FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2003 TEST REPORT

For

NOTEBOOK COMPUTER

Model: X500

Trade Name: Getac

Issued for

Getac Technology Corp.

No.1, R&D Road 2, Hsinchu Science Based Industrial Park,
Hsinchu , Taiwan

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

> TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail : service@ccsrf.com

Issued Date: October 03, 2011

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	07/18/2011	Initial Issue	All Page 115	Winnie Chen
01	09/16/2011	Modified	Page 1, 8, 13, 32, 49	Winnie Chen
02	10/03/2011	Modified Radiated Emission and Conducted Emission Test Mode.	Page 1, 3, 7, 11, 66, 106, 107, 112 All Page 112	Winnie Chen

TABLE OF CONTENTS

Report No.: T110602301-RP1

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 3. DESCRIPTION OF TEST MODES7-8 4. TEST METHODOLOGY9 5. FACILITIES AND ACCREDITATION......9 5.2 ACCREDITATIONS......9 5.3 MEASUREMENT UNCERTAINTY10 6. SETUP OF EQUIPMENT UNDER TEST......11 7. FCC PART 15.247 REQUIREMENTS......12 7.2 MAXIMUM PEAK OUTPUT POWER28-30 7.3 POWER SPECTRAL DENSITY31-47 7.4 CONDUCTED SPURIOUS EMISSION48-61 7.6 RADIATED EMISSION.......62-102 APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE.......108-109 APPENDIX II SETUP PHOTOS110-112

1. TEST REPORT CERTIFICATION

Applicant : Getac Technology Corp.

Address : No.1, R&D Road 2, Hsinchu Science Based Industrial Park,

Hsinchu, Taiwan

Equipment Under Test: NOTEBOOK COMPUTER

Model : X500 Trade Name : Getac

Tested Date : June 02 ~ July 14, 2011

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb Lu

Sr. Engineer

Reviewed by:

Gundam Lin Sr. Engineer

2. EUT DESCRIPTION

Product Name	uct Name NOTEBOOK COMPUTER	
Model Number	X500	
Identify Number	T110602301	
Received Date	June 02, 2011	
	IEEE 802.11a, IEEE 802.11n HT20 : 5745MHz ~ 5825MHz	
Fraguenay Banga	IEEE 802.11n HT40 : 5755MHz ~ 5795MHz	
Frequency Range	IEEE 802.11b/g, 802.11n HT20 : 2412MHz∼2462MHz	
	IEEE 802.11n HT40 : 2422MHz∼2452MHz	
	IEEE 802.11a : 21.96 dBm (0.1570W)	
	IEEE 802.11n HT20 : 21.31 dBm (0.1352W)	
	IEEE 802.11n HT40 : 20.78 dBm (0.1197W)	
Transmit Power	IEEE 802.11b : 20.72 dBm (0.1180W)	
	IEEE 802.11g : 23.41 dBm (0.2193W)	
	IEEE 802.11n HT20 : 16.58 dBm (0.0455W)	
	IEEE 802.11n HT40 : 16.74 dBm (0.0472W)	
	IEEE 802.11a, 802.11n HT20 : 20MHz	
Channel Spacing	IEEE 802.11n HT40 : 40MHz	
	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz	
	IEEE 802.11a, 802.11n HT20 : 5 Channels	
Channel Number	IEEE 802.11n HT40 : 2 Channels	
	IEEE 802.11b/g, 802.11n HT20 : 11 Channels	
	IEEE 802.11n HT40 : 7 Channels	
	IEEE 802.11a : 54, 48, 36, 24, 18, 12, 9, 6 Mbps	
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps	
	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps	
Transmit Data Rate	IEEE 802.11n HT20 : 144.444, 130, 117, 115.556, 104, 86.667, 78, 72.2, 65, 58.5, 57.778, 52, 43.333, 39, 28.889, 26, 21.7, 19.5, 14.444, 13, 7.2, 6.5 Mbps	
	IEEE 802.11n HT40 : 300, 270, 243, 240, 216, 180, 162, 150, 135, 121.5, 120, 108, 90, 81, 60, 54, 45, 40.5, 30, 27, 15, 13.5 Mbps	
	IEEE 802.11a : OFDM (64QAM, 16QAM, QPSK, BPSK)	
Type of Modulation	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)	
1 Jpc of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)	
Antenna Type	PIFA Antenna, Antenna Gain : 1.66 dBi for 5G	
	-1.61 dBi for 2.4G	

FCC ID: MAU045	Report No.: T110602301-RP1

	40.0)/1./5	
Power Rating	10.8Vdc (From Battery Powered)	
Power Rating	19Vdc (From Power Adapter)	
Test Voltage	120Vac, 60Hz	
AC Power Cord Type	Unshielded cable, 1.8m (detachable)	
DC Power Cord Type	Unshielded cable, 1.5m (no detachable) with two core	
I/O Port	RS232 port \times 2, VGA port \times 1, USB port \times 4, RJ-45 \times 2, Smart card port \times 1, PCMCIA card port \times 2, ExpressCard port \times 1, Audio In port \times 1, Audio Out port \times 1, HDMI port \times 1, Power port \times 1	

Power Adapter:

No	. Manufacturer	Model No.	Power Input	Power Output
1	FSP	FSP090-DMBB1	100-240Vac, 1.5A, 50-60Hz	19Vdc, 4.7A MAX (90W MAX)

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: MAU045 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	TX Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode		
Emission	Radiated Emission	TX Mode
LIIIISSIOII	Conducted Emission	TX Mode

Remark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz)

IEEE 802.11a, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	5745
Middle	5785
High	5825

IEEE 802.11a mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	5755	
High	5795	

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11b, 802.11g, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

While all conducted test the spectrum / power meter was connected to the Booster RF-out for 2.4GHz and the chain 1 of WiFi module for 5GHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.4:2003 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada INDUSTRY CANADA

Japan VCCI

Taiwan BSMI

USA FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.5189
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 2.5164
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 2.4967
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 2.7655
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 1.5923

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

N/A

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. Run "RFPWRL" function, control RF power level.
- 2. Run "CRTU", click continuous TX, choice 11a or 11b、g、HT20、HT40.
- 3. Click "start TX".

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment	me of Equipment Manufacturer		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	08/12/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

IEEE 802.11a Mode

ELE GOZII IG MOGO						
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail		
Low	5745	16.25	500	PASS		
Middle	5785	16.33	500	PASS		
High	5825	16.50	500	PASS		

IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	5745	17.67	500	PASS
Middle	5785	17.25	500	PASS
High	5825	17.58	500	PASS

IEEE 802.11n HT40 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	5755	30.25	500	PASS
High	5795	31.33	500	PASS

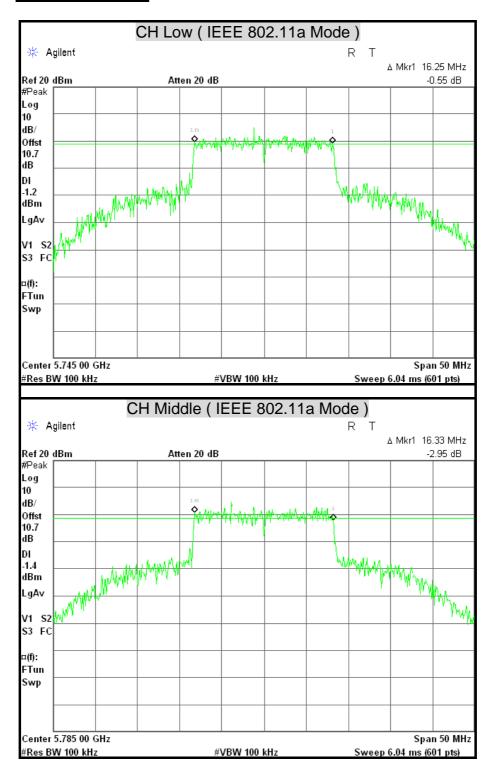
IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10.33	500	PASS
Middle	2437	12.17	500	PASS
High	2462	10.25	500	PASS

Report No.: T110602301-RP1

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16.25	500	PASS
Middle	2437	16.08	500	PASS
High	2462	16.42	500	PASS


IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	15.17	500	PASS
Middle	2437	15.17	500	PASS
High	2462	15.17	500	PASS

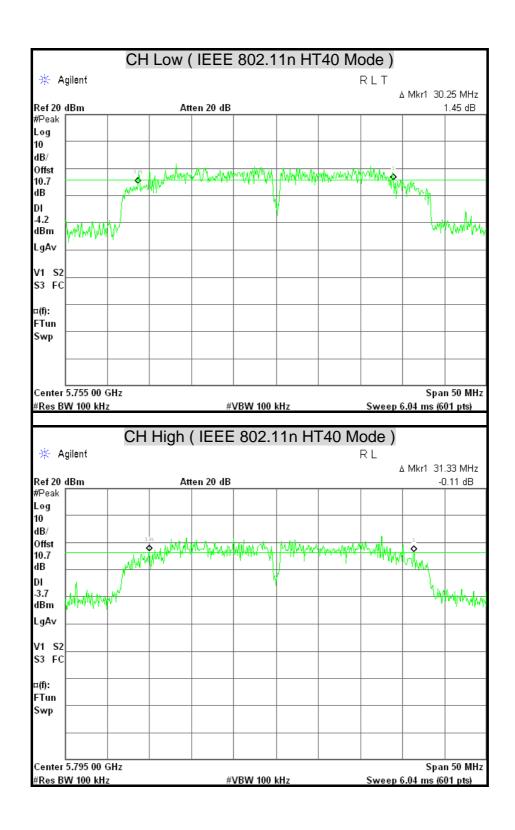
IEEE 802.11n HT40 Mode

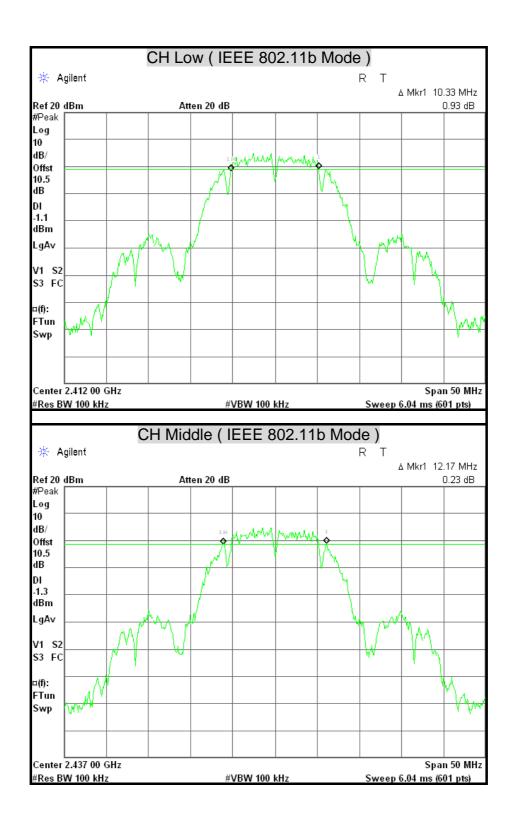
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2422	31.42	500	PASS
Middle	2437	32.58	500	PASS
High	2452	32.58	500	PASS

