Date: 10/18/08 Page: 1 of 37

ELECTROMAGNETIC INTERFERENCE TEST REPORT

Report Number: 2799-1 Report Date: 10/18/08 Applicable Specification:

47 CFR Part 15, Subpart C, Section 15.225 Certification of a Class B RFID Card Reader

FCC ID: MBPSCL010-4400

Equipment under Test: RFID Card Reader

Model Number: SCL010 / SCL010-NTTCOM (SCL010)

Serial Number: 001

Prepared for: SCM Microsystems

41470 Christy Avenue Fremont, CA 94538

Tested by: **Bob Cole**

Prepared by: **Bob Cole**

EMCE Engineering, Inc. 44366 S. Grimmer Blvd. Fremont, CA 94538 Phone: 510-490-4307 Fax: 510-490-3441

Note:

- This report or certificate does not represent endorsement by NVLAP or any agency of the US Government.
- This report or certificate shall not be reproduced except in full without the written approval of the issuer.

Date: 10/18/08 Page: 2 of 37

TABLE OF CONTENTS

Paragraph	<u>Title</u>	Page
1.0	SCOPE	5
1.1	<i>Objective</i>	5
1.2	Description of EUT	5
1.3	Results/Modifications	5
1.4	Test Limits	5
2.0	APPLICABLE DOCUMENTS	6
2.1	FCC Document	6
2.2	Other Documents	6
3.0	GENERAL SETUP AND TEST CONDITIONS	7
3.1	Test Facility	7
3.2	Description of Open- Field Test Site	7
3.3	Site Attenuation	7
3.4	Ground Plane (Ground Screen)	7
3.5	Input Power for EUT	9
3.6	Accessory Equipment Precautions	9
3.7	Ambient Interference	9
3.8	Personnel	9
3.9	Use of Interference Measuring Equipment	10
3.10	Calibration of Measuring Equipment	10
4.0	PREPARATION OF EUT FOR TEST	11
4.1	Identification of EUT	11
4.2	Setup of EUT	11
4.3	Interface and Cabling	13
4.4	Peripherals Connected	13
5.0	DETAILED MEASUREMENTS	14
5.1	Conducted Emissions, Power Leads, 450kHz to 30MHz	14
5.1.1	Test Results	14
5.1.2	Test Instrumentation	15
5.1.3	Recommendations	15
5.2	Radiated Emissions Test, 30MHz to 1000MHz	16
5.2.1	Vertical Polarization Measurements	16
5.2.2	Horizontal Polarization Measurements	17
5.2.3	Test Results	17
5.2.4	Test Instrumentation	17
5.2.5	Recommendations	17

EMCE Engineering 44366 S. Grimmer Blvd Fremont, CA 94538 510-490-4307 / 510-490-3441 Fax

Date: 10/18/08 Page: 3 of 37

Page

34

LIST OF FIGURES

Figure

D

<u>Title</u>

1	EMCE Test Site Layout	8
	LIST OF APPENDICES	
<u>Appendix</u>	<u>Title</u>	<u>Page</u>
A	NVLAP Documentation	18
В	Test Data Sheets	26
C	Intentional Radiator Test Data	29

Modification List and Photos

Date: 10/18/08 Page: 4 of 37

Disclaimer

EMCE Engineering, Inc., assumes no responsibility for the continuing validity of test data when the Equipment under Test is not under the continuous physical control of EMCE. The signature below attests to the fact that all measurements reported herein were performed by myself or were made under my supervision, and are correct to the best of my knowledge and belief as of the date specified. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Tests were conducted by qualified EMCE Engineering, Inc. personnel utilizing test equipment maintained in a "current" state of calibration with traceability to NIST.

- This report or certificate does not represent endorsement by NVLAP or any agency of the US Government.
- This report or certificate shall not be reproduced except in full without the written approval of the issuer.

Date: 10/18/08 Page: 5 of 37

1.0 SCOPE

This test report describes the equipment setup, test methods employed and results obtained during electromagnetic interference (EMI) testing of a Class B RFID Card Reader as defined in Part 15, Subpart A, paragraph 15.3 (o). The tests described herein measured the RF radiated (RFI Field Strength) emissions of the equipment under test (EUT) as installed in a typical "Host" environment. The tests conformed to the measurement and test site requirements of ANSI C63.4-2003.

1.1 Objective

The tests described herein were performed to establish that the EUT is capable of compliance with the requirements of Part 15, Subpart B, Section 15.225 for Intentional Radiators (a Class B RFID Card Reader).

1.2 Description of EUT

The EUT is a **RFID Card Reader** Model Number: **SCL010** / **SCL010-NTTCOM** (**SCL010**) Serial Number: **001**, manufactured by SCM Microsystems. The EUT contained the following options: No Options.

1.3 Results/Modifications

The EUT passed FCC Class B conducted and radiated emissions tests. No modification was necessary. The manufacturer may declare the EUT as complying with the FCC requirements.

Date: 10/18/08 Page: 6 of 37

1.4 Test Limits

In accordance with paragraph CFR 47, 15.207 and 15.209. emissions.

2.0 APPLICABLE DOCUMENTS

2.1 FCC Documents

<u>Title</u>

Title 47 CFR TELECOMMUNICATION

Part 2 Frequency Allocations and Radio Treaty Matters;

General Rules and Regulations.

Part 15 Radio Frequency Devices.

2.2 Other Documents

ANSI C63.4-2003 American National Standards for Methods of

Measurement of Radio-Noise Emissions From Low-Voltage Electrical and Electronic Equipment

In the Range of 9kHz to 40GHz.

CISPR 22: 2006 Information technology equipment – Radio disturbance

characteristics – Limits and methods of measurement. By the International Electrotechnical Commission

(IEC).

