

ELECTROMAGNETIC INTERFERENCE TEST REPORT

Report Number: 2751-1 Report Date: 12/05/07 Applicable Specification: 47 CFR Part 15, Subpart C, Section 15.225 Industry Canada RSS-210 Issue 7 Certification of a Class B RFID Card Reader

> FCC ID: MBPSCR331-DI21B IC: 7485A-331DI21B

Equipment under Test:
Model Number:
Serial Number:

RFID Card Reader SCR 331DI-DTC 001

Prepared for:

SCM Microsystems 41470 Christy Avenue Fremont, CA 94538

Tested by:

Bob Cole

Prepared by:

Bob Cole EMCE Engineering, Inc. 44366 S. Grimmer Blvd. Fremont, CA 94538 Phone: 510-490-4307 Fax: 510-490-3441

Note:

- This report or certificate does not represent endorsement by NVLAP or any agency of the US Government.
- This report or certificate shall not be reproduced except in full without the written approval of the issuer.

TABLE OF CONTENTS

<u>Paragraph</u> 1.0	<u>Title</u> SCOPE	Page 5
1.1	Objective	5
1.2	Description of EUT	5
1.3	Results/Modifications	5
1.4	Test Limits	5
2.0	APPLICABLE DOCUMENTS	6
2.1	FCC Document	6
2.2	Other Documents	6
3.0	GENERAL SETUP AND TEST CONDITIONS	7
3.1	Test Facility	7
3.2	Description of Open- Field Test Site	7
3.3	Site Attenuation	7
3.4	Ground Plane (Ground Screen)	7
3.5	Input Power for EUT	9
3.6	Accessory Equipment Precautions	9
3.7	Ambient Interference	9
3.8	Personnel	9
3.9	Use of Interference Measuring Equipment	10
3.10	Calibration of Measuring Equipment	10
4.0	PREPARATION OF EUT FOR TEST	11
4.1	Identification of EUT	11
4.2	Setup of EUT	11
4.3	Interface and Cabling	13
4.4	Peripherals Connected	13
5.0	DETAILED MEASUREMENTS	14
5.1	Conducted Emissions, Power Leads, 450kHz to 30MHz	14
5.1.1	Test Results	14
5.1.2	Test Instrumentation	15
5.1.3	Recommendations	15
5.2	Radiated Emissions Test, 30MHz to 1000MHz	16
5.2.1	Vertical Polarization Measurements	16
5.2.2	Horizontal Polarization Measurements	17
5.2.3	Test Results	17
5.2.4	Test Instrumentation	17
5.2.5	Recommendations	17
	EMCE Engineering 44366 S. Grimmer Blvd Fremont, CA 94538	

510-490-4307 / 510-490-3441 Fax

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1	EMCE Test Site Layout	8

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>	<u>Page</u>
Α	NVLAP Documentation	18
В	Test Data Sheets	26
С	Intentional Radiator Test Data	29
D	Modification List and Photos	34
E	Test Equipment List	40

Disclaimer

EMCE Engineering, Inc., assumes no responsibility for the continuing validity of test data when the Equipment under Test is not under the continuous physical control of EMCE. The signature below attests to the fact that all measurements reported herein were performed by myself or were made under my supervision, and are correct to the best of my knowledge and belief as of the date specified. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Tests were conducted by qualified EMCE Engineering, Inc. personnel utilizing test equipment maintained in a "current" state of calibration with traceability to NIST.

- This report or certificate does not represent endorsement by NVLAP or any agency of the US Government.
- This report or certificate shall not be reproduced except in full without the written approval of the issuer.

1.0 SCOPE

This test report describes the equipment setup, test methods employed and results obtained during electromagnetic interference (EMI) testing of a Class B RFID Card Reader as defined in Part 15, Subpart A, paragraph 15.3 (o). The tests described herein measured the RF radiated (RFI Field Strength) emissions of the equipment under test (EUT) as installed in a typical "Host" environment. The tests conformed to the measurement and test site requirements of ANSI C63.4-2003.

1.1 Objective

The tests described herein were performed to establish that the EUT is capable of compliance with the requirements of Part 15, Subpart B, Section 15.225 for Intentional Radiators (a Class B RFID Card Reader).

1.2 Description of EUT

The EUT is a **RFID Card Reader** Model Number: **SCR 331DI-DTC** Serial Number: **001**, manufactured by SCM Microsystems. The EUT contained the following options: No Options.

1.3 Results/Modifications

The EUT passed FCC Class B conducted and radiated emissions tests. No modification was necessary. The manufacturer may declare the EUT as complying with the FCC requirements.

1.4 Test Limits

In accordance with paragraph CFR 47, 15.207 and 15.209. emissions.