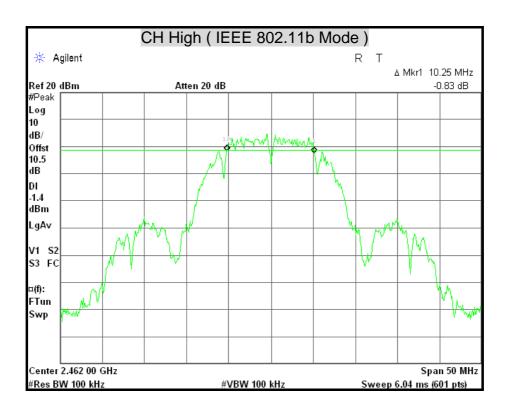
6dB BANDWIDTH

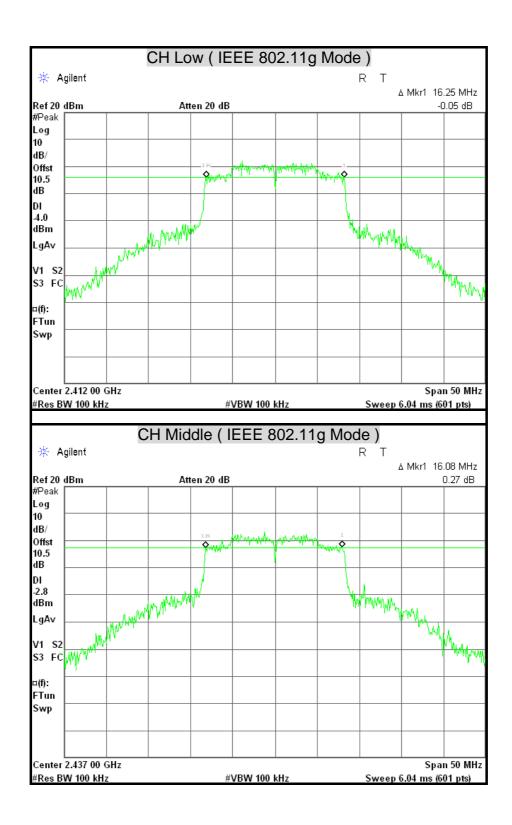
#Res BW 100 kHz

Report No.: T110602301-RP1

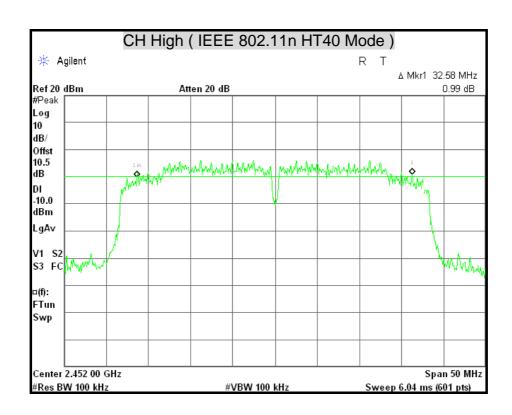

Sweep 6.04 ms (601 pts)


CH High (IEEE 802.11a Mode) 🔆 Agilent Δ Mkr1 16.50 MHz Ref 20 dBm Atten 20 dB -0.14 dB #Peak Log 10 dB/ Offst 10.7 dΒ DΙ -3.2 dBm LgA∨ V1 S2 S3 FC ¤(f): FTun Swp Center 5.825 00 GHz Span 50 MHz


#VBW 100 kHz


CH Low (IEEE 802.11n HT20 Mode) * Agilent Δ Mkr1 17.67 MHz Ref 20 dBm Atten 20 dB 1.44 dB #Peak Log 10 dB/ Offst 10.7 dΒ V1 S2 M ¤(f): FTun Swp Span 50 MHz Center 5.745 00 GHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts) CH Middle (IEEE 802.11n HT20 Mode) 🔅 Agilent Δ Mkr1 17.25 MHz Ref 20 dBm Atten 20 dB -0.25 dB #Peak Log 10 dB/ Offst 10.7 dΒ DΙ Mary Mary Mary -2.2 dBm LgAv S3 F0 ¤(f): FTun Swp Center 5.785 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)

CH High (IEEE 802.11n HT20 Mode) * Agilent 13:44:05 Jul 28, 2010 Δ Mkr1 17.58 MHz Atten 20 dB 2.83 dB Ref 20 dBm #Peak Log 10 dB/ Offst 10.7 dΒ DΙ Howard Williams Williams man manufato -2.2 dBm LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 5.825 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)



CH High (IEEE 802.11g Mode) 🔆 Agilent Δ Mkr1 16.42 MHz Ref 20 dBm Atten 20 dB 0.48 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -1.5 Jangary Markey Warrand dBm May have have have been a second with the same LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 2.462 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)

CH Low (IEEE 802.11n HT20 Mode) * Agilent Δ Mkr1 15.17 MHz -0.54 dB Ref 20 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -2.7 dBm Ville Mary Mary Mary Mary Mary my why why LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 2.412 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts) CH Middle (IEEE 802.11n HT20 Mode) 🔅 Agilent Δ Mkr1 15.17 MHz Ref 20 dBm Atten 20 dB 0.51 dB #Peak Log 10 dB/ Offst 10.5 dΒ DI 1.1 Mary Hamman dBm LgA∨ V1 S2 S3 FC ¤(f): FTun Swp Center 2.437 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)

CH High (IEEE 802.11n HT20 Mode) 🔆 Agilent Δ Mkr1 15.17 MHz Ref 20 dBm Atten 20 dB 0.43 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -3.3 dBm Market LgA∨ V1 S2 S3 FC ¤(f): FTun Swp Center 2.462 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)

CH Low (IEEE 802.11n HT40 Mode) * Agilent Δ Mkr1 31.42 MHz -0.70 dB Ref 20 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -10.2 dBm LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 2.422 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts) CH Middle (IEEE 802.11n HT40 Mode) 🔅 Agilent Δ Mkr1 32.58 MHz Ref 20 dBm Atten 20 dB -1.12 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -3.8 dBm MMM LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 2.437 00 GHz Span 50 MHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 6.04 ms (601 pts)

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	ANRITSU	ML2495A	1012009	03/28/2012
Power Sensor	ANRITSU	MA2411B	0917072	03/09/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

IEEE 802.11a Mode

Channel	Channel	Peak l	Power	Peak Pov	wer Limit	Pass / Fail
Chamler	Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	rass/raii
Low	5745	21.54	0.1426	30	1	PASS
Middle	5785	21.96	0.1570	30	1	PASS
High	5825	21.64	0.1459	30	1	PASS

Remark: At finial test to get the worst-case emission at 6Mbps.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency	Peak l	Power	Peak Pov	wer Limit	Pass / Fail
Chainei	(MHz)	(dBm)	(W)	(dBm)	(W)	Fass/Faii
Low	5745	21.31	0.1352	30	1	PASS
Middle	5785	20.98	0.1253	30	1	PASS
High	5825	20.74	0.1186	30	1	PASS

Remark: At finial test to get the worst-case emission at 6.5Mbps.

IEEE 802.11n HT40 Mode

Channel	Channel	Peak Power		Peak Pov	Pass / Fail	
Chamie	Channel Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	rass/raii
Low	5755	20.78	0.1197	30	1	PASS
High	5795	20.73	0.1183	30	1	PASS

Remark: At finial test to get the worst-case emission at 13.5Mbps.

IEEE 802.11b Mode

Channol	Channel Frequency		Power	Peak Pov	wer Limit	Pass / Fail
Citatillei	(MHz)	(dBm)	(W)	(dBm)	(W)	rass/raii
Low	2412	20.72	0.1180	30	1	PASS
Middle	2437	20.53	0.1130	30	1	PASS
High	2462	20.40	0.1096	30	1	PASS

Remark: At finial test to get the worst-case emission at 1Mbps.

IEEE 802.11g Mode

Channel	Channel Frequency	Peak Power		Peak Power Limit		Pass / Fail
Oname	(MHz)	(dBm)	(W)	(dBm)	(W)	1 433 / 1 411
Low	2412	20.58	0.1143	30	1	PASS
Middle	2437	23.41	0.2193	30	1	PASS
High	2462	21.88	0.1542	30	1	PASS

Remark: At finial test to get the worst-case emission at 6Mbps.

