

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Request for Class II Permissive Change pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Thrucomm Model: DP1000

FCC ID: MAWDP1000V18

GRANTEE: Thrucomm 100 Second Avenue South Suite 901 St. Petersberg, FL. 33701

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

August 2, 2000

REPORT DATE:

FINAL TEST DATE: July 18 and July 19, 2000

Mark Briggs

AUTHORIZED SIGNATORY:

Mark R. Briggs Manager, EMC Consulting Services

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	4
EMISSION TEST RESULTS	5
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	
LIMITS OF ANTENNA CONDUCTED POWER	
LIMITS OF PROCESSING GAIN, POWER AND BANDWIDTH	
RADIATED SPURIOUS EMISSION IN RESTRICTED BANDS MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
EUT INTERFACE PORTS	
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	10
GENERAL	
POWER INPUT	
INTERNAL CABLING/WIRING	
EXTERNAL I/O PORTS	
PRINTED WIRING BOARD LAYOUT	
OTHER	
TEST SITE	11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	. 15

TABLE OF CONTENTS (Continued)

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS1	16
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	16
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	18
EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Data Log Sheets	.2
EXHIBIT 3: Radiated Emissions Test Configuration Photographs	.3
EXHIBIT 4: Theory of Operation for Thrucomm Model DP1000	13
EXHIBIT 5: Proposed FCC ID Label & Label Location1	14
EXHIBIT 6: Detailed Photographs of Thrucomm Model DP1000 Construction1	15
EXHIBIT 7: Operator's Manual for Thrucomm Model DP1000	16
EXHIBIT 8: Block Diagram of Thrucomm Model DP10001	17
EXHIBIT 9: Schematic Diagrams for Thrucomm Model DP1000	18

SCOPE

An electromagnetic emissions test has been performed on the Thrucomm model DP1000 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Thrucomm model DP1000 and therefore apply only to the tested sample. The sample was selected and prepared by Keith Roweof Thrucomm

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Thrucomm model DP1000 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Thrucomm model DP1000. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

LIMITS OF ANTENNA CONDUCTED POWER

These tests were not performed. The proposed changes to the device (addition of new antennas to the system) would not affect the antenna conducted emissions previously reported to the FCC.

LIMITS OFPROCESSING GAIN, POWER AND BANDWIDTH

These tests were not performed. The proposed changes to the device (addition of new antennas to the system) would not affect the processing gain, power, power spectral density or bandwidth as previously reported to the FCC.

RADIATED SPURIOUS EMISSION IN RESTRICTED BANDS

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205. Tests were performed with the EUT connected to each of the new antennas that are proposed for use with the DP1000 system.

Measurements were only made with the EUT operating on the high channel. This channel was selected in accordance with the original test plan for the DP1000 system as agreed upon by the FCC, which required that the system be evaluated for radiated spurious emissions with additional channels on the high channel only. The high channel was originally selected because of its proximity to the closest restricted band at 960 MHz.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit for each antenna. The actual test data and any correction factors are contained in an exhibit of this report.

Antenna	Margin / Frequency
KDI 9 dB YAGI (A)	-6.0 dB @ 5440MHz
Seavey SSU-09H-1 Remote Corner Reflector	-2.8dB @ 982.497MHz
Seavey RSA-09H-120, Horz 120 Antenna	-6.8dB @ 5440MHz
Seavey RSA-09H1, Horz 9 dB OmniDirectional	-3dB @ 982.497MHz
Antel Type BCD HP-7 WD EDIN	-7.1dB @ 5440MHz
YAGI (C) KDI-900-S	-10.7dB @ 982.5MHz
YAGI (B), KDI-900-L	-8.3dB @ 982.5MHz

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Thrucomm model DP1000 is a spread spectrum radio in the 902 to 928 MHz band which is designed to transmit data. Its digital interface consists of one synchronous port. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 18 V, 60 Hz.

The sample was received on July 18, 2000 and tested on July 18 and July 19, 2000. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Thrucomm	DP1000	Transceiver	-	MAWDP1000V18

OTHER EUT DETAILS

The following antenna were tested:

Description	Model Number	Manufacturer	Gain
Seavey Remote Corner Reflector	SSU-09H-1	Seavey Eng Assoc.	9.0 dBi
Seavey 120 degree Directional	RSA-09H-120	Seavey Eng Assoc.	9.0 dBi
Seavey 9dBi Horizontal Omni	RSA-09H-1	Seavey Eng Assoc.	9.0 dBi
Antel Horizontal Omni Antenna	BCD-HP7 WD	Antel International	9.0 dBi
Yagi KDI-900-S	KDI-900-S	KDI Precision Prod	9.0 dBi
Yagi KDI-900-L	KDI-900-L	KDI Precision Prod	9.0 dBi

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 10 cm wide by 28 cm deep by 8 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Configuration #1				
Manufacturer Model Description Serial Number				
Ault Inc None AC adpater 18V AC None				

Configuration #2				
Manufacturer Model Description Serial Number FCC ID				FCC ID
Ault Inc	None	AC adpater 18V AC	None	None
Hewlett Packard	2225C	Parallel Printer	2714540166	DS16XU2225

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Configuration #1					
		Cable(s)			
EUT Port	Connected To	Description	Shielded or Unshielded	Length(m)	
RF I/O	Antenna	LMR 400 RF Coax	Shielded	25	
Power	AC Adapter			1	

Note: The Configuration port is used to configure unit only. It is not used during normal operation and was not cabled.

Configuration #2				
		Cable(s)		
			Shielded or	
EUT Port	Connected To	Description	Unshielded	Length(m)
RF I/O	Antenna	LMR 400 RF Coax	Shielded	25.0
Power	AC Adapter	Power Wires	Unshielded	1.0
Data I/O	Parallel Printer	Parallel Cable	Shielded	1.0
DB9 Configuration	Uncabled	For configuration only	-	-

Configuration #2

EUT OPERATION

The EUT was set to continuously transmit on the high channel (924 MHz).