2.0 APPLICABLE DOCUMENTS

2.1 FCC Documents

<u>Document</u>	<u>Title</u>
Title 47 CFR	TELECOMMUNICATION
Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations.
Part 15	Radio Frequency Devices.
2.2 Other Documents	
ANSI C63.4-2003	American National Standards for Methods of Measurement of Radio-Noise Emissions From Low-Voltage Electrical and Electronic Equipment In the Range of 9kHz to 40GHz.
CISPR 22: 2006	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement. By the International Electrotechnical Commission (IEC).

3.0 GENERAL SETUP AND TEST CONDITIONS

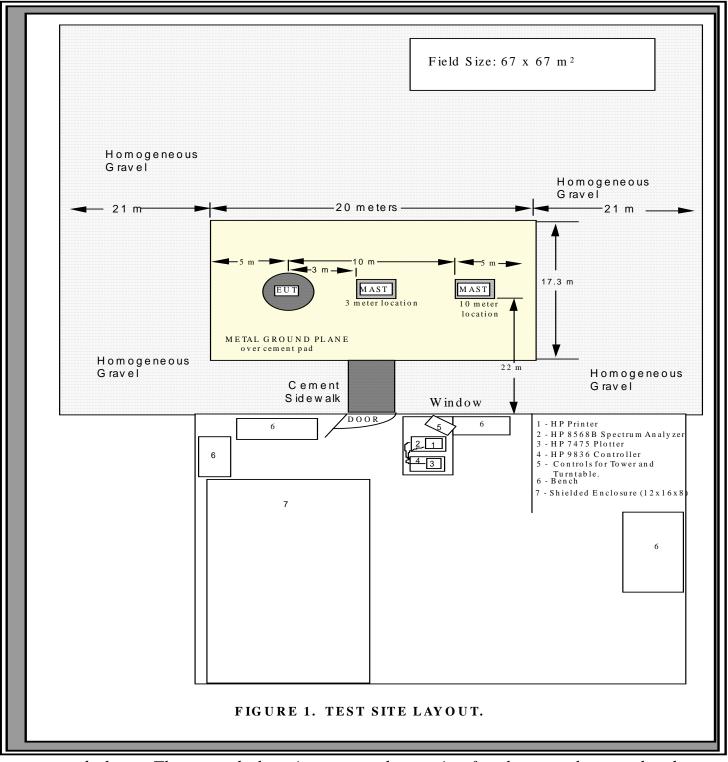
3.1 Test Facility

The tests described herein were performed at:

EMCE Engineering, Inc. 44366 S. Grimmer Blvd. Fremont, CA 94538

This laboratory has one semi-anechoic chamber, one electromagnetic shielded enclosure and a 3-meter and 10-meter Open Area Test Site (OATS). A computer controlled spectrum analyzer with quasi-peak adapter, and printer were used for gathering and recording test data. Figure 1 shows the test site layout for conducted and radiated measurements.

3.2 Description of Open Area Test Site (OATS)


The 3 and 10 meter site is located out-of-doors in an open field whose size is 212 feet long by 206 feet wide. The dimensions of the test area are 66 feet wide by 59 feet long (20m x 18m). The description of the 3 and 10-meter site is on file with the FCC according to the requirements of Part 2.948.

3.3 Site Attenuation

The site attenuation for radiated measurements has been determined for this test site using the method described in ANSI C63.4 Paragraph 5.4.6 and sub paragraphs. The site attenuation is measured annually. Site attenuation was last measured and reported to the FCC 12/15/06.

3.4 Ground Plane (Ground Screen)

The site has a 3900 square foot $(20m \times 18m)$ floor area of poured reinforced concrete, 6 to 8 inches thick. A 20m x 18m (66ft x 59ft) solid 24 gauge galvanized sheet steel ground plane is centered on the test area with its long dimension along the major axis of the test site. The antenna mast and turntable are located 3 meters apart on the centerline of the major axis so that each is greater than 3 meters from the edges of the

ground plane. The ground plane is connected to a nine-foot long earth ground rod at each corner of the ground plane.

3.5 Input Power for EUT

Electricity for the EUT is provided through buried power lines in metallic conduit with an outlet box placed near the EUT. Power for the EUT is taken from the outlet box of either of two "shielded enclosure" quality power line filters located on the ground plane near the EUT. The filters are electrically bonded to the ground plane.

3.6 Accessory Equipment Precautions

Care was taken that accessory equipment or adjacent equipment did not produce unacceptable interference so as to contaminate the final test data. The EMI receiver and its associated computer, printer and plotter were located greater than 15 meters away from the EUT during testing and were powered from a separately filtered power source.