Date: 10/18/08 Page: 7 of 37

3.0 GENERAL SETUP AND TEST CONDITIONS

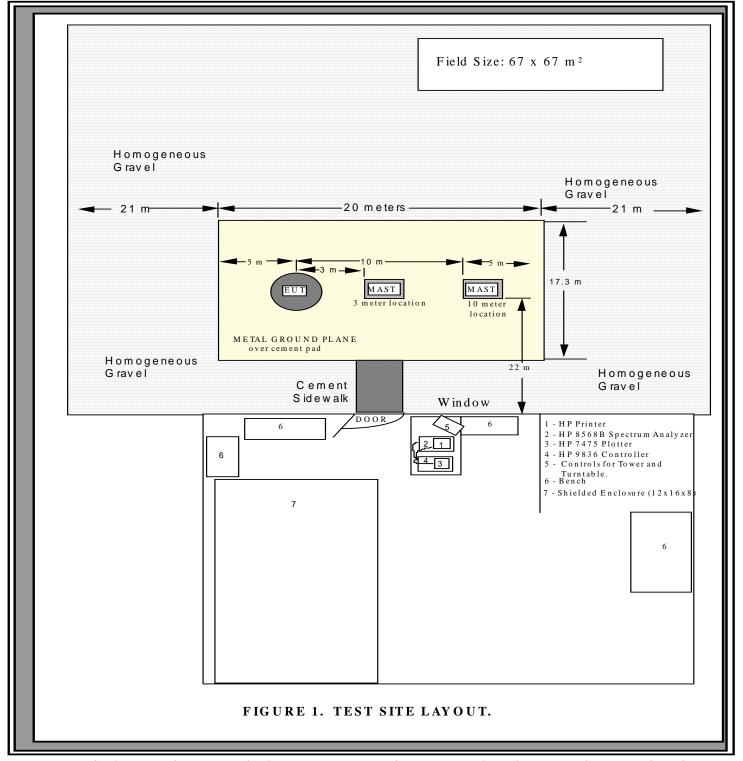
3.1 Test Facility

The tests described herein were performed at:

EMCE Engineering, Inc. 44366 S. Grimmer Blvd. Fremont, CA 94538

This laboratory has one semi-anechoic chamber, one electromagnetic shielded enclosure and a 3-meter and 10-meter Open Area Test Site (OATS). A computer controlled spectrum analyzer with quasi-peak adapter, and printer were used for gathering and recording test data. Figure 1 shows the test site layout for conducted and radiated measurements.

3.2 Description of Open Area Test Site (OATS)


The 3 and 10 meter site is located out-of-doors in an open field whose size is 212 feet long by 206 feet wide. The dimensions of the test area are 66 feet wide by 59 feet long (20m x 18m). The description of the 3 and 10-meter site is on file with the FCC according to the requirements of Part 2.948.

3.3 Site Attenuation

The site attenuation for radiated measurements has been determined for this test site using the method described in ANSI C63.4 Paragraph 5.4.6 and sub paragraphs. The site attenuation is measured annually. Site attenuation was last measured and reported to the FCC 12/15/06.

3.4 Ground Plane (Ground Screen)

The site has a 3900 square foot $(20m \ x \ 18m)$ floor area of poured reinforced concrete, 6 to 8 inches thick. A $20m \ x \ 18m$ ($66ft \ x \ 59ft$) solid 24 gauge galvanized sheet steel ground plane is centered on the test area with its long dimension along the major axis of the test site. The antenna mast and turntable are located 3 meters apart on the centerline of the major axis so that each is greater than 3 meters from the edges of the

ground plane. The ground plane is connected to a nine-foot long earth ground rod at each corner of the ground plane.

Date: 10/18/08 Page: 9 of 37

3.5 Input Power for EUT

Electricity for the EUT is provided through buried power lines in metallic conduit with an outlet box placed near the EUT. Power for the EUT is taken from the outlet box of either of two "shielded enclosure" quality power line filters located on the ground plane near the EUT. The filters are electrically bonded to the ground plane.

3.6 Accessory Equipment Precautions

Care was taken that accessory equipment or adjacent equipment did not produce unacceptable interference so as to contaminate the final test data. The EMI receiver and its associated computer, printer and plotter were located greater than 15 meters away from the EUT during testing and were powered from a separately filtered power source.

3.7 Ambient Interference

Ambient interference from radio and television stations, vehicles, mobile radio, etc. was present at the open test site during testing. Care was taken to assure that ambient interference did not overload the measurement receiver or mask emissions from the EUT. The method of measurement used to deal with ambient noise during radiated emission testing is described in Paragraph 5.2.1.

3.8 Personnel

All testing was performed by EMCE Engineering personnel who are properly trained for the instruments and procedures used. The test data sheets have been signed-off by the attending EMCE Test Engineer.

Date: 10/18/08 Page: 10 of 37

3.9 Use of Interference Measurement Equipment

All of the emission measurements and field strength measurements were performed with a Hewlett-Packard 8566B Spectrum Analyzer System. The Spectrum Analyzer System utilizes the following basic instruments:

- 1. Toshiba Satellite Laptop Computer
- 2. EMITest measurement software
- 2. HP-85650A Quasi Peak Adapter

Test results are recorded on tabular data sheets and show final corrected values compared to the specification limit. Sample calculations show how the antenna factors, cable losses, amplifier gain, etc. are combined in the automatic analyzer program to produce the final corrected values shown on the graphs and data sheets.

3.10 Calibration of Measuring Equipment

The EMI Receiver (spectrum analyzer) is calibrated by an outside calibration laboratory on a 12-month basis. The laboratory provides certification with traceability to NIST. Antenna factors are measured at 1-year interval by an ISO 17025 Accredited Antenna Calibration Facility. Cable losses as well as amplifier gains are swept at least every month to verify accurate values.

