

the written authorization by the lab. Revision: 2.0

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Tel.: +49 9421 56868-0 Fax: +49 9421 56868-100 Email: company@emv-testhaus.com Accreditation: Deutscher Akkreditierungs Rat Δ Registration number: DAT-P-224/95-02 CAB (EMC) registration number: BNetzA-CAB-02/21-02/3 FCC facility registration number: 221458 MRA US.EU, FCC designation number: DE0010 Industry Canada registration number: 3472A-1 Place of Inspection: EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany The technical accuracy is guaranteed through the quality management of the EMV TESTHAUS GmbH SCM Microsystems (India) Pvt. Ltd EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 <u>Μν τε s τ</u>η Αυ s SCL011 94315 Straubing Germany

Revision: 2.0

090526-AU01+W02

Page 2 of 48

Table of contents

1	Test regulations	5
2	Summary of test results	6
3	Equipment under Test (EUT)	7
4	Spectrum Mask	12
5	Conducted emission test	16
6	Measurement of radiated emission	23
7	Occupied Bandwidth (99%)	36
8	Occupied Bandwidth (20dB)	39
9	Carrier frequency stability	43
10	Designation of Emissions	46
11	Equipment Calibration Status	47
12	Summary	48

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

Table of pictures

Picture 1: EUT (top side with dock)	8
Picture 2: EUT (bottom side)	
Picture 3: EUT complete with USB cable	10
Picture 4: Outline of setup for spectrum mask test	14
Picture 5: Result of spectrum mask measurement	15
Picture 6: Outline of conducted emission test setup	18
Picture 7: Conducted emission on mains, phase 1	19
Picture 8: Conducted emission on mains, phase 1	20
Picture 9: Conducted emission on mains, neutral	21
Picture 10: Conducted emission on mains, neutral	
Picture 11: Outline of radiated emission test setup	25
Picture 12: Radiated field strength from 9 kHz to 30 MHz	
Picture 14: Outline of radiated emission test setup	30
Picture 15: Radiated emission 30 MHz – 1000MHz (with tag)	31
Picture 17: Radiated emission 30 MHz – 1000MHz (with tag, table)	32
Picture 15: Radiated emission 30 MHz – 1000MHz (without tag)	33
Picture 17: Radiated emission 30 MHz – 1000MHz (without tag, table)	34
Picture 18: Outline of test setup for occupied bandwidth measurement	37
Picture 19: Occupied bandwidth 99%	38
Picture 20: Outline of occupied bandwidth test setup	40
Picture 21: Occupied bandwidth lower value	
Picture 22: Occupied bandwidth upper value	
Picture 23: Outline of carrier frequency stability test setup	

Table of tables

Table 1: Result table of radiated field strength from 9 kHz to 30 MHz	26
Table 2: Carrier vs. temperature	45
Table 3: Equipment Calibration status	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

1 Test regulations

CFR 47 Part 2: 10-2008	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
CFR 47 Part 15: 10-2008	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.4: December 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

2 Summary of test results

FCC CFR 47 Part 2 and Part 15				
Section	n Test		Result	
2.1046(a)	Conducted output power		Not applicable	
2.202(a)	Occupied bandwidth	36	Recorded	
15.215(c)	Occupied bandwidth	39	Passed	
2.201, 2.202	Class of emission	46	Calculated	
15.35(c)	Pulse train measurement		Not applicable	
15.205(a)	Restricted bands of operation		Passed	
15.205(d)(7)				
15.207	Conducted emission at AC power line	16	Passed	
	0.150 MHz to 30 MHz			
15.225(a)-(d)	Spectrum mask	12	Passed	
15.205(b)	Radiated emission	23	Passed	
15.215(b)	0.009 MHz to 30 MHz			
15.225(a)(d)				
15.205(b)	Radiated emission	28	Passed	
15.225(d)	30 MHz to 1000 MHz			
15.225(e)	Carrier frequency stability	43	Passed	

EMVTESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 6 of 48

3 Equipment under Test (EUT)

Device name:	SCL011 RFID Reader
Manufacturer:	SCM Microsystems (India) Pvt. Ltd.
Serial number:	21160944990004
FCC ID:	MBPSCL011-4400
Application freq. band:	13.110MHz – 14.010MHz
Frequency range:	13.289 MHz – 13.838 MHz
Operating frequency:	13.562 MHz
Class of emission:	10K0A1D
Type of modulation:	ASK
Channel spacing:	N/A
Number of RF-channels:	1
Pulse train:	none
Pulse width:	none
Antenna type:	Integrated PCB antenna
	□ detachable
Power supply:	USB powered nominal: 5.0 V*
Temperature range:	-20℃ to +55℃
Interfaces:	N/A

*The device is USB-powered. It was not possible to operate the EUT with an external power supply.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 7 of 48

3.1 Photo documentation

Picture 1: EUT (top side with dock)

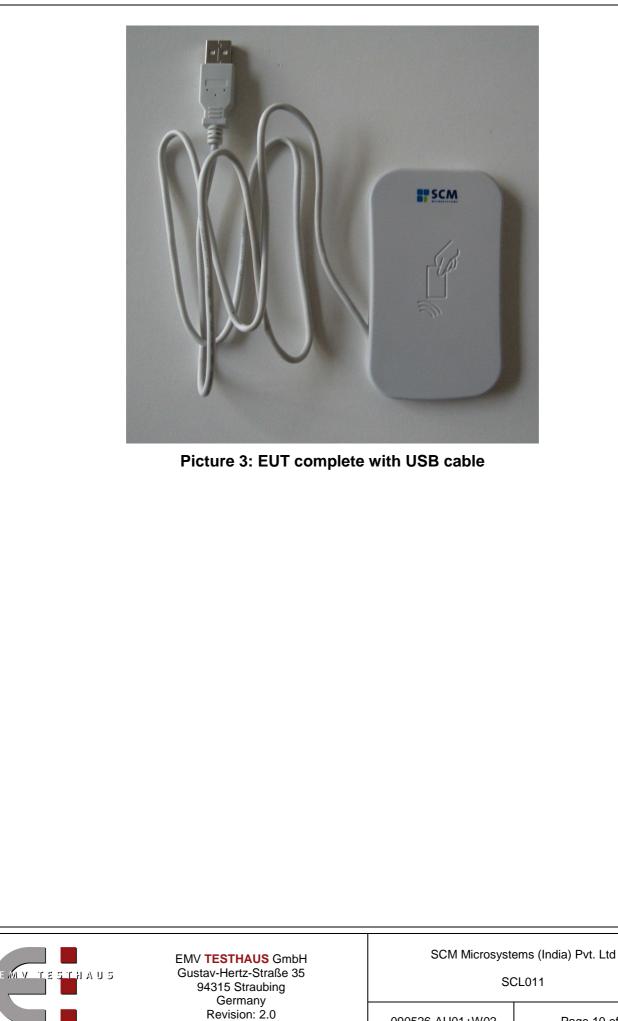
EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 8 of 48

Picture 2: EUT (bottom side)



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 9 of 48

090526-AU01+W02

Page 10 of 48

3.2 Short description of the EUT

The EUT is a USB RFID Reader with an operating frequency of 13.56 MHz

3.3 Operation Mode

The EUT was tested in the following operation modes:

- Reading tags continuously. The EUT was preconfigured for this operation mode. No RFID tag was placed on the reader.
- The EUT employs a combined receiver and transmitter that cannot be operated separately.

