# CFR 47 FCC Part 15.247 TEST REPORT

Product : **NoteBook PC** Trade Name : MTC; Getac Model Number : 9213XY (X=0~9, Y=A~Z) FCC ID : MAU9213L

Prepared for

#### MiTAC Technology Corp.

4F, No.1, R&D Road 2, Hsinchu Science-Based Industrial Park,

Hsinchu, Taiwan, R.O.C.

TEL. : +886 2 2501 8231

FAX.: +886 2 2509 5887

Prepared by

#### Interocean EMC Technology Corp.

244 No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang, Taipei County, Taiwan, R.O.C. TEL.: +886 2 2600 6861 FAX.: +886 2 2600 6859

#### Remark :

The test report consists of <u>61</u> pages in total. It shall not be reproduced except in full, without the written approval of IETC. This document may be altered or revised by IETC only, and shall be noted in the revision section of the document. The test results in the report only to the tested sample.

## **Table of Contents**

| 1   | General Information                 |    | 5  |
|-----|-------------------------------------|----|----|
| 1.1 | Description of Equipment Under Test | 5  |    |
| 1.2 | Technical Specifications            | 6  |    |
| 1.3 | Table for Carrier Frequencies       | 7  |    |
| 1.4 | Test Facility                       | 8  |    |
| 1.5 | Test Equipment                      | 9  |    |
| 1.6 | Summary of Measurement              | 10 |    |
| 1.7 | Justification                       | 11 |    |
| 2   | 20dB Bandwidth test                 |    | 12 |
| 2.1 | Limit                               | 12 |    |
| 2.2 | Configuration of Measurement        | 12 |    |
| 2.3 | Test Procedure                      | 12 |    |
| 2.4 | Test Result                         | 12 |    |
| 3   | Carrier Frequency Separation test   |    | 18 |
| 3.1 | Limit                               | 18 |    |
| 3.2 | Configuration of Measurement        | 18 |    |
| 3.3 | Test Procedure                      | 18 |    |
| 3.4 | Test Result                         | 18 |    |
| 4   | Number of hopping frequencies test  |    | 21 |
| 4.1 | Configuration of Measurement        | 21 |    |
| 4.2 | Test Procedure                      | 21 |    |
| 4.3 | Test Result                         | 21 |    |
| 5   | Time of Occupancy (dwell time) test |    | 24 |
| 5.1 | Limit                               | 24 |    |
| 5.2 | Configuration of Measurement        | 24 |    |
| 5.3 | Test Procedure                      | 24 |    |
| 5.4 | Test Result                         | 24 |    |
| 6   | Maximum Output Power test           |    | 31 |
| 6.1 | Limit                               | 31 |    |
| 6.2 | Configuration of Measurement        | 31 |    |
| 6.3 | Test Procedure                      | 31 |    |
| 6.4 | Test Result                         | 31 |    |
| 7   | RF Conducted spurious emission      |    | 33 |
| 7.1 | Limit                               | 33 |    |
| 7.2 | Configuration of Measurement        | 33 |    |
| 7.3 | Test Procedure                      | 33 |    |
| 7.4 | Test Result                         | 33 |    |

|      | MAU9213L                                  | Page 3 | 01.01 |
|------|-------------------------------------------|--------|-------|
| 8    | RF Radiated spurious emission test        |        | 39    |
| 8.1  | Limit                                     | 39     |       |
| 8.2  | Configuration of Measurement              | 39     |       |
| 8.3  | Test Procedure                            | 40     |       |
| 8.4  | Test Result                               | 40     |       |
| 9    | Emission on the Band Edge test            |        | 43    |
| 9.1  | Limit                                     | 43     |       |
| 9.2  | Configuration of Measurement              | 43     |       |
| 9.3  | Test Procedure                            | 43     |       |
| 9.4  | Test Result                               | 43     |       |
| 10   | AC Power Line Conducted Emission test     |        | 51    |
| 10.1 | Limit                                     | 51     |       |
| 10.2 | 2 Configuration of Measurement            | 51     |       |
| 10.3 | 3 Test Procedure                          | 51     |       |
| 10.4 | Test Result                               | 51     |       |
| 11   | Photographs of Test                       |        | 54    |
| 11.1 | Power Line Conducted Emission Measurement | 54     |       |
| 11.2 | Radiated Emission Measurement             | 55     |       |
| 12   | Photographs of EUT                        |        | 57    |

## **Statement of Compliance**

| Applicant:                                         | MiTAC Technology Corp.               |  |  |  |
|----------------------------------------------------|--------------------------------------|--|--|--|
| Manufacturer:                                      | Getac Technology (Kunshan) Co., Ltd. |  |  |  |
| EUT Description:                                   | NoteBook PC                          |  |  |  |
| Model No.:                                         | 9213XY (X=0~9, Y=A~Z)                |  |  |  |
| Tested Power Supply:                               | 120Vac, 60Hz                         |  |  |  |
| Date of Final Test:                                | Sep. 19, 2008                        |  |  |  |
| Configuration of Measurements and Standards Used : |                                      |  |  |  |
| FCC Rules and Regulations Part 15 Subpart C        |                                      |  |  |  |

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4, and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The result of the testing report relate only to the item tested.

2. The testing report shall not be reproduced expect in full, without the written approval of IETC

Report Issued: 2

2008/09/25

Project Engineer:

( en Approved:

Jerry Liu

Anya L

## **1** General Information

## 1.1 Description of Equipment Under Test

| Product                    | : NoteBook PC                                                                                                                                                                                                                                                       |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Model Number               | : 9213XY (X=0~9, Y=A~Z)                                                                                                                                                                                                                                             |  |  |
| Applicant                  | <ul> <li>MiTAC Technology Corp.</li> <li>4F, No.1, R&amp;D Road 2, Hsinchu Science-Based Industrial Park,<br/>Hsinchu, Taiwan, R.O.C.</li> </ul>                                                                                                                    |  |  |
| Manufacturer               | <b>Getac Technology (Kunshan) Co., Ltd.</b><br>Kunshan Export Processing Zone, 215300 Jiangsu, P.R.China                                                                                                                                                            |  |  |
| Power Supply               | <ul> <li>Manufacturer: Delta, M/N: SADP-65KB BBVF</li> <li>Input: 100-240Vac, 50-60Hz, 1.5A</li> <li>Power cord: Non-shielded Detachable, 1.8 m No/o core</li> <li>Output: 19Vdc, 3.42A</li> <li>Power cable: Non-shielded Un-detachable, 1.8m with core</li> </ul> |  |  |
| <b>Operating Frequency</b> | · : 2402MHz ~ 2480MHz                                                                                                                                                                                                                                               |  |  |
| Channel Number             | : 79 channels                                                                                                                                                                                                                                                       |  |  |
| Type of Modulation         | : GFSK ; $\pi$ /4DQPSK ; 8DPSK                                                                                                                                                                                                                                      |  |  |
| Antenna description        | This device uses PIFA antenna.     Antenna Gain : 1.85dBi     Connector type : U.FL                                                                                                                                                                                 |  |  |
| Sample Receive date        | e : Aug. 28, 2008                                                                                                                                                                                                                                                   |  |  |
| Data of Tast               | $\cdot$ Aug. 28 San. 10, 2008                                                                                                                                                                                                                                       |  |  |

**Date of Test** : Aug. 28 ~ Sep. 19, 2008

Additional Description

- : 1) The EUT is **NoteBook PC.** 
  - 2) All model included in this report, the difference is for different market; the rest parts are identical.
  - 3) The Model Number "9213XY" is representative selected in the test and included in this report.

#### 1.2 Technical Specifications

| Key parts     | SKU B                            |
|---------------|----------------------------------|
| CPU           | Intel, U9300, 1.2G               |
| Memory        | Hynix, HYMP112S64CP6-S6, 1GB     |
| DDR2 on Board | Sumsung, K4T1G0084QQ-HCF7*8, 1G  |
| LCD Monitor   | Toshiba, PI-LTD133EWDA (LED)-V02 |
| HDD           | SATA, Fujitsu, MHZ2120BH, 120GB  |
| ODD           | HLDS U20N                        |
| Bluetooth     | AW-BT252, 2.1VERSION             |
| Wireless LAN  | AW-NE766                         |
| 3G            | N/A                              |
| Webcam        | Azurewave w/z Mic Arry           |
| AC/DC Adapter | Delta, SADP-65KB BBVF            |
| Battery       | 3 cell                           |

#### Bluetooth Module Information (Manufacturer: Azurewave, Model No.: AW-BT252)

| Bluetooth Standard          | Bluetooth v2.1 Standard                                   |
|-----------------------------|-----------------------------------------------------------|
| Host Interface              | 8 pin connector                                           |
| Major Chipset               | Broadcom BCM2046                                          |
| Dimension                   | 30.61*14.02 mm                                            |
| Antenna Interface connector | U.FL-IPEX (FOXCONN 20279-001E-01)                         |
| Integrated Antenna          | SMA Connector                                             |
| Frequency Range             | 2402MHz~2480MHz                                           |
| Modulation                  | Header GFSK, Payload 2M: $\pi$ /4DQPSK, Payload 3M: 8DPSK |
| Output Power                | Typical 2.5 $\pm$ 1dBm on antenna port                    |
| Receive Sensitivity         | -80dBm                                                    |
| Power Consumption           | Tx continue mode: 46~49mA Idle: 10~13mA suspend: 0~3A     |
| Operating Range             | 10m~20m (depending on environment and NB model)           |

