AVG
4926.40	32.1	180	1.4	Н	32.5	4.9	30.0	39.5	54	-14.5	AVG
7389.60	28.30	180	1.4	Н	35.1	5.6	30.0	39.0	54	-15.0	AVG
9852.8	27.1	90	1.5	Н	35.1	5.6	30.0	37.8	54	-16.2	AVG
2487.1	46.3	110	1.5	V	28.1	3.4	30.0	47.8	74	-26.3	PEAK
7389.60	36.2	45	1.5	V	35.1	5.6	30.0	46.9	74	-27.1	PEAK
2487.1	43.8	140	1.5	Н	28.1	3.4	30.0	45.3	74	-28.8	PEAK
4926.40	36.1	45	1.5	V	32.5	4.9	30.0	43.5	74	-30.5	PEAK
9852.8	31.80	150	1.5	V	35.1	5.6	30.0	42.5	74	-31.5	PEAK
4926.40	33.2	180	1.4	Н	32.5	4.9	30.0	40.6	74	-33.4	PEAK
7389.60	29.70	180	1.4	Н	35.1	5.6	30.0	40.4	74	-33.6	PEAK
9852.8	29.4	90	1.5	Н	35.1	5.6	30.0	40.1	74	-33.9	PEAK

Intentional Emission for Sony Laptop with HFD04-R antenna, 30MHz \sim 26 GHz, 3 Meter, Port 2

	Indicated		Table	An	tenna	Сс	orrection Fac	tor	F(CC 15 Subpa	rt C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB	
					Low (Channel					
2412.1	50.40	90	1.8	V	28.1	3.4	30.0	51.9			AVG
2412.1	48.8	225	1.2	Н	28.1	3.4	30.0	50.3			AVG
7236.30	29.4	90	1.8	V	35.1	5.6	30.0	40.1	54	-13.9	AVG
4824.20	31.2	90	1.8	V	32.5	4.9	30.0	38.6	54	-15.4	AVG
7236.30	27.3	210	1.2	Н	35.1	5.6	30.0	38.0	54	-16.0	AVG
4824.20	30.1	225	1.2	Н	32.5	4.9	30.0	37.5	54	-16.5	AVG
7236.30	31.4	90	1.8	V	35.1	5.6	30.0	42.1	74	-31.9	PEAK
4824.20	33.5	90	1.8	V	32.5	4.9	30.0	40.9	74	-33.1	PEAK
4824.20	32.7	225	1.2	Н	32.5	4.9	30.0	40.1	74	-33.9	PEAK
7236.30	28.9	210	1.2	Н	35.1	5.6	30.0	39.6	74	-34.4	PEAK

	Middle Channel													
2438.30	51.1	225	1.2	V	28.1	3.4	30.0	52.6			AVG			
2438.30	49.3	135	1.5	Н	28.1	3.4	30.0	50.8			AVG			
7314.90	29.5	225	1.2	V	35.1	5.6	30.0	40.2	54	-13.8	AVG			
4876.60	31.2	225	1.2	V	32.5	4.9	30.0	38.6	54	-15.4	AVG			
7314.90	26.3	135	1.5	Н	35.1	5.6	30.0	37.0	54	-17.0	AVG			
4876.60	28.4	135	1.5	Н	32.5	4.9	30.0	35.8	54	-18.2	AVG			
7314.90	31.5	225	1.2	V	35.1	5.6	30.0	42.2	74	-31.8	PEAK			
4876.60	33.7	225	1.2	V	32.5	4.9	30.0	41.1	74	-32.9	PEAK			
7314.90	28.6	135	1.5	Н	35.1	5.6	30.0	39.3	74	-34.7	PEAK			
4876.60	30.4	135	1.5	Н	32.5	4.9	30.0	37.8	74	-36.2	PEAK			
					High (Channel								
2463.20	46.8	45	1.5	V	28.1	3.4	30.0	48.3			AVG			
2463.20	47.7	0	1.3	Н	28.1	3.4	30.0	49.2			AVG			
7389.60	28.3	90	1.5	V	35.1	5.6	30.0	39.0	54	-15.0	AVG			
4926.40	30.6	270	1.5	V	32.5	4.9	30.0	38.0	54	-16.0	AVG			
7389.60	27.20	120	1.2	Н	35.1	5.6	30.0	37.9	54	-16.1	AVG			
4926.40	29.4	220	1.2	Н	32.5	4.9	30.0	36.8	54	-17.2	AVG			
7389.60	30.7	90	1.5	V	35.1	5.6	30.0	41.4	74	-32.6	PEAK			
7389.60	29.60	120	1.2	Н	35.1	5.6	30.0	40.3	74	-33.7	PEAK			
4926.40	32.5	270	1.5	V	32.5	4.9	30.0	39.9	74	-34.1	PEAK			
4926.40	31.8	220	1.2	Н	32.5	4.9	30.0	39.2	74	-34.8	PEAK			

Unintentional Emission for Sony Laptop with HFD04-R antenna, 30MHz $\sim 26~\mathrm{GHz}, 3~\mathrm{Meters}$