3.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	S/N
RFID Reader (EUT)	SCL011	21160944990004
Test PC System 3	Favorite 2000	N/A
Test TFT Monitor	Belinea 111926	N/A
Test PS/2 Keyboard	RS6000	N/A
Test PS/2 Mouse	M-S35	N/A

Used cables

Numbers:	Description: (type / lengths / remarks)	Serial No
1	EUT: non-detachable USB cable (shielded / 1.5m)	N/A
2	Power cord (unshielded / 1.2m)	N/A
1	VGA cable (shielded / 1.1m)	N/A
2	PS/2 cable (unshielded / 1.3m)	N/A

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 11 of 48

4 Spectrum Mask

according to CFR 47 Part 15, section 15.225 (a)-(d)

4.1 Test location

- □ Scan with peak detector in 3 m CDC
- CISPR measurement with quasi peak detector on 10m open area test site.
- Measurement with peak detector on 3m open area test site

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open area test site	EMV TESTHAUS GmbH	200017

4.2 Test Instruments

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	E00003
\checkmark	ESU	Rohde & Schwarz	W00002
	ESCI (CDC)	Rohde & Schwarz	E00001
\checkmark	HFH2-Z2	Rohde & Schwarz	E00060
	VULB 9163 (CDC)	Schwarzbeck	E00013
	VULB 9160 (FF)	Schwarzbeck	E00011

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

4.3 Limits

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
1.705 – 13.110	30	29.5	30
13.110 -13.410	106	40.5	30
13.410 – 13.553	334	50.5	30
13.553 – 13.567	15848	84.0	30
13.567 – 13.710	334	50.5	30
13.710 – 14.010	106	40.5	30
14.010 - 30.000	30	29.5	30

To calculate the limit for 3m measurement distance the following calculation was used.

$$L_{dm} = L_d + (-40\frac{dB}{dec} * (\log(dm) - \log(d)) - 20$$

 L_{dm} = Limit at the new distance

 L_d = Limit according ANSI 63.4 dm = Distance according to ANSI 63.4

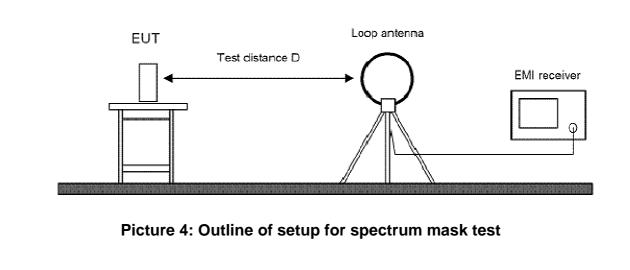
d = New distance for limit

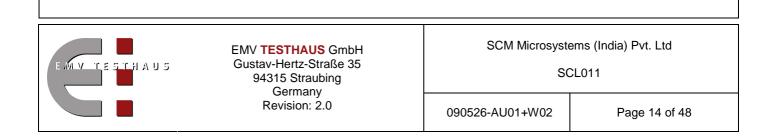
$$\begin{split} L_{dm} &= 29,5 \, \frac{dB\mu V}{m} + (-40 \, \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 49.5 dB \\ L_{dm} &= 40.5 \, \frac{dB\mu V}{m} + (-40 \, \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 60,5 dB \\ L_{dm} &= 50.5 \, \frac{dB\mu V}{m} + (-40 \, \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 70,5 dB \\ L_{dm} &= 84 \, \frac{dB\mu V}{m} + (-40 \, \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 104 dB \end{split}$$

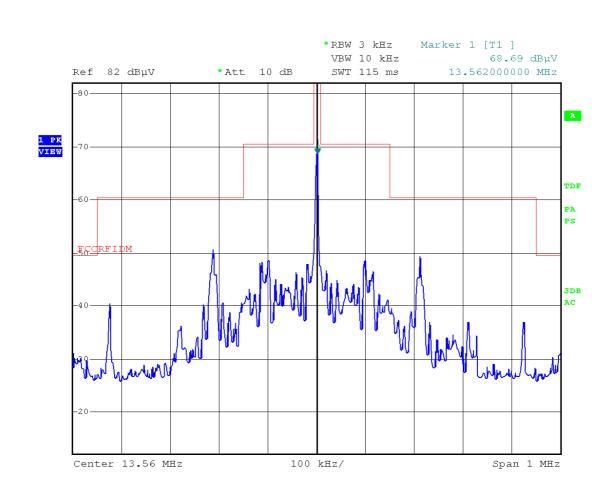
EMVTESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011


4.4 Test method to demonstrate compliance


A spectrum analyzer was used and set to a center frequency equal to transmitter frequency. The resolution bandwidth was adjusted to 3 kHz and the video bandwidth at least 3 times higher than the resolution bandwidth. Span was set to 1 MHz to cover the whole spectrum mask. The detector was set to maxpeak with hold function.


The spectrum analyzer was connected to a loop antenna with vertical polarization at a measurement distance of 3 m on an open area test site. This loop antenna has a correction factor of 20 dB. Due to better visibility in the printing the actual spectrum mask limit was reduced by this 20 dB. Therefore the Picture 5 shows the correct distance to the limit. To get the correct field strength 20 dB has to be added to the marker value T1.

The EUT was placed on a turntable and rotate 360°t o find maximum value. To find the maximum in horizontal polarization the EUT was rotated by 90°.

4.5 Test setup

Picture 5: Result of spectrum mask measurement

The actual field strength of the carrier is:

 $FS = T1 + 20 \text{ dB} = 68.69 \text{ dB}\mu\text{V/m} + 20 \text{ dB} = 88.69 \text{ dB}\mu\text{V/m}$

Expanded uncertainty (0,009 to 30MHz): $E_{(y)} = (y \pm 4,25) dB\mu A/m; k=2.00$ y = Indicated value

Comments:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

5 Conducted emission test

according to CFR 47 Part 15, section 15.207

5.1 Test Location

Description	Manufacturer	Inventory No.
Shielded chamber	Siemens - Matsushita	E00107

5.2 Test Instruments

	Description	Manufacturer	Inventory No.
V	ESCS 30	Rohde & Schwarz	E00003
	ESCI	Rohde & Schwarz	E00001
V	ESH3 Z2	Rohde & Schwarz	E00028
\checkmark	ESH 2-Z5	Rohde & Schwarz	E00004
\checkmark	ESH 2-Z5	Rohde & Schwarz	E00005

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 16 of 48

5.3 Limits

Frequency [MHz]	Quasi-peak [dBµV]	Avarage [dBµV]
0.15 – 0.5	66 - 56	56 – 46
0.5 – 5.0	56	46
5 – 30	60	50

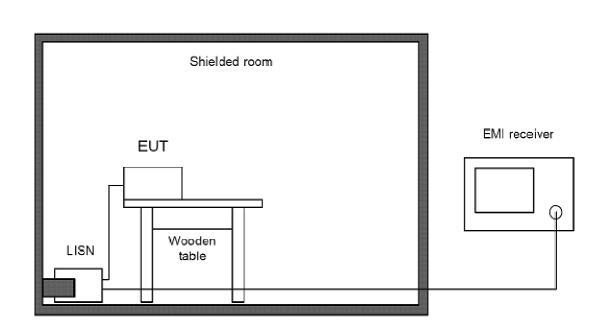
5.4 Test method to demonstrate compliance

The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50 μ H/50 Ohms and an EMI test receiver. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9 kHz in the frequency range form 0.15 MHz to 30 MHz.

The EUT was placed on a wooden table and connected to the LISN.

To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range form 0.15 MHz to 30 MHz were scanned. After that all peaks values with fewer margins than 10 dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit than these values were re-measured again with an average detector.

These measurements were done on all current carrying conductors.