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Thrucomm model DP1000 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

POWER INPUT

No modifications.

INTERNAL CABLING/WIRING

No Modifications

EXTERNAL I/O PORTS

No Modifications

PRINTED WIRING BOARD LAYOUT

No Modifications

OTHER

The modifications proposed for the DP1000 are to add the following antennas for use with the system:

Description	Model Number	Manufacturer	Gain
Seavey Remote Corner Reflector	SSU-09H-1	Seavey Eng Assoc.	9.0 dBi
Seavey 120 degree Directional	RSA-09H-120	Seavey Eng Assoc.	9.0 dBi
Seavey 180 degree Directional	RSA-09H-180	Seavey Eng Assoc.	9.0 dBi
Seavey 9dBi Horizontal Omni	RSA-09H-1	Seavey Eng Assoc.	9.0 dBi
Antel Horizontal Omni Antenna	BCD-HP7 WD	Antel International	9.0 dBi
Antel 120 degree Directional	BCR-HP7 120	Antel International	9.0 dBi
Yagi KDI-900-S	KDI-900-S	KDI Precision Prod	9.0 dBi
Yagi KDI-900-L	KDI-900-L	KDI Precision Prod	9.0 dBi

Of these antennas, the following were tested since they represented the highest gain antennas for each antenna type: SSU-09H-1, RSA-09H-120, RSA-09H-1, BCD-HP7 WD, KDI-900-S, KDI. In addition, two other KDI Yagi antennae with 9dBi gain were also tested.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 18 and July 19, 2000 at the Elliott Laboratories Open Area Test Site #1 & 3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal standardized RF impedance, provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors, which are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency	T inste	T 1
Range (MHz)	Limit (uV)	Limit (dBuV)
· · · ·	· · /	
0.450 to 30.000	250	48
RADIATED E	EMISSIONS SPECIFICATION LIMITS,	SECTION 15.209
Frequency		
Range	Limit	Limit
(MHz)	(uV/m @ 3m)	(dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level- Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Radiated Emission Engineer: Chris	Radiated Emissions, 1 - 10GHz, 18-Jul-00 06:00 PM Engineer: Chris					
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	868	12	09/25/1999	09/25/2000
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 _9 KHz -26.5GHz	8593EM	1141	12	12/22/1999	12/22/2000
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	12/02/1999	12/02/2000
Narda West	EMI Filter 1.9 GHz, High Pass	HPF-161	248	12	03/27/2000	03/27/2001
Radiated Emissio	Radiated Emissions and Bench Testing per FCC 15.247, 19-Jul-00 04:40 PM	PM				
Engineer: Conrad						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Chase	BiLog Antenna, 30 - 1000 MHz	CA 1030		12	06/07/2000	06/07/2001
EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	487	12	03/24/2000	03/24/2001
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 _9 KHz -26.5GHz	8593EM	1141	12	12/22/1999	12/22/2000
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12	11/15/1999	11/15/2000
Hewlett Packard	Power Meter	432A	259, (F304)	12	02/17/2000	02/17/2001
Narda West	EMI Filter 1.9 GHz, High Pass	HPF-161	248	12	03/27/2000	03/27/2001
Rohde &Schwarz	Test Receiver, 20-1300MHz	ESVP	213, (F196)	12	05/30/2000	05/30/2001

Test Equipment (Emissions)

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 38415 10 Pages

Elliot	J	EMO	C Test I
	Thrucomm	Job Number:	
	DP1000	T-Log Number:	
		Proj Eng:	David Bare
Contact:	Keith Rowe		
missions Spec:	FCC	Class:	15.205 / 15.24
mmunity Spec:		Environment:	
	EMC Test Dat	ta	
	For The		
	Thrucomm		
	Model		
	DP1000		

Ellio	tt			EMC Te	st Data
Clien	: Thrucomm			Job Number:	J38182
Mode	: DP1000			T-Log Number:	T38415
				Proj Eng:	David Bare
	: Keith Rowe				
Emissions Spec				Class:	15.205 / 15.247
Immunity Spec	:			Environment:	
			FORMATIC		
				igned to transmit data. Its	
J	5	mulate the end u		uring operation. The EUT The electrical rating of the	-
Manufacturer	Model		Description	Serial Number	FCC ID
Thrucomm	DP1000		ransciever		MAWDP1000V18
The following antenna w Seavey RSA-09H-120 S Seavey SSU-09H-1 S/N Seavey RSA-09H-1 S/N KDI 9 dB YAGI (A), Stai YAGI (C), Part Number YAGI (B), Part Number Antel BCD WP-7 HD S/ The EUT enclosure is pr cm high.	5/N 129318 129320 129895 nless Steel (DI-900-S (DI-900-L N	EUT	• EUT Details	ures approximately 10 cm v	wide by 28 cm deep by 8
		Modifi	cation History		
Mod. #	Test	Date	,	Modificaiton	
1					
2					
3					

Elliot	- f			
CLIIU	.l		EMC Te	st Data
	Thrucomm		Job Number:	J38182
Model:	DP1000		T-Log Number:	
			Proj Eng:	David Bare
	Keith Rowe			
Emissions Spec:	FCC		Class:	15.205 / 15.247
Immunity Spec:			Environment:	
Manufacturen		ocal Support Equipme		
Manufacturer	Model	Description	Serial Number	FCC ID
Ault Inc	None	AC adpater 18V AC	None	None
	Re	mote Support Equipn	nent	
Manufacturer	Model	Description	Serial Number	FCC ID
None				
EUT Port	Connected To	Description	Cable(s) Shielded or Unshield	ded Length(m)
FLIT Port	Connected To	Description		lenath(m)
RF I/O	Antenna	LMR 400 RF Coax	Shielded	25
Power	AC Adapter			1
The EUT was transmitting	EUT C g continuously at 924 MHz	Dperation During Emi	ssions	