Date: 10/18/08 Page: 11 of 37

4.0 PREPARATION OF EUT FOR TEST

4.1 Identification of EUT

Equipment under Test: **RFID Card Reader**

Model Number: SCL010 / SCL010-NTTCOM (SCL010)

Serial Number: 001

4.2 Setup of EUT

Power to EUT: 120 VAC Line Voltage

Grounding of EUT: USB Cable

Special Software: None

- Orientation of EUT: Per CFR 47, 15.31 and ANSI 63.4-2003, for all measurements the EUT was evaluated in the X, Y, and Z orthogonal axes.
- Loop Antenna was manipulated to find the worst case emission. Positions include, but not limited to parallel and perpendicular to the EUT, and parallel to the ground

4.3 Interfaces & Cabling

The following cables were connected during test:

Interface	Source	Load	Length	Cable	Connector
	<u>Port</u>	<u>Port</u>	<u>Cable</u>	<u>Type</u>	<u>Material</u>
USB	USB	EUT	0.5M	Unshielded	Plastic
	Power Sup	ply			

4.4 Peripherals

The following peripherals were attached and operating during the tests:

Nomenclature
Laptop PC

Mfgr & Model
HP dv4000

Date: 10/18/08 Page: 12 of 37

5.0 TEST PROCEDURES

5.1 Conducted Emissions, Power Leads, 150 kHz to 30 MHz

Conducted emissions were measured from 150kHz to 30MHz on the power and return leads of the EUT according to the methods defined in ANSI C63.4, Section 7.0 and the limits found in CFR 47, 15.107. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane and removed from the vertical ground plane by 40-cm as shown in Appendix D, Photographs of Test Setup. The interface cables and equipment positioning were varied within limits of reasonable application per Figure 9A of ANSI C63.4 to determine the position producing maximum conducted emissions.

The LISN and high pass filter were connected through 20 feet of RG-214 coaxial cable to the spectrum analyzer input. The switch on the LISN was set to the Supply Line position and the power was applied. The EUT was operated as described in Paragraph 4.0 in a mode, which was intended to produce maximum emissions for normal operation.

The switch in the LISN was then set to the Return Line position and the interference scan was repeated and an additional set of data sheets and plot charts were prepared for the return lead.

5.1.1 Test Results

PASS (See Appendix B)

5.1.2 Test Instrumentation

See Appendix I - 1,2,3,4,10

5.1.3 Recommendations

Due to the fact that there were no test failures, there are no recommendations.

Date: 10/18/08 Page: 13 of 37

5.2 Radiated Emissions Test, 30 MHz to 1000 MHz

Radiated emissions were measured from 30 MHz to 1000 MHz. The measurement bandwidth was 120 kHz according to the methods defined in ANSI C63.4 Section 8.0. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meters above the ground plane.

The EUT was operated as described in Paragraph 4.0, in a mode, which was intended to produce maximum emissions. Preliminary scans of the frequency range were used to determine the cable configurations and equipment positions which produce maximum emissions. These configurations were then kept intact while both angle of rotation of the EUT with respect to the antenna and antenna height were scanned for maximum readings.

5.2.3 Test Results

The EUT passed both vertical and horizontal radiated emissions tests.

5.2.4 Test Instrumentation

See Appendix I – 1-10

5.2.5 Recommendations

Because there were no test failures, there are no recommendations.

Date: 10/18/08 Page: 14 of 37

APPENDIX A

Certifications

EMCE NVLAP Accreditation

Date: 10/18/08 Page: 15 of 37

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Universal Compliance Labs dba EMCE Engineering

44366 South Grimmer Boulevard Fremont, CA 94538-6385 Mr. Bob Cole

Phone: 510-490-4307 Fax: 510-490-3441 E-Mail: bob@universalcompliance.com URL: http://www.universalcompliance.com

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200092-0

NVLAP Code Designation / Description

Emissions Test Methods:

12/CIS22 IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement

of radio disturbance characteristics of information technology equipment

12/CIS22a IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio

disturbance characteristics of information technology equipment, Amendment 1 (1995) and

Amendment 2 (1996)

12/CIS22b CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference

Characteristics of Information Technology Equipment

12/FCC15b1 ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators

12/T51a AS/NZS CISPR 22 (2004): Information technology equipment - Radio disturbance

characteristics - Limits and methods of measurement

Immunity Test Methods:

12/I01 IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN 61000-4-2: Electrostatic Discharge Immunity

Test

12/I03 IEC 61000-4-4(1995), A1(2000), A2(2001); EN 61000-4-4: Electromagnetic compatibility

(EMC) - Part 4-4: Testing and measurement techniques - Electrical Fast Transient/Burst

Immunity Test

2008-01-01 through 2008-12-31

Effective dates

For the National Institute of Standards and Tachnology

NVLAP-01S (REV. 2005-05-19)

Page 1 of 2

Report Number:

2799-1

Date: Page:

10/18/08 16 of 37

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200092-0

NVLAP Code	Designation / Description
12/I04	IEC 61000-4-5, Ed. 1.1 (2001-04); EN 61000-4-5: Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test
12/I05	IEC 61000-4-6, Ed. 2.0 (2003-05); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I06	IEC 61000-4-8, Ed. 1.1 (2001); EN 61000-4-8: Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test
12/I07	IEC 61000-4-11, Ed. 1.1 (2001-03); EN 61000-4-11: Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests

2008-01-01 through 2008-12-31

Effective dates

For the National Institute of Standards and Technology

Page 2 of 2

NVLAP-01S (REV. 2005-05-19)

Report Number:

10/18/08 17 of 37

2799-1 Date: Page:

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200092-0

Universal Compliance Labs dba EMCE Engineering

Fremont, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005).