IEEE 802.11n HT20 Mode

Channel	Channel Peak Power annel Frequency		Peak Pov	Pass / Fail		
Citatillei	(MHz)	(dBm)	(W)	(dBm)	(W)	i ass / i aii
Low	2412	14.95	0.0313	30	1	PASS
Middle	2437	16.58	0.0455	30	1	PASS
High	2462	15.71	0.0372	30	1	PASS

Remark: At finial test to get the worst-case emission at 6.5Mbps.

IEEE 802.11n HT40 Mode

Channel	Channel	Peak Power		Peak Power Limit		Pass / Fail
Chamie	Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	rass/raii
Low	2422	14.01	0.0252	30	1	PASS
Middle	2437	16.74	0.0472	30	1	PASS
High	2452	13.83	0.0242	30	1	PASS

Remark: At finial test to get the worst-case emission at 13.5Mbps.

7.3 POWER SPECTRAL DENSITY

LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	08/12/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 3KHz and VBW RBW, set sweep time = span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

IEEE 802.11a Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	5745	-8.36	8	PASS
Middle	5785	-9.22	8	PASS
High	5825	-8.37	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	5745	-7.41	8	PASS
Middle	5785	-8.30	8	PASS
High	5825	-7.80	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	5755	-8.70	8	PASS
High	5795	-10.04	8	PASS

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-9.21	8	PASS
Middle	2437	-9.10	8	PASS
High	2462	-9.84	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11q Mode

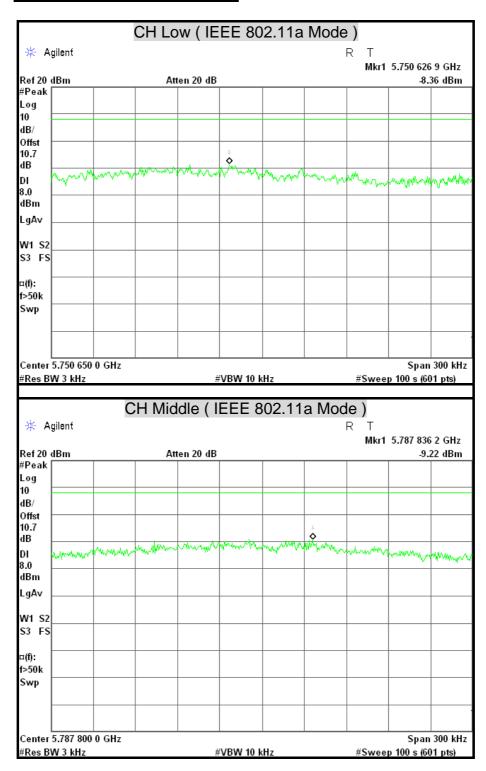
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-9.61	8	PASS
Middle	2437	-7.62	8	PASS
High	2462	-10.13	8	PASS

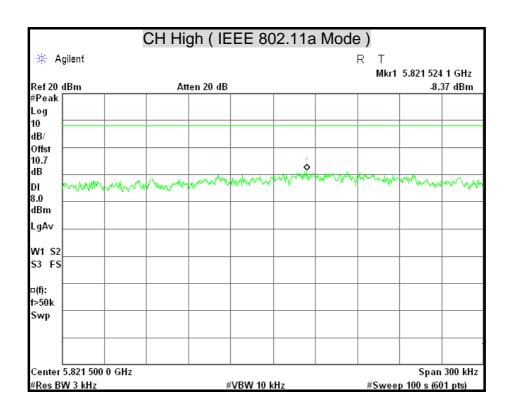
- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

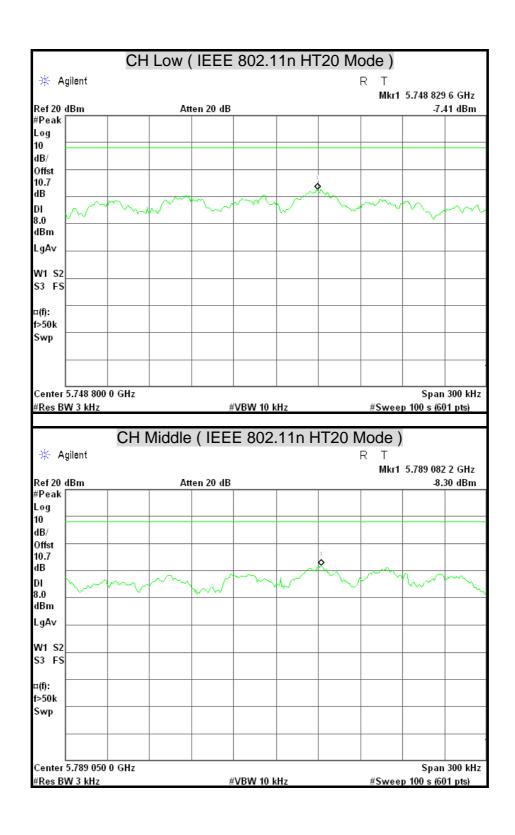
IEEE 802.11n HT20 Mode

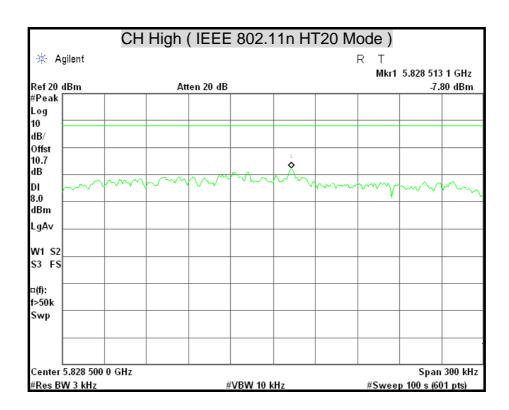
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-9.93	8	PASS
Middle	2437	-7.14	8	PASS
High	2462	-10.64	8	PASS

Remark:


- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


IEEE 802.11n HT40 Mode


Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2422	-17.61	8	PASS
Middle	2437	-11.16	8	PASS
High	2452	-16.73	8	PASS

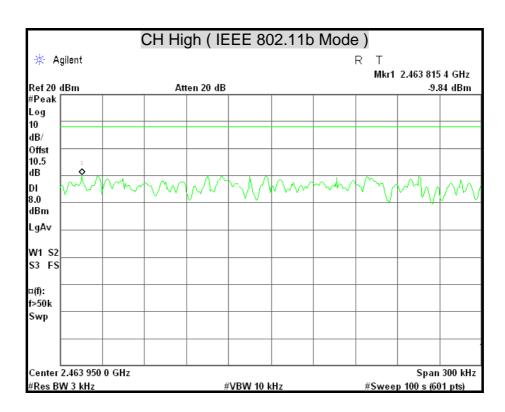

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

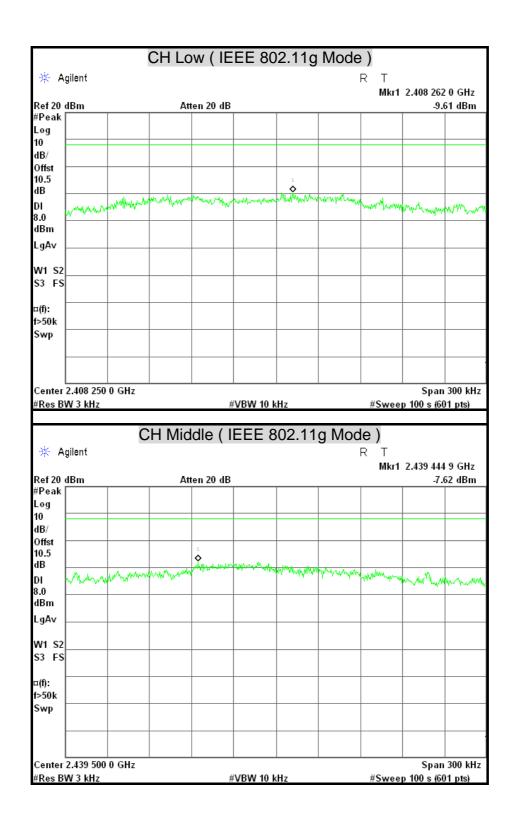
POWER SPECTRAL DENSITY

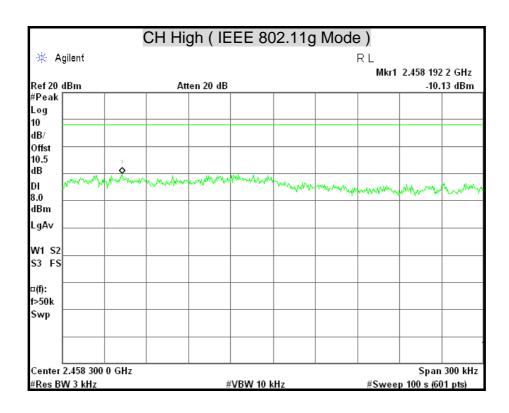
CH Low (IEEE 802.11n HT40 Mode) * Agilent Mkr1 5.750 048 0 GHz -8.70 dBm Ref 20 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.7 dΒ DΙ 8.0 dBm LgA∨ W1 S2 S3 FS ¤(f): f>50k Swp Span 300 kHz Center 5.750 050 0 GHz #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts) CH High (IEEE 802.11n HT40 Mode) 🔅 Agilent Mkr1 5.783 764 6 GHz Ref 20 dBm Atten 20 dB -10.04 dBm #Peak Log 10 dB/ Offst 10.7 dΒ DI 8.0 dBm LgAv W1 S2 S3 FS ¤(f): f>50k Swp Center 5.783 750 0 GHz Span 300 kHz