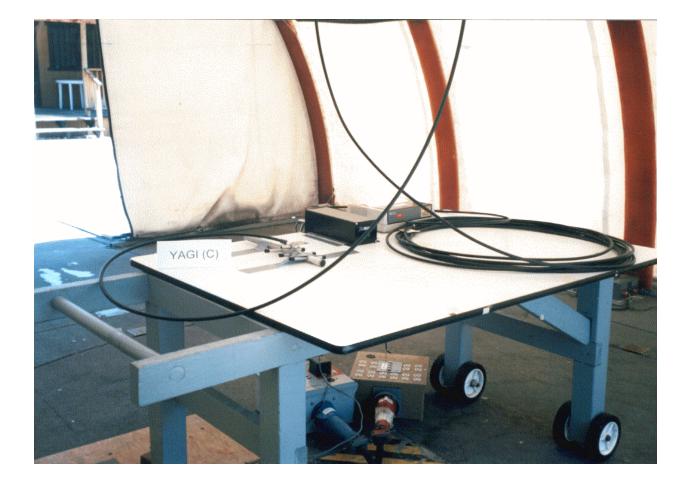
Client	Thrucomm	1	Job Number:	
	DP1000			
Model:	DP1000	_	T-Log Number:	
Contact	Keith Rowe		Proj Eng:	David Bare
Emissions Spec:			Class	15.205 / 15.247
Immunity Spec:			Environment:	15.2057 15.247
		nfiguration Inform		
Manufacturer	Lo Model	Description	nt Serial Number	FCC ID
Ault Inc	None	Description AC adpater 18V AC	None	None
Hewlett Packard	2225C	Parallel Printer	2714540166	DS16XU2225
Manufacturer None	Model -	Description -	Serial Number -	FCC ID -
		EUT Interface Ports		
			Cable(s)	
EUT Port	Connected To	Description	Shielded or Unshield	led Length(r
RF I/O	Antenna	LMR 400 RF Coax	Shielded	25.0
Power	AC Adapter	Power Wires	Unshielded	1.0
Data I/O	Parallel Printer	Parallel Cable	Shielded	1.0
DB9 Configuration	Uncabled	For configuration only	-	-
	EUT C inuously transmit on the hi	Operation During Emis igh channel (924 MHz).	sions	

CE.	liott		ЕМС	Test	Data
Client: Thr	ucomm			Job Number:	J38182
Model: DP	1000		T-L	og Number:	T38415
				•	David Bare
Contact: Kei	th Rowe			, ,	
Spec: FC	2			Class:	N/A
	Rad	liated Emissior	าร		
Faat Craaifi					
Γest Specifi Obj∈	ective: The objective of this test session specification(s) defined above.	n is to perform final quali	fication test	ing the EUT	relative to the
Date of	Test: 7/18/2000, 7/19/00	Config. Used:	1		
Test Eng	ineer: Chris Byleckie / Conrad Chu	Config Change:			
Test Loc	ation: SVOATS #3, #1	EUT Voltage:	18V AC		
	t Configuration Il local support equipment were located	on the turntable for rad	iated spurio	us emissions	s testing.
	· · · · · · · · · · · · · · · · · · ·				0
	nissions testing the measurement anter		-		0
For radiated en Chris Byleckie perfromed the r	nissions testing the measurement anter perfromed the measurements in the fre neasurements from 30 - 1000 MHz on	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00.	s from the E	UT.	-
For radiated en Chris Byleckie	nissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature:	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C	s from the E	UT.	-
For radiated en Chris Byleckie perfromed the r	nissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity:	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C	s from the E	UT.	-
For radiated en Chris Byleckie berfromed the r Ambient Co	nissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity:	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C	s from the E	UT. on 7/18/00 a	-
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of	hissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: F Results <u>Test Performed</u> Spurious RE, 30 - 10,000 MHz	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 /	s from the E z on Site #3	UT. on 7/18/00 a	and Conrad C
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of Run # 1	nissions testing the measurement anter perfromed the measurements in the fre- neasurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: F Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A)	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass	EUT. on 7/18/00 a 	and Conrad C argin 9 5440MHz
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of	hissions testing the measurement anter perfromed the measurements in the fre neasurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 /	s from the E z on Site #3 Result	EUT. on 7/18/00 a 	and Conrad (argin 9 5440MHz
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of Run # 1	hissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass	EUT. on 7/18/00 a 	and Conrad C
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of Run # 1 2	hissions testing the measurement anter perfromed the measurements in the fre measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @	and Conrad C argin 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: FResults Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @	and Conrad (argin 9 5440MHz
For radiated en Chris Byleckie perfromed the r Ambient Co Summary of Run # 1 2	hissions testing the measurement anter perfromed the measurements in the fre neasurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: FResults Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @	and Conrad C argin 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1 2 3	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz 120 Antenna	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @ -6.8dB @	and Conrad (argin 982.497MHz 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1 2	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: FResults Test Performed Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz 120 Antenna Spurious RE, 30 - 10,000 MHz	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @ -6.8dB @	and Conrad C argin 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1 2 3	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz 120 Antenna Spurious RE, 30 - 10,000 MHz Seavey RSA-09H1, Horz 9 dB	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @ -6.8dB @	and Conrad C argin 982.497MHz 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1 2 3	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz 120 Antenna Spurious RE, 30 - 10,000 MHz Seavey RSA-09H1, Horz 9 dB OmniDirectional	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @ -6.8dB @ -3dB @ 9	and Conrad (argin 982.497MHz 982.497MHz 982.497MHz
For radiated en Chris Byleckie Derfromed the r Ambient Co Summary of Run # 1 2 3 4	hissions testing the measurement anter perfromed the measurements in the fre- measurements from 30 - 1000 MHz on nditions: Temperature: Rel. Humidity: Results Test Performed Spurious RE, 30 - 10,000 MHz KDI 9 dB YAGI (A) Spurious RE, 30 - 10,000 MHz Seavey SSU-09H-1 Remote Corner Reflector Spurious RE, 30 - 10,000 MHz Seavey RSA-09H-120, Horz 120 Antenna Spurious RE, 30 - 10,000 MHz Seavey RSA-09H1, Horz 9 dB	nna was located 3 meter quency range 1 - 10GHz Site #1 on 7/19/00. 25°C 51% <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	s from the E z on Site #3 Result Pass Pass Pass	EUT. on 7/18/00 a -6.0 dB @ -2.8dB @ -6.8dB @ -3dB @ 9	and Conrad (argin 982.497MHz 982.497MHz