According to ANSI C63.4, section 13.1.3.1 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

5.5 Test setup

Picture 6: Outline of conducted emission test setup

Expanded Uncertainty (9kHz to 150kHz):

 $U_{(y)} = (y \pm 4.024) \text{ dB}\mu\text{V}; \ \text{k}=2.00$

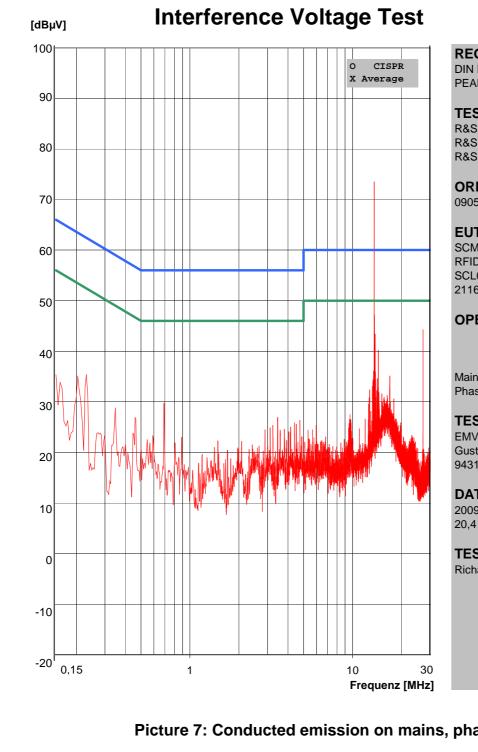
y = Indicated value

Expanded Uncertainty (150kHz to 30MHz):

 $U_{(y)} = (y \pm 3.604) \text{ dB}\mu\text{V}; \text{ k=}2.00$

y = Indicated value

Comments: The 13.56 MHz disturbance belongs to the carrier frequency, which is exempted for this test. Due to a fixed internal antenna a test with 50 Ohm dummy was not possible.


All peripheral devices were additionally decoupled by means of a line stabilization network.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

5.6 Test result

REGULATIONS:

DIN EN 55022 Class B PEAK / CISPR / AV

TEST EQUIPMENT: R&S ESH3 (10 0 002) R&S ESH2-Z5 (10 0 040) R&S Pulse Limiter (20 0 051)

ORDER NO.: 090526-AU01+E02

EUT: SCM Microsystems GmbH RFID 13,56 MHz SCL011 21160944990004

OPERATION MODE:

Mains 120V AC /60Hz Phase

TEST FACILITY: EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing

DATE / TIME: 2009-11-16 10:35:24 20,4 ℃ 38,1 %H

TEST ENGINEER: Richard Wietek

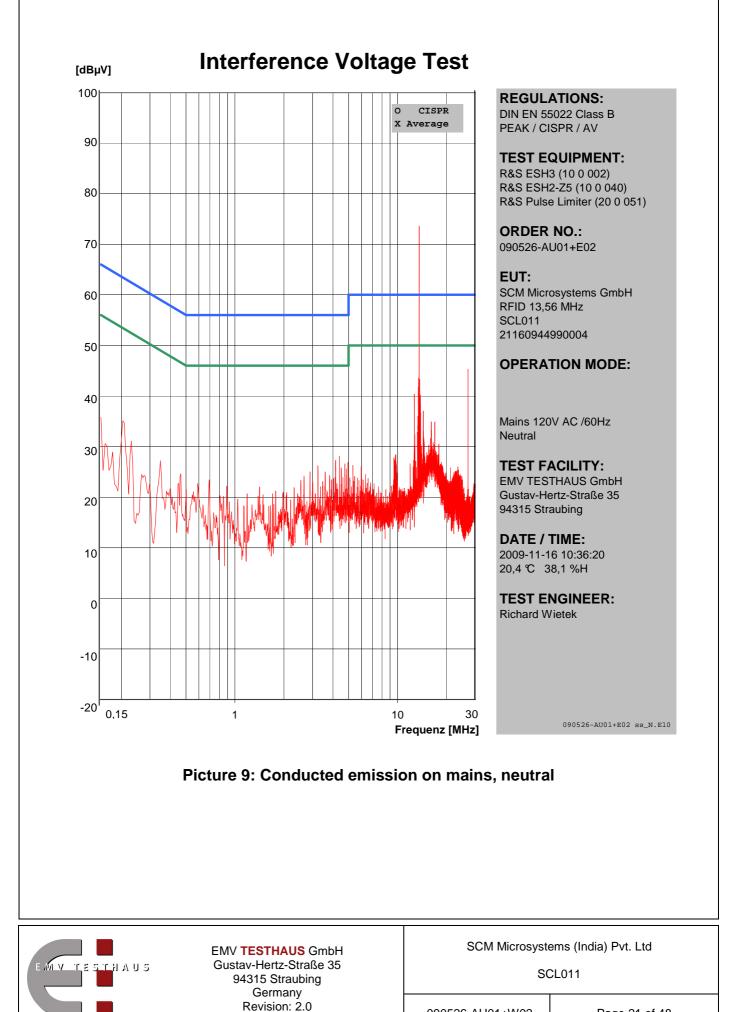
090526-AU01+E02 ss_L1.E10

Picture 7: Conducted emission on mains, phase 1

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0

SCM Microsystems (India) Pvt. Ltd

SCL011


090526-AU01+W02

Page 19 of 48

13,54 37,2 60,0 22,8 13,9 50,0 36,1 0,0 13,52 33,8 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 21,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 32,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,54 37,2 60,0 22,8 13,9 50,0 36,1 0,0 13,52 33,8 60,0 26,2 10,7 50,0 39,3 0,0 13,55 39,6 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0	13,54 37,2 60,0 22,8 13,9 50,0 36,1 0,0 13,52 33,8 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 27,1 15,4 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 32,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	Freq. [MHz]	U_CISPR [dBµV]	Limit [dBµV]	delta_U [dB]	U_AV [dBµV]	Limit [dBµV]	delta_U [dB]	Corr. [dB]
13,52 33,8 60,0 26,2 10,7 50,0 39,3 0,0 14,41 32,9 60,0 27,1 15,4 50,0 32,2 0,0 16,10 28,4 60,0 29,0 26,3 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,52 33,8 60,0 26,2 10,7 50,0 39,3 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 21,1 15,4 50,0 32,2 0,0 16,50 31,0 60,0 29,0 26,3 50,0 23,7 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,52 33,8 60,0 26,2 10,7 50,0 39,3 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 27,1 15,4 50,0 32,2 0,0 16,55 31,0 60,0 29,0 26,3 50,0 23,7 0,0 16,95 31,0 60,0 14,6 44,2 50,0 5,8 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0								
13,55 39,6 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,55 39,6 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,55 39,6 60,0 20,4 15,4 50,0 34,6 0,0 14,41 32,9 60,0 27,1 15,4 50,0 34,6 0,0 16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0								
16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	13,55	39,6	60,0	20,4	15,4	50,0	34,6	0,0
16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,10 28,4 60,0 31,6 17,8 50,0 32,2 0,0 16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0					15,4			
16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	16,95 31,0 60,0 29,0 26,3 50,0 23,7 0,0 27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0								
27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0	27,12 45,4 60,0 14,6 44,2 50,0 5,8 0,0								
	Picture 8: Conducted emission on mains, phase 1	Picture 8: Conducted emission on mains, phase 1								
EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing SCL011	Gustav-Hertz-Straße 35	Gustav-Hertz-Straße 35		Gustav-Her	tz-Straße			SCM		
Lur Gustav-Hertz-Straße 35	التعالي المعالي معالي مع معالي معالي معالي معالي معالي	المالي مالي		Gustav-Her 94315 \$	tz-Straße Straubing			SCM		

Page 20 of 48

E M

090526-AU01+W02

Page 21 of 48

-	Freq.	U_CISPR		delta_U	U_AV		delta_U	Corr.
-	[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]	[dB]
	13,39	32,1	60,0	27,9	12,7	50,0	37,3	0,0
	13,55	41,5	60,0	18,5	38,5	50,0	11,5	0,0
	13,64	34,6	60,0	25,4	11,9	50,0	38,1	0,0
	13,62	32,1	60,0	27,9	13,0	50,0	37,0	0,0
	13,71	32,4	60,0	27,6	10,6	50,0	39,4	0,0
	27,12	45,6	60,0	14,4	44,4	50,0	5,6	0,0
	27,12	45,4	60,0	14,6	44,2	50,0	5,8	0,0
	Pic	ture 10: C	onduc	ted emis	sion on	mains	s, neutra	1
EMV TESTHAU	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing			SCM		ems (India) Pvt. I CL011		
		0-010 0	many					

6 Measurement of radiated emission

according to CFR 47 Part 15, section 15.205(d7), 15.209

6.1 Radiated emission measurement from 9 kHz to 30 MHz:

6.1.1 Location of measurement

- ☑ Scan with peak detector in 3 m CDC
- ☑ Final CISPR measurement with quasi peak detector on 3m open site area.