3.7 Ambient Interference

Ambient interference from radio and television stations, vehicles, mobile radio, etc. was present at the open test site during testing. Care was taken to assure that ambient interference did not overload the measurement receiver or mask emissions from the EUT. The method of measurement used to deal with ambient noise during radiated emission testing is described in Paragraph 5.2.1.

3.8 Personnel

All testing was performed by EMCE Engineering personnel who are properly trained for the instruments and procedures used. The test data sheets have been signed-off by the attending EMCE Test Engineer.

3.9 Use of Interference Measurement Equipment

All of the emission measurements and field strength measurements were performed with a Hewlett-Packard 8566B Spectrum Analyzer System. The Spectrum Analyzer System utilizes the following basic instruments:

- 1. Fujitsu Lifebook Computer
- 2. EMITest measurement software
- 2. HP-85650A Quasi Peak Adapter

Test results are recorded on tabular data sheets and show final corrected values compared to the specification limit. Sample calculations show how the antenna factors, cable losses, amplifier gain, etc. are combined in the automatic analyzer program to produce the final corrected values shown on the graphs and data sheets.

3.10 Calibration of Measuring Equipment

The EMI Receiver (spectrum analyzer) is calibrated by an outside calibration laboratory on a 12-month basis. The laboratory provides certification with traceability to NIST. Antenna factors are measured at 1-year interval by EMCE Engineering using the reference antenna method of ANSI C63.5-2003. Cable losses as well as amplifier gains are swept at least every month to verify accurate values.

4.0 PREPARATION OF EUT FOR TEST

4.1 Identification of EUT

Equipment under Test: **RFID Card Reader** Model Number: **SCR 331DI-DTC** Serial Number: **001**

4.2 Setup of EUT

Power to EUT: **120 VAC Line Voltage**, **12 VDC AC Adapter** Grounding of EUT: **USB Cable** Special Software: **None**

- Orientation of EUT: Per CFR 47, 15.31 and ANSI 63.4-2003, for all measurements the EUT was evaluated in the X, Y, and Z orthogonal axes.
- Loop Antenna was manipulated to find the worst case emission. Positions include, but not limited to parallel and perpendicular to the EUT, and parallel to the ground

4.3 Interfaces & Cabling

The following cables were connected during test:

Interface	Source	Load	Length	Cable	Connector
	Port	<u>Port</u>	<u>Cable</u>	<i>Type</i>	<u>Material</u>
USB	USB	EUT	0.5M	Unshielded	Plastic
	Power Sup	ply			

4.4 Peripherals

The following peripherals were attached and operating during the tests:

<u>Nomenclature</u>	<u>Mfgr & Model</u>
Laptop PC	HP dv4000

5.0 TEST PROCEDURES

5.1 Conducted Emissions, Power Leads, 150 kHz to 30 MHz

Conducted emissions were measured from 150kHz to 30MHz on the power and return leads of the EUT according to the methods defined in ANSI C63.4, Section 7.0 and the limits found in CFR 47, 15.107. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane and removed from the vertical ground plane by 40-cm as shown in Appendix D, Photographs of Test Setup. The interface cables and equipment positioning were varied within limits of reasonable application per Figure 9A of ANSI C63.4 to determine the position producing maximum conducted emissions.

The LISN and high pass filter were connected through 20 feet of RG-214 coaxial cable to the spectrum analyzer input. The switch on the LISN was set to the Supply Line position and the power was applied. The EUT was operated as described in Paragraph 4.0 in a mode, which was intended to produce maximum emissions for normal operation.

The switch in the LISN was then set to the Return Line position and the interference scan was repeated and an additional set of data sheets and plot charts were prepared for the return lead.

5.1.1 Test Results

PASS (See Appendix B)

5.1.2 Test Instrumentation

See Appendix I – *1*,*2*,*3*,*4*,*10*

5.1.3 Recommendations

Due to the fact that there were no test failures, there are no recommendations.

5.2 Radiated Emissions Test, 30 MHz to 1000 MHz

Radiated emissions were measured from 30 MHz to 1000 MHz. The measurement bandwidth was 120 kHz according to the methods defined in ANSI C63.4 Section 8.0. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meters above the ground plane.

The EUT was operated as described in Paragraph 4.0, in a mode, which was intended to produce maximum emissions. Preliminary scans of the frequency range were used to determine the cable configurations and equipment positions which produce maximum emissions. These configurations were then kept intact while both angle of rotation of the EUT with respect to the antenna and antenna height were scanned for maximum readings.

5.2.3 Test Results

The EUT passed both vertical and horizontal radiated emissions tests.