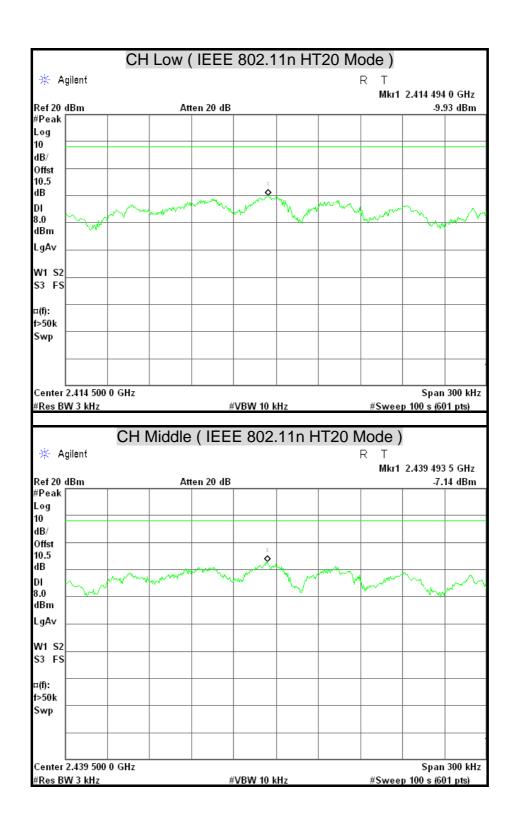
#VBW 10 kHz

#Sweep 100 s (601 pts)

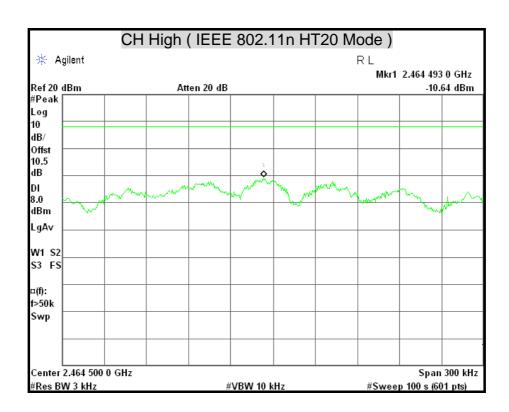

#Res BW 3 kHz

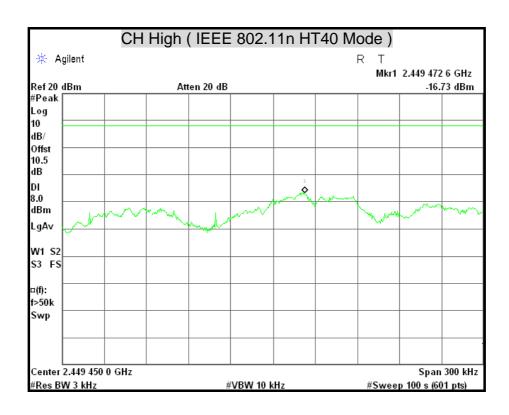

CH Low (IEEE 802.11b Mode) * Agilent Mkr1 2.409 955 8 GHz -9.21 dBm Ref 20 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ 8.0 dBm LgA∨ W1 S2 S3 FS ¤(f): f>50k Swp Span 300 kHz Center 2.410 000 0 GHz #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts) CH Middle (IEEE 802.11b Mode) 🔅 Agilent Mkr1 2.435 008 9 GHz Ref 20 dBm Atten 20 dB -9.10 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DI 8.0 dBm LgAv W1 S2 S3 FS ¤(f): f>50k Swp Center 2.435 150 0 GHz Span 300 kHz


#VBW 10 kHz


#Sweep 100 s (601 pts)

#Res BW 3 kHz





MAU045 Report No.: T110602301-RP1

CH Low (IEEE 802.11n HT40 Mode) * Agilent Mkr1 2.419 470 1 GHz -17.61 dBm Ref 20 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ 8.0 dBm LgAv W1 S2 S3 FS ¤(f): f>50k Swp Span 300 kHz Center 2.419 450 0 GHz #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts) CH Middle (IEEE 802.11n HT40 Mode) 🔅 Agilent Mkr1 2.445 701 0 GHz Ref 20 dBm Atten 20 dB -11.16 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ dBm LgA∨ W1 S2 S3 FS ¤(f): f>50k Swp Center 2.445 700 0 GHz Span 300 kHz #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts)

7.4 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

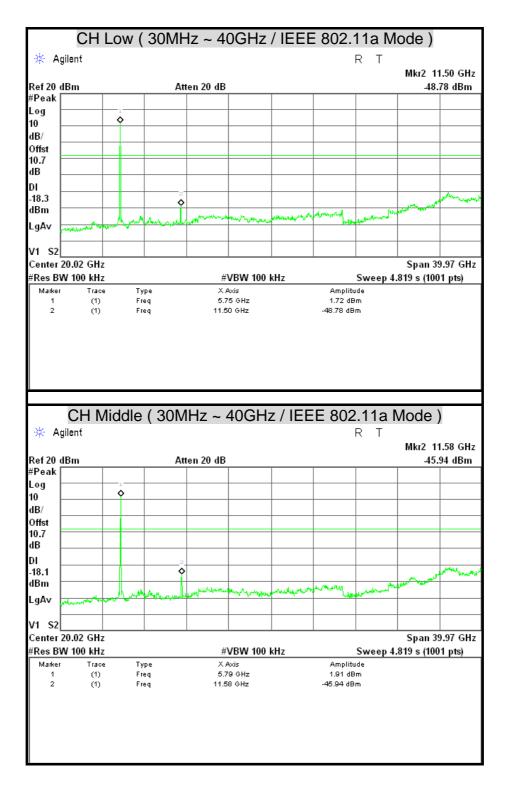
TEST EQUIPMENT

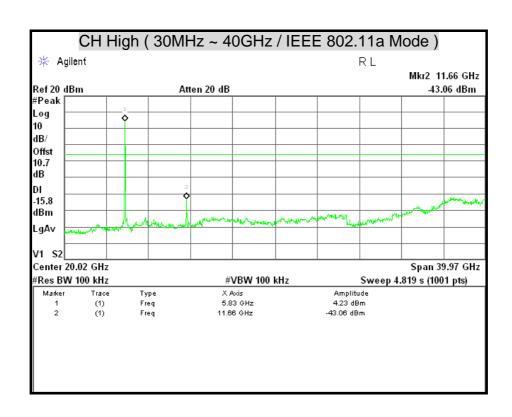
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	08/12/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

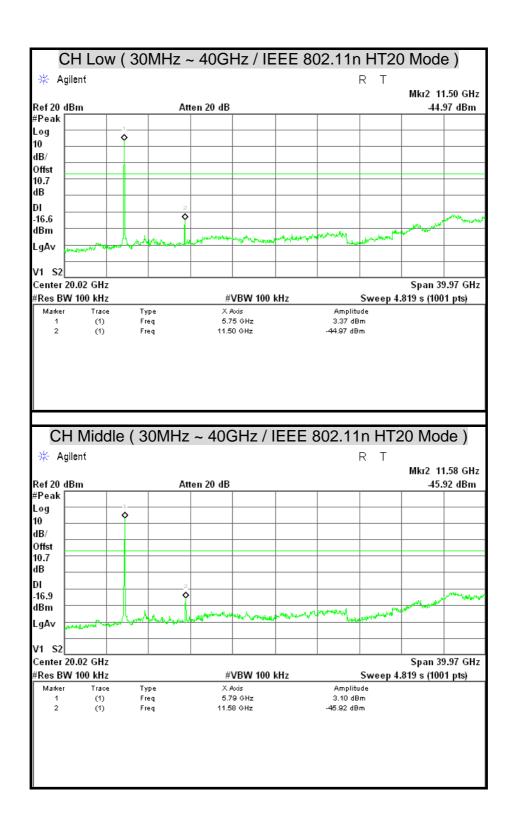
TEST PROCEDURE

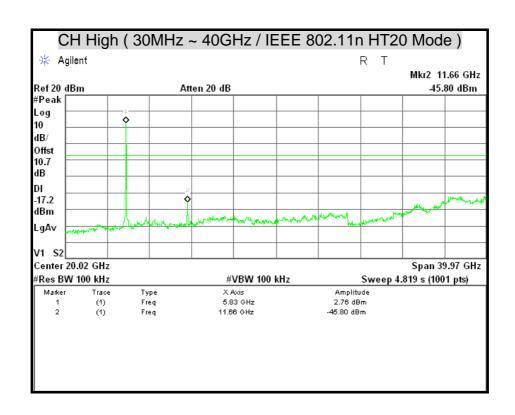

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 5.0 GHz band.