2008-01-01 through 2008-12-31

Effective dates

NVLAP-01C (REV. 2006-09-13)

For the National Institute of Standards and Technology

Date: 10/18/08 Page: 18 of 37

APPENDIX B

Test Data Sheets

Conducted Emissions Radiated Emissions

Date: 10/18/08 Page: 19 of 37

LINE CONDUCTED EMISSIONS TEST

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: EN55022 B COND [AVE]

 Work Order #:
 2799
 Date:
 10/15/2008

 Test Type:
 Conducted Emissions
 Time:
 1:08:05 PM

Equipment: Smart Card Reader Sequence#: 1

Manufacturer: SCM Micro Tested By: Bob Cole Model: SCL010 Tested By: Bob Cole 120V 60Hz

S/N:

Test Equipment:

I est Equipment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85650A Quasi	3145A01673	8/20/2008	8/20/09	003
Peak Adapter				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
EMCO 3810-2 LISN	4576	10/01/2008	10/01/2009	007
HP Transient Limiter	3107A02941	10/01/2008	10/01/2009	006

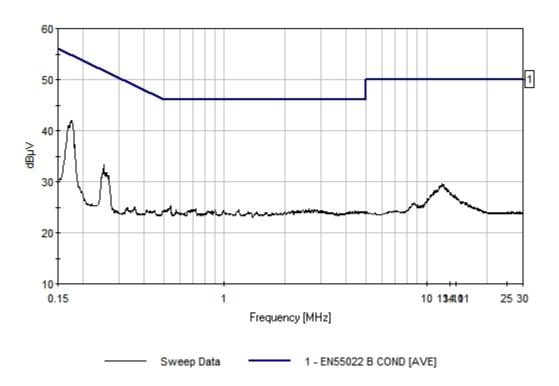
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Smart Card Reader*	SCM Micro	SCL010		

Support Devices:

Function	Manufacturer	Model #	S/N	
Printer	Epson	C62	N/A	
Laptop PC	HP	dv4000	N/A	

Test Conditions / Notes:


T2=LISN 1

*Transducer Legend:*T1=HP 11947A Transient Limiter

Ext A	Attn: 0 dB										
Measui	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line 1		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	176.906k	31.0	+9.9	+1.1			+0.0	42.0	54.6	-12.6	Line
2	252.535k	22.5	+9.9	+0.9			+0.0	33.3	51.7	-18.4	Line
3	11.887M	18.8	+10.0	+0.9			+0.0	29.7	50.0	-20.3	Line
4	541.234k	14.5	+10.0	+0.7			+0.0	25.2	46.0	-20.8	Line
5	2.629M	14.1	+10.0	+0.6			+0.0	24.7	46.0	-21.3	Line

Date: 10/18/08 Page: 20 of 37

EMCE Engineering Date: 10/15/2008 Time: 1:08:05 PM SCM Micro WO#: 2799 EN55022 B COND [AVE] Test Lead: Line 1 120V 60Hz Sequence#: 1

Date: 10/18/08 Page: 21 of 37

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: EN55022 B COND [AVE]

Work Order #: 2799 Date: 10/15/2008
Test Type: Conducted Emissions Time: 1:10:32 PM

Equipment: Smart Card Reader Sequence#: 2

Manufacturer:SCM MicroTested By:Bob ColeModel:SCL010120V 60Hz

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85650A Quasi	3145A01673	8/20/2008	8/20/09	003
Peak Adapter				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
EMCO 3810-2 LISN	4576	10/01/2008	10/01/2009	007
HP Transient Limiter	3107A02941	10/01/2008	10/01/2009	006

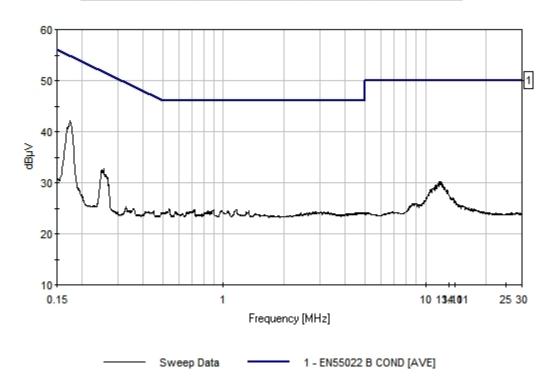
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Smart Card Reader*	SCM Micro	SCL010		

Support Devices:

Function	Manufacturer	Model #	S/N	
Printer	Epson	C62	N/A	
Laptop PC	HP	dv4000	N/A	

Test Conditions / Notes:


T2=LISN 1

Transducer Legend:
T1=HP 11947A Transient Limiter

Ext A	Attn: 0 dB										
Measurement Data: Reading listed by margin.						Test Lead	d: Line 2				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	174.725k	31.1	+9.9	+1.1			+0.0	42.1	54.7	-12.6	Line
2	255.444k	22.0	+9.9	+0.9			+0.0	32.8	51.6	-18.8	Line
3	11.688M	19.3	+10.0	+0.9			+0.0	30.2	50.0	-19.8	Line
4	536.143k	14.3	+10.0	+0.7			+0.0	25.0	46.0	-21.0	Line
5	1.162M	14.3	+10.0	+0.5			+0.0	24.8	46.0	-21.2	Line

Date: 10/18/08 Page: 22 of 37

EMCE Engineering Date: 10/15/2008 Time: 1:10:32 PM SCM Micro WO#: 2799 EN55022 B COND [AVE] Test Lead: Line 2 120V 60Hz Sequence#: 2

Date: 10/18/08 Page: 23 of 37

UNINTENTIONAL RADIATED EMISSIONS TEST

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: EN55022B RADIATED

 Work Order #:
 2799
 Date:
 10/13/2008

 Test Type:
 Radiated Scan
 Time:
 12:53:00

Equipment: Smart Card Reader Sequence#: 1

Manufacturer: SCM Micro Tested By: Bob Cole

Model: SCL010 S/N: N/A

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85650A Quasi	3145A01673	8/20/2008	8/20/09	003
Peak Adapter				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
HP 9447D Pre-Amp	2443A03587	10/1/08	10/1/09	008
EMCO BiConiLog	9808-1306	8/22/08	8/22/09	009
Antenna M/N: 3142				

Equipment Under Test (* = EUT):