5.2.4 Test Instrumentation

See Appendix I – 1-10

5.2.5 Recommendations

Because there were no test failures, there are no recommendations.

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 14 of 35

APPENDIX A

Certifications

EMCE NVLAP Accreditation

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 15 of 35

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:1999

Universal Compliance Labs dba EMCE Engineering

44366 South Grimmer Boulevard Fremont, CA 94538-6385 Mr. Bob Cole Phone: 510-490-4307 Fax: 510-490-3441 E-Mail: bob@universalcompliance.com URL: http://www.universalcompliance.com

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200092-0

NVLAP Code Designation / Description

Emissions Test Methods:

12/CIS22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/FCC15b1	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/T51a	AS/NZS CISPR 22 (2004): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
Immunity Test	Methods:

Immunity Test Methods:

- 12/I01 IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN 61000-4-2: Electrostatic Discharge Immunity Test
- 12/I03 IEC 61000-4-4(1995), A1(2000), A2(2001); EN 61000-4-4: Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

Page 1 of 2

NVLAP-01S (REV. 2005-05-19)

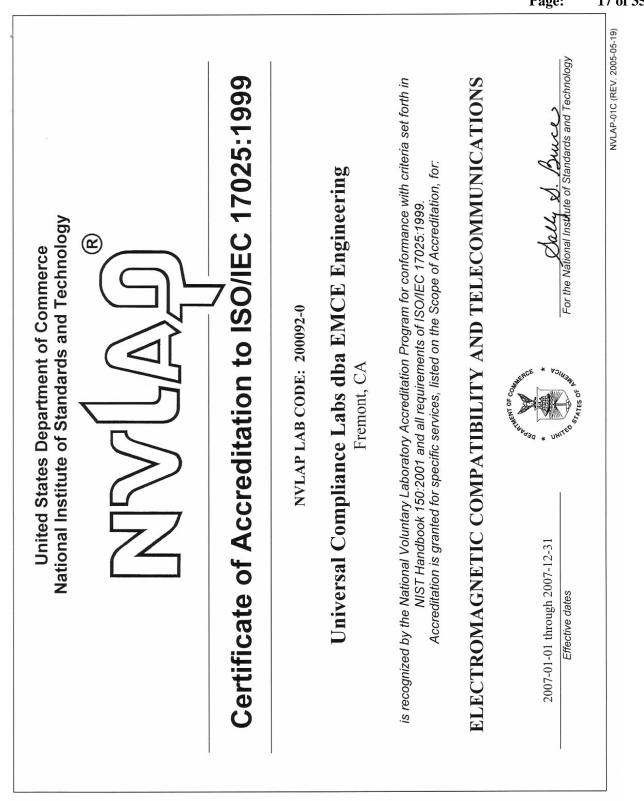
Report Number: 2751-1 Date: 12/05/07 Page: 16 of 35

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200092-0

NVLAP Code	Designation / Description
12/I04	IEC 61000-4-5, Ed. 1.1 (2001-04); EN 61000-4-5: Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test
12/I05	IEC 61000-4-6, Ed. 2.0 (2003-05); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I06	IEC 61000-4-8, Ed. 1.1 (2001); EN 61000-4-8: Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test
12/I07	IEC 61000-4-11, Ed. 1.1 (2001-03); EN 61000-4-11: Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests


2007-01-01 through 2007-12-31

Effective dates

Page 2 of 2

For the National Institute of Standards and Technology

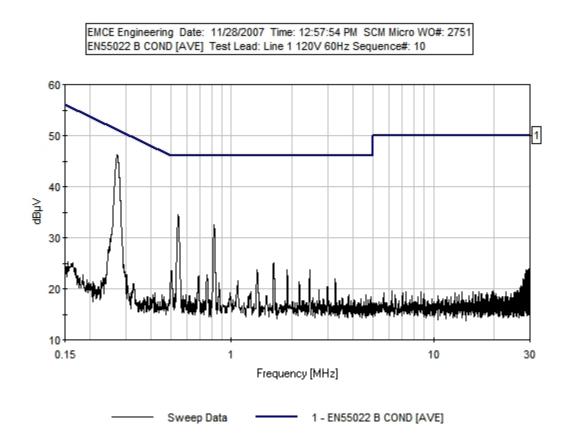
NVLAP-01S (REV. 2005-05-19)