## 1.3 Table for Carrier Frequencies

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 1       | 2402 MHz  | 31      | 2432 MHz  | 61      | 2462 MHz  |
| 2       | 2403 MHz  | 32      | 2433 MHz  | 62      | 2463 MHz  |
| 3       | 2404 MHz  | 33      | 2434 MHz  | 63      | 2464 MHz  |
| 4       | 2405 MHz  | 34      | 2435 MHz  | 64      | 2465 MHz  |
| 5       | 2406 MHz  | 35      | 2436 MHz  | 65      | 2466 MHz  |
| 6       | 2407 MHz  | 36      | 2437 MHz  | 66      | 2467 MHz  |
| 7       | 2408 MHz  | 37      | 2438 MHz  | 67      | 2468 MHz  |
| 8       | 2409 MHz  | 38      | 2439 MHz  | 68      | 2469 MHz  |
| 9       | 2410 MHz  | 39      | 2440 MHz  | 69      | 2470 MHz  |
| 10      | 2411 MHz  | 40      | 2441 MHz  | 70      | 2471 MHz  |
| 11      | 2412 MHz  | 41      | 2442 MHz  | 71      | 2472 MHz  |
| 12      | 2413 MHz  | 42      | 2443 MHz  | 72      | 2473 MHz  |
| 13      | 2414 MHz  | 43      | 2444 MHz  | 73      | 2474 MHz  |
| 14      | 2415 MHz  | 44      | 2445 MHz  | 74      | 2475 MHz  |
| 15      | 2416 MHz  | 45      | 2446 MHz  | 75      | 2476 MHz  |
| 16      | 2417 MHz  | 46      | 2447 MHz  | 76      | 2477 MHz  |
| 17      | 2418 MHz  | 47      | 2448 MHz  | 77      | 2478 MHz  |
| 18      | 2419 MHz  | 48      | 2449 MHz  | 78      | 2479 MHz  |
| 19      | 2420 MHz  | 49      | 2450 MHz  | 79      | 2480 MHz  |
| 20      | 2421 MHz  | 50      | 2451 MHz  |         |           |
| 21      | 2422 MHz  | 51      | 2452 MHz  |         |           |
| 22      | 2423 MHz  | 52      | 2453 MHz  |         |           |
| 23      | 2424 MHz  | 53      | 2454 MHz  |         |           |
| 24      | 2425 MHz  | 54      | 2455 MHz  |         |           |
| 25      | 2426 MHz  | 55      | 2456 MHz  |         |           |
| 26      | 2427 MHz  | 56      | 2457 MHz  |         |           |
| 27      | 2428 MHz  | 57      | 2458 MHz  |         |           |
| 28      | 2429 MHz  | 58      | 2459 MHz  |         |           |
| 29      | 2430 MHz  | 59      | 2460 MHz  |         |           |
| 30      | 2431 MHz  | 60      | 2461 MHz  |         |           |

| 1.4 Test Facility  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Description   | :        | ⊠RF Test Room   ⊠OATS 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Name of Firm       | :        | Interocean EMC Technology Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Company web        | :        | http://www.ietc.com.tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Site 1, 2 Location | :        | No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang,<br>Taipei County, Taiwan, R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Site 3, 4 Location | :        | No. 12, Ruei-Shu Valley, Ruei-Ping Tsun, Lin-Kou Hsiang,<br>Taipei County, Taiwan, R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Site Filing        | :        | <ul> <li>Federal Communication Commissions – USA<br/>Registration No.: 96399 (OATS 1 &amp; 2)<br/>Registration No.: 518958 (OATS 3 &amp; 4)</li> <li>Voluntary Control Council for Interference by Information<br/>Technology Equipment (VCCI) – Japan<br/>Registration No. (Conducted Room): C-1094<br/>Registration No. (Conducted Room): T-271<br/>Registration No. (OATS 1): R-1040<br/>Registration No. (OATS 2): R-1041</li> <li>Industry Canada (IC)<br/>Submission: 113543</li> <li>Japan Electrical Safety &amp; Environment Technology Laboratories (JET)<br/>Registration No.: 04S03-01</li> </ul> |
| Site Accreditation | <u>-</u> | <ul> <li>Bureau of Standards and Metrology and Inspection (BSMI) –<br/>Taiwan, R.O.C.<br/>Accreditation No.:<br/>SL2-IN-E-0026 for CNS13438 / CISPR22<br/>SL2-R1-E-0026 for CNS13439 / CISPR13<br/>SL2-R2-E-0026 for CNS13439 / CISPR13<br/>SL2-A1-E-0026 for CNS13783-1 / CISPR14-1</li> <li>TüV NORD<br/>Certificate No: TNTW0801R</li> <li>Taiwan Accreditation Foundation (TAF)<br/>Accrditation No.: 1113</li> </ul>                                                                                                                                                                                     |



## 1.5 Test Equipment

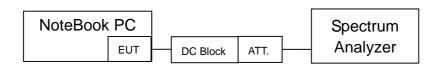
| Instrument              | Manufacturer | Model           | Serial No.  | Next Cal. Date |
|-------------------------|--------------|-----------------|-------------|----------------|
| Spectrum Analyzer       | R&S          | FSP30           | 100002      | 2008/12/14     |
| Spectrum Analyzer       | Agilent      | 8564EC          | 4046A00331  | 2009/04/11     |
| Preamplifier            | Agilent      | 8449B           | 3008A01434  | 2009/03/31     |
| Preamplifier            | SCHAFFNER    | CA30100         | 2           | 2008/10/21     |
| Horn Antenna            | COM-POWER    | AH-118          | 10081       | 2010/05/12     |
| Horn Antenna            | Schwarzbeck  | BBHA 9120       | 9120D-583   | 2008/12/17     |
| Horn Antenna            | Schwarzbeck  | BBHA 9170       | 213         | 2010/06/08     |
| Wide Bandwidth Sensor   | Anritsu      | MA2491A         | 728133      | 2008/10/18     |
| Power Meter             | Anritsu      | ML2495A         | 736010      | 2008/10/28     |
| Temp & Humidity chamber | GIAN FORCE   | GTH-150-40-2P-U | MAA0305-012 | 2009/05/14     |
| Signal Generator        | Agilent      | E8254A          | US41140164  | 2009/05/21     |

Note: The above equipments are within the valid calibration period.

## **1.6 Summary of Measurement**

| Report<br>Clause | Test Parameter                        | Reference Document<br>CFR47 Part15 | Results |
|------------------|---------------------------------------|------------------------------------|---------|
| 2                | 20dB Bandwidth test                   | §15.247(a)(1)                      | Pass    |
| 3                | Carrier Frequency Separation test     | §15.247(a)(1)                      | Pass    |
| 4                | Number of hopping frequencies test    | §15.247(a)(1)                      | Pass    |
| 5                | Time of Occupancy (dwell time) test   | §15.247(a)(1)                      | Pass    |
| 6                | Maximum Peak output power test        | §15.247(b)                         | Pass    |
| 7                | RF Conducted spurious emission        | §15.247(c)                         | Pass    |
| 8                | RF Radiated spurious emission test    | §15.205, 15.209                    | Pass    |
| 9                | Emission on the Band Edge test        | §15.247(d)                         | Pass    |
| 10               | AC Power Line Conducted Emission test | §15.247(b)                         | Pass    |

### 1.7 Justification


The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of the frequency band were all arrive limit requirement, thus we evaluate the EUT pass the specified test.

## 2 20dB Bandwidth test

## 2.1 Limit

No regulation limit, for reference purpose.

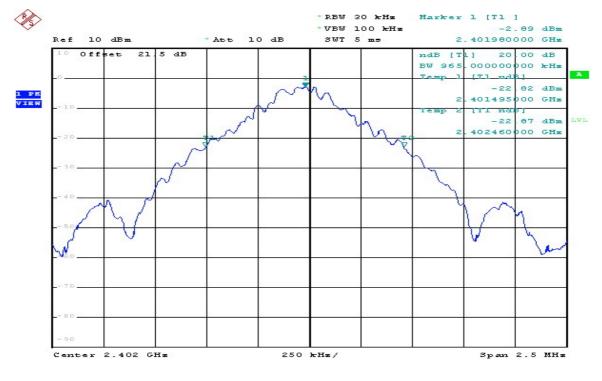
## 2.2 Configuration of Measurement



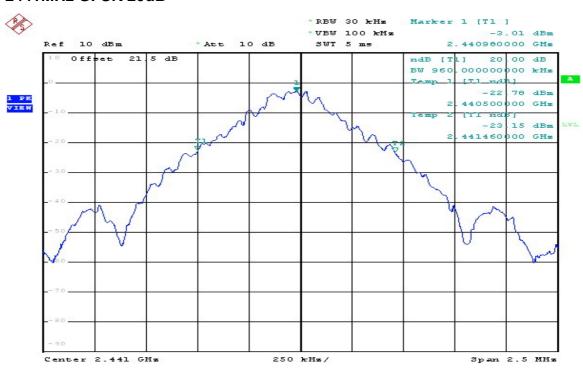
### 2.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

The 20dB bandwidth per FCC 15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth  $\ge$  RBW, and the SPAN may equal to approximately 2 to 3 time the 20dB bandwidth.

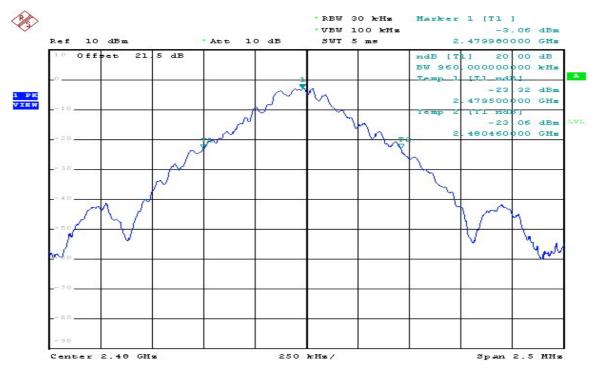

## 2.4 Test Result

#### PASS.


The final test data is shown on as following pages.

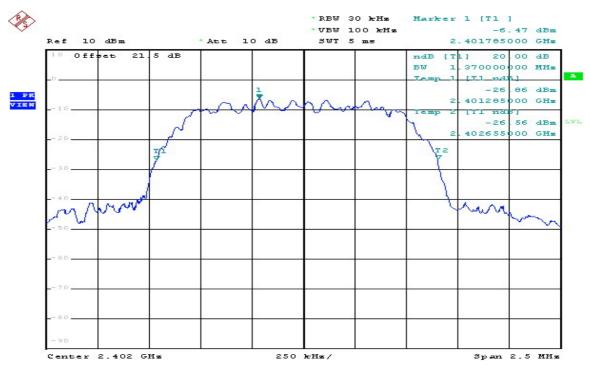
| Test Mode:GFSK; $\pi$ /4 DQPSK;8DPSK |            |                         |              |  |
|--------------------------------------|------------|-------------------------|--------------|--|
| Test                                 | СН         | 20d B. Dendwidth (MUL-) | l imit (kla) |  |
| Modulation                           | Frq. (MHz) | 20dB Bandwidth (MHz)    | Limit (kHz)  |  |
|                                      | 2402       | 0.97                    | >500         |  |
| GFSK                                 | 2441       | 0.96                    | >500         |  |
|                                      | 2480       | 0.96                    | >500         |  |
|                                      | 2402       | 1.37                    | >500         |  |
| $\pi$ /4 DQPSK                       | 2441       | 1.37                    | >500         |  |
|                                      | 2480       | 1.37                    | >500         |  |
|                                      | 2402       | 1.35                    | >500         |  |
| 8DPSK                                | 2441       | 1.35                    | >500         |  |
|                                      | 2480       | 1.36                    | >500         |  |