Function Manufacturer Model # S/N

Support Devices:

Function Manufacturer Model # S/N

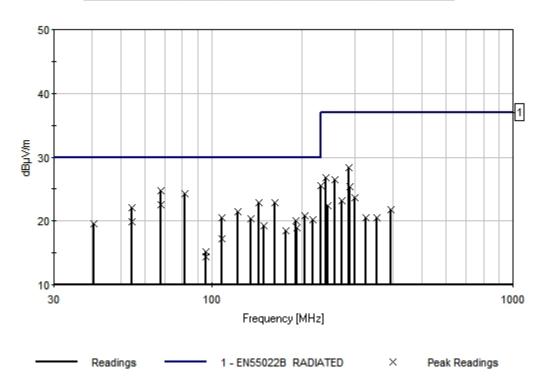
Test Conditions / Notes:

Transducer Legend:

T1=AH SAS-200/543 S/N: 199 T2=AH Log P SAS-200_510 S-N853 T3=75' LMR Cable T4=8447 Pre-Amp

Ext Attn: 0 dB

Measurement Data: Reading listed by margin. Test Distance: 10 Meters T2 T4 Rdng T1 T3 Dist Corr Spec Polar Freq Margin dB MHz dBuV dB dB dB Table $dB\mu V/m dB\mu V/m$ dΒ Ant +0.767.803M 43.5 +7.4 +0.0+26.9 +0.024.7 30.0 -5.3 Vert 2 81.374M 43.0 +7.1+0.0+26.8+0.030.0 -5.7 +1.024.3 Vert 162.727M +12.0+1.2 +26.6 +0.022.9 30.0 -7.1 Vert 36.3 +0.0143.999M 36.2 +12.2+0.0+1.0+26.6+0.022.8 30.0 -7.2 Vert 67.799M 41.3 +7.4+0.0+0.7+26.9 +0.022.5 30.0 -7.5 Horiz 54.257M 38.9 +9.3 +0.5+26.722.0 30.0 -8.0 6 +0.0+0.0Vert


Report Number:

Date: Page: 2799-1 10/18/08 24 of 37

										Paş	ge: 2
7	122.006M	35.7	+11.3	+0.0	+1.1	+26.6	+0.0	21.5	30.0	-8.5	Vert
8	284.764M	33.9	+19.5	+0.0	+1.6	+26.7	+0.0	28.3	37.0	-8.7	Vert
9	203.407M	31.6	+14.5	+0.0	+1.5	+26.7	+0.0	20.9	30.0	-9.1	Vert
10	108.487M	36.0	+10.0	+0.0	+1.2	+26.7	+0.0	20.5	30.0	-9.5	Vert
11	135.607M	33.9	+12.0	+0.0	+1.0	+26.6	+0.0	20.3	30.0	-9.7	Vert
12	216.967M	30.6	+14.8	+0.0	+1.5	+26.7	+0.0	20.2	30.0	-9.8	Vert
13	189.847M	32.3	+13.0	+0.0	+1.4	+26.6	+0.0	20.1	30.0	-9.9	Vert
14	54.239M	36.8	+9.3	+0.0	+0.5	+26.7	+0.0	19.9	30.0	-10.1	Horiz
15	239.999M	36.9	+15.2	+0.0	+1.4	+26.7	+0.0	26.8	37.0	-10.2	Vert
16	40.691M	34.1	+11.9	+0.0	+0.4	+26.9	+0.0	19.5	30.0	-10.5	Vert
17	257.641M	35.6	+16.1	+0.0	+1.4	+26.7	+0.0	26.4	37.0	-10.6	Vert
18	149.167M	32.5	+12.3	+0.0	+1.0	+26.6	+0.0	19.2	30.0	-10.8	Vert
19	191.999M	31.0	+13.3	+0.0	+1.4	+26.7	+0.0	19.0	30.0	-11.0	Vert
20	230.525M	35.7	+15.1	+0.0	+1.4	+26.7	+0.0	25.5	37.0	-11.5	Vert
21	287.999M	31.4	+19.1	+0.0	+1.6	+26.7	+0.0	25.4	37.0	-11.6	Vert
22	176.287M	31.4	+12.3	+0.0	+1.3	+26.6	+0.0	18.4	30.0	-11.6	Vert
23	108.479M	32.7	+10.0	+0.0	+1.2	+26.7	+0.0	17.2	30.0	-12.8	Horiz
24	298.323M	29.0	+19.7	+0.0	+1.7	+26.7	+0.0	23.7	37.0	-13.3	Vert
25	271.205M	29.1	+19.2	+0.0	+1.5	+26.7	+0.0	23.1	37.0	-13.9	Vert
26	244.084M	32.4	+15.3	+0.0	+1.4	+26.7	+0.0	22.4	37.0	-14.6	Vert
27	96.000M	32.1	+8.6	+0.0	+1.2	+26.7	+0.0	15.2	30.0	-14.8	Horiz
28	393.260M	31.5	+0.0	+15.0	+2.1	+26.8	+0.0	21.8	37.0	-15.2	Vert
29	96.000M	31.3	+8.6	+0.0	+1.2	+26.7	+0.0	14.4	30.0	-15.6	Vert
30	352.560M	30.8	+0.0	+14.6	+1.9	+26.8	+0.0	20.5	37.0	-16.5	Vert
31	325.440M	31.9	+0.0	+13.6	+1.8	+26.8	+0.0	20.5	37.0	-16.5	Vert
L											

Date: 10/18/08 Page: 25 of 37

EMCE Engineering Date: 10/13/2008 Time: 12:53:00 SCM Micro WO#: 2799 EN55022B RADIATED Test Distance: 10 Meters Sequence#: 1

Date: 10/18/08 Page: 26 of 37

APPENDIX C

Test Data Sheets Intentional Radiator Results

Date: 10/18/08 Page: 27 of 37

INTENTIONAL RADIATOR

Maximum allowed field strength in the frequency range of 13.553-13.567 MHz is 15,848 microvolts per meter, or 84 dBuV/M at a test distance of 30 meters. Test distance for this measurement is 1 meter. The calculation for determining the field strength limit at 1 meter is as follows:

Correction Factor = 40 log (distance 1 / distance 2) Correction Factor = 40 log (30/1) Correction Factor = 59.1 dBuV/M

Therefore, the limit used for this measurement is 143.1 dBuV/M

The plot on the following page shows the peak power output of the EUT as being 68.9 dBuV/M. at 13.558 MHz, which is the fundamental transmit frequency for this device.