 Report Number:
 2751-1

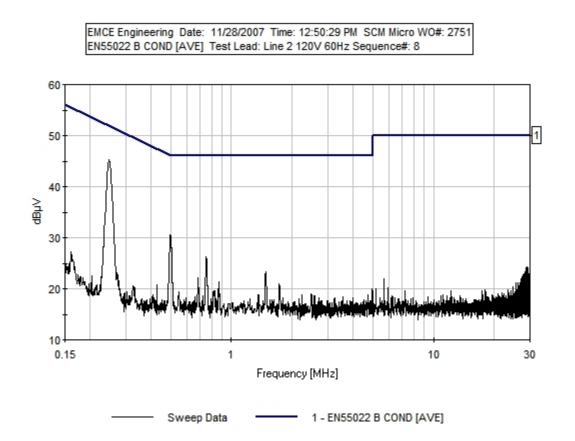
 Date:
 12/05/07

 Page:
 18 of 35

APPENDIX B

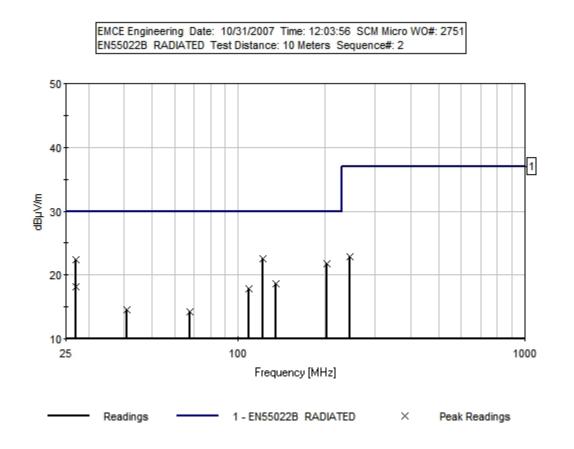

Test Data Sheets

Conducted Emissions Radiated Emissions


LINE CONDUCTED EMISSIONS TEST

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Custom Specific Work C Test Ty Equipm Manufa Model: S/N:	cation:] Order #: 2 pe: 0 eent: 5]		Tin Sequence	e#: 10 By: Bob	7:54 PM					
	quipment:										
Functio	Function S/N					on Date	Cal I	Due Date	А	.sset #	
	Equipment Under Test (* = EUT): unction Manufacturer mart Card Reader* SCM Micro Support Devices: Manufacturer unction Manufacturer Test Conditions / Notes: Vertices:					Model			S/N		
		* 5	CM Micro)		SCR33	51				
			Afo of			Madul	щ		C/NI		
-						Model	#		S/N		
Test Co PS2	onditions / 1	Notes:									1
Transa	lucer Legen	d:									
Ext /	Attn: 0 dB										
	ement Data	: Re	eading liste	ed bv	margin.			Test Lea	d: Line 1		
#	Freq	Rdng	8				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	271.442k	46.2					+0.0	46.2	51.1	-4.9	Line
2	546.324k	34.6					+0.0	34.6	46.0	-11.4	Line
2	J∓0.J2 4 K	54.0					10.0	54.0	-0.0	-11.4	Line
3	820.478k	32.6					+0.0	32.6	46.0	-13.4	Line
4	1.626M	25.1					+0.0	25.1	46.0	-20.9	Line
5	1.345M	23.8					+0.0	23.8	46.0	-22.2	Line
5	1.5 15101	25.0					10.0	20.0	10.0		2
6	1.889M	23.8					+0.0	23.8	46.0	-22.2	Line
	0.40.40.5						. 0. 0		46.0		T ·
7	2.434M	23.7					+0.0	23.7	46.0	-22.3	Line
8	29.728M	23.9					+0.0	23.9	50.0	-26.1	Line
											-
9	28.821M	23.8					+0.0	23.8	50.0	-26.2	Line
10	29.268M	23.7					+0.0	23.7	50.0	-26.3	Line
10	27.200141	23.1					10.0	23.1	50.0	20.5	Line


Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307											
Custom Specific Work C Test Ty Equipm Manufa Model: S/N:	cation: 1 Drder #: 2 pe: 0 hent: 2 het: 2 he	SCM Micr EN55022 F 2751 Conducted Smart Car SCM Micro SCR331	3 COND l Emissio d Reade	ons			Da Tin Sequence Tested F	e#: 8 By: Bob (:29 PM		
	quipment:					-	~				
Functio		S/N		C	alibrati	on Date	Cal I	Due Date	A	sset #	
	ment Under								COL		
FunctionManufacturerSmart Card Reader*SCM Micro						Model SCD22			S/N		
		· 3		ro		SCR33	1				
	rt Devices:										
Functio	n	Ν	Aanufacti	urer		Model	#		S/N		
Test C	onditions / 1	Notes:									
Transa	lucer Legen	d:									
Ext A	Attn: 0 dB										
Measur	ement Data	Re Re	eading lis	sted by m	argin.			Test Lead	1: Line 2		
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	248.172k	45.2					+0.0	45.2	51.8	-6.6	Line
								.			
2	501.238k	30.4					+0.0	30.4	46.0	-15.6	Line
3	748.486k	26.2					+0.0	26.2	46.0	-19.8	Line
5	/40.400K	20.2					+0.0	20.2	46.0	-19.8	Line
4	29.011M	24.3					+0.0	24.3	50.0	-25.7	Line
	29.01111	21.3					10.0	21.5	50.0	20.1	Line
5	28.788M	24.1					+0.0	24.1	50.0	-25.9	Line
_											
6	29.239M	24.1					+0.0	24.1	50.0	-25.9	Line
7	28.555M	24.0					+0.0	24.0	50.0	-26.0	Line
8	28.671M	24.0					+0.0	24.0	50.0	-26.0	Line
0	20 46714	24.0					.0.0	24.0	50.0	26.0	Time
9	29.467M	24.0					+0.0	24.0	50.0	-26.0	Line
10	29.922M	23.6					+0.0	23.6	50.0	-26.4	Line
10	27.722141	23.0					10.0	23.0	50.0	20.7	Line
I											