#### 2402MHz GFSK 20dB




Comment: GF3K 20dB Bandwidth CH1 Date: 4.3EP.2008 16:00:20

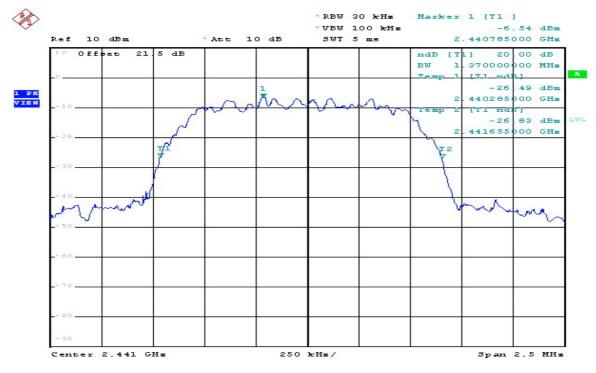



2441MHz GFSK 20dB

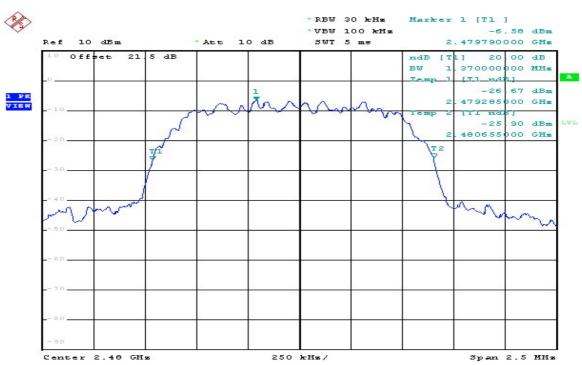
Comment: GF3K 20dB Bandwidth CH40 Date: 4.3EP.2008 16:01:08



#### 2480MHz GFSK 20dB

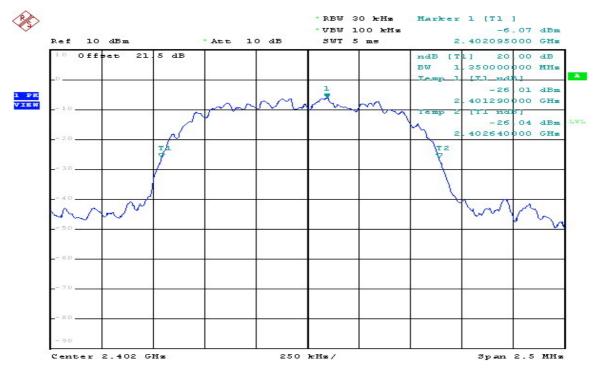

Comment: GF3K 20dB Bandwidth CH79 Date: 4.3EP.2008 16:01:49




2402MHz  $\pi$  /4 DQPSK 20dB

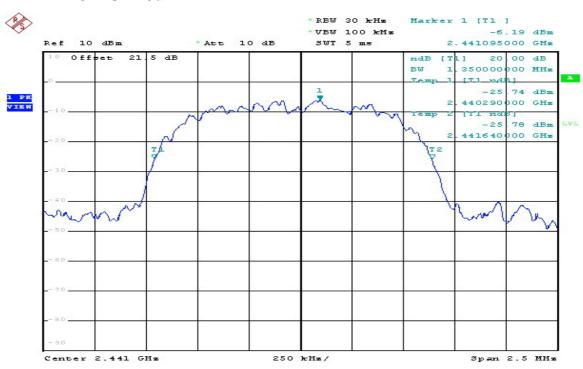
Comment: pi/4 DQP3K 20dB Bandwidth CH1 Date: 4.3EP.2008 15:59:08





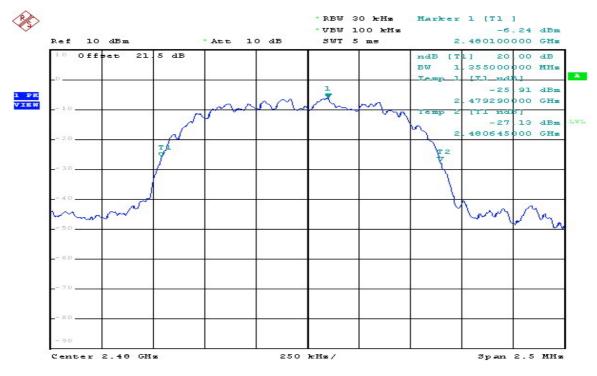

Comment: pi/4 DQP3K 20dB Bandwidth CH40 Date: 4.3EP.2008 15:58:31




2480MHz  $\pi$  /4 DQPSK 20dB

Comment: pi/4 DQP3K 20dB Bandwidth CH79 Date: 4.3EP.2008 15:57:47




#### 2402MHz 8DPSK 20dB

Comment: 0P3K 20dB Bandwidth CH1 Date: 4.3EP.2000 15:54:17

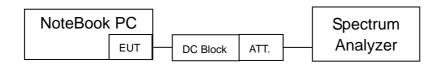


2441MHz 8DPSK 20dB

Comment: 0P3K 20dB Bandwidth CH40 Date: 4.3EP.2000 15:55:22



#### 2480MHz 8DPSK 20dB


Comment: 0P3K 20dB Bandwidth CH79 Date: 4.3EP.2000 15:56:35

## 3 Carrier Frequency Separation test

#### 3.1 Limit

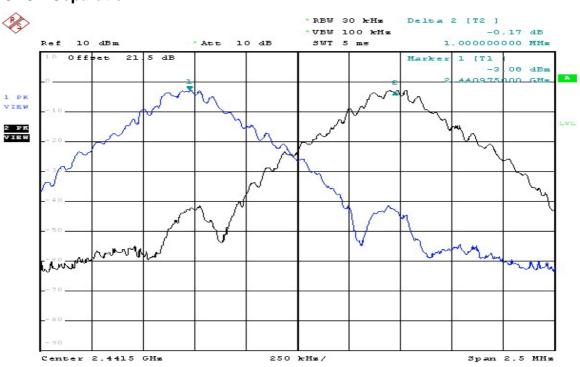
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

#### 3.2 Configuration of Measurement



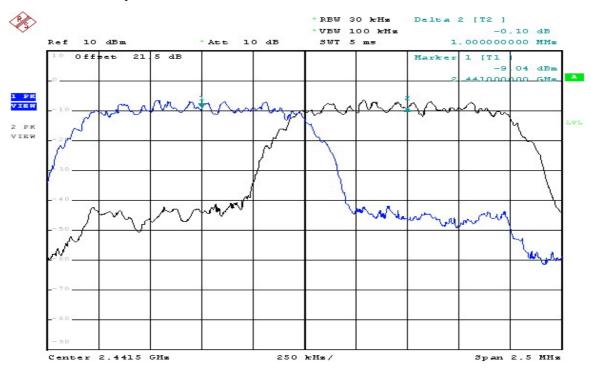
#### 3.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.


The carrier frequency separation per FCC Part15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at  $\geq 1\%$  of the span, the video bandwidth  $\geq$  RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels.

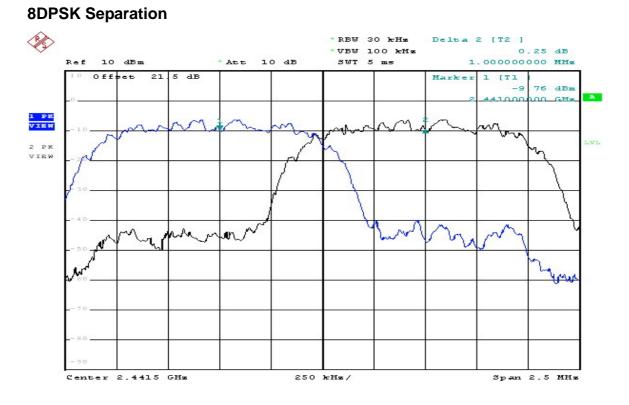
#### 3.4 Test Result

#### PASS.


The final test data is shown on as following pages.

| Modulation     | Carrier Frequency Separation<br>(kHz) |
|----------------|---------------------------------------|
| GFSK           | 1000                                  |
| $\pi$ /4 DQPSK | 1000                                  |
| 8 DQPSK        | 1000                                  |



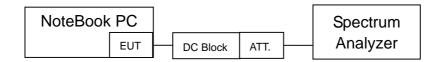

#### **GFSK Separation**

Comment: GFSK Channel Separation CH40-41 Date: 4.3EP.2008 15:51:01



#### $\pi$ /4 DQPSK Separation

Comment: pi/4 DQP3K Channel Separation CH40-41 Date: 4.3EP.2008 15:48:29




Comment: 0P3K Channel Separation CH40-41 Date: 4.3EP.2000 15:52:37

#### Interocean EMC Technology Corp.

## 4 Number of hopping frequencies test

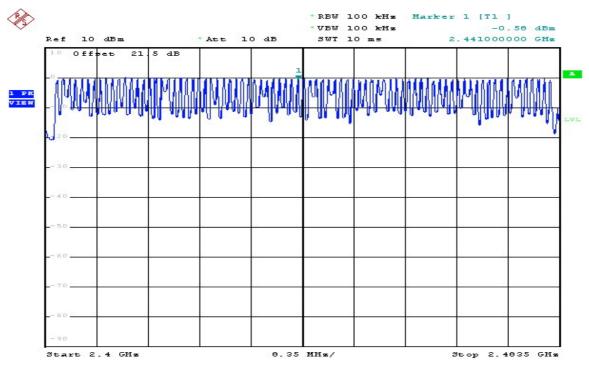
#### 4.1 Configuration of Measurement



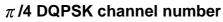
#### 4.2 Test Procedure

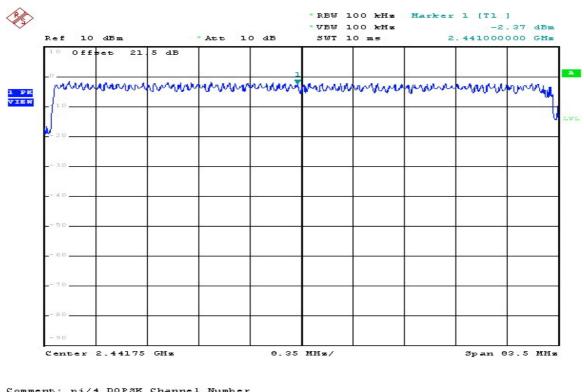
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

The number of hopping frequencies per FCC Part15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at  $\geq 1\%$  of the span, the video bandwidth  $\geq$  RBW, and the SPAN was the frequency band of operation.