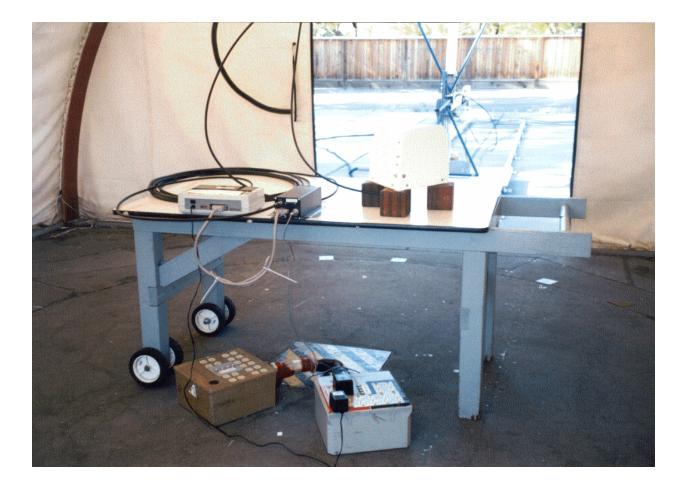
	Ellic							Test	
	DP1000	•						og Number:	
wouci.						-		-	David Bare
Contact	Keith Row	Δ						T toj Elig.	
Spec:		C						Class:	Ν/Λ
			ring Testi	N I				01033.	
easured	Pout at 924	MHz is			Detector	Azimuth	lloight	Commonto	
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Note 0, 0	
5440.000 4620.000		V	54.0 54.0	-5.9 -7.9	PK PK	0 0		Note 2, 3 Note 2, 3	
5440.000		v h	54.0	-7.9	PK PK	0		Note 2, 3	
982.498		h	56.0	-8.7	QP	0	1.0	-	
4620.000		h	54.0	-9.0	PK	0		Note 2,3	
3696.000		h	54.0	-9.3	PK	0		Note 2,3	
	43.8	٧	54.0	-10.2	Pk	0	1.0	Note 2, 3	
3696.000	41.5	h	54.0	-12.5	PK	250	1.0	Note 2	
3696.000 2772.000	41.1	V	54.0	-12.9	QP	211	1.2		
2772.000 982.500		V	54.0	-15.4	QP	196	1.2		
2772.000 982.500 975.000				-15.7	QP	360	1.3		
2772.000 982.500 975.000 1000.000	39.3	h	55.0					Note 2	
2772.000 982.500 975.000 1000.000 2772.000	39.3 36.1	V	54.0	-17.9	Pk	173			
2772.000 982.500 975.000 1000.000	39.3 36.1				Pk QP	173 195	1.0		
2772.000 982.500 975.000 1000.000 2772.000 1000.000	39.3 36.1 35.2	V V	54.0 54.0	-17.9					
2772.000 982.500 975.000 1000.000 2772.000	39.3 36.1	v v j vs. ave	54.0 54.0	-17.9					