TEST RESULTS

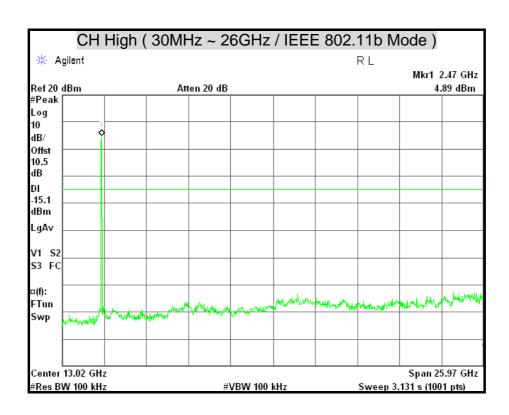

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

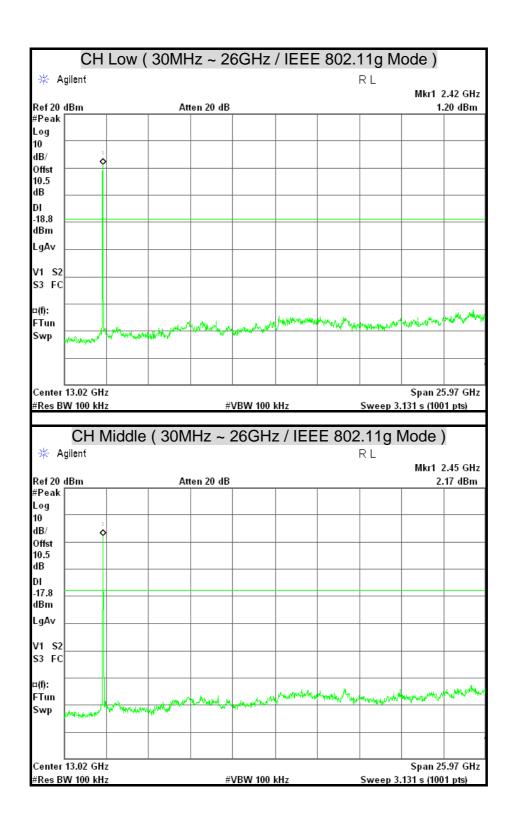


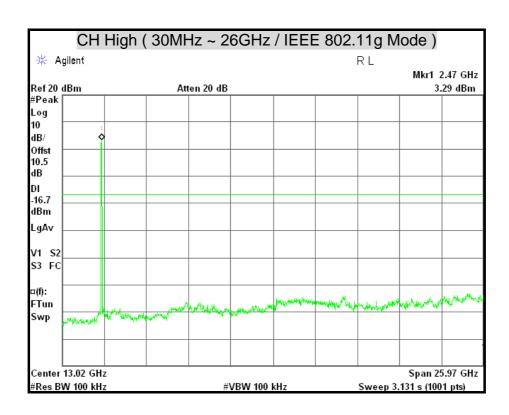
FCC ID: MAU045

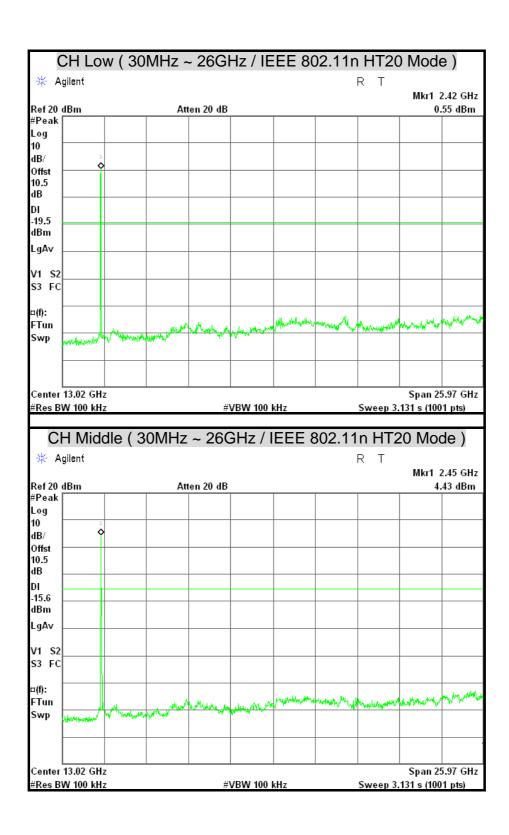
Report No.: T110602301-RP1

FCC ID: MAU045

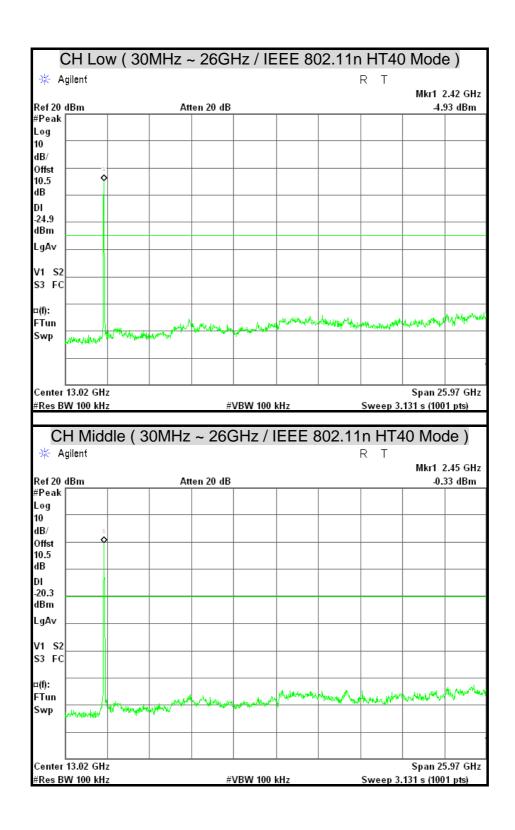

Report No.: T110602301-RP1

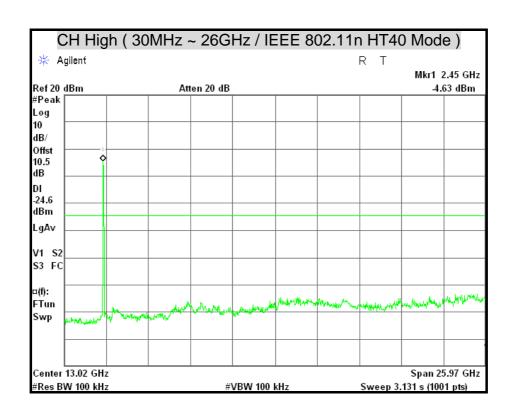

CH Low (30MHz ~ 40GHz / IEEE 802.11n HT40 Mode) 🔆 Agilent R Т Atten 20 dB Ref 20 dBm #Peak Log 10 dB/ Offst 10.7 dΒ DΙ -17.3 dBm LgAv V1 S2 S3 FC □(f): FTun Swp Center 20.02 GHz Span 39.97 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 4.819 s (1001 pts) CH High (30MHz ~ 40GHz / IEEE 802.11n HT40 Mode) Mkr2 11.62 GHz 46.12 dBm Ref 20 dBm Atten 20 dB #Peak Log ø 10 dB/ Offst 10.7 dΒ DΙ -18.5 dBm LgA∨ V1 S2 Span 39.97 GHz Center 20.02 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 4.819 s (1001 pts) X Axis 5.79 GHz Туре Amplitude Marker Trace (1) Freq 11.62 GHz -46.12 dBm


FCC ID: MAU045


Report No.: T110602301-RP1

CH Low (30MHz ~ 26GHz / IEEE 802.11b Mode) * Agilent Mkr1 2.42 GHz Ref 20 dBm 5.44 dBm Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -14.6 dBm LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 13.02 GHz Span 25.97 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 3.131 s (1001 pts) CH Middle (30MHz ~ 26GHz / IEEE 802.11b Mode) 🔅 Agilent Mkr1 2.45 GHz Ref 20 dBm Atten 20 dB 5.18 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -14.8 dBm LgAv V1 S2 S3 FC ¤(f): FTun Swp Center 13.02 GHz Span 25.97 GHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 3.131 s (1001 pts)





CH High (30MHz ~ 26GHz / IEEE 802.11n HT20 Mode) 🔆 Agilent Mkr1 2.47 GHz Ref 20 dBm Atten 20 dB 1.39 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -18.6 dBm LgA∨ V1 S2 S3 FC ¤(f): FTun Swp Center 13.02 GHz Span 25.97 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 3.131 s (1001 pts)

FCC ID: MAU045

Report No.: T110602301-RP1

7.6 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. 2} Above 38.6

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

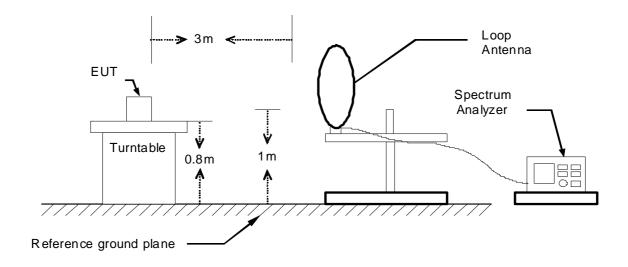
Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

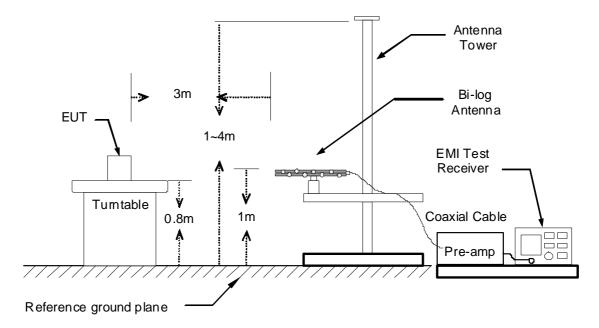
TEST EQUIPMENT

966Chamber B

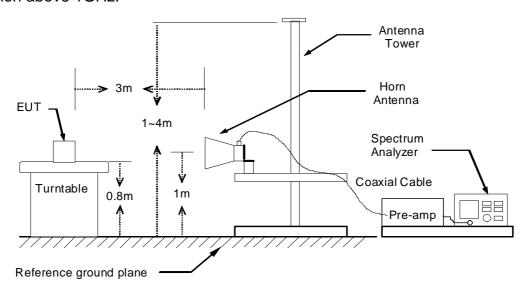
Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/19/2012
EMI Receiver	ROHDE & SCHWARZ	ESCI	101131	01/13/2012
Broadband Hybrid Bi-Log Antenna	Sunol Sciences	JB1	A100209-4	10/07/2011
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078732	07/03/2012
Pre-Amplifier	Agilent	8447D	2944A10052	07/26/2011
Pre-Amplifier	Agilent	8449B	3008A01916	09/21/2011
LOOP Antenna	EMCO	6502	8905-2356	06/10/2012
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R
Band Reject Filter	Micro-Tronics	BRC50705-01	007	N.C.R


Remark: 1. Each piece of equipment is scheduled for calibration once a year.

^{2.} N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.