#### 4.3 Test Result

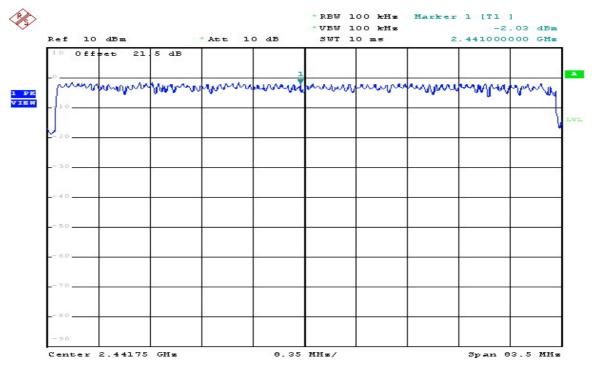
#### PASS.


The final test data is shown on as following pages.


| Modulation     | No. of Hopping CH. |  |  |
|----------------|--------------------|--|--|
| GFSK           | 79                 |  |  |
| $\pi$ /4 DQPSK | 79                 |  |  |
| 8DPSK          | 79                 |  |  |

#### **GFSK** channel number




Comment: GF3K Channel Number Date: 4.3EP.2008 14:50:23

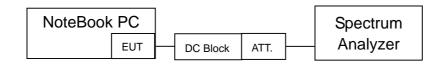




Comment: pi/4 DQP3K Channel Number Date: 4.3EP.2008 14:57:46

#### 8DPSK channel number




Comment: 0P3K Channel Number Date: 4.3EP.2000 15:00:33

## 5 Time of Occupancy (dwell time) test

#### 5.1 Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 second multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 5.2 Configuration of Measurement

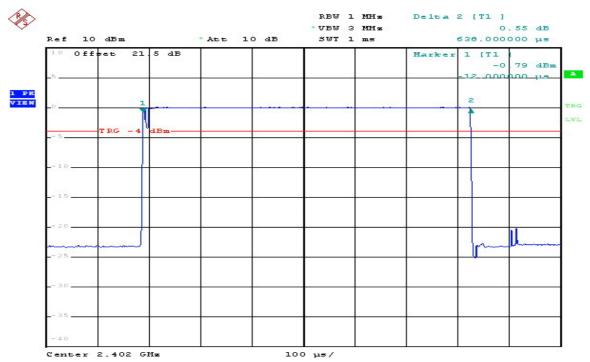


#### 5.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

According to FCC Part15.247(a)(1) the time of occupancy (dwell time) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth  $\geq$  RBW and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable.

Formula for Dwell time calculation: Dwell time = time slot \* hop rate \* 1/s / 79 \*31.6s


#### 5.4 Test Result

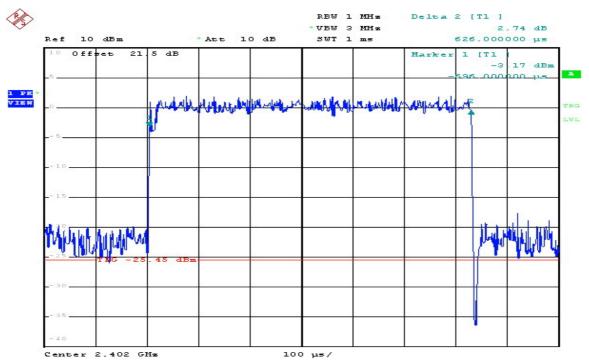
#### PASS.


The final test data is shown on as following pages.

| Dwell Time Test   |      |             |          |                   |       |        |  |
|-------------------|------|-------------|----------|-------------------|-------|--------|--|
| Modulation Packet |      | Time Slot   | Hop Rate | <b>Dwell Time</b> | Limit | Test   |  |
| Туре              | Туре | Length (ms) | (Hz)     | (s)               | (s)   | Result |  |
|                   | DH1  | 0.638       | 800      | 0.204             | <0.4  | PASS   |  |
| GFSK              | DH3  | 1.890       | 400      | 0.302             | <0.4  | PASS   |  |
|                   | DH5  | 3.142       | 266      | 0.335             | <0.4  | PASS   |  |
| $\pi$ /4 DQPSK    | DH1  | 0.624       | 800      | 0.200             | <0.4  | PASS   |  |
|                   | DH3  | 1.884       | 400      | 0.301             | <0.4  | PASS   |  |
|                   | DH5  | 3.134       | 266      | 0.334             | <0.4  | PASS   |  |
| 8DPSK             | DH1  | 0.626       | 800      | 0.200             | <0.4  | PASS   |  |
|                   | DH3  | 1.884       | 400      | 0.301             | <0.4  | PASS   |  |
|                   | DH5  | 3.126       | 266      | 0.333             | <0.4  | PASS   |  |

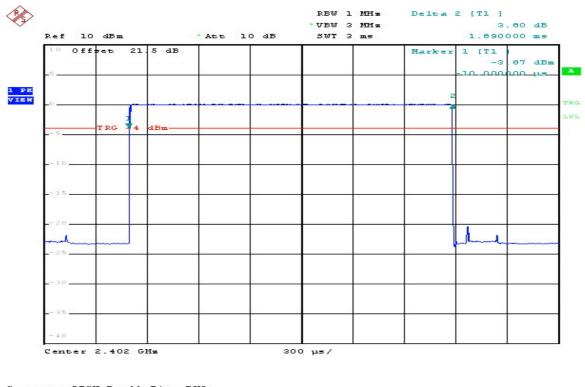
#### GFSK DH1 Dwell time



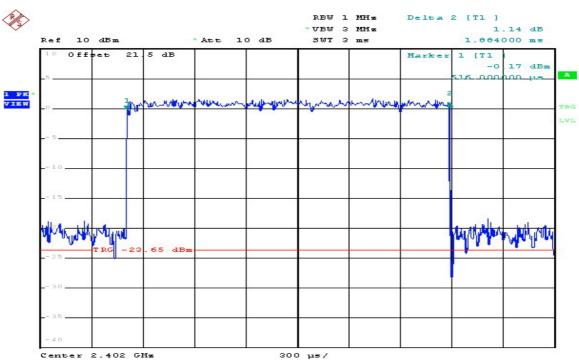

Comment: GF3K Dwell Time DH1 Date: 4.3EP.2008 16:15:20



#### $\pi$ /4 DQPSK DH1 Dwell time

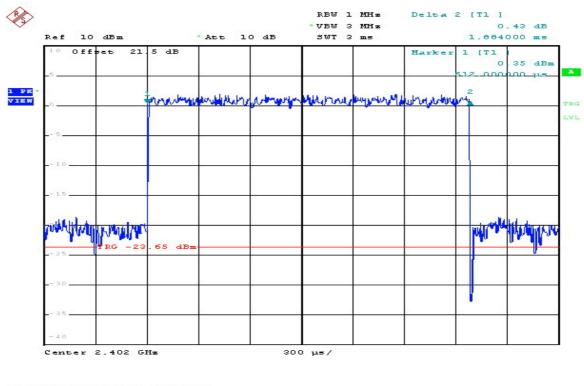

Comment: pi/4 DQP3K Dwell Time DH1 Date: 4.3EP.2008 16:34:08

#### 8DPSK DH1 Dwell time




Comment: 0P3K Dwell Time DH1 Date: 4.3EP.2000 16:36:02

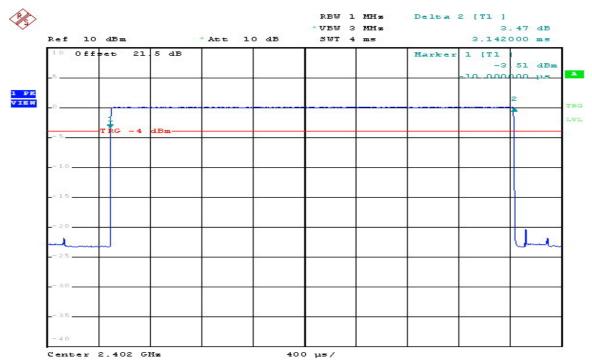




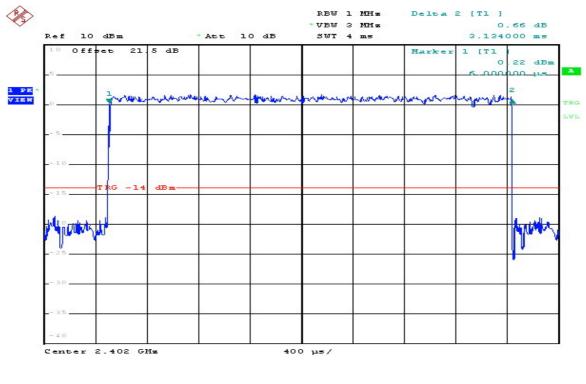

Comment: GF3K Dwell Time DH3 Date: 4.3EP.2008 16:17:53



 $\pi$  /4 DQPSK DH3 Dwell time


Comment: pi/4 DQP3K Dwell Time DH3 Date: 4.3EP.2000 16:30:20

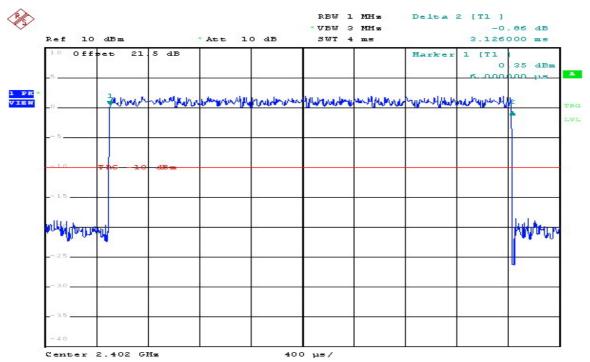



#### 8DPSK DH3 Dwell time

Comment: 0P3K Dwell Time DH3 Date: 4.3EP.2000 16:29:14

#### GFSK DH5 Dwell time




Comment: GF3K Dwell Time DH5 Date: 4.3EP.2008 16:18:45



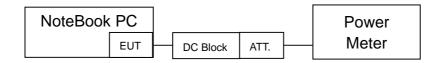
#### $\pi$ /4 DQPSK DH5 Dwell time

Comment: pi/4 DQP3K Dwell Time DH5 Date: 4.3EP.2008 16:22:19

#### 8DPSK DH5 Dwell time



Comment: 0P3K Dwell Time DH5 Date: 4.3EP.2000 16:24:40


## 6 Maximum Output Power test

#### 6.1 Limit

For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt.