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open site area	EMV TESTHAUS GmbH	200017

6.1.2 Measurement equipment

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	E00003
V	ESU	Rohde & Schwarz	W00002
	ESCI (CDC and FF)	Rohde & Schwarz	E00001
	VULB 9163 (CDC)	Schwarzbeck	E00013
	VULB 9160 (FF)	Schwarzbeck	E00014
V	Feedline OATS	Huber & Suhner	200024
V	HFH2-Z2 (CDC and FF)	Rohde & Schwarz	E00060

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 23 of 48

6.1.3 Limits

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
0.009 - 0.490	266.7 - 4.9	48.5 – 13.8	300
0.490 – 1.705	49.0 – 14.1	33.8 – 23.0	30
1.705 - 30	30	29.5	30

To calculate the limit for 3m measurement distance the following calculation was used.

$L_{dm} = L_d + (-40\frac{dB}{dec} * (\log(dm) - \log(d))$	L _{dm}	= Limit at the new distance
		<i>L_d</i> = Limit according ANSI 63.4 <i>dm</i> = Distance according to ANSI 63.4

d =New distance for limit

$$\begin{split} &L_{dm} = 48.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(300m)) = 128,5dB & \text{for } 0.009\text{MHz} \\ &L_{dm} = 13.8 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(300m)) = 93.8dB & \text{for } 0.490\text{MHz} \text{ (high)} \\ &L_{dm} = 33.8 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 73.8dB & \text{for } 0.490\text{MHz} \text{ (low)} \\ &L_{dm} = 23 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 63dB & \text{for } 1.705\text{MHz} \text{ (high)} \\ &L_{dm} = 29.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 69.5dB & \text{for } 1.705\text{MHz} \text{ (low)} \end{split}$$

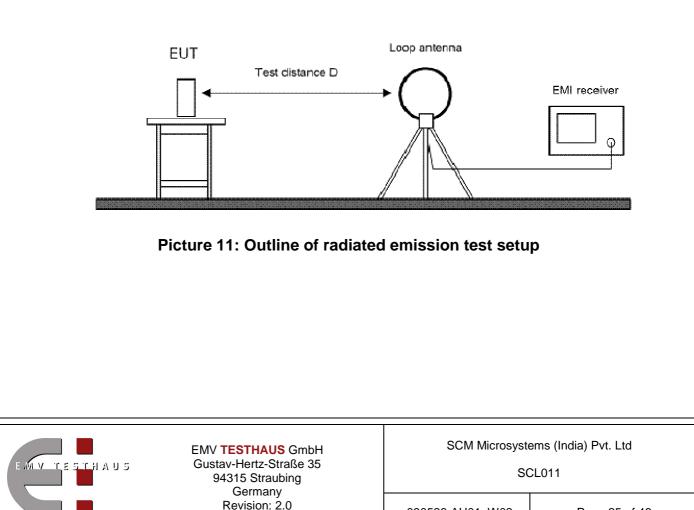
EMVTESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

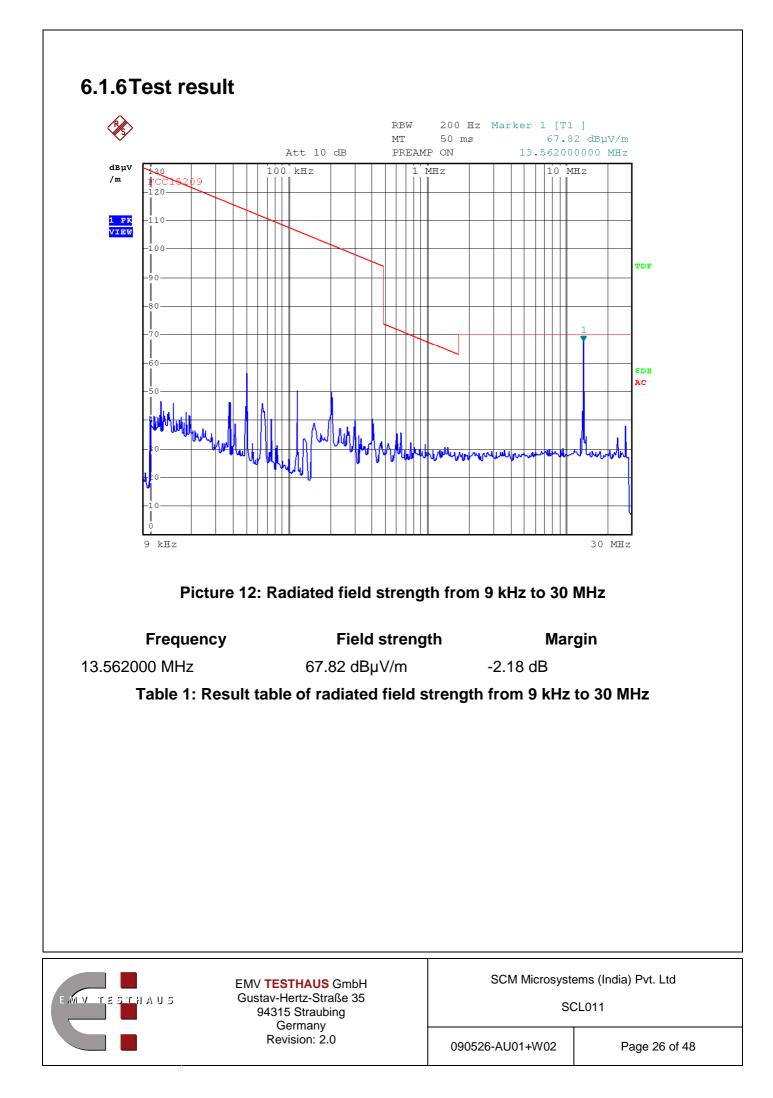
Page 24 of 48


6.1.4 Test method to demonstrate compliance

An EMI test receiver was used and connected to the loop antenna. The EUT was placed on a wooden table in a distance of 3m inside a compact diagnostic chamber.. The loop antenna was placed in vertical polarization at an angle of 0° and the EMI receiver performed a scan form 0.009 MHz to 30 MHz with the detector set to peak and the measurement bandwidth to 200 Hz. At .150 kHz the measurement bandwidth was changed to 9 kHz.

This procedure was repeated at 6 different positions of the EUT by rotating turn table. All peak values over the limit or with less distance to limit then 6dB were marked and remeasured with a quasi-peak detector with the following method on a 3m open area test site.

The turn table was turned 360° to find the position of maximum field strength. After reaching this position the loop antenna was rotated 360° to find the maxima. The measured value was recorded. This measurement was done for all marked frequencies with respect to the appropriate bandwidth for the frequency ranges.


To check the horizontal polarization the EUT was rotated by 90° instead of the loop antenna and the procedure was repeated. Both results are combined inside on graphic.