UNINTENTIONAL RADIATED EMISSIONS TEST

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Custom Specific Work C Test Ty Equipm Manufa Model: S/N:	cation:EOrder #:2pe:Fnent:Sacturer:S	CM Micr CN55022B 751 Radiated S mart Car CM Micro CR331	RADIA Scan rd Reader				Tii Sequenc	ate: 10/31 ne: 12:03 e#: 2 By: Bob (:56				
	quipment:												
Functio	n	S/N		Ca	alibratio	n Date	Cal	Due Date	As	sset #			
	ment Under												
Functio			Aanufactu			Model a			S/N				
	Smart Card Reader* SCM Micro SCR331 Support Devices: Image: Comparison of the second s												
Suppo	rt Devices:	-	f f			Nr. 1 1	ц		C /N				
Functio			Aanufactu	rer		Model	Ħ		S/N				
Test Conditions / Notes:													
T1=AH T3=844	ducer Legend I SAS-200/54 I7 Pre-Amp Attn: 0 dB		9			T2=EM	ICE Y1 (Cable - Rac	liated Site				
	rement Data:	R	eading lis	ted by ma	argin.		Τe	est Distance	e: 10 Meter	rs			
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar		
	MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant		
1	122.043M	35.9	+11.3	+2.0	+26.6		+0.0	22.6	30.0	-7.4	Vert		
2	27.123M	37.1	+12.4	+0.0	+27.1		+0.0	22.4	30.0	-7.6	Vert		
3	203.399M	31.3	+14.5	+2.6	+26.7		+0.0	21.7	30.0	-8.3	Vert		
4	135.603M	31.1	+12.0	+2.2	+26.6		+0.0	18.7	30.0	-11.3	Vert		
5	27.117M	32.8	+12.4	+0.0	+27.1		+0.0	18.1	30.0	-11.9	Horiz		
6	108.483M	32.7	+10.0	+1.9	+26.7		+0.0	17.9	30.0	-12.1	Vert		
7	244.081M	31.4	+15.3	+2.8	+26.7		+0.0	22.8	37.0	-14.2	Vert		
8	40.681M	28.4	+11.9	+1.2	+26.9		+0.0	14.6	30.0	-15.4	Horiz		
9	67.793M	32.2	+7.4	+1.5	+26.9		+0.0	14.2	30.0	-15.8	Horiz		

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 25 of 35

APPENDIX C

Test Data Sheets Intentional Radiator Results

INTENTIONAL RADIATOR

Maximum allowed field strength in the frequency range of 13.553-13.567 MHz is 15,848 microvolts per meter, or 84 dBuV/M at a test distance of 30 meters. Test distance for this measurement is 1 meter. The calculation for determining the field strength limit at 1 meter is as follows:

Correction Factor = 40 log (distance 1 / distance 2) Correction Factor = 40 log (30/1) Correction Factor = 59.1 dBuV/M

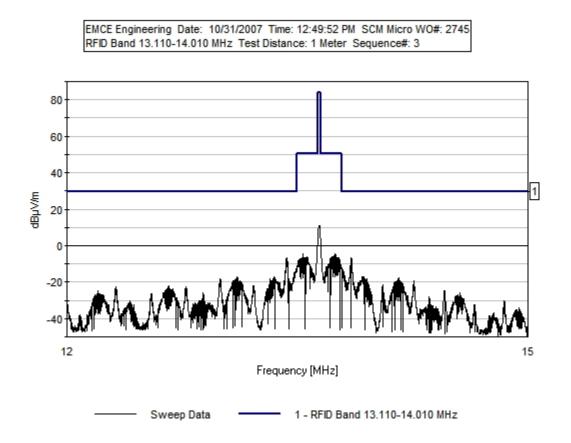
Therefore, the limit used for this measurement is 143.1 dBuV/M

The plot on the following page shows the peak power output of the EUT as being 74.0 dBuV/M. at 13.56 MHz, which is the fundamental transmit frequency for this device.