For all other frequency hopping systems in the 2400-2483.5MHz band: 0.125 watts.

#### 6.2 Configuration of Measurement



#### 6.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

For FCC Part 15.247(b) the power output per was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Peak output power was read directly from power meter. The test was performed at 3 channels (lowest, middle and highest).

#### 6.4 Test Result

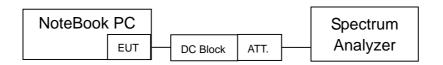
#### PASS.

The final test data is shown on as following pages.

| Mode:GFSK DH5 |              |                          |                                 |                |                |  |
|---------------|--------------|--------------------------|---------------------------------|----------------|----------------|--|
| СН            | Temp.<br>(℃) | Test<br>Voltage<br>(Vac) | Maximum transmit power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 1             | 28           | 120                      | 1.09                            | 30             | -28.91         |  |
| 40            | 28           | 120                      | 1.16                            | 30             | -28.84         |  |
| 79            | 28           | 120                      | 1.06                            | 30             | -28.94         |  |

| Mode: $\pi$ /4 DQPSK |              |                          |                                 |                |                |  |
|----------------------|--------------|--------------------------|---------------------------------|----------------|----------------|--|
| СН                   | Temp.<br>(℃) | Test<br>Voltage<br>(Vac) | Maximum transmit power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 1                    | 25           | 120                      | 2.56                            | 21             | -18.44         |  |
| 40                   | 25           | 120                      | 2.59                            | 21             | -18.41         |  |
| 79                   | 25           | 120                      | 2.45                            | 21             | -18.55         |  |

| Mode:8DPSK |              |                          |                                 |                |                |  |
|------------|--------------|--------------------------|---------------------------------|----------------|----------------|--|
| СН         | Temp.<br>(℃) | Test<br>Voltage<br>(Vac) | Maximum transmit power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 1          | 25           | 120                      | 2.77                            | 21             | -18.23         |  |
| 40         | 25           | 120                      | 2.80                            | 21             | -18.20         |  |
| 79         | 25           | 120                      | 2.71                            | 21             | -18.29         |  |


## 7 RF Conducted spurious emission

## 7.1 Limit

According to FCC Part 15.247(d) requirement :

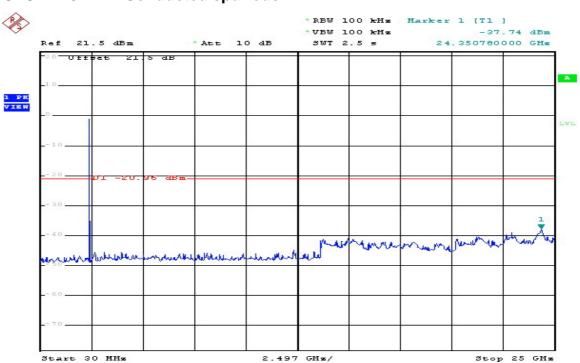
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

### 7.2 Configuration of Measurement



### 7.3 Test Procedure

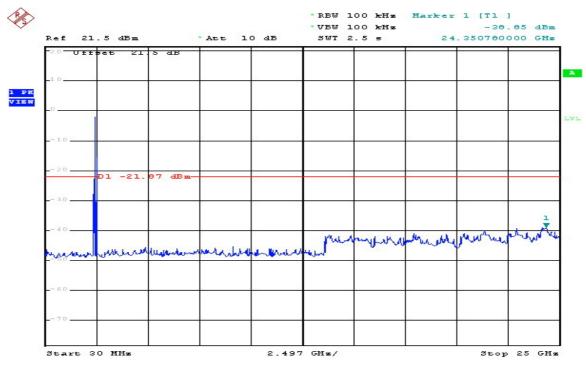
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.


RF antenna conducted spurious emissions was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

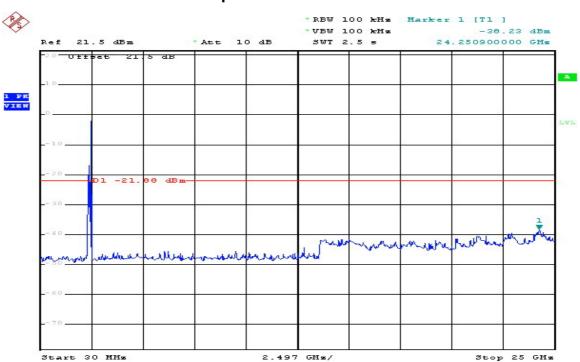
The measurements were performed from 30MHz to 25GHz.

### 7.4 Test Result

#### PASS.

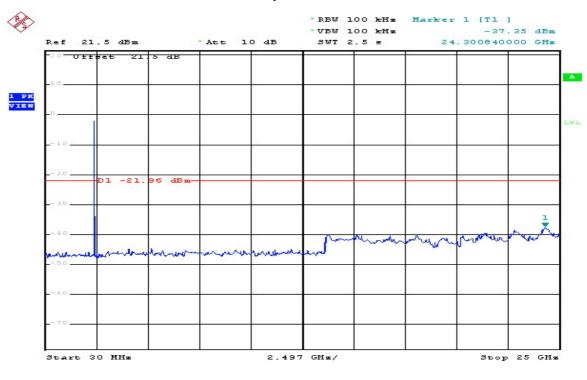

The final test data is shown on as following pages.




**GFSK 2402MHz Conducted spurious** 

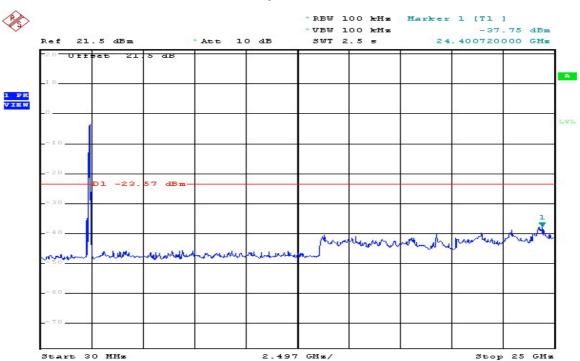
Comment: GF3K CH1 Conducted spurious Date: 4.3EP.2008 14:15:15





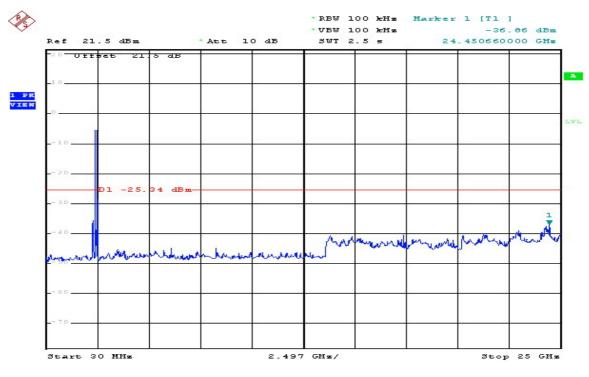

Comment: GF3K CH40 Conducted spurious Date: 4.3EP.2008 14:21:42




#### **GFSK 2480MHz Conducted spurious**

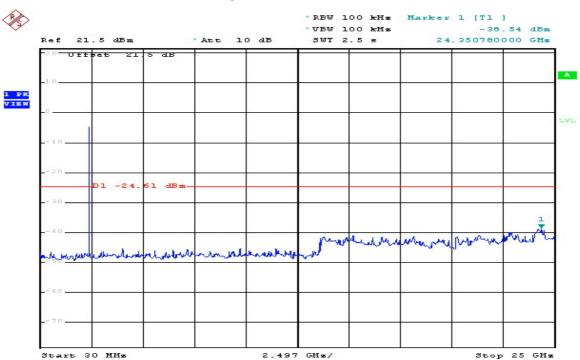
Comment: GF3K CH79 Conducted spurious Date: 4.3EP.2008 14:20:28




#### $\pi$ /4 DQPSK 2402MHz Conducted spurious

Comment: pi/4 DQP3K CH1 Conducted spurious Date: 4.3EP.2008 14:25:28

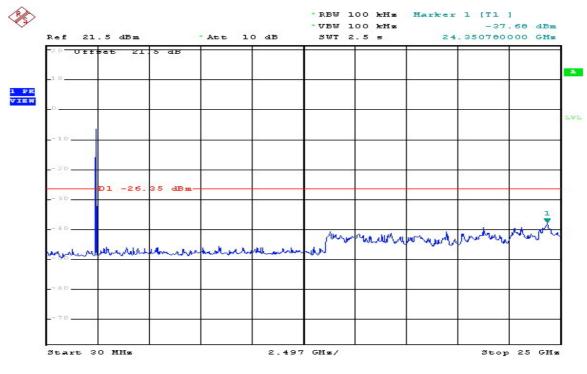



#### $\pi$ /4 DQPSK 2441MHz Conducted spurious

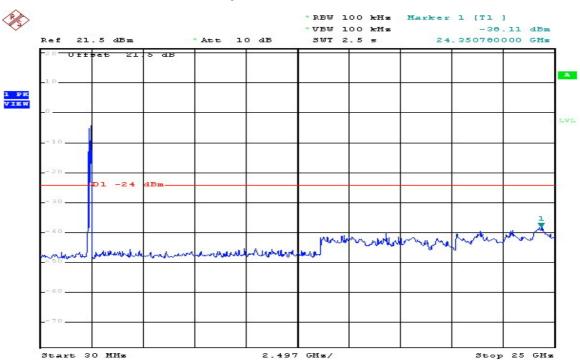
Comment: pi/4 DQP3K CH40 Conducted spurious Date: 4.3EP.2008 14:29:57



#### $\pi$ /4 DQPSK 2480MHz Conducted spurious


Comment: pi/4 DQP3K CH79 Conducted spurious Date: 4.3EP.2006 14:30:54




8DPSK 2402MHz Conducted spurious

Comment: 0P3K CH1 Conducted spurious Date: 4.3EP.2000 14:34:02





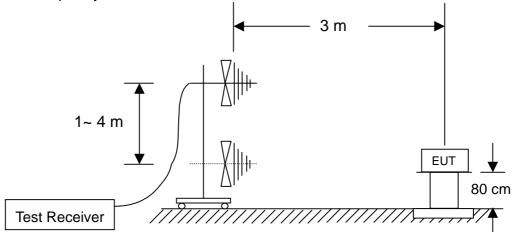
Comment: 8P3K CH40 Conducted spurious Date: 4.3EP.2008 14:33:21



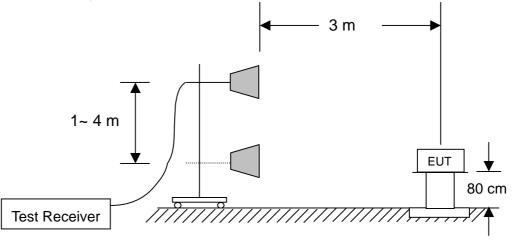
8DPSK 2480MHz Conducted spurious

Comment: 0P3K CH79 Conducted spurious Date: 4.3EP.2000 14:32:20

## 8 RF Radiated spurious emission test


### 8.1 Limit

For intentional radiator, the radiated emission shall comply with FCC Part 15.209(a). For intentional radiators, according to FCC Part 15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with FCC Part 15.247 (c)


| Frequency (MHz) | Field strength<br>dB( μ V/m) | Measurement distance<br>(meters) |
|-----------------|------------------------------|----------------------------------|
| 1.705~30.0      | 29.5                         | 30                               |
| 30 ~ 88         | 40                           | 3                                |
| 88~216          | 43.5                         | 3                                |
| 216~960         | 46                           | 3                                |
| Above 960       | 54                           | 3                                |

### 8.2 Configuration of Measurement

Measurement Frequency under 1GHz



### Measurement Frequency above 1GHz



### 8.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

Radiated emission measurements were performed from 30MHz to 25GHz. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, set 1MHz for frequencies above 1GHz.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and whole system. During the test, all cables were arranged to present worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meter and down to 1 meter.