6.1.5 Test setup

090526-AU01+W02

Page 25 of 48

Expanded Uncertainty (9kHz to 150kHz):

 $U_{(y)} = (y \pm 4.024) \text{ dB}\mu\text{V}; \ \text{k}=2.00$

y = Indicated value

Expanded Uncertainty (150kHz to 30MHz):

 $U_{(y)} = (y \pm 3.604) dB\mu V; k=2.00$

y = Indicated value

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 27 of 48

6.2 Radiated emission measurement from 30 MHz to 1000 MHz

6.2.1 Location of measurement

- Scan with peak detector in 3 m CDC witch is correlated to the 10m open site area.
- ☑ Final CISPR measurement with quasi peak detector on 10m open site area.

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open site area	EMV TESTHAUS GmbH	200017

6.2.2 Measurement equipment

	Description	Manufacturer	Inventory No.
\checkmark	ESCS 30 (FF)	Rohde & Schwarz	E00003
	ESU	Rohde & Schwarz	W00002
\checkmark	ESCI (CDC)	Rohde & Schwarz	E00001
\checkmark	VULB 9163 (FF)	Schwarzbeck	E00013
\checkmark	VULB 9160 (CDC)	Schwarzbeck	E00011
	HFH2-Z2	Rohde & Schwarz	E00060
\checkmark	Feedline OATS	Huber & Suhner	200024

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 28 of 48

6.2.3 Limits

Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
30 - 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

To calculate the limit for 10m measurement distance the following calculation was used.

$$L_{dm} = L_d + (-20\frac{dB}{dec} * (\log(dm) - \log(d)))$$

L _{dm}	= Limit at the new distance
-----------------	-----------------------------

 L_d = Limit according ANSI 63.4

d = Distance according to ANSI 63.4

dm = New distance for limit

$$L_{dm} = 40 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 30dB$$
for 30 MHz to 88 MHz

$$L_{dm} = 43.5 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 33.5dB$$
for 88 MHz to 216 MHz

$$L_{dm} = 46 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 36dB$$
for 216 MHz to 960 MHz

$$L_{dm} = 54 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 44dB$$
above 960 MHz

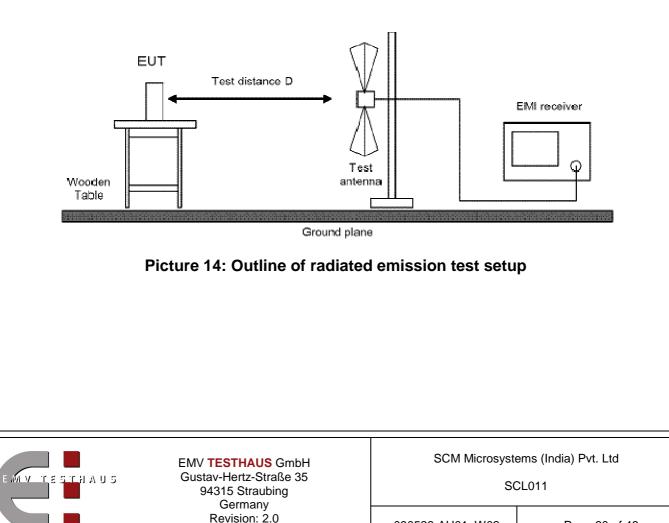
EMV TESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

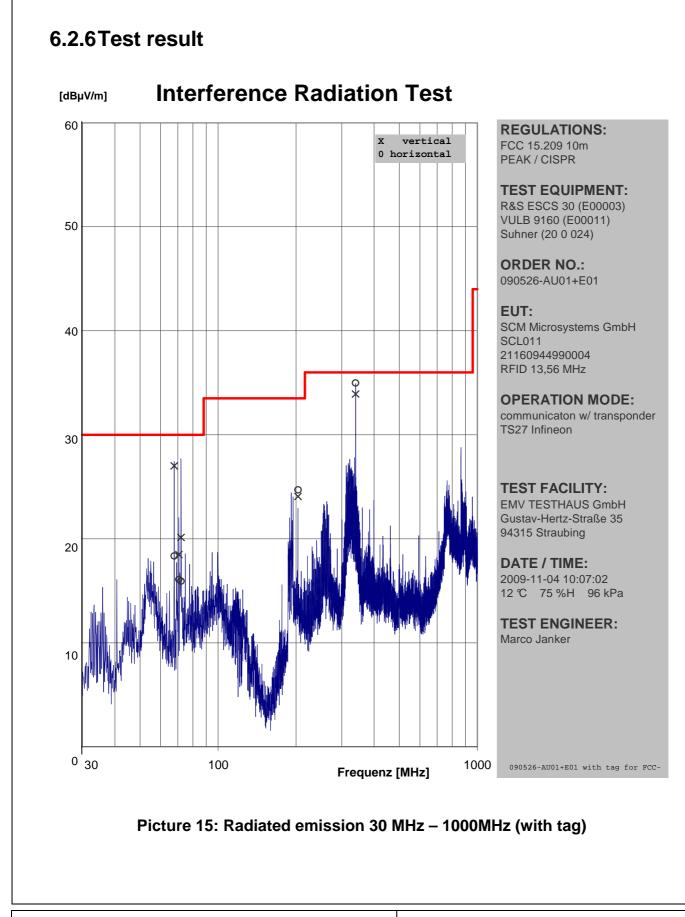
Page 29 of 48


6.2.4 Test method to demonstrate compliance

An EMI test receiver was used and connected to a broadband antenna. The EUT was placed on a wooden table in a distance of 3m inside a compact diagnostic chamber. This chamber is a fully anechoic chamber and correlated to our 10m open site. Therefore the 10 m limit was applicable for the pre-scan inside this chamber. The broadband antenna was placed in vertical polarization and the EMI receiver performed a scan from 30 MHz to 1000 MHz with the detector set to peak and the measurement bandwidth to 120 kHz.

This procedure was repeated at 6 different positions of the EUT by rotating turn table. After that die polarization switched to horizontal and repeated this procedure. After all 12 scans the results of the two polarizations were combined.

All peak values over or with less distance to limit then 6 dB were marked and remeasured with a quasi-peak detector with the following method on a 10 m open area test site.