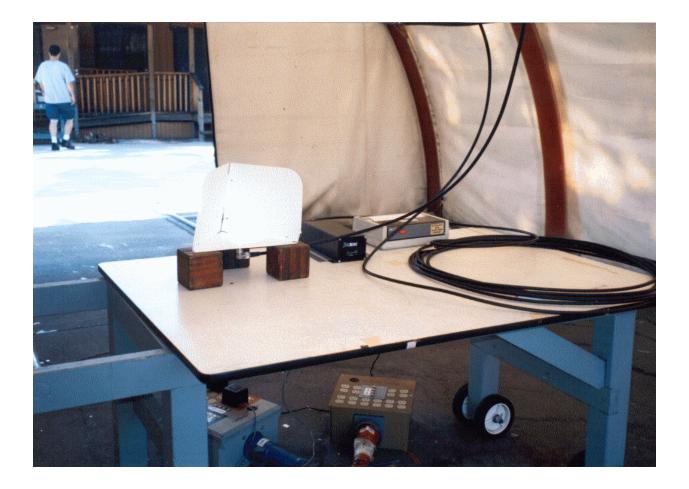
	Thrucomm						J	ob Number:	J38182
	DP1000							og Number:	
modoli						_		•	David Bare
Contact:	Keith Row	e						· · · · · · · · · · · · · · · · · · ·	
Spec:	FCC							Class:	N/A
Antenna:	Seavey En	gineerir	ng SSU-09F	I-1 Remote	Corner Ref	Channel @ 92 lector, 902-9	28 MHz, 12	9320	rgin
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	-	
982.497	51.3	V	54.0	-2.7	QP	0			& broadband noise
5440.000	48.0	h	54.0	-6.0	PK	0		Note 2,3	
5440.000	47.4	V	54.0	-6.6	PK	295		Note 2,3	
4620.000	45.9	h	54.0	-8.1	PK	0		Note 2,3	
963.400	45.5	V	54.0	-8.5	QP	0		broadband	noise
4620.000	44.5	V	54.0	-9.5	PK	0		Note 2,3	
2772.000	44.1	V	54.0	-9.9	PK	347		Note 2	
3696.000	44.1	V	54.0	-9.9	PK	172		Note 2	
3696.000	43.7	h	54.0	-10.3	PK	0		Note 2,3	
1000.000	43.2	V	54.0	-10.8	QP	0		broadband	noise
2772.000	40.2	h	54.0	-13.9	PK	23		Note 2	
982.500	40.0	h	54.0	-14.0	QP	0	1.0	broadband	noise
Note 2:	Pk reading	NS 21/0	rane limit						
NOLE Z.	Noise floor		raye innit						
Note 3: Run #3: Ra Antenna: S	adiated Sp Seavey En	ourious gineerir	ng RSA-09H	H-120, Horz	120 Degree	Channel @ 92 Directional Azimuth	Antenna, 9	002-928 MH	•
Note 3: Run #3: R Antenna: S	adiated Sp Seavey En Level	ourious gineerir Pol	ng RSA-09H	H-120, Horz / 15.247	120 Degree	Directional	Antenna, 9 Height	•	•
Note 3: Run #3: R Antenna: S Frequency MHz	adiated Sp Seavey En	ourious gineerir	ng RSA-09H	H-120, Horz / 15.247	120 Degree	Directional	Antenna, 9 Height meters	Comments	•
Note 3: Run #3: R Antenna: S Frequency MHz 5440.000	adiated Sp Seavey En Level dBµV/m 47.2	eurious gineerir Pol v/h h	ng RSA-09H 15.209 / Limit 54.0	I-120 , Horz / 15.247 Margin -6.8	120 Degree Detector Pk/QP/Avg PK	Azimuth degrees 0	Antenna, 9 Height meters 1.0	Comments Note 2,3	•
Note 3: Run #3: R Antenna: S Frequency MHz	adiated Sp Seavey En Level dBµV/m	ourious gineerir Pol v/h	ng RSA-09H 15.209 / Limit	H-120, Horz / 15.247 Margin	120 Degree Detector Pk/QP/Avg	Azimuth degrees	Antenna, 9 Height meters 1.0 1.0	Comments	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 5440.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9	Pol V/h V	ng RSA-09H 15.209 / Limit 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2	120 Degree Detector Pk/QP/Avg PK PK	Azimuth degrees 0 0	Antenna, 9 Height meters 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 5440.000 4620.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8	Pol V/h h v	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1	Detector Pk/QP/Avg PK PK PK PK	Azimuth degrees 0 0 0	Antenna, 9 Height meters 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 5440.000 4620.000 4620.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.5	Pol V/h h v v h	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5	Detector Pk/QP/Avg PK PK PK PK PK	Azimuth degrees 0 0 0 0 0	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2	•
Note 3: Run #3: R Antenna: Frequency MHz 5440.000 5440.000 4620.000 4620.000 3696.000 3696.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.8 45.5 43.6 43.6	Pol V/h h v v h v	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5 -10.4 -10.4	Detector Pk/QP/Avg PK PK PK PK PK PK	Azimuth degrees 0 0 0 0 0 171	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	•
Note 3: Run #3: Ri Antenna: Frequency MHz 5440.000 5440.000 4620.000 3696.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.5 43.6	Pol V/h h v h v h v	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5 -10.4 -10.4 -12.1	Detector Pk/OP/Avg PK PK PK PK PK PK PK	Azimuth degrees 0 0 0 0 0 171 0	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 5440.000 4620.000 4620.000 3696.000 3697.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.5 43.6 43.6 43.6 41.9	Pol V/h h v h v h v h v	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5 -10.4 -10.4	Detector Pk/QP/Avg PK PK PK PK PK PK PK PK PK	Azimuth degrees 0 0 0 0 0 0 1711 0 227	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 5440.000 4620.000 3696.000 3696.000 2772.000 2772.000	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.8 45.5 43.6 43.6 43.6 41.9 41.2	Pol V/h h V h V h V h V h	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5 -10.4 -10.4 -12.1 -12.8	Detector Pk/QP/Avg PK PK PK PK PK PK PK PK PK PK	Azimuth degrees 0 0 0 0 0 0 0 171 0 227 35	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	•
Note 3: Run #3: R Antenna: 3 Frequency MHz 5440.000 4620.000 4620.000 3696.000 2772.000 982.500 Note 2:	adiated Sp Seavey En Level dBµV/m 47.2 46.9 45.8 45.8 45.5 43.6 43.6 43.6 41.9 41.2	Pol V/h h V h V h V h V h V V h V V h V V V V	ng RSA-09H 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	H-120, Horz / 15.247 Margin -6.8 -7.1 -8.2 -8.5 -10.4 -10.4 -12.1 -12.8	Detector Pk/QP/Avg PK PK PK PK PK PK PK PK PK PK	Azimuth degrees 0 0 0 0 0 0 0 171 0 227 35	Antenna, 9 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	•