### 8.4 Test Result

### PASS.

The final test data is shown on as following pages.

**Remark :** After verifying GFSK,  $\pi$  /4 DQPSK and 8DPSK modulation mode, the worst case was caused at 8DPSK mode. The worst case was record in this report.

| Frequency<br>(MHz) | Antenna<br>Polarization | Reading (dB $\mu$ V) | Preamp<br>(dB) | Correction<br>Factor<br>(dB/m) | Corrected<br>Level<br>(dB μ V/m) | Limits<br>(dB µ V/m) | Margin<br>(dB) | Det.<br>Mode |
|--------------------|-------------------------|----------------------|----------------|--------------------------------|----------------------------------|----------------------|----------------|--------------|
| 240.000            | Н                       | 39.30                | 28.84          | 14.64                          | 25.10                            | 46.00                | -20.90         | QP           |
| 600.120            | Н                       | 29.60                | 28.52          | 25.49                          | 26.57                            | 46.00                | -19.43         | QP           |
| 720.150            | Н                       | 28.64                | 28.25          | 29.22                          | 29.61                            | 46.00                | -16.39         | QP           |
| 960.200            | Н                       | 24.50                | 28.36          | 33.15                          | 29.29                            | 46.00                | -16.71         | QP           |
| 240.000            | V                       | 34.60                | 28.84          | 14.79                          | 20.55                            | 46.00                | -25.45         | QP           |
| 720.153            | V                       | 25.80                | 28.25          | 28.85                          | 26.40                            | 46.00                | -19.60         | QP           |
| 747.760            | V                       | 26.80                | 28.13          | 29.43                          | 28.10                            | 46.00                | -17.90         | QP           |
| 763.630            | V                       | 26.50                | 28.03          | 29.52                          | 27.99                            | 46.00                | -18.01         | QP           |

# **Radiated Emission below 1GHz**

Remark : Corrected Level = Reading + Correction Factor – Preamp Correction Factor = Antenna Factor + Cable Loss Г

٦

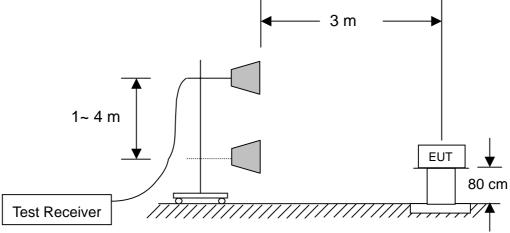
# **Radiated Emission above 1GHz**

| 8DPSK 2402MHz      |                         |                      |                |                                |                                      |                       |                |              |  |  |
|--------------------|-------------------------|----------------------|----------------|--------------------------------|--------------------------------------|-----------------------|----------------|--------------|--|--|
| Frequency<br>(MHz) | Antenna<br>Polarization | Reading (dB $\mu$ V) | Preamp<br>(dB) | Correction<br>Factor<br>(dB/m) | Corrected<br>Level<br>(dB $\mu$ V/m) | Limits (dB $\mu$ V/m) | Margin<br>(dB) | Det.<br>Mode |  |  |
| 4804.00            | Н                       | 54.20                | 36.50          | 36.94                          | 54.64                                | 74                    | -19.36         | PK           |  |  |
| 4804.00            | Н                       | 42.53                | 36.50          | 36.94                          | 42.97                                | 54                    | -11.03         | AV           |  |  |
| 4804.00            | V                       | 54.70                | 36.50          | 36.94                          | 55.14                                | 74                    | -18.86         | PK           |  |  |
| 4804.00            | V                       | 47.20                | 36.50          | 36.94                          | 47.64                                | 54                    | -6.36          | AV           |  |  |

| 8DPSK 2441MHz      |                         |                      |                |                                |                                  |                       |                |              |  |  |
|--------------------|-------------------------|----------------------|----------------|--------------------------------|----------------------------------|-----------------------|----------------|--------------|--|--|
| Frequency<br>(MHz) | Antenna<br>Polarization | Reading (dB $\mu$ V) | Preamp<br>(dB) | Correction<br>Factor<br>(dB/m) | Corrected<br>Level<br>(dB μ V/m) | Limits (dB $\mu$ V/m) | Margin<br>(dB) | Det.<br>Mode |  |  |
| 4884.00            | Н                       | 52.37                | 36.50          | 37.12                          | 52.99                            | 74                    | -21.01         | PK           |  |  |
| 4884.00            | Н                       | 44.70                | 36.50          | 37.12                          | 45.32                            | 54                    | -8.68          | AV           |  |  |
| 4884.00            | V                       | 53.87                | 36.50          | 37.12                          | 54.49                            | 74                    | -19.51         | PK           |  |  |
| 4884.00            | V                       | 45.87                | 36.50          | 37.12                          | 46.49                            | 54                    | -7.51          | AV           |  |  |

| 8DPSK 2480MHz      |                         |                      |                |                                |                                      |                       |                |              |  |
|--------------------|-------------------------|----------------------|----------------|--------------------------------|--------------------------------------|-----------------------|----------------|--------------|--|
| Frequency<br>(MHz) | Antenna<br>Polarization | Reading (dB $\mu$ V) | Preamp<br>(dB) | Correction<br>Factor<br>(dB/m) | Corrected<br>Level<br>(dB $\mu$ V/m) | Limits (dB $\mu$ V/m) | Margin<br>(dB) | Det.<br>Mode |  |
| 4960.00            | Н                       | 49.37                | 36.50          | 37.29                          | 50.16                                | 74                    | -23.84         | PK           |  |
| 4960.00            | Н                       | 41.37                | 36.50          | 37.29                          | 42.16                                | 54                    | -11.84         | AV           |  |
| 4960.00            | V                       | 53.03                | 36.50          | 37.29                          | 53.82                                | 74                    | -20.18         | PK           |  |
| 4960.00            | V                       | 46.03                | 36.50          | 37.29                          | 46.82                                | 54                    | -7.18          | AV           |  |

Remark : Corrected Level = Reading + Correction Factor – Preamp Correction Factor = Antenna Factor + Cable Loss


# 9 Emission on the Band Edge test

### 9.1 Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### 9.2 Configuration of Measurement

Measurement Frequency above 1GHz



### 9.3 Test Procedure

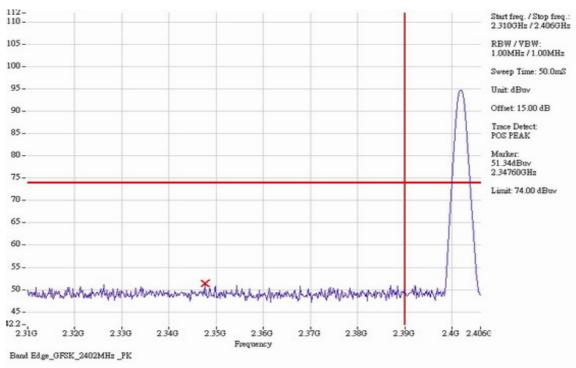
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

Radiated emission measurements were performed from 30MHz to 25GHz. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, set 1MHz for frequencies above 1GHz.

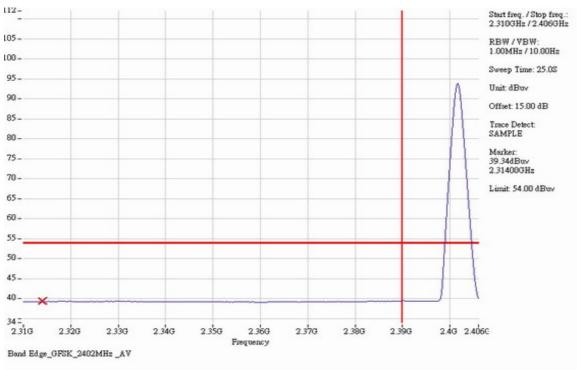
The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and whole system. During the test, all cables were arranged to present worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meter and down to 1 meter.

### 9.4 Test Result

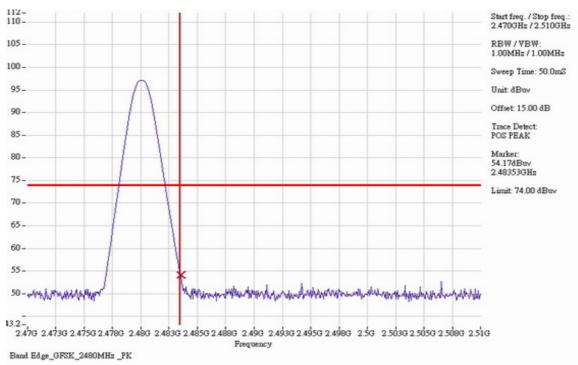
### PASS.