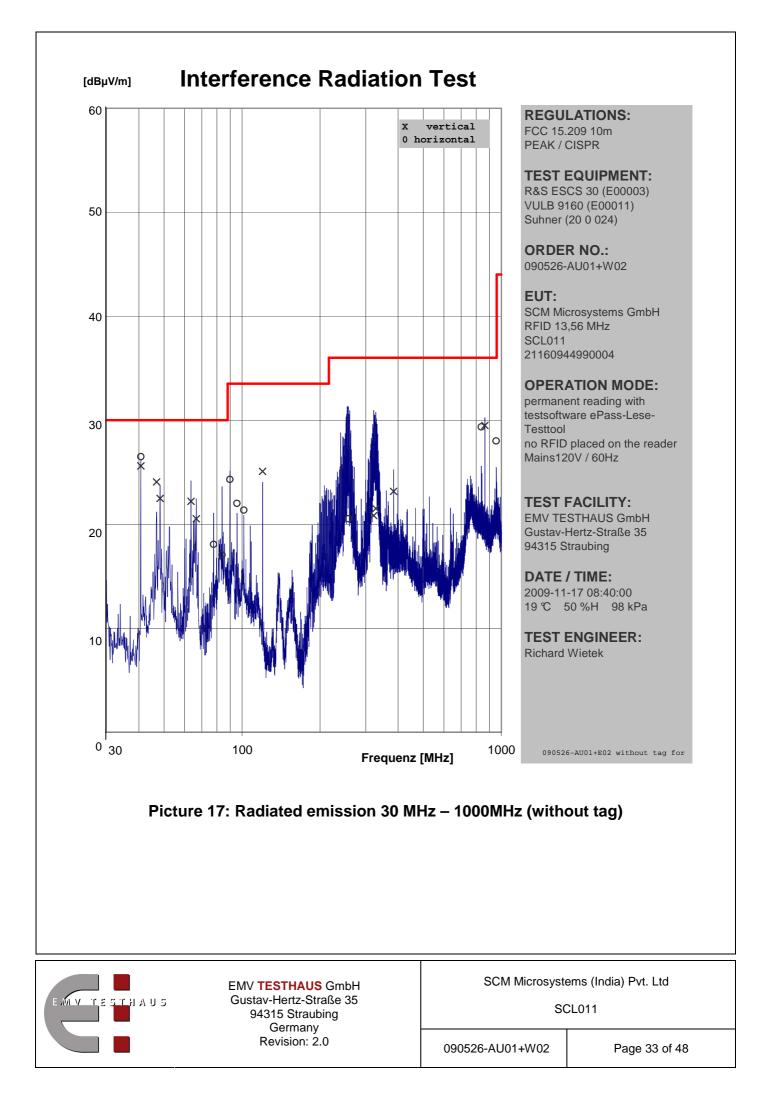

The turn table was turned 360° to find the position of maximum field strength. After reaching this position the antenna was moved form 1 m to 4 m height to find the maximum value. This value was recorded.

6.2.5Test setup

090526-AU01+W02

Page 30 of 48

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd


SCL011

090526-AU01+W02

Page 31 of 48

Interference Radiation Test

Freq.	U_Rec	Limit	Corr.	U_Ant.	delta_U	Turn-	Antenna	Pol.	Remark
[MHz]	 [dBµV/m]		[dB]	 [dBµV]	 [dB]	table			090526-AU01+E01 with tag for
67,80	27,0	30,0	11,2	15,8	3,0	63°	110 cm	V	
67,80	18,4	30,0	11,2	7,1	11,7	23°	100 cm	н	
70,60	18,5	30,0	10,7	7,8	11,5	351°	110 cm	V	
70,60	16,1	30,0	10,7	5,4	13,9	211°	100 cm	н	
72,00	15,9	30,0	10,5	5,4	14,1	51°	250 cm	н	
72,00	20,1	30,0	10,5	9,6	9,9	188°	100 cm	V	
203,40	24,7	33,5	11,8	13,0	8,8	53°	250 cm	н	
203,40	24,1	33,5	11,8	12,3	9,4	125°	100 cm	V	
339,00	33,9	36,0	16,3	17,6	2,1	0°	110 cm	V	
339,00	35,0	36,0	16,3	18,6	1,0	224°	100 cm	н	
		EN	IV TES Istav-Hi 94315	THAUS G ertz-Straß 5 Straubing	mbH e 35	MHz			systems (India) Pvt. Ltd
			Germany Revision: 2.0				090526-AU	01+W0	2 Page 32 of 48

Interference Radiation Test

Freq.	U_Rec		Corr.		delta_U		Antenna	Pol.	Remark
[MHz]		[dBµV/m]	[dB]	[dBµV]	[dB]	table			090526-AU01+E02 without tag for
40,70	26,5	30,0	13,2	13,3	3,5	110°	203 cm	Н	
40,70	25,6	30,0	13,2	12,4	4,4	110°	110 cm	V	
46,80	24,1	30,0	12,9	11,1	5,9	18°	110 cm	V	
48,30	22,5	30,0	13,0	9,5	7,5	259°	110 cm	V	
63,60	22,2	30,0	12,1	10,1	7,8	126°	110 cm	V	
66,60	20,5	30,0	11,5	9,0	9,5	69°	110 cm	V	
77,70	18,1	30,0	9,7	8,4	11,9	94°	250 cm	н	
83,70	17,1	30,0	9,8	7,3	13,0	268°	250 cm	н	
89,70 05.00	24,3	33,5 22.5	10,4	13,9	9,2	299° 348°	250 cm	H H	
95,60 101,60	22,0	33,5 22.5	10,8	11,3 10.0	11,5	340 311°	250 cm	н	
120,00	21,4 25.1	33,5 22.5	11,4 12.4	10,0	12,2	178°	250 cm	п V	
120,00 257,10	25,1 20,5	33,5 36,0	13,4 13,8	11,7 6,7	8,4 15,5	45°	110 cm 250 cm	v H	
257,10 322,20	20,5 20,8	36,0 36,0	15,0 15,9	6,7 4,9	15,5 15,2	45 327°	250 cm 110 cm	п V	
322,20 327,80	20,8 21,5	36,0 36,0	16,1	4,9 5,4	15,2 14,5	327 133°	110 cm	v V	
327,80 384,00	21,5	36,0 36,0	17,6	5,4 5,5	14,5 12,9	133 218°	110 cm	v V	
384,00 836,20	23,2 29,4	36,0 36,0	26,7	5,5 2,6	6,7	218° 198°	250 cm	V H	
863,70	29,4 29,5	36,0 36,0	20,7 27,1	2,0 2,4	6,5	198 288°	250 cm 110 cm	V	
955,30	29,5 28,0	36,0 36,0	28,4	-0,4	8,0	200 1°	250 cm	ч Н	
,	,_	,-	,	-, -	-,-	-			
P	icture 1	8: Radi	ated	emissi	on 30 M	Hz – 1	000MHz	(with	out tag, table)
EMV TESTHAUS GmbH						SCM Microsystems (India) Pvt. Ltd			
	Gustav-Hertz-Straße 35 94315 Straubing Germany						SCL011		
Revision: 2.0						090526-AU	01+WC	2 Page 34 of 48	

Expanded uncertainty (30MHz to 300MHz):

 $E_{(y)} = (y \pm 4.994) dB\mu V/m; k=2.00$

y = Indicated value

Expanded uncertainty (300MHz to 1000MHz):

 $E_{(y)} = (y \pm 5.276) dB\mu V/m; k=2.00$

y = Indicated value

Comments:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 35 of 48

7 Occupied Bandwidth (99%)

according to CFR 47 Part 2 section 2.202

7.1 Test location

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026

7.2 Test Instruments

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	E00003
V	ESU	Rohde & Schwarz	W00002
	ESCI (CDC)	Rohde & Schwarz	E00001
V	HFH2-Z2	Rohde & Schwarz	E00060
	VULB 9163 (CDC)	Schwarzbeck	E00013
	VULB 9160 (FF)	Schwarzbeck	E00011

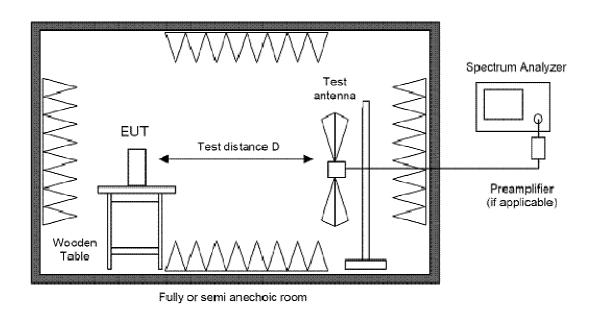
7.3 Test method to demonstrate compliance

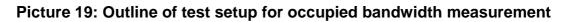
The EUT has no detachable antenna therefore the radiated method was used

The occupied bandwidth is measured as the 99% bandwidth. For this measurement the occupied bandwidth function of the spectrum analyzer was used.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