	Thrucomm	<u>ott</u>					, le	ob Number:	J38182
Model	DP1000							og Number:	
modell	51 1000					-		0	David Bare
Contact	Keith Row							FIUJ EIIY.	Daviu Dale
		9							
Spec:								Class:	
					MHz. High C			•	•
Antenna:	Seavey En	gineerii	19 RSA-09F	11, Horz 9	dB OmniDire	ectional Ante	enna, 902-9	28 MHZ, 12	9895
requency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
982.497		h	54.0	-3.0	QP	295	1.0		
963.100	47.1	h	54.0	-6.9	QP	273		broadband	noise
5440.000	44.4	h	54.0	-0.7	PK	0		Note 2,3	10.30
5440.000	43.3	V	54.0	-10.8	PK	0		Note 2,3	
2772.000	41.8	V	54.0	-10.0	PK	165		Note 2,5	
4620.000	41.5	V	54.0	-12.5	PK	0		Note 2,3	
3696.000	41.2	h	54.0	-12.8	PK	160		Note 2,0	
4620.000	41.0	h	54.0	-13.0	PK	0		Note 2,3	
2772.000	40.4	h	54.0	-13.6	PK	0		Note 2,3	
3696.000	40.3	V	54.0	-13.7	PK	0		Note 2,3	
982.500	37.8	V	54.0	-16.2	QP	304	1.0		
	I				1				
Vote 2:	Pk reading	vs. ave	rage limit						
Note 3:	Noise floor		<u> </u>						
)	adiated Sp	urious	Fmissions	30-10000	MHz. High C			rted by ma	rain
	-				•			,	rgin
Antenna: A					MHz, s/n 73			5	igin
Antenna: Anter	ina	BCD HI	P-7 WD EDI	N, 902-928	MHz, s/n 73	113, 500W, 5	io Ohms		Igin
Antenna: Antel Anter Frequency	na Level	BCD HI	P-7 WD EDI 15.209	N, 902-928 / 15.247	MHz, s/n 73	113, 500W, 5 Azimuth	60 Ohms Height	Comments	igin
Antenna: <i>I</i> Antel Anter Frequency MHz	na Level dBµV/m	Pol v/h	P-7 WD EDI 15.209 / Limit	N, 902-928 15.247 Margin	MHz, s/n 73 Detector Pk/QP/Avg	113, 500W, 5 Azimuth degrees	0 Ohms Height meters	Comments	
Antenna: Antel Anter Frequency MHz 5440.000	nna Level dBµV/m 46.9	BCD HI Pol v/h h	P-7 WD EDI 15.209 / Limit 54.0	N, 902-928 15.247 Margin -7.1	MHz, s/n 73 Detector Pk/QP/Avg PK	113, 500W, 5 Azimuth degrees 0	0 Ohms Height meters 1.0	Comments Note 2,3	
Antenna: A Antel Anter Frequency MHz 5440.000 5440.000	na Level dBµV/m 46.9 46.3	BCD HI Pol v/h h v	P-7 WD EDI 15.209 / Limit 54.0 54.0	N, 902-928 15.247 Margin -7.1 -7.7	MHz, s/n 73 Detector Pk/QP/Avg PK PK	Azimuth degrees 0 0	Height meters 1.0 1.0	Comments Note 2,3 Note 2,3	
Antenna: <i>I</i> Antel Anter Frequency MHz 5440.000 5440.000 4620.000	na Level dBµV/m 46.9 46.3 45.2	BCD HI Pol v/h h v h	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0	N, 902-928 15.247 Margin -7.1 -7.7 -8.8	MHz, s/n 73 Detector Pk/QP/Avg PK PK PK PK	113, 500W, 5 Azimuth degrees 0 0 0	Height Height neters 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 5440.000 4620.000 4620.000	na Level dBµV/m 46.9 46.3 45.2 45.2	Pol v/h h v h v	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0	N, 902-928 (15.247 Margin -7.1 -7.7 -8.8 -8.8	MHz, s/n 73 Detector Pk/QP/Avg PK PK PK PK PK	113, 500W, 5 Azimuth degrees 0 0 0 0 0	Height Height 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 5440.000 4620.000 3696.000	na Level dBμV/m 46.9 46.3 45.2 45.2 45.2	Pol v/h h v h v h	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	N, 902-928 (15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9	MHz, s/n 73 Detector Pk/QP/Avg PK PK PK PK PK PK PK	Azimuth degrees 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Height Height 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>J</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000	na Level dBμV/m 46.9 46.3 45.2 45.2 45.1 43.0	Pol v/h h v h v h v	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	N, 902-928 / 15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.9 -11.0	MHz, s/n 73 Detector Pk/QP/Avg PK PK PK PK PK PK PK PK PK	113, 500W, 5 Azimuth degrees 0 0 0 0 0 198 0	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>J</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000 2772.000	na Level dBμV/m 46.9 46.3 45.2 45.2 45.2 45.1 43.0 41.4	Pol V/h h v h v h v h v	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	N, 902-928 (15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9 -11.0 -12.7	MHz, s/n 73 Detector Pk/QP/Avg PK	113, 500W, 5 Azimuth degrees 0 0 0 0 0 198 0 173	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000 2772.000	na Level dBµV/m 46.9 46.3 45.2 45.2 45.2 45.1 43.0 41.4 39.9	Pol v/h h v h v h v h v h v	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	N, 902-928 (15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9 -11.0 -12.7 -14.1	MHz, s/n 73 Detector Pk/QP/Avg PK	113, 500W, 5 Azimuth degrees 0 0 0 0 198 0 173 0	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000 2772.000 2772.000 982.500	hna Level dBμV/m 46.9 46.3 45.2 45.2 45.1 43.0 41.4 39.9 34.0	BCD HI	2-7 WD EDI 15.209 / Limit 54.0 5	N, 902-928 / 15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9 -11.0 -12.7 -14.1 -20.0	MHz, s/n 73 Detector Pk/QP/Avg PK QP	Azimuth degrees 0 0 0 0 0 0 0 0 198 0 173 0 224	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000 2772.000	na Level dBµV/m 46.9 46.3 45.2 45.2 45.2 45.1 43.0 41.4 39.9	Pol v/h h v h v h v h v h v	2-7 WD EDI 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	N, 902-928 (15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9 -11.0 -12.7 -14.1	MHz, s/n 73 Detector Pk/QP/Avg PK	113, 500W, 5 Azimuth degrees 0 0 0 0 198 0 173 0	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	
Antenna: <i>A</i> Antel Anter Frequency MHz 5440.000 4620.000 4620.000 3696.000 3696.000 2772.000 2772.000 982.500	hna Level dBμV/m 46.9 46.3 45.2 45.2 45.1 43.0 41.4 39.9 34.0	BCD HI Pol v/h h v h v h v h v h v h v h v	2-7 WD EDI 15.209 / Limit 54.0 5	N, 902-928 / 15.247 Margin -7.1 -7.7 -8.8 -8.8 -8.8 -8.9 -11.0 -12.7 -14.1 -20.0	MHz, s/n 73 Detector Pk/QP/Avg PK QP	Azimuth degrees 0 0 0 0 0 0 0 0 198 0 173 0 224	Height Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3 Note 2,3	