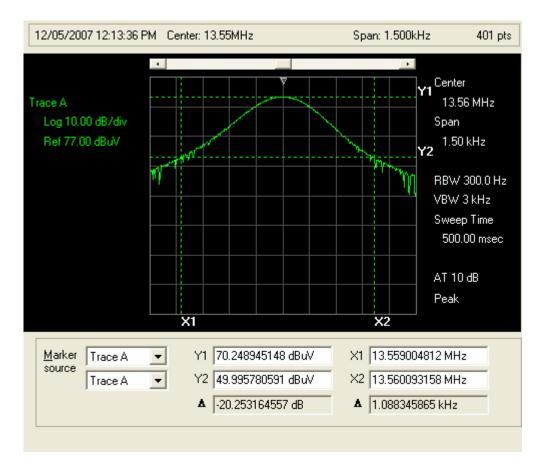
Test results show compliance to the limits called out in CFR 47, Section 15.225 (a), (b), (c), (d) and (e), as well as RSS-210 6.2.2(e) as follows:

 Report Number:
 2751-1

 Date:
 12/05/07


 Page:
 27 of 35

TEST RESULTS


Peak Output Power

Per CFR 47, Section 15.225 and RSS-210 Issue 5, Section 6.2.2(e)

Test Lo	cation: E	EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307									
Custom Specific Work O Test Ty Equipm Manufa Model: S/N:	cation: F Order #: 2 pe: F tent:	SCM Micro RFID Band 13.110-14.010 MHz2745Date: 10/31/2007Radiated ScanTime: 12:49:52 PMSequence#: 3 Tested By: Bob Cole									
	quipment:					_					
Function		S/N		Ca	alibratior	1 Date	Call	Due Date	As	set #	
	nent Under		-			Madald	1		C /NI		
Function		N	/Ianufactu	ner		Model #	t		S/N		
Suppor Function	rt Devices:	Ν	/Ianufactu	ror		Model #	+		S/N		
	n onditions / N		anulaciu			widuel +	ſ		0/14		
Config		oles:]
	lucer Legend	4.]
T1=cab		<i>.</i>				T2=844	7 Pre-Ai	np			
	105 Loop A	ntenna				-		r			
	Attn: 0 dB										
-	ement Data:		ding liste					est Distance			.
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	dB	Dist Table	Corr dBuV/m	Spec dBµV/m	Margin dB	Polar Ant
1	13.559M	<u>α υ</u> μν 74.0	+0.2	+27.2	+19.7	uD	-59.0	<u>α</u> 7.7	<u>40μ</u> v/m 50.5	-42.8	Vert
-	101007111	/ 110					0710		0010		, 010
2	13.768M	60.1	+0.2	+27.2	+19.5		-59.0	-6.4	29.5	-35.9	Vert
3	13.772M	59.5	+0.2	+27.2	+19.5		-59.0	-7.0	29.5	-36.5	Vert
4	13.348M	59.3	+0.2	+27.2	+19.8		-59.0	-6.9	29.5	-36.4	Vert
5	13.765M	58.3	+0.2	+27.2	+19.5		-59.0	-8.2	29.5	-37.7	Vert
6	13.711M	54.0	+0.2	+27.2	+19.6		-59.0	-12.4	29.5	-41.9	Vert
7	13.409M	53.6	+0.2	+27.2	+19.7		-59.0	-12.7	29.5	-42.2	Vert
8	13.717M	52.4	+0.2	+27.2	+19.6		-59.0	-14.0	29.5	-43.5	Vert
											X 7
9	13.723M 13.394M	52.1 51.4	+0.2	+27.2	+19.5		-59.0	-14.4	29.5 29.5	-43.9	Vert Vert

20 dB Bandwidth Per RSS-210, Section 5.9.1 20 dB BW = 1.088 kHz

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 30 of 35

Frequency Stability

<u>Temperature</u> (Celcius)	Voltage (DC)	<u>Transmit</u> Frequency	<u>Upper Limit</u> (MHz)	Lower Limit (MHz)	<u> Pass / Fail</u>
		<u>(MHz)</u>			
Ambient	102.00	13.560	13.561356	13.558644	PASS
Ambient	120.00	13.559	13.561356	13.558644	PASS
Ambient	138.00	13.560	13.561356	13.558644	PASS
+50	120.00	13.559	13.561356	13.558644	PASS
-20	120.00	13559	13.561356	13.558644	PASS