Test results show compliance to the limits called out in CFR 47, Section 15.225 (a), (b), (c), (d) and (e), as well as RSS-210 6.2.2(e) as follows:

Date: 10/18/08 Page: 28 of 37

TEST RESULTS

Peak Output Power

Per CFR 47, Section 15.225 and RSS-210 Issue 5, Section 6.2.2(e)

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: RFID FCC Mask 1 Meter

 Work Order #:
 2799
 Date:
 10/17/2008

 Test Type:
 Radiated Scan
 Time:
 12:41:45 PM

Equipment: Smart Card Reader Sequence#: 2

Manufacturer: SCM Micro Tested By: Bob Cole

Model: SCL010

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
HP 85650A Quasi	3145A01673	08/20/2008	08/20/2009	003
Peak Adapter				
HP 8447D PreAmp	2443A03587	10/01/2008	10/01/2009	008
Empire Devices LP-	000114	1/4/08	1/4/09	011
105 Loop Antenna				

Equipment Under Test (* = EUT):

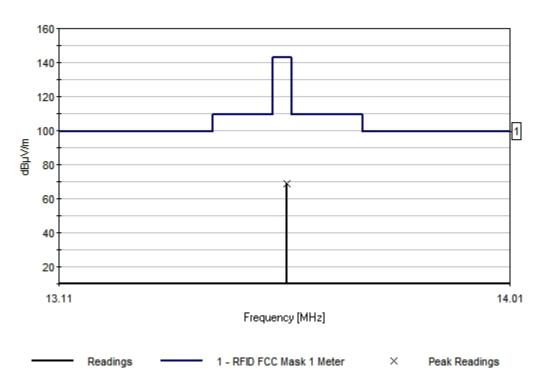
Function	Manufacturer	Model #	S/N
Smart Card Reader*	SCM Micro	SCL010	

Support Devices:

Function	Manufacturer	Model #	S/N	
Laptop PC	HP	dv4000		

Test Conditions / Notes:

Transducer Legend:


27.000000000000000000000000000000000000	
T1=LP-105 Loop Antenna	T2=8447 Pre-Amp

Ext Attn: 0 dB

	Measurement Data: Reading listed by amplitude.		Test Distance: 1 Meter									
	#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
Γ	1	13.559M	76.4	+19.7	+27.2	•		+0.0	68.9	143.0	-74.1	Vert

Date: 10/18/08 Page: 29 of 37

EMCE Engineering Date: 10/17/2008 Time: 12:41:45 PM SCM Micro WO#: 2799 RFID FCC Mask 1 Meter Test Distance: 1 Meter Sequence#: 2

Date: 10/18/08 Page: 30 of 37

Margin vs CFR 47, 15,225 RFID Mask

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: RFID FCC Mask 1 Meter

 Work Order #:
 2799
 Date:
 10/17/2008

 Test Type:
 Radiated Scan
 Time:
 12:45:36 PM

Equipment: Smart Card Reader Sequence#: 3

Manufacturer: SCM Micro Tested By: Bob Cole

Model: SCL010

S/N:

Test Equipment:

z cot z quip intent				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
HP 85650A Quasi	3145A01673	08/20/2008	08/20/2009	003
Peak Adapter				
HP 8447D PreAmp	2443A03587	10/01/2008	10/01/2009	008
Empire Devices LP-	000114	1/4/08	1/4/09	011
105 Loop Antenna				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Smart Card Reader*	SCM Micro	SCL010	

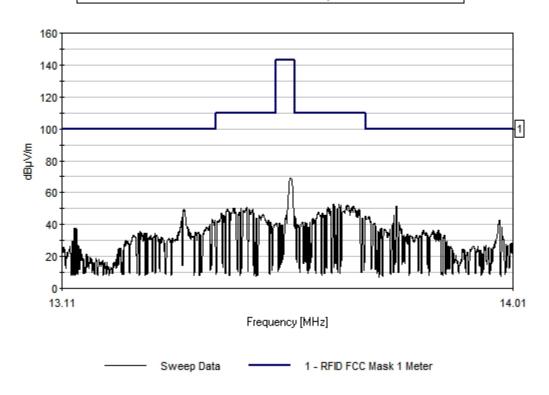
Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	HP	dv4000	

Test Conditions / Notes:

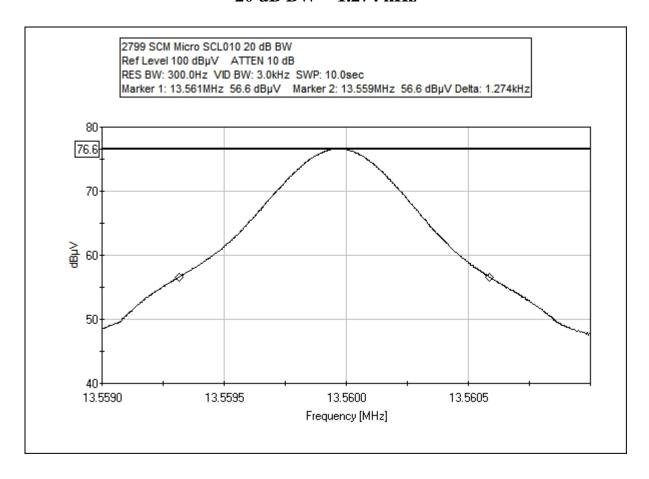
T2=8447 Pre-Amp

Transducer Legend:
T1=LP-105 Loop Antenna


Ext A	Attn: 0 dB										
Measure	ement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 1 Meter		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	13.771M	59.3	+19.5	+27.2			+0.0	51.6	99.5	-47.9	Vert
2	13.347M	56.7	+19.8	+27.2			+0.0	49.3	99.5	-50.2	Vert
3	13.768M	53.6	+19.5	+27.2			+0.0	45.9	99.5	-53.6	Vert
4	13.716M	52.7	+19.6	+27.2			+0.0	45.1	99.5	-54.4	Vert
5	13.343M	52.0	+19.8	+27.2			+0.0	44.6	99.5	-54.9	Vert
6	13.402M	50.6	+19.7	+27.2			+0.0	43.1	99.5	-56.4	Vert

Report Number: 2799-1 Date: 10/18/08

Page: 31 of 37


7	13.403M	50.5	+19.7	+27.2	+0.0	43.0	99.5	-56.5	Vert
8	13.984M	50.6	+19.4	+27.2	+0.0	42.8	99.5	-56.7	Vert
9	13.645M	60.2	+19.6	+27.2	+0.0	52.6	109.5	-56.9	Vert
10	13.656M	60.0	+19.6	+27.2	+0.0	52.4	109.5	-57.1	Vert

EMCE Engineering Date: 10/17/2008 Time: 12:45:36 PM SCM Micro WO#: 2799 RFID FCC Mask 1 Meter Test Distance: 1 Meter Sequence#: 3

Date: 10/18/08 Page: 32 of 37

20 dB Bandwidth Per RSS-210, Section 5.9.1 20 dB BW = 1.274 kHz

Date: 10/18/08 Page: 33 of 37

Frequency Stability

CFR 47, Section 15.225(e) and Sec 15.31(e), RSS-210 Sec 6.2.2(e) and 6.4

Temperature	Voltage (DC)	<u>Transmit</u>	Upper Limit	Lower Limit	Pass / Fail
(Celcius)		Frequency	<u>(MHz)</u>	<u>(MHz)</u>	
		<u>(MHz)</u>			
Ambient	102.00	13.559	13.561356	13.558644	PASS
Ambient	120.00	13.559	13.561356	13.558644	PASS
Ambient	138.00	13.560	13.561356	13.558644	PASS
+50	120.00	13.559	13.561356	13.558644	PASS
+40	120.00	13.560	13.561356	13.558644	PASS
+30	120.00	13.559	13.561356	13.558644	PASS
+20	120.00	13.559	13.561356	13.558644	PASS
+10	120.00	13.560	13.561356	13.558644	PASS
0	120.00	13.559	13.561356	13.558644	PASS
-10	120.00	13.559	13.561356	13.558644	PASS
-20	120.00	13.559	13.561356	13.558644	PASS

Test Equipment:

Test Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B Spectrum	2856A93846	08/20/2008	08/20/2009	004
Analyzer				
HP 85650A Quasi	3145A01673	8/20/2008	8/20/09	003
Peak Adapter				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
HP 9447D Pre-Amp	2443A03587	10/1/08	10/1/09	008
Empire Devices LP-	000114	1/4/08	1/4/09	011
105 Loop Antenna				
Webber WE-4-	3-60-3.2	N/A	N/A	020
100+200 Temperature				
Chamber				
Linear Laboratories	8432	8/20/08	8/20/09	017
Quick Temp Non -				
Contact Thermometer				

Date: 10/18/08 Page: 34 of 37

Field Strength of Harmonics

CFR 47, Section 15.225(d), RSS-210 Sec 6.3 Limits from CFR 47, Section 15.209 Test Distance: 3 meters

Frequency (MHz) (m	Measuremen Field strength icrovolts/meter)	t distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	` /	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

Test Location: EMCE Engineering •44366 S. Grimmer Blvd • Fremont, CA 94538 • 510-490-4307

Customer: SCM Micro

Specification: EN55022B RADIATED 25-1000

Work Order #: 2799 Date: 10/13/2008
Test Type: Radiated Scan Time: 12:53:00
Equipment: Smart Card Reader Sequence#: 1

Manufacturer: SCM Micro Tested By: Bob Cole

Model: SCL010

S/N:

Test Equipment:

1 cst Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8568B Spectrum	2542A11087	08/20/2008	08/20/2009	001
Analyzer				
HP 85650A Quasi	3145A01673	08/20/2008	08/20/2009	003
Peak Adapter				
HP 85685A RF	35076A01550	08/20/2008	08/20/2009	002
Preselector				
HP 8447D PreAmp	2443A03587	10/01/2008	10/01/2009	008
EMCO BiConiLog	9808-1306	8/22/08	8/22/09	009
Antenna M/N: 3142				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Smart Card Reader*	SCM Micro	SCL010	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	HP	dv4000	

Test Conditions / Notes:

Transducer Legend:

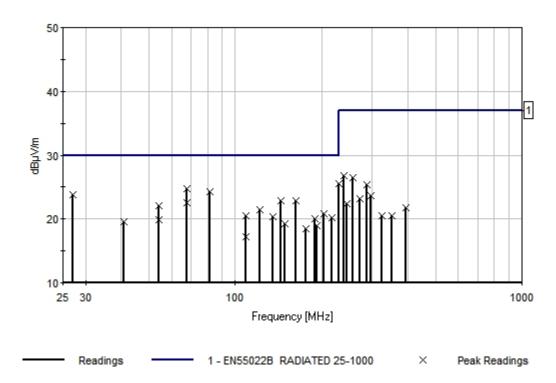
Report Number:

2799-1 10/18/08

Date: Page: 35 of 37

T2=AH Log P SAS-200_510 S-N853 T1=AH SAS-200/543 S/N: 199 T4=8447 Pre-Amp T3=75' LMR Cable