The final test data is shown on as following pages.

| Mode : GFSK |                              |                  |                           |                |                |  |  |  |
|-------------|------------------------------|------------------|---------------------------|----------------|----------------|--|--|--|
| СН          | Restrict Freq. Band<br>(MHz) | Detector<br>Mode | Maximum level<br>(dBµV/m) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |
| 1           | 1 2310~2390                  | PK               | 51.34                     | 74             | -22.66         |  |  |  |
|             |                              | AV               | 39.34                     | 54             | -14.66         |  |  |  |
| 79          | 2483.5~2500                  | PK               | 54.17                     | 74             | -19.83         |  |  |  |
| 19          | 2403.3~2300                  | AV               | 49.50                     | 54             | -4.50          |  |  |  |


| Mode | Mode: <i>π</i> /4 DQPSK      |                  |                           |                |                |  |  |  |  |
|------|------------------------------|------------------|---------------------------|----------------|----------------|--|--|--|--|
| СН   | Restrict Freq. Band<br>(MHz) | Detector<br>Mode | Maximum level<br>(dBµV/m) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |  |
| 1    | 2310~2390                    | PK               | 50.34                     | 74             | -23.66         |  |  |  |  |
| I    | 1 2310~2390                  | AV               | 39.50                     | 54             | -14.50         |  |  |  |  |
| 79   | 2483.5~2500                  | PK               | 53.00                     | 74             | -21.00         |  |  |  |  |
| 19   | 2405.5~2500                  | AV               | 48.17                     | 54             | -5.83          |  |  |  |  |

| Mode: 8DPSK |                              |                  |                           |                |                |  |  |  |
|-------------|------------------------------|------------------|---------------------------|----------------|----------------|--|--|--|
| СН          | Restrict Freq. Band<br>(MHz) | Detector<br>Mode | Maximum level<br>(dBµV/m) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |
| 1           | 1 2310~2390                  | PK               | 51.34                     | 74             | -22.66         |  |  |  |
| I           |                              | AV               | 39.50                     | 54             | -14.50         |  |  |  |
| 79          | 2483.5~2500                  | PK               | 54.84                     | 74             | -19.16         |  |  |  |
| 19          | 2403.3~2300                  | AV               | 49.67                     | 54             | -4.33          |  |  |  |

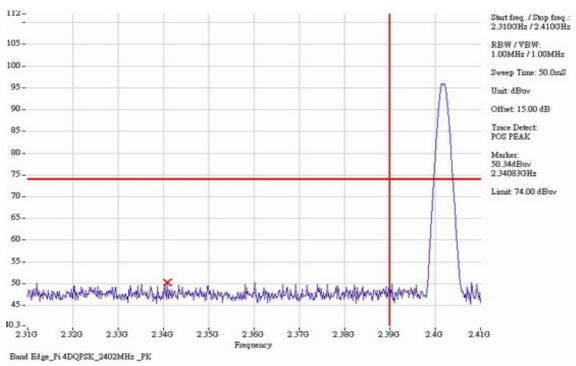

### **GFSK CH1 PK**

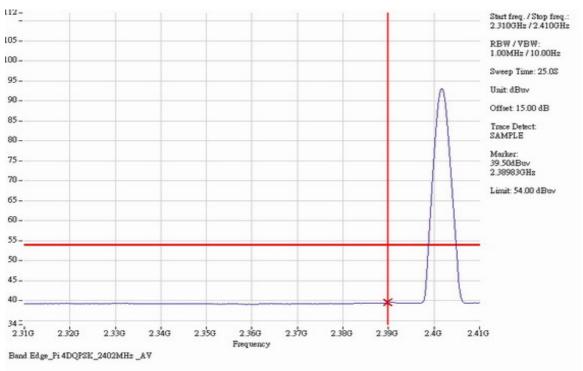


### GFSK CH1 AV

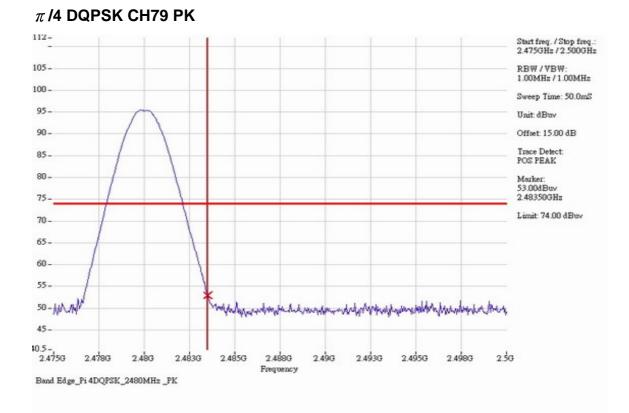


### **GFSK CH79 PK**

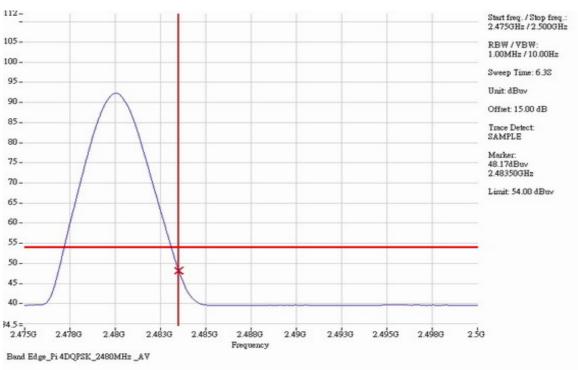




#### 112-Start freq. / Stop freq.: 2.470GHz / 2.510GHz 105-RBW / VBW: 1.00MHz / 10.00Hz 100 -Sweep Time: 10.0S 95-Unit: dBuy 90. Offset: 15.00 dB 85. Trace Detect: SAMPLE 80 -Marker: 49.50dBuv 75-2.48353GHz 70-Limit 54.00 dBuy 65. 60. 55-50 -45. 40.

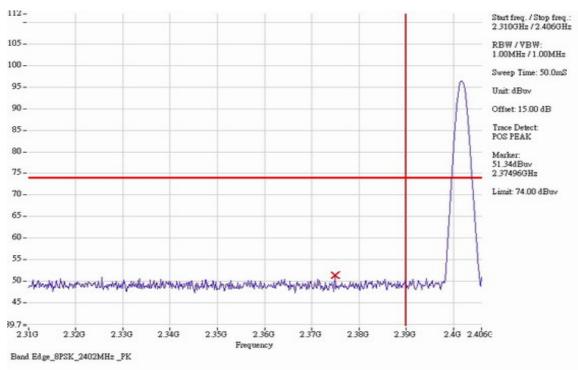
### GFSK CH79 AV


34.7 = 2.47G 2.473G 2.475G 2.478G 2.486G 2.486G 2.486G 2.496G 2.495G 2.498G 2.5G 2.503G 2.505G 2.508G 2.51G Frequency Band Edge\_GFSK\_2480MHz\_AV

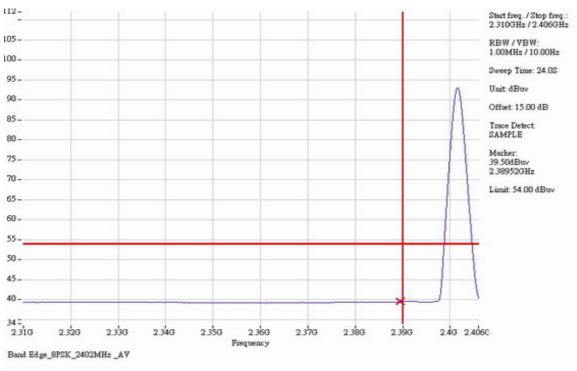
### $\pi$ /4 DQPSK CH1 PK



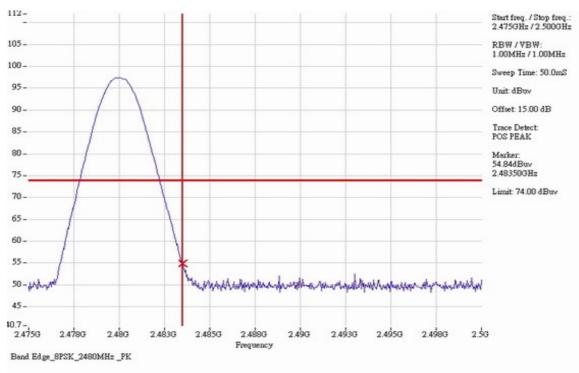


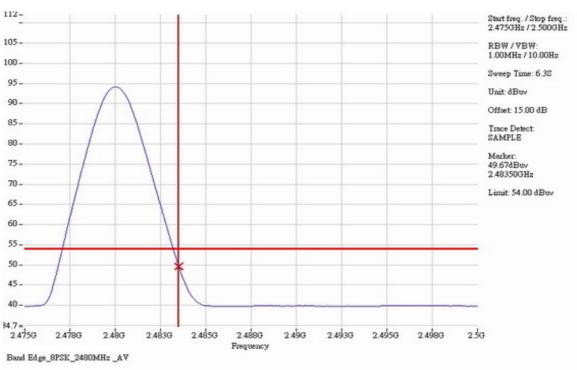


### $\pi$ /4 DQPSK CH1 AV




### $\pi$ /4 DQPSK CH79 PK




### **8DPSK CH1 PK**



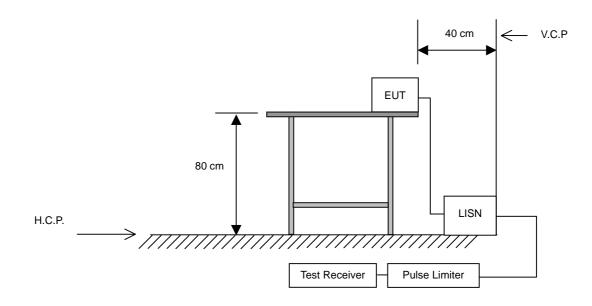

### 8DPSK CH1 AV



### 8DPSK CH79 PK






8DPSK CH79 AV

# **10** AC Power Line Conducted Emission test

### 10.1 Limit

| Frequency<br>(MHz)                                                                  | Quasi-Peak<br>(dB $\mu$ V) | Average<br>(dB μ V) |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------|---------------------|--|--|--|--|--|--|
| 0.15 to 0.5                                                                         | 66 to 56                   | 56 to 46            |  |  |  |  |  |  |
| > 0.5 to 5                                                                          | 56                         | 46                  |  |  |  |  |  |  |
| > 5 to 30                                                                           | 60                         | 50                  |  |  |  |  |  |  |
| Note: The limit decreases linearly with the logarithm of the frequency in the range |                            |                     |  |  |  |  |  |  |
| 0.15 MHz to 0.50 MHz.                                                               |                            |                     |  |  |  |  |  |  |

### **10.2 Configuration of Measurement**



### 10.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

- 1) The EUT was placed 80cm height above ground on a non-conductive table and vertical conducting plane located 40cm to the rear of the EUT.
- 2) The EUT was connected to the main power through Line Impedance Stabilization Networks (LISN). This setup provided a 50ohm/50mH coupling impedance for the measuring equipment. The auxiliary equipment will place in secondary LISN.
- 3) Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement.
- 4) The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

### 10.4 Test Result

### PASS.

The final test data is shown on as following pages.