9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	NOTEBOOK COMPUTER	Test By	Rueyyan Lin
Model	X500	Test Date	2011/06/17
Test Mode	TX Mode	TEMP & Humidity	25°C, 53%

966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
141.55	54.35	-13.01	41.34	43.50	-2.16	Peak		
299.66	51.77	-10.03	41.74	46.00	-4.26	Peak		
425.76	49.16	-7.06	42.10	46.00	-3.90	Peak		
532.46	48.01	-7.22	40.79	46.00	-5.21	Peak		
709.97	48.36	-4.75	43.61	46.00	-2.39	Peak		
745.86	45.40	-4.17	41.24	46.00	-4.76	Peak		
799.21	45.38	-3.07	42.31	46.00	-3.69	Peak		
851.59	45.39	-2.56	42.82	46.00	-3.18	Peak		
899.12	43.91	-1.80	42.10	46.00	-3.90	Peak		
958.29	45.78	-1.43	44.35	46.00	-1.65	Peak		
		966 Chamb	er_B at 3Met	er / Vertical				
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
30.00	42.30	-6.58	35.72	40.00	-4.28	QP		
143.49	52.60	-13.14	39.46	43.50	-4.04	QP		
299.66	50.20	-10.03	40.17	46.00	-5.83	Peak		
500.45	50.69	-7.51	43.18	46.00	-2.82	Peak		
533.43	50.83	-7.22	43.62	46.00	-2.38	Peak		
639.16	44.34	-6.15	38.19	46.00	-7.81	Peak		
851.59	41.25	-2.56	38.68	46.00	-7.32	Peak		
958.29	41.87	-1.43	40.45	46.00	-5.55	Peak		
958.29	41.87	-1.43	40.45	46.00	-5.55	Peak		

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/22
Test Mode	IEEE 802.11a TX / CH Low	TEMP & Humidity	25°C, 53%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
2885.00	57.47	45.63	4.08	61.55	49.71	74.00	54.00	-4.29	AVG	
11424.00	49.32		1.28	50.60		74.00	54.00	-3.40	Peak	
		9	66 Chaml	per_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
2905.00	55.02	41.26	4.17	59.19	45.43	74.00	54.00	-8.57	AVG	
11496.00	49.79		1.46	51.25		74.00	54.00	-2.75	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/22
Test Mode	IEEE 802.11a TX / CH Middle	TEMP & Humidity	25°C, 53%

	966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2905.00	63.40	44.56	4.17	67.57	48.73	74.00	54.00	-5.27	AVG
11628.00	49.62		1.65	51.27		74.00	54.00	-2.73	Peak
		9	66 Chaml	per_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2900.00	62.10	42.57	4.15	66.24	46.72	74.00	54.00	-7.28	AVG
			0.40	CO CE	15.75	74.00	E4.00	0.05	4) (0
4800.00	52.46	37.56	8.19	60.65	45.75	74.00	54.00	-8.25	AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/22
Test Mode	IEEE 802.11a TX / CH High	TEMP & Humidity	25°C, 53%

	966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2910.00	67.27	46.88	4.19	71.46	51.07	74.00	54.00	-2.93	AVG
11652.00	50.11		1.68	51.79		74.00	54.00	-2.21	Peak
		9	66 Chaml	per_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2920.00	65.18	42.13	4.24	69.42	46.37	74.00	54.00	-7.63	AVG
11652.00	51.30		1.68	52.98		74.00	54.00	-1.02	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng		
Model	X500	Test Date	2011/06/22		
Test Mode	IEEE 802.11n HT20 TX / CH Low	TEMP & Humidity 25°C			

966 Chamber_B at 3Meter / Horizontal										
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
2895.00	45.69		4.12	49.82		74.00	54.00	-4.18	Peak	
11460.00	49.04		1.37	50.41		74.00	54.00	-3.59	Peak	
					3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
4800.00	42.51		8.19	50.70		74.00	54.00	-3.30	Peak	
11436.00	49.41		1.31	50.73		74.00	54.00	-3.27	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng	
Model	X500	Test Date	2011/06/22	
Test Mode	IEEE 802.11n HT20 TX / CH Middle	TEMP & Humidity 25°C		

966 Chamber_B at 3Meter / Horizontal										
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
2895.00	56.87	43.88	4.12	60.99	48.00	74.00	54.00	-6.00	AVG	
11472.00	50.03		1.40	51.43		74.00	54.00	-2.57	Peak	
		9	66 Chaml	per_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
2905.00	55.25	45.69	4.17	59.42	49.86	74.00	54.00	-4.14	AVG	
4800.00	43.32		8.19	51.51		74.00	54.00	-2.49	Peak	
11424.00	49.81		1.28	51.09		74.00	54.00	-2.91	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

FCC ID: MAU045

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng		
Model	X500	Test Date	2011/06/22		
Test Mode	IEEE 802.11n HT20 TX / CH High	TEMP & Humidity	25°C, 53%		

Report No.: T110602301-RP1

966 Chamber_B at 3Meter / Horizontal										
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
2920.00	60.10	39.64	4.24	64.34	43.88	74.00	54.00	-10.12	AVG	
11628.00	49.59		1.65	51.24		74.00	54.00	-2.76	Peak	
		9	66 Chaml	per_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
2920.00	53.80	42.18	4.24	58.04	46.42	74.00	54.00	-7.58	AVG	
4800.00	42.98		8.19	51.17		74.00	54.00	-2.83	Peak	
11652.00	49.57		1.68	51.25		74.00	54.00	-2.75	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/22
Test Mode	IEEE 802.11n HT40 TX / CH Low	TEMP & Humidity	25°C, 53%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
3105.00	42.41		4.56	46.97		74.00	54.00	-7.03	Peak	
11508.00	49.56		1.48	51.04		74.00	54.00	-2.96	Peak	
					BMeter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
4800.00	44.42		8.19	52.61		74.00	54.00	-1.39	Peak	
11556.00	49.42		1.55	50.97		74.00	54.00	-3.03	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/22
Test Mode	IEEE 802.11n HT40 TX / CH High	TEMP & Humidity	25°C, 53%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
2940.00	48.61		4.33	52.94		74.00	54.00	-1.06	Peak	
11640.00	49.09		1.67	50.75		74.00	54.00	-3.25	Peak	
					BMeter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark	
4800.00	43.96		8.19	52.15		74.00	54.00	-1.85	Peak	
11592.00	49.17		1.60	50.77		74.00	54.00	-3.23	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	Product Name NOTEBOOK COMPUTER		Leon Cheng		
Model	X500	Test Date	2011/06/30		
Test Mode	IEEE 802.11b TX / CH Low	TEMP & Humidity	25°C, 62%		

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1904.00	44.78		0.22	45.00		74.00	54.00	-9.00	Peak
2016.00	42.97		1.17	44.13		74.00	54.00	-9.87	Peak
4845.00	40.27		8.28	48.56		74.00	54.00	-5.44	Peak
		9	66 Chaml	per_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1920.00	43.81		0.37	44.18		74.00	54.00	-9.82	Peak
2062.00	43.28		1.28	44.55		74.00	54.00	-9.45	Peak
4905.00	41.38		8.41	49.79		74.00	54.00	-4.21	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	Product Name NOTEBOOK COMPUTER		Leon Cheng
Model	Model X500		2011/06/30
Test Mode	IEEE 802.11b TX / CH Middle	TEMP & Humidity	25°C, 62%

		96	6 Chambe	er_B at 3N	/leter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1774.00	53.75		-1.02	52.74		74.00	54.00	-1.26	Peak
1812.00	53.62		-0.66	52.96		74.00	54.00	-1.04	Peak
4845.00	40.60		8.28	48.88		74.00	54.00	-5.12	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1752.00	53.93		-1.23	52.70		74.00	54.00	-1.30	Peak
1870.00	53.65		-0.10	53.54		74.00	54.00	-0.46	Peak
4845.00	40.99		8.28	49.27		74.00	54.00	-4.73	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	oduct Name NOTEBOOK COMPUTER		Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11b TX / CH High	TEMP & Humidity	25°C, 62%

		96	6 Chambe	er_B at 3N	/leter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1724.00	53.35		-1.49	51.86		74.00	54.00	-2.14	Peak
1808.00	54.22		-0.69	53.53		74.00	54.00	-0.47	Peak
4860.00	40.70		8.31	49.01		74.00	54.00	-4.99	Peak
		9	66 Chaml	ber_B at 3	BMeter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1714.00	52.93		-1.59	51.34		74.00	54.00	-2.66	Peak
1808.00	53.69		-0.69	53.00		74.00	54.00	-1.00	Peak
4845.00	41.28		8.28	49.57		74.00	54.00	-4.43	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11g TX / CH Low	TEMP & Humidity	25°C, 62%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1738.00	54.23		-1.36	52.87		74.00	54.00	-1.13	Peak
1782.00	53.87		-0.94	52.93		74.00	54.00	-1.07	Peak
4860.00	40.66		8.31	48.97		74.00	54.00	-5.03	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1730.00	53.51		-1.43	52.07		74.00	54.00	-1.93	Peak
1788.00	54.14		-0.88	53.26		74.00	54.00	-0.74	Peak
4830.00	41.05		8.25	49.30		74.00	54.00	-4.70	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng		
Model	X500	Test Date	2011/06/30		
Test Mode	IEEE 802.11g TX / CH Middle	TEMP & Humidity	25°C, 62%		