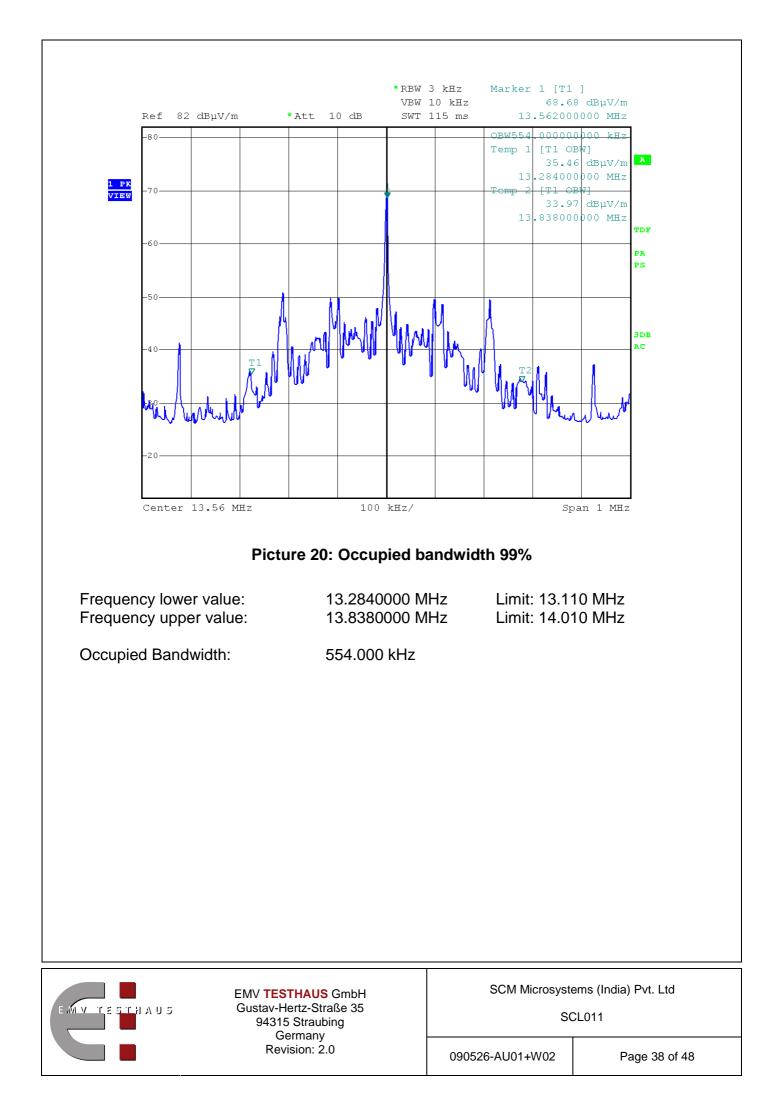

The resolution bandwidth of the spectrum analyzer shall be set to a greater value than 5% of the allowed bandwidth.


Because no resolution bandwidth was given the following guideline from ANSI C63.4 annex H6 was consulted.

Fundamental frequency	Minimum resolution bandwidth
0.009MHz to 30MHz	1kHz
30MHz to 1000MHz	10kHz
1000MHz to 40000MHz	100kHz

The video bandwidth was adjusted at least 3 times wider than the resolution bandwidth

7.4 Test setup



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 37 of 48

8 Occupied Bandwidth (20dB)

according to FCC Part 15, section 15.215(c)

8.1 Test location

Description	Manufacturer	Inventory No.	
CDC	Albatross Projects	E00026	

8.2 Test Instruments

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	E00003
\checkmark	ESU	Rohde & Schwarz	W00002
	ESCI (CDC)	Rohde & Schwarz	E00001
\checkmark	HFH2-Z2	Rohde & Schwarz	E00060
	VULB 9163 (CDC)	Schwarzbeck	E00013
	VULB 9160 (FF)	Schwarzbeck	E00011

8.3 Test method to demonstrate compliance

The EUT has no detachable antenna therefore the radiated method was used

The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation

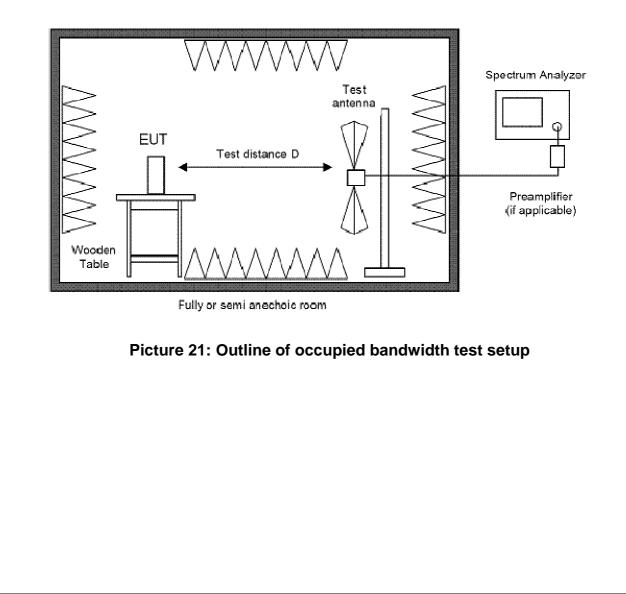
EMVTESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 39 of 48

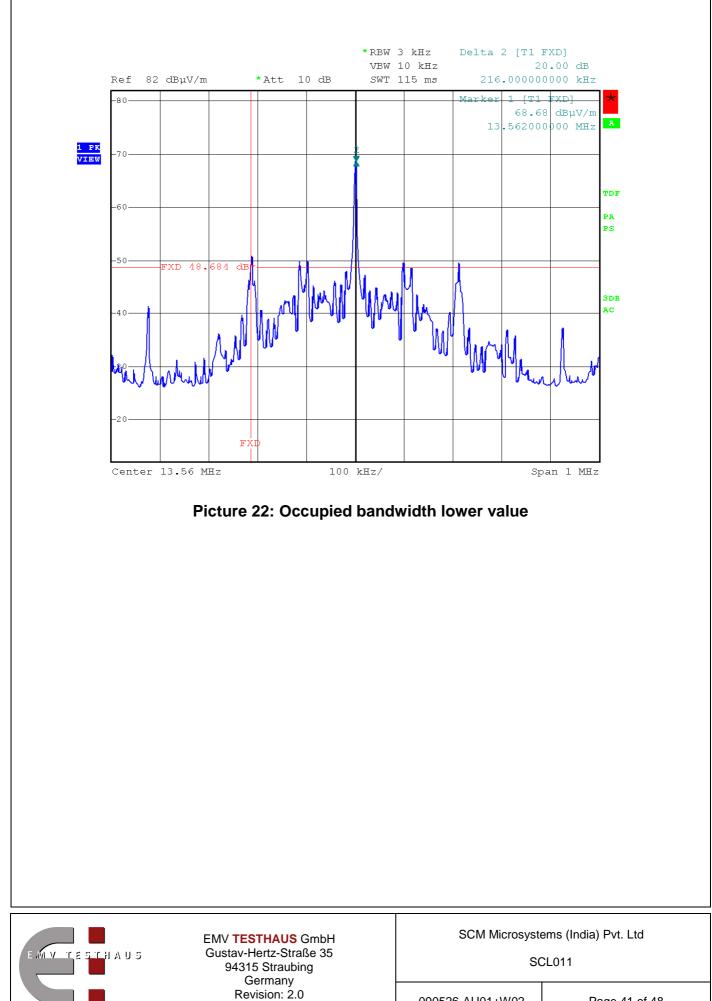

The resolution bandwidth of the spectrum analyzer shall be set to a greater value than 5% of the allowed bandwidth.

Because no resolution bandwidth was given the following guideline from ANSI C63.4 annex H6 was consulted.