Indicated			Table	Antenna		Correction Factor			FCC 15 Subpart C	
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB
246.10	51.1	130	1.2	Н	13.8	2.2	25.0	42.1	46	-3.9
220.30	50.2	130	1.5	Н	11.8	2.2	25.0	39.2	46	-6.8
132.60	47.3	220	1.0	V	12.0	1.6	25.0	35.9	43.5	-7.6
659.99	39.9	310	1.5	Н	20.6	2.8	25.0	38.3	46	-7.7
308.40	44.1	280	1.2	Н	14.4	2.3	25.0	35.8	46	-10.2
88.20	46.7	350	1.8	V	9.8	1.2	25.0	32.7	43.5	-10.8
395.77	41.2	45	1.2	Н	16.4	2.5	25.0	35.1	46	-10.9
177.40	41.9	180	1.5	V	13.1	1.9	25.0	31.9	43.5	-11.6
150.06	40.1	310	1.2	V	12.7	1.7	25.0	29.5	43.5	-14.0

11 - CONDUCTED EMISSIONS

11.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is +2.4 dB.

11.2 EUT Setup

The measurement was performed at the **O**pen **A**rea **T**est **S**ite, using the same setup per ANSI C63.4-1992 measurement procedure. The specification used was FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The host PC system was connected with 110Vac/60Hz power source.

11.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency	150 kHz
Stop Frequency	
Sweep Speed	Auto
IF Bandwidth	
Video Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	

11.4 Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "Qp".

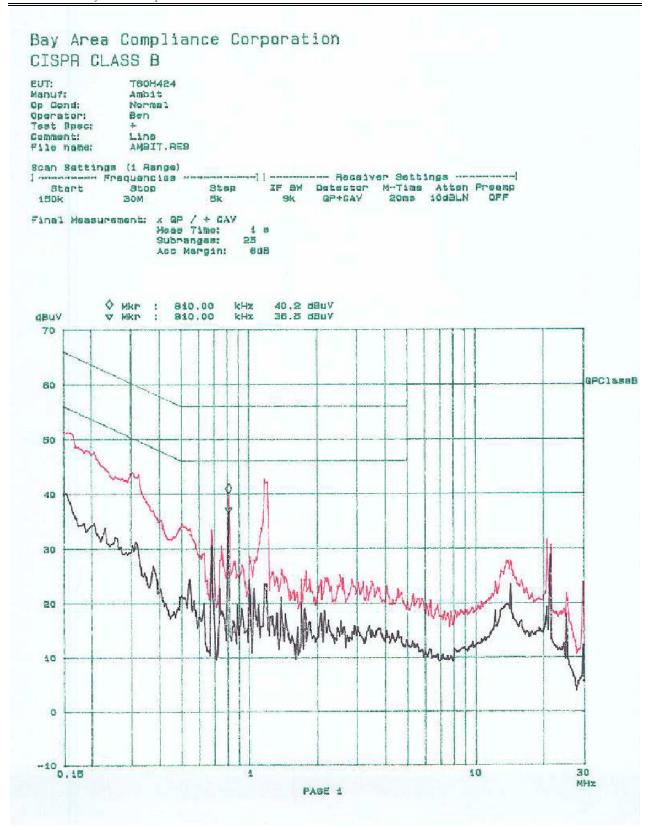
11.5 Summary of Test Results

The EUT <u>complies with the FCC</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-8.6 dB μ V at 0.810 MHz in the Neutral mode

11.6 Conducted Emissions Test Data

	LINE CO	FCC CLASS B			
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dΒμV	Qp/Ave/Peak	Line/Neutral	dΒμV	dB
0.810	37.4	Ave	Neutral	46	-8.6
0.810	36.5	Ave	Line	46	-9.5
0.150	54.7	QP	Neutral	66	-11.3
21.900	37.9	Ave	Neutral	50	-12.1
0.150	52.1	QP	Line	66	-13.9
0.150	41.3	Ave	Line	56	-14.7
0.810	40.9	QP	Neutral	56	-15.1
0.810	40.2	QP	Line	56	-15.8
0.150	40.1	Ave	Neutral	56	-15.9
21.600	30.1	Ave	Line	50	-19.9
21.300	30.4	QP	Line	60	-28.8
21.900	38.2	QP	Neutral	60	-28.8


11.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data are presented hereinafter as reference.

Bay Area Compliance Corporation CISPR CLASS B EUT: Manuf: Ambit Op Cond: Operator: Normal Ben Test Spec: Comments AMBITN. RES File neme: Scan Settings (1 Hangs) ---- Receiver Sattings -------- Frequencies ---F BW Detector M-Time Atten Presmp 9K GP+GAV 20ms 10dBLN 0FF Start Stop Step 9K 150k Bk Final Measurement: x QP / + GAV Meas Time: Subranges: 35 Acc Margin: 808 40.9 dBuV 37.4 dBuV ♦ MKC 840.00 KH2 kH2 V MKP **Vueb** 70 OPG1ass3 60 50 30 50 10 0 -10 . 15

30 MHZ

PAGE 1