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1756.00	53.62		-1.19	52.43		74.00	54.00	-1.57	Peak	
1816.00	53.43		-0.62	52.81		74.00	54.00	-1.19	Peak	
4875.00	40.71		8.35	49.05		74.00	54.00	-4.95	Peak	
		9	66 Chaml	per_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1732.00	53.50		-1.42	52.09		74.00	54.00	-1.91	Peak	
1806.00	53.57		-0.71	52.86		74.00	54.00	-1.14	Peak	
4875.00	41.68		8.35	50.03		74.00	54.00	-3.97	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11g TX / CH High	TEMP & Humidity	25°C, 62%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1770.00	53.10		-1.05	52.05		74.00	54.00	-1.95	Peak	
1820.00	52.37		-0.58	51.79		74.00	54.00	-2.21	Peak	
4935.00	41.18		8.47	49.65		74.00	54.00	-4.35	Peak	
		9	66 Chaml	ber_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1724.00	53.94		-1.49	52.44		74.00	54.00	-1.56	Peak	
1816.00	53.80		-0.62	53.18		74.00	54.00	-0.82	Peak	
4950.00	41.38		8.50	49.88		74.00	54.00	-4.12	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT20 TX / CH Low	TEMP & Humidity	25°C, 62%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1764.00	53.89		-1.11	52.78		74.00	54.00	-1.22	Peak	
1834.00	52.36		-0.45	51.91		74.00	54.00	-2.09	Peak	
4875.00	40.99		8.35	49.34		74.00	54.00	-4.66	Peak	
		9	66 Chaml	ber_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1752.00	52.75		-1.23	51.53		74.00	54.00	-2.47	Peak	
1832.00	53.23		-0.47	52.76		74.00	54.00	-1.24	Peak	
4830.00	40.43		8.25	48.68		74.00	54.00	-5.32	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT20 TX / CH Middle	TEMP & Humidity	25°C, 62%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1744.00	53.84		-1.30	52.54		74.00	54.00	-1.46	Peak	
1794.00	53.20		-0.83	52.37		74.00	54.00	-1.63	Peak	
4905.00	40.49		8.41	48.90		74.00	54.00	-5.10	Peak	
		9	66 Chaml	per_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1806.00	54.35		-0.71	53.64		74.00	54.00	-0.36	Peak	
1834.00	53.56		-0.45	53.12		74.00	54.00	-0.88	Peak	
4890.00	41.34		8.38	49.72		74.00	54.00	-4.28	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT20 TX / CH High	TEMP & Humidity	25°C, 62%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1738.00	53.41		-1.36	52.06		74.00	54.00	-1.94	Peak
1780.00	53.32		-0.96	52.36		74.00	54.00	-1.64	Peak
4950.00	41.39		8.50	49.89		74.00	54.00	-4.11	Peak
		9	66 Chaml	per_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1786.00	53.65		-0.90	52.74		74.00	54.00	-1.26	Peak
1830.00	53.58		-0.48	53.10		74.00	54.00	-0.90	Peak
4965.00	41.30		8.53	49.83		74.00	54.00	-4.17	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT40 TX / CH Low	TEMP & Humidity	25°C, 62%

_									
		96	6 Chambe	er_B at 3N	/leter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1842.00	53.15		-0.37	52.77		74.00	54.00	-1.23	Peak
1876.00	52.63		-0.05	52.59		74.00	54.00	-1.41	Peak
4845.00	41.49		8.28	49.77		74.00	54.00	-4.23	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1706.00	54.27		-1.66	52.61		74.00	54.00	-1.39	Peak
1748.00	53.47		-1.26	52.21		74.00	54.00	-1.79	Peak
4845.00	40.57		8.28	48.85		74.00	54.00	-5.15	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT40 TX / CH Middle	TEMP & Humidity	25°C, 62%

	966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1736.00	53.51		-1.38	52.13		74.00	54.00	-1.87	Peak
1806.00	53.84		-0.71	53.13		74.00	54.00	-0.87	Peak
4875.00	40.14		8.35	48.48		74.00	54.00	-5.52	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1660.00	53.58		-2.10	51.48		74.00	54.00	-2.52	Peak
1838.00	52.91		-0.41	52.50		74.00	54.00	-1.50	Peak
4920.00	40.70		8.44	49.13		74.00	54.00	-4.87	Peak

Remark:

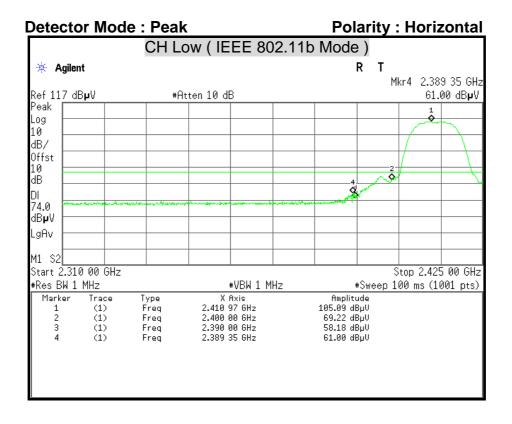
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

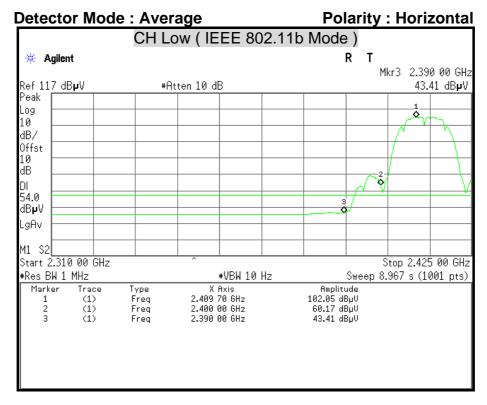
Margin = Result - Limit

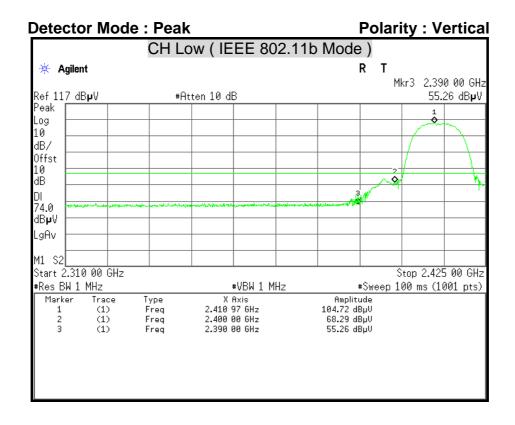
Remark Peak = Result(PK) - Limit(AV)

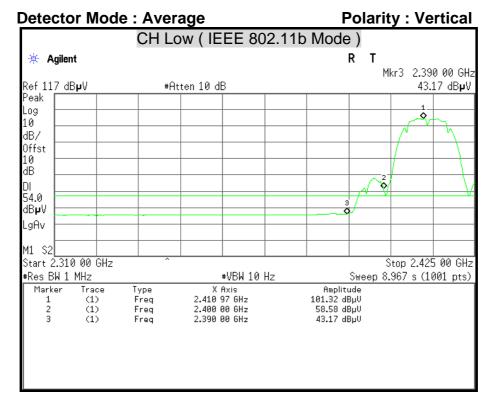
Product Name	NOTEBOOK COMPUTER	Test By	Leon Cheng
Model	X500	Test Date	2011/06/30
Test Mode	IEEE 802.11n HT40 TX / CH High	TEMP & Humidity	25°C, 62%

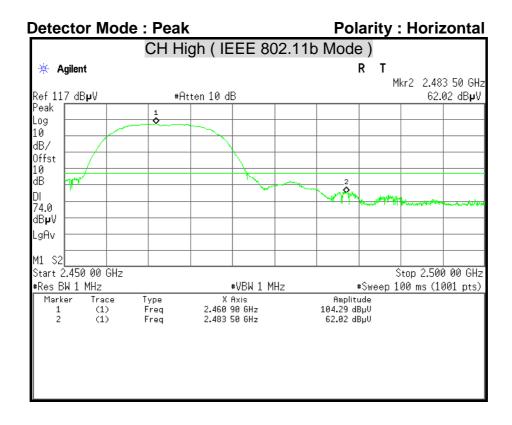
	966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1812.00	52.95		-0.66	52.30		74.00	54.00	-1.70	Peak
1876.00	53.09		-0.05	53.05		74.00	54.00	-0.95	Peak
4935.00	41.05		8.47	49.52		74.00	54.00	-4.48	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1838.00	52.86		-0.41	52.45		74.00	54.00	-1.55	Peak
1854.00	52.56		-0.26	52.30		74.00	54.00	-1.70	Peak
4905.00	41.95		8.41	50.36		74.00	54.00	-3.64	Peak

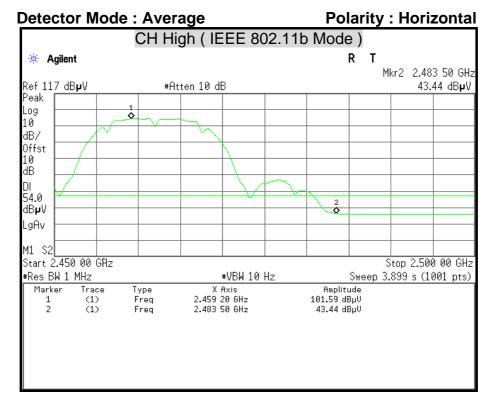

Remark:

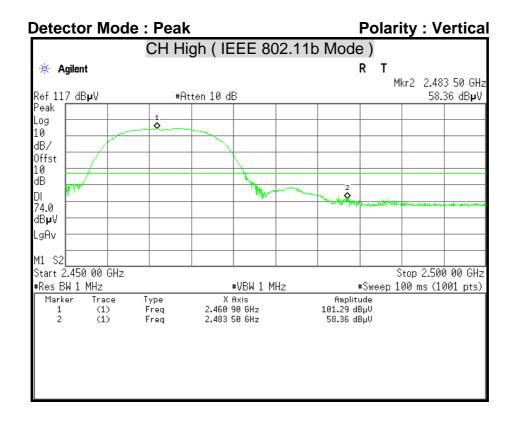

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

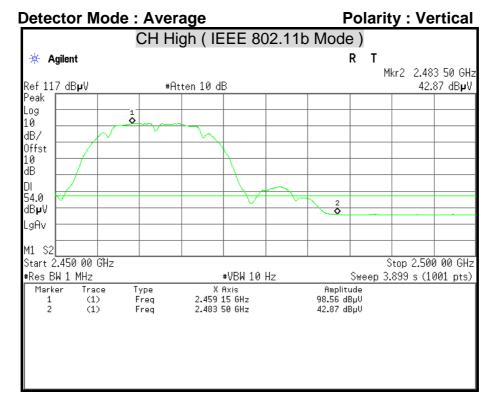

Margin = Result - Limit

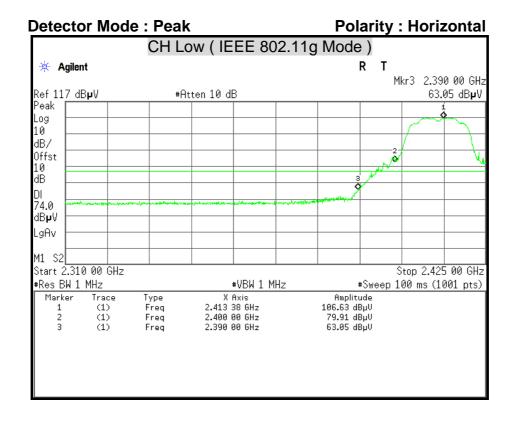

Remark Peak = Result(PK) - Limit(AV)

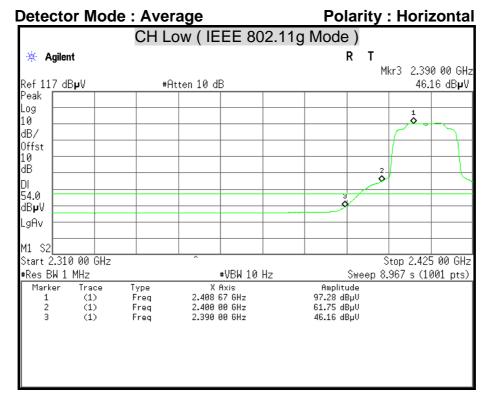

Restricted Band Edges

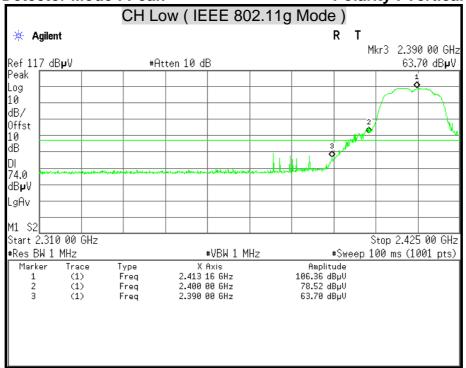


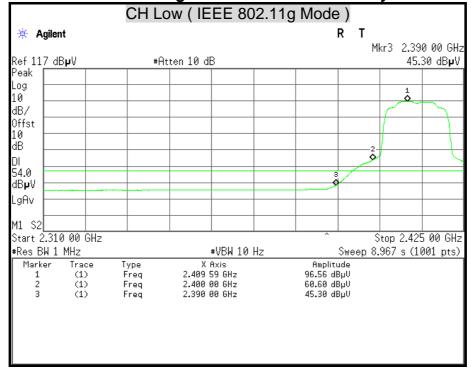


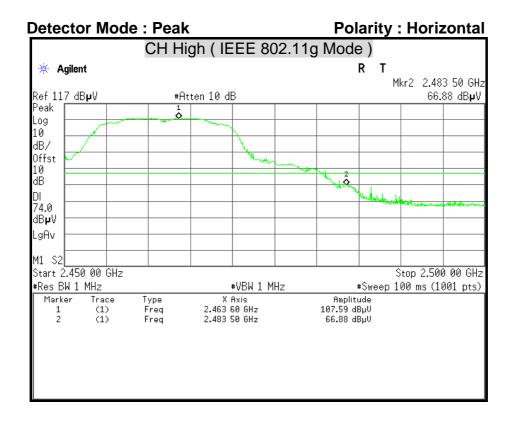


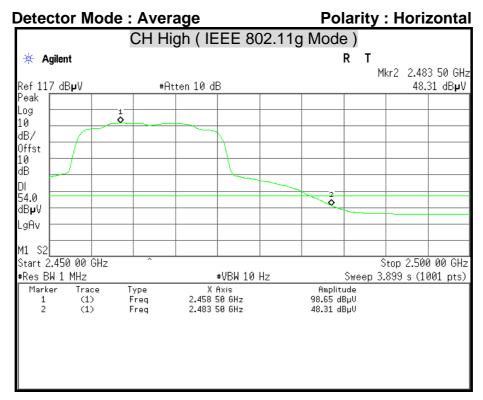






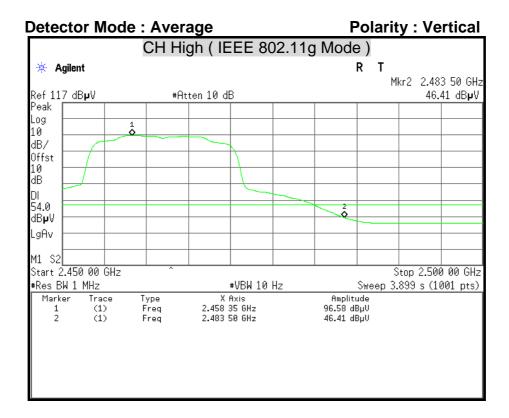

FCC ID: MAU045


Report No.: T110602301-RP1


Detector Mode : Peak Polarity : Vertical

Detector Mode : Average Polarity : Vertical

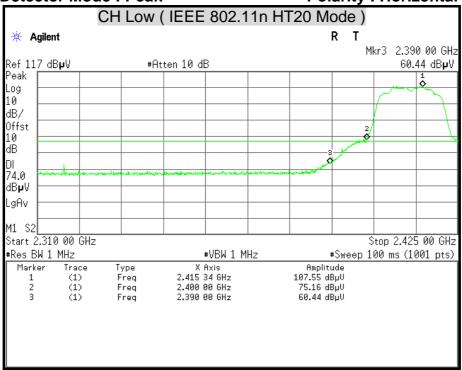


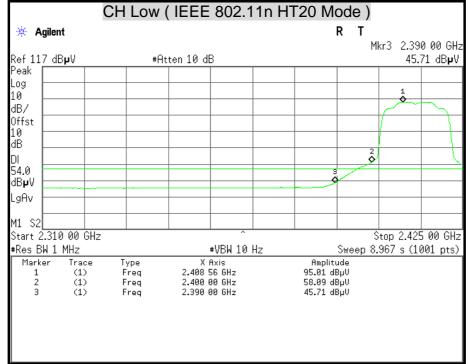


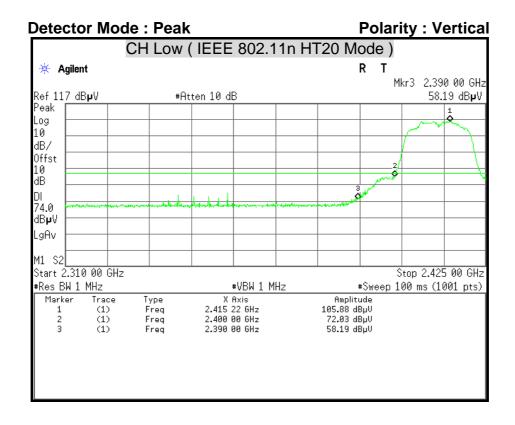
FCC ID: MAU045

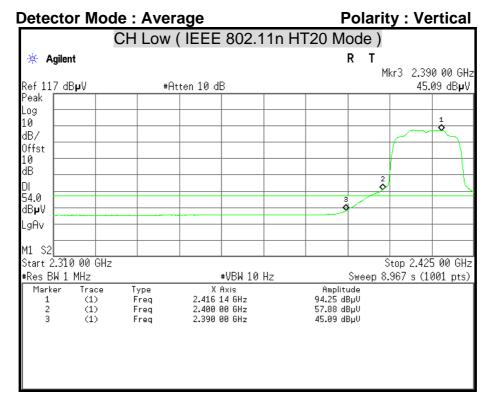
Detector Mode: Peak Polarity: Vertical

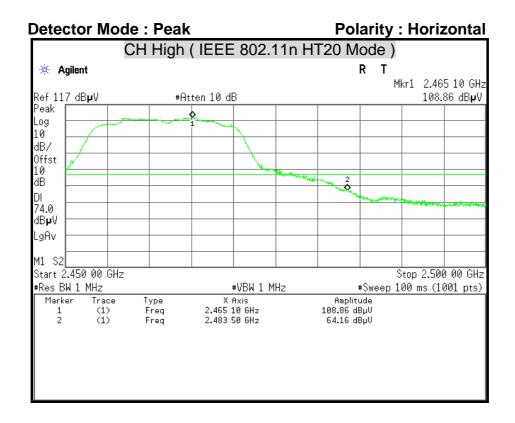
Report No.: T110602301-RP1

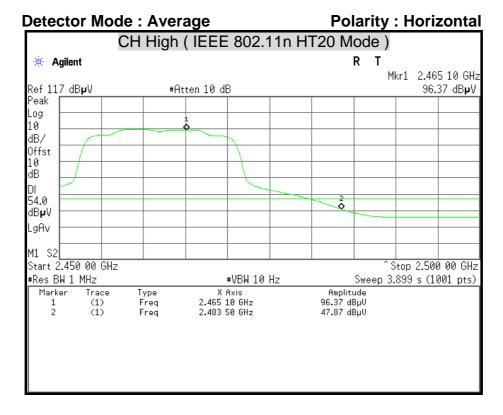