Elli	off		FMC.	Test	Data	
y Lm				b Number:		
Client: Thrucomr Model: DP1000	TI					
			I-L(og Number:		
Contract Kaith Day				Proj Eng:	David Bare	
Contact: Keith Rov	le			Class		
Spec: FCC				Class:	15.205 / 15.2	:47
	Rad	liated Emissior	IS			
Test Specifics						
•	The objective of this test session specification(s) defined above.	n is to perform final qualif	ication testir	ng the EUT	relative to the	
Date of Test:	07/19/2000	Config. Used:	2			
Test Engineer:	Conrad Chu	Config Change:				
Test Location:	SVOATS #1	EUT Voltage:	120V/60Hz			
the EUT.	as testing between 30 MHz and 1 e 1GHz made using Preamp #870 DNS: Temperature: Rel. Humidity:), Analyzer #780, Horn #4 22°C				stance from
Summary of Res	ults					
Run #	Test Performed	Limit	Result	Ma	argin	
1	Spurious RE, 30 - 10,000 MHz	FCC Part 15.209 /	Pass	-10.7dB @	982.5MHz	
2	YAGI (C) KDI-900-S Spurious RE, 30 - 10,000 MHz	15.247(c) FCC Part 15.209 /	Pass	0 24D @	982.5MHz	
2	YAGI (B), KDI-900-L	15.247(c)	газэ	-0.30D @	90Z.JIVITIZ	
Modifications Ma	ide During Testing: None					Ι