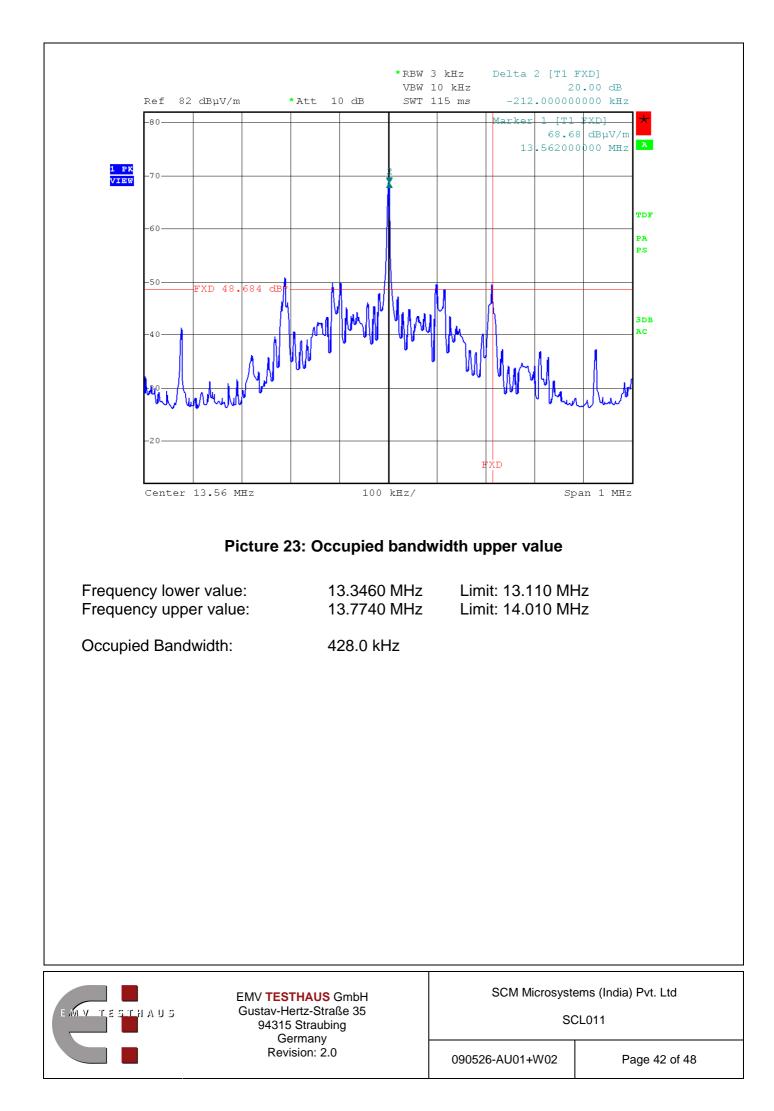
Fundamental frequency	Minimum resolution bandwidth
0.009MHz to 30MHz	1kHz
30MHz to 1000MHz	10kHz
1000MHz to 40000MHz	100kHz

The video bandwidth was adjusted at least 3 times wider than the resolution bandwidth

8.4 Test setup



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd


SCL011

090526-AU01+W02

090526-AU01+W02

Page 41 of 48

9 Carrier frequency stability

according to CFR 47 Part 15, section 15.225(e)

9.1 Test location

	Description	Manufacturer	Inventory No.
V	Climatic Chamber VC4100	Vötsch	C00014
	Climatic Chamber VC ³ 4043	Vötsch	C00015

9.2 Test Instruments

	Description	Manufacturer	Inventory No.
	ESCI	Rohde & Schwarz	E00001
\checkmark	ESU	Rohde & Schwarz	W00002
V	Test Probe RFR400-1	Langer	200086
V	Power Supply	Statron	300193
V	Multimeter	Metra Hit 29S	100080
	USLP 9142	USLP 9142	100044

9.3 Test method to demonstrate compliance

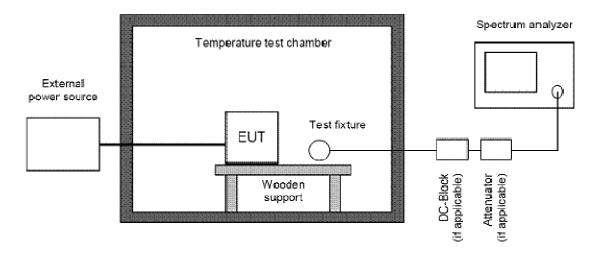
The frequency tolerance of the carrier signal is measured over a temperature variation of -20°C to +50°C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20°C. If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). In cases where the EUT does not provide an antenna connector a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- the maximum battery voltage as delivered by a new battery or 115% of the battery nominal voltage
- the battery nominal voltage
- 85% of the battery nominal voltage

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011


090526-AU01+W02

- the battery operating end point voltage which shall be specified by the equipment manufacturer

The EUT is operating providing an unmodulated carrier. The peak detector of the spectrum analyzer is selected and the resolution bandwidth as well as the video bandwidth is set to values appropriate to the shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point on the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1% of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance allowed is larger than the uncertainty of the measured frequency tolerance

9.4 Test setup

Picture 24: Outline of carrier frequency stability test setup

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

9.5 Carrier vs. temperature

Supply Voltage 5V		Nominal frequency: 13.559199 MHz	
Temperature Carrier frequency		Δ Frequency	Deviation
C	MHz	Hz	ppm
-20	13.560801282	801	59
-10	13.560801282	801	59
0	13.560801282	801	59
+10	13.560801282	801	59
+20	13.560000000	0	0
+30	13.560000000	0	0
+40	13.560000000	0	0
+50	13.560000000	0	0
Limit ± 100ppm			

Table 2: Carrier vs. temperature

9.6 Carrier vs. input voltage

The device is USB-powered. It was not possible to operate it with an external power supply to test the influence of the input voltage to the carrier frequency.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 45 of 48

10 Designation of Emissions

according to CFR 47 Part 2, Sections 2.201 and 2.202

10.1 Designation

Type of Modulation:

Necessary Bandwidth: Modulation Rate: Overall numerical Factor: Amplitude Modulation $B_n = 2 \cdot B \cdot K$ B = 5kHz K = 1 $B_n = 2 \cdot 5kHz \cdot 1 = 10kHz$

10K0A1D

Designation of Emissions according ITU-R:

Comments:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 46 of 48

11 Equipment Calibration Status

Inventory Number	Model Number	Manufacturer	Last calibration	Next calibration	Cycle of calibration
W00002	ESU26	Rohde & Schwarz	Sep 09	Sep 11	2 Years
E00001	ESCI	Rohde & Schwarz	Sep 09	Mar 11	2 Years
E00003	ESCS 30	Rohde & Schwarz	Aug 08	Aug 10	2 Year
E00004	ESH 2-Z5	Rohde & Schwarz	Oct. 08	Oct. 10	2 Years
E00005	ESH 2-Z5	Rohde & Schwarz	Sep 09	Sep 11	2 Years
E00060	HFH2-Z2	Rohde & Schwarz	Oct 08	Oct 11	2 Years
E00012	VULB 9163	Schwarzbeck	Apr. 09	Apr. 11	2 Years
E00013	VULB 9163	Schwarzbeck	Apr. 08	Apr. 10	2 Years
E00011	VULB 9160	Schwarzbeck	Sep. 09	Sep. 11	2 Years
C00015	VC34034	Vötsch	Jan 08	Jan 12	4 Years
C00014	VC4100	Vötsch	Jan 07	Jan 11	4 Years

Table 3: Equipment Calibration status

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 47 of 48

12 Summary

The EMC Regulations according to the marked specifications are

☑ KEPT

The EUT does fulfill the general approval requirements mentioned.

□ <u>NOT</u> KEPT

The EUT does not fulfill the general approval requirements mentioned.

Place, Date: Straubing, November 27, 2009

74(

Marco Janker EMI / EMC Test Engineer

Jung Hen

Rudolf Klein GM / EMV TESTHAUS GmbH

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0

SCM Microsystems (India) Pvt. Ltd

SCL011

090526-AU01+W02

Page 48 of 48