Ext Attn: 0 dB


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Polar Ant
1 67.803M 43.5 +7.4 +0.0 +0.7 +26.9 +0.0 24.7 30.0 -5.3 2 81.374M 43.0 +7.1 +0.0 +1.0 +26.8 +0.0 24.3 30.0 -5.7 3 27.110M 29.4 +19.5 +0.0 +1.6 +26.7 +0.0 23.8 30.0 -6.2 4 162.727M 36.3 +12.0 +0.0 +1.2 +26.6 +0.0 22.9 30.0 -7.1 5 143.999M 36.2 +12.2 +0.0 +1.0 +26.6 +0.0 22.8 30.0 -7.2 6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 </td <td>Ant</td>	Ant
2 81.374M 43.0 +7.1 +0.0 +1.0 +26.8 +0.0 24.3 30.0 -5.7 3 27.110M 29.4 +19.5 +0.0 +1.6 +26.7 +0.0 23.8 30.0 -6.2 4 162.727M 36.3 +12.0 +0.0 +1.2 +26.6 +0.0 22.9 30.0 -7.1 5 143.999M 36.2 +12.2 +0.0 +1.0 +26.6 +0.0 22.8 30.0 -7.2 6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	
3 27.110M 29.4 +19.5 +0.0 +1.6 +26.7 +0.0 23.8 30.0 -6.2 4 162.727M 36.3 +12.0 +0.0 +1.2 +26.6 +0.0 22.9 30.0 -7.1 5 143.999M 36.2 +12.2 +0.0 +1.0 +26.6 +0.0 22.8 30.0 -7.2 6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
4 162.727M 36.3 +12.0 +0.0 +1.2 +26.6 +0.0 22.9 30.0 -7.1 5 143.999M 36.2 +12.2 +0.0 +1.0 +26.6 +0.0 22.8 30.0 -7.2 6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 12 216.967M 30.6 +14.8 <t< td=""><td>Vert</td></t<>	Vert
5 143.999M 36.2 +12.2 +0.0 +1.0 +26.6 +0.0 22.8 30.0 -7.2 6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 <	Vert
6 67.799M 41.3 +7.4 +0.0 +0.7 +26.9 +0.0 22.5 30.0 -7.5 7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 <t< td=""><td>Vert</td></t<>	Vert
7 54.257M 38.9 +9.3 +0.0 +0.5 +26.7 +0.0 22.0 30.0 -8.0 8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
8 122.006M 35.7 +11.3 +0.0 +1.1 +26.6 +0.0 21.5 30.0 -8.5 9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Horiz
9 203.407M 31.6 +14.5 +0.0 +1.5 +26.7 +0.0 20.9 30.0 -9.1 10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
10 108.487M 36.0 +10.0 +0.0 +1.2 +26.7 +0.0 20.5 30.0 -9.5 11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
11 135.607M 33.9 +12.0 +0.0 +1.0 +26.6 +0.0 20.3 30.0 -9.7 12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
12 216.967M 30.6 +14.8 +0.0 +1.5 +26.7 +0.0 20.2 30.0 -9.8 13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
13 189.847M 32.3 +13.0 +0.0 +1.4 +26.6 +0.0 20.1 30.0 -9.9 14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
14 54.239M 36.8 +9.3 +0.0 +0.5 +26.7 +0.0 19.9 30.0 -10.1	Vert
	Vert
15 220 000 260 152 100 114 267 100 260 270 100	Horiz
15 239.999M 36.9 +15.2 +0.0 +1.4 +26.7 +0.0 26.8 37.0 -10.2	Vert
16 40.691M 34.1 +11.9 +0.0 +0.4 +26.9 +0.0 19.5 30.0 -10.5	Vert
17 257.641M 35.6 +16.1 +0.0 +1.4 +26.7 +0.0 26.4 37.0 -10.6	Vert
18 149.167M 32.5 +12.3 +0.0 +1.0 +26.6 +0.0 19.2 30.0 -10.8	Vert
19 191.999M 31.0 +13.3 +0.0 +1.4 +26.7 +0.0 19.0 30.0 -11.0	Vert
20 230.525M 35.7 +15.1 +0.0 +1.4 +26.7 +0.0 25.5 37.0 -11.5	Vert
21 287.999M 31.4 +19.1 +0.0 +1.6 +26.7 +0.0 25.4 37.0 -11.6	Vert
22 176.287M 31.4 +12.3 +0.0 +1.3 +26.6 +0.0 18.4 30.0 -11.6	Vert
23 108.479M 32.7 +10.0 +0.0 +1.2 +26.7 +0.0 17.2 30.0 -12.8	Horiz
24 298.323M 29.0 +19.7 +0.0 +1.7 +26.7 +0.0 23.7 37.0 -13.3	Vert

Report Number: 2799-1 Date: 10/18/08

Date.	10/10/00
Page:	36 of 37

25	271.205M	29.1	+19.2	+0.0	+1.5	+26.7	+0.0	23.1	37.0	-13.9	Vert
26	244.084M	32.4	+15.3	+0.0	+1.4	+26.7	+0.0	22.4	37.0	-14.6	Vert
27	393.260M	31.5	+0.0	+15.0	+2.1	+26.8	+0.0	21.8	37.0	-15.2	Vert
28	352.560M	30.8	+0.0	+14.6	+1.9	+26.8	+0.0	20.5	37.0	-16.5	Vert
29	325.440M	31.9	+0.0	+13.6	+1.8	+26.8	+0.0	20.5	37.0	-16.5	Vert

EMCE Engineering Date: 10/13/2008 Time: 12:53:00 SCM Micro WO#: 2799 EN55022B RADIATED 25-1000 Test Distance: 10 Meters Sequence#: 1

Date: 10/18/08 Page: 37 of 37

APPENDIX D

EUT MODIFACTION LIST AND PHOTOS

N/A - NO modifications necessary