CFR 47, Section 15.225(e) and Sec 15.31(e), RSS-210 Sec 6.2.2(e) and 6.4

Field Strength of Harmonics

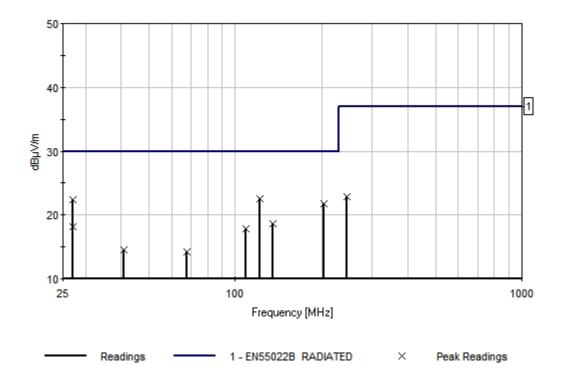
CFR 47, Section 15.225(d), RSS-210 Sec 6.3 Limits from CFR 47, Section 15.209 Test Distance: 3 meters

Frequency (MHz) (mi	Measurement Field strength crovolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: Specification:	SCM Micro EN55022B RADIATED		
Work Order #:	2751	Date:	10/31/2007
Test Type:	Radiated Scan	Time:	12:03:56
Equipment:	Smart Card Reader	Sequence#:	2
Manufacturer:	SCM Micro	Tested By:	Bob Cole
Model:	SCR331		
S/N:			

Test Equipment:


Function	S/N	Calibration Date	Cal Due Date	Asset #
Equipment Under T	<i>est</i> (* = EUT):			
Function	Manufacturer	Model #	S/N	
Smart Card Reader*	SCM Micro	SCR331		
Support Devices:				
Function	Manufacturer	Model #	S/N	
Test Conditions / No	tes:			
Transducer Legend:				
T1=AH SAS-200/543	S/N: 199	T2=EMC	E Y1 Cable - Radiated S	lite
T3=8447 Pre-Amp				
Ext Attn: 0 dB				
	~			

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Test Distance: 10 Meters				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	122.043M	35.9	+11.3	+2.0	+26.6		+0.0	22.6	30.0	-7.4	Vert

•	12/05/07
	32 of 35

									_	
									Pa	ge:
2	27.123M	37.1	+12.4	+0.0	+27.1	+0.0	22.4	30.0	-7.6	Vert
3	203.399M	31.3	+14.5	+2.6	+26.7	+0.0	21.7	30.0	-8.3	Vert
4	135.603M	31.1	+12.0	+2.2	+26.6	+0.0	18.7	30.0	-11.3	Vert
5	27.117M	32.8	+12.4	+0.0	+27.1	+0.0	18.1	30.0	-11.9	Horiz
6	108.483M	32.7	+10.0	+1.9	+26.7	+0.0	17.9	30.0	-12.1	Vert
7	244.081M	31.4	+15.3	+2.8	+26.7	+0.0	22.8	37.0	-14.2	Vert
8	40.681M	28.4	+11.9	+1.2	+26.9	+0.0	14.6	30.0	-15.4	Horiz
9	67.793M	32.2	+7.4	+1.5	+26.9	+0.0	14.2	30.0	-15.8	Horiz

EMCE Engineering Date: 10/31/2007 Time: 12:03:56 SCM Micro WO#: 2751 EN55022B RADIATED Test Distance: 10 Meters Sequence#: 2

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 33 of 35

APPENDIX D

EUT MODIFACTION LIST AND PHOTOS

N/A - NO modifications necessary

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 34 of 35

APPENDIX E

TEST EQUIPMENT LIST

 Report Number:
 2751-1

 Date:
 12/05/07

 Page:
 35 of 35

Test Equipment List

Name	Manufacturer	Model	Cal. Due Date	Designator
Spectrum Analyzer	Hewlett-	8568B	2/1/08	1
	Packard			
Quasi-Peak Adapter	Hewlett-	85650A	2/1/08	2
	Packard			
LISN	ЕМСО	3816/2	11/15/08	3
Antenna Mast	EMCO	1050	N/A	4
Rotating Table	EMCO	1060	N/A	5
Antenna, Biconical	Electro-Metrics	BIA-30	6/17/08	6
Antenna, Log-periodic	Electro-Metrics	LPA-30	6/17/08	7
Antenna, Loop	Empire Devices	LP-105	6/20/08	8
Preamplifier	Hewlett-	8447D	11/15/08	9
	Packard			
Computer Controller	Fujitsu /	Lifebook	N/A	10
	EMITest			