	Thrucomm	<u>ott</u>						Test	
	DP1000							og Number:	
wouel.	000					-	1°L	•	David Bare
Contact	Keith Row	0						FIUJ EIIY.	Daviu Dale
Spec:		e						Close	15.205 / 15.247
		diatada	missions i	n raatriata	d handa 20	10 000 MU-	only	CIASS.	15.2057 15.247
			nber KDI-90		u Danus, 30 -	· 10,000 MHz	only		
requency	Level	Pol	FCC	FCC	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
982.500	44.4	h	55.0	-10.6	QP	293	1.4		
982.500	42.3	V	54.0	-11.7	QP	14	1.1		
4620.000	41.1	V	54.0	-12.9	Avg	99	1.3		
2773.000	41.1	h	54.0	-12.9	Avg	153	1.7		
4620.000	41.1	h	54.0	-12.9	Avg	257	1.0		
3696.000	38.9	V	54.0	-15.1	Avg	44	1.2		
3696.000	38.8	h	54.0	-15.2	Avg	257	1.0		
2773.000	38.3	V	54.0	-15.7	Avg	172	1.0		
975.000	37.7	V	54.0	-16.3	QP	220	1.0		
4620.000	53.8	V	74.0	-20.2	Pk	99	1.3		
2773.000	53.8	h	74.0	-20.2	Pk	153	1.7		
4620.000	53.5	h	74.0	-20.5	Pk	257	1.0		
3696.000	51.3	V	74.0	-22.7	Pk	44	1.2		
2773.000	51.2	V	74.0	-22.8	Pk	172	1.0		
3696.000	51.0	h	74.0	-23.0	Pk	257	1.0		
	purious ra	diated e	missions i		d bands, 30 -	10,000 MHz	only		
Antenna: Y	/AGI (B), P		nber KDI-90						
Antenna: Y	/AGI (B), P Level	Pol	FCC	FCC	Detector	Azimuth	Height	Comments	
Antenna: Y requency MHz	/AGI (B) , P Level dBμV/m	Pol v/h	FCC Limit	FCC Margin	Pk/QP/Avg	degrees	meters	Comments	
Antenna: Y requency MHz 982.500	/AGI (B) , P Level dBμV/m 45.7	Pol v/h h	FCC Limit 54.0	FCC Margin -8.3	Pk/QP/Avg QP	degrees 183	meters 1.5		
Antenna: Y requency MHz 982.500 982.500	AGI (B), P Level dBμV/m 45.7 42.3	Pol v/h h v	FCC Limit 54.0 54.0	FCC Margin -8.3 -11.7	Pk/QP/Avg QP QP	degrees 183 306	meters 1.5 1.7		
Antenna: Y Frequency MHz 982.500 982.500 4620.000	AGI (B) , P Level dBμV/m 45.7 42.3 41.0	Pol v/h h v h	FCC Limit 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0	Pk/QP/Avg QP QP Avg	degrees 183 306 266	meters 1.5 1.7 1.2		
Antenna: Y Frequency MHz 982.500 982.500 4620.000 4620.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9	Pol v/h h v h v	FCC Limit 54.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1	Pk/QP/Avg QP QP Avg Avg	degrees 183 306 266 210	meters 1.5 1.7 1.2 1.0		
Antenna: Y Frequency MHz 982.500 982.500 4620.000 4620.000 975.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7	Pol v/h h v h v h	FCC Limit 54.0 54.0 54.0 54.0 55.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3	Pk/QP/Avg QP QP Avg Avg QP	degrees 183 306 266 210 207	meters 1.5 1.7 1.2 1.0 1.5		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6	Pol v/h h v h v h h	FCC Limit 54.0 54.0 54.0 54.0 55.0 55.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4	Pk/QP/Avg QP Avg Avg QP Avg Avg	degrees 183 306 266 210 207 142	meters 1.5 1.7 1.2 1.0 1.5 1.2		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000 3696.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2	Pol v/h h v h v h h v v	FCC Limit 54.0 54.0 54.0 54.0 55.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8	Pk/QP/Avg QP Avg Avg QP Avg Avg Avg	degrees 183 306 266 210 207 142 194	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.2 1.0		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000 3696.000 975.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0	Pol v/h h v h h v v v v v	FCC Limit 54.0 54.0 54.0 54.0 55.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0	Pk/QP/Avg QP Avg Avg QP Avg Avg Avg QP	degrees 183 306 266 210 207 142 194 195	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.0 1.1		
Intenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000 3696.000 3696.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0	Pol v/h h v h v h h v v v v h	FCC Limit 54.0 54.0 54.0 54.0 55.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0	Pk/QP/Avg QP Avg Avg QP Avg Avg QP Avg QP Avg	degrees 183 306 266 210 207 142 194 195 205	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.2 1.0 1.1 1.2		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000 3696.000 2773.000 2773.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0 38.0	Pol v/h h v h h h v v v h h v v	FCC Limit 54.0 54.0 54.0 54.0 55.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0 -15.0 -16.0	Pk/QP/Avg QP Avg Avg QP Avg Avg QP Avg Avg Avg Avg	degrees 183 306 266 210 207 142 194 195 205 229	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.2 1.0 1.2 1.0 1.1 1.2 1.0		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 2773.000 3696.000 975.000 3696.000 2773.000 4620.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0 38.0 54.1	Pol v/h h v h h v v h v h v	FCC Limit 54.0 54.0 54.0 55.0 54.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0 -15.0 -16.0 -19.9	Pk/QP/Avg QP Avg Avg QP Avg Avg QP Avg Avg Avg Avg Avg Pk	degrees 183 306 266 210 207 142 194 195 205 229 266	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.2 1.0 1.2 1.0 1.1 1.2 1.0 1.1 1.2 1.0 1.1		
Antenna: Y requency MHz 982.500 982.500 982.500 982.500 982.500 975.000 2773.000 3696.000 975.000 2773.000 3696.000 2773.000 4620.000 4620.000 4620.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0 38.0 54.1 53.1	Pol v/h h v h v h v v h v v h v v	FCC Limit 54.0 54.0 54.0 55.0 54.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0 -15.0 -16.0 -19.9 -20.9	Pk/QP/Avg QP Avg QP Avg QP Avg QP Avg QP Avg Avg Avg Pk Pk	degrees 183 306 266 210 207 142 194 195 205 229 266 210	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.2 1.0 1.1 1.2 1.0 1.1 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0		
Antenna: Y requency MHz 982.500 982.500 4620.000 4620.000 975.000 3696.000 975.000 3696.000 2773.000 4620.000 4620.000 2773.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0 38.0 54.1 52.9	Pol v/h h v h v h v v h v v h v v h v v h v v h	FCC Limit 54.0 54.0 54.0 55.0 54.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0 -15.0 -16.0 -19.9 -20.9 -21.1	Pk/QP/Avg QP Avg Avg QP Avg Avg QP Avg Avg Avg Avg Pk Pk Pk	degrees 183 306 266 210 207 142 194 195 205 229 266 210 142	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.1 1.2 1.0 1.1 1.2 1.0 1.1 1.2 1.0 1.2 1.0 1.2 1.0 1.2		
Antenna: Y requency MHz 982.500 982.500 982.500 982.500 982.500 975.000 2773.000 3696.000 975.000 2773.000 3696.000 2773.000 4620.000 4620.000 4620.000	AGI (B), P Level dBμV/m 45.7 42.3 41.0 40.9 41.7 40.6 39.2 39.0 38.0 54.1 53.1	Pol v/h h v h v h v v h v v h v v	FCC Limit 54.0 54.0 54.0 55.0 54.0 54.0 54.0 54.0	FCC Margin -8.3 -11.7 -13.0 -13.1 -13.3 -13.4 -14.8 -15.0 -15.0 -15.0 -16.0 -19.9 -20.9	Pk/QP/Avg QP Avg QP Avg QP Avg QP Avg QP Avg Avg Avg Pk Pk	degrees 183 306 266 210 207 142 194 195 205 229 266 210	meters 1.5 1.7 1.2 1.0 1.5 1.2 1.0 1.2 1.0 1.1 1.2 1.0 1.1 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0		


YAGI Antenna


YAGI Antenna

Corner Reflector Antenna

Corner Reflector Antenna

Seavey Horizontal Omni-Directional Antenna


Seavey Horizontal Omni-Directional Antenna

Antel Horizontal Omni-Directional Antenna

Antel Horizontal Omni-Directional Antenna

120-Degree Directional Antenna

120-Degree Directional Antenna

EXHIBIT 4: Theory of Operation for Thrucomm Model DP1000

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6: Detailed Photographs of Thrucomm Model DP1000 Construction

EXHIBIT 7: Operator's Manual for Thrucomm Model DP1000

EXHIBIT 8: Block Diagram of Thrucomm Model DP1000

EXHIBIT 9: Schematic Diagrams for Thrucomm Model DP1000