# **Power Line Conducted Test Data**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Book PC          |             |            |             | POLARITY    |                     |         |                                        |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------|-------------|-------------|---------------------|---------|----------------------------------------|---------|
| CLIENT: MIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AC               |             |            |             | DISTANCE    | :                   |         |                                        |         |
| MODEL: 921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |            |             | Serial No.: |                     |         |                                        |         |
| RATING: 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0V/60Hz          |             |            |             | FILE/DATA   | #: MiTAC.e          | mi/326  |                                        |         |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : <b>25.0</b> °C |             |            |             | OPERATO     | R: VICTO            | R       |                                        |         |
| Humidity: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64 %             |             |            |             | TEST SITE   | E: Conductio        | on1     | -                                      |         |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factor           | Meter Read  | ing (dBµV) | Emission Le | evel (dBµV) | Limits              | (dBµV)  | Margir                                 | n (dB)  |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (dB)             | Quasi-Peak  | Average    | Quasi-Peak  | Average     | Quasi-Peak          | Average | Quasi-Peak                             | Average |
| 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10             | 39.98       | 18.12      | 40.08       | 18.22       | 66.00               | 56.00   | -25.92                                 | -37.78  |
| 0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13             | 48.33       | 37.65      | 48.46       | 37.78       | 63.57               | 53.57   | -15.11                                 | -15.79  |
| 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13             | 40.77       | 33.26      | 40.90       | 33.39       | 61.21               | 51.21   | -20.31                                 | -17.82  |
| 0.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13             | 34.97       | 27.56      | 35.10       | 27.69       | 59.35               | 49.35   | -24.25                                 | -21.66  |
| 0.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14             | 35.32       | 33.85      | 35.46       | 33.99       | 56.00               | 46.00   | -20.54                                 | -12.01  |
| 4.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31             | 36.71       | 32.23      | 37.02       | 32.54       | 56.00               | 46.00   | -18.98                                 | -13.46  |
| 97-<br>90-<br>80-<br>70-<br>(\$60-<br>(\$60-<br>(\$10-<br>(\$10-<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)<br>(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)(\$10-)( | 2 3              | 4           |            |             |             | ur <sup>A</sup> Mym | - m m m | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         |
| 20-<br>10-<br>0-<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | MWH         | 1.0        |             | ency(MHz)   |                     | 10.00   | 10                                     | 30.000  |
| Test Mode: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CD (1280         | *800, 60Hz) | + DVI (128 | 30*800, 60H | z) (SKU B)  |                     |         |                                        |         |

# **Power Line Conducted Test Data**

| CLIENT: MITAC         DISTANCE:           MODEL: 9213XY         Serial No.:           RATING: 120V/60Hz         FILE/DATA#: MITAC.emi/325           Temperature: 25.0 °C         OPERATOR: VICTOR           Humidity: 64 %         TEST SITE: Conduction1           Frequency         Factor           (dB)         Quasi-Peak           Quasi-Peak         Average           0.166         0.13           0.201         0.13           48.09         27.57           48.22         27.70           63.57         53.57           0.201         0.13           35.62         0.73           35.75         0.86           0.334         0.13           35.27         12.77           35.40         12.90           59.35         49.35           0.533         0.14           35.64         7.34           35.78         7.48           56.00         46.00           45.41         0.22           39.41         33.25           39.63         33.47           56.00         46.00           70         70           70         70                                                                                                                                                                                                                                                                                                                                                    | EUT: Not                                                                                                                                       | eBook PC  |             |             |             |                   | /· Neutral |        |        |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|-------------|-------------------|------------|--------|--------|---------------|--|
| MODEL:       9213XY       Serial No.:         RATING:       120V/60Hz       FILE/DATA#: MITAC.emi/325         Temperature:       25.0 °C       OPERATOR:       VICTOR         Humidity:       64 %       TEST SITE: Conduction1         Frequency       Factor       Meter Reading (dBµV)       Emission Level (dBµV)       Limits (dBµV)       Margin (dB)         0.166       0.13       39.65       17.23       39.78       17.36       65.16       55.16       -25.38       -37.80         0.201       0.13       48.09       27.57       48.22       27.70       63.57       53.57       -15.35       -25.87         0.271       0.13       35.62       0.73       35.76       0.46       61.09       51.09       -25.34       -50.23         0.334       0.13       35.27       12.77       35.40       12.90       59.35       49.35       -23.95       -36.45         0.533       0.14       35.64       7.34       35.78       7.48       56.00       46.00       -16.37       -12.53         Remark:       1.       Alteradings are Quasi-Peak and Average values.       2.       Factor = Insertion Loss + Cable Loss.       -       -       -       -       - <t< td=""><td colspan="5"></td><td colspan="6">POLARITY: Neutral</td></t<>                                                                                                                                 |                                                                                                                                                |           |             |             |             | POLARITY: Neutral |            |        |        |               |  |
| RATING: 120V/60Hz       FILE/DATA#: MITAC.emi/325         Temperature: 25.0 °C       OPERATOR: VICTOR         Humidity: 64 %       TEST SITE: Conduction1         Frequency       Factor       Meter Reading (dBµV)       Emission Level (dBµV)       Limits (dBµV)       Margin (dB)         (MHz)       (dB)       Quasi-Peak       Average                                                                      |                                                                                                                                                |           |             |             |             |                   |            |        |        |               |  |
| Temperature:       25.0 °C       OPERATOR:       VICTOR         Humidity:       64 %       TEST SITE: Conduction1         Frequency       Factor       Meter Reading (dBµV)       Emission Level (dBµV)       Limits (dBµV)       Margin (dB)         (MHz)       (dB)       Quasi-Peak       Average       Quasi-Peak       Average       Quasi-Peak       Average         0.166       0.13       39.65       17.23       39.78       17.36       65.16       55.16       -25.38       -37.80         0.201       0.13       48.09       27.57       48.22       27.70       63.57       53.57       -15.35       -25.87         0.271       0.13       35.62       0.73       35.75       0.86       61.09       51.09       -25.34       -50.23         0.334       0.13       35.27       12.77       35.40       12.90       59.35       49.35       -23.95       -36.45         0.533       0.14       35.64       7.34       35.78       7.48       56.00       46.00       -20.22       -38.52         1. All readings are Quasi-Peak and Average values.       2.       Factor = Insertion Loss + Cable Loss.       -       -       -       -       -       -       -                                                                                                                                                                                                       |                                                                                                                                                |           |             |             |             |                   |            | mi/325 |        |               |  |
| Humidity:       64 %       TEST SITE: Conduction1         Frequency       Factor       Meter Reading (dBµV)       Emission Level (dBµV)       Limits (dBµV)       Margin (dB)         (MHz)       (dB)       Quasi-Peak       Average       Quasi-Peak<                                                               | _                                                                                                                                              |           | •           |             |             |                   |            |        |        |               |  |
| Frequency         Factor         Meter Reading (dBµV)         Emission Level (dBµV)         Limits (dBµV)         Margin (dB)           (MHz)         (dB)         Quasi-Peak         Average         Quasi-Peak     |                                                                                                                                                |           |             |             |             |                   |            |        |        |               |  |
| (MHz)         (dB)         Quasi-Peak         Average         Quasi-Peak |                                                                                                                                                |           | Meter Read  | lina (dBuV) | Emission Le |                   |            |        | Margir | n (dB)        |  |
| 0.201 0.13 48.09 27.57 48.22 27.70 63.57 53.57 -15.35 -25.87<br>0.271 0.13 35.62 0.73 35.75 0.86 61.09 51.09 -25.34 -50.23<br>0.334 0.13 35.27 12.77 35.40 12.90 59.35 49.35 -23.95 -36.45<br>0.533 0.14 35.64 7.34 35.78 7.48 56.00 46.00 -20.22 -38.52<br>4.541 0.22 39.41 33.25 39.63 33.47 56.00 46.00 -16.37 -12.53<br>Remark:<br>1. All readings are Quasi-Peak and Average values.<br>2. Factor = Insertion Loss + Cable Loss.<br>97<br>90<br>80<br>70<br>70<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                | (dB)      |             |             |             | /                 |            |        |        |               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.166                                                                                                                                          | 0.13      | 39.65       | 17.23       | 39.78       | 17.36             | 65.16      | 55.16  | -25.38 | -37.80        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.201                                                                                                                                          | 0.13      | 48.09       | 27.57       | 48.22       | 27.70             | 63.57      | 53.57  | -15.35 | -25.87        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.271                                                                                                                                          | 0.13      | 35.62       | 0.73        | 35.75       | 0.86              | 61.09      | 51.09  | -25.34 | -50.23        |  |
| 4.541       0.22       39.41       33.25       39.63       33.47       56.00       46.00       -16.37       -12.53         Remark:       1. All readings are Quasi-Peak and Average values.       2. Factor = Insertion Loss + Cable Loss.         90-<br>90-<br>90-<br>90-<br>90-<br>90-<br>90-<br>90-<br>90-<br>90-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.334                                                                                                                                          | 0.13      | 35.27       | 12.77       | 35.40       | 12.90             | 59.35      | 49.35  | -23.95 | -36.45        |  |
| Remark:<br>1. All readings are Quasi-Peak and Average values.<br>2. Factor = Insertion Loss + Cable Loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.533                                                                                                                                          | 0.14      | 35.64       | 7.34        | 35.78       | 7.48              | 56.00      | 46.00  | -20.22 | -38.52        |  |
| 1. All readings are Quasi-Peak and Average values.<br>2. Factor = Insertion Loss + Cable Loss.<br>97-90-<br>80-<br>70-<br>60-<br>50-<br>40-<br>40-<br>30-<br>20-<br>0.150 1.000 30.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.541                                                                                                                                          | 0.22      | 39.41       | 33.25       | 39.63       | 33.47             | 56.00      | 46.00  | -16.37 | -12.53        |  |
| 30-<br>20-<br>10-<br>0-<br>0.150<br>1.000<br>10.000<br>30.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90-<br>80-<br>70-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-<br>(\$ 60-))]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] |           | 4 5         |             |             |                   | 6          |        |        |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30-<br>20-<br>10-<br>0-                                                                                                                        | //\.//w   |             | Ш.<br>1.0   |             | Bucy(MHz)         | profit May | 10.00  | 10     | w.t<br>30.000 |  |
| Test Mode: LCD (1280*800, 60Hz) + DVI (1280*800, 60Hz) (SKU B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Mode:                                                                                                                                     | LCD (1280 | *800, 60Hz) | + DVI (128  | 30*800, 60H | z) (SKU B)        |            |        |        |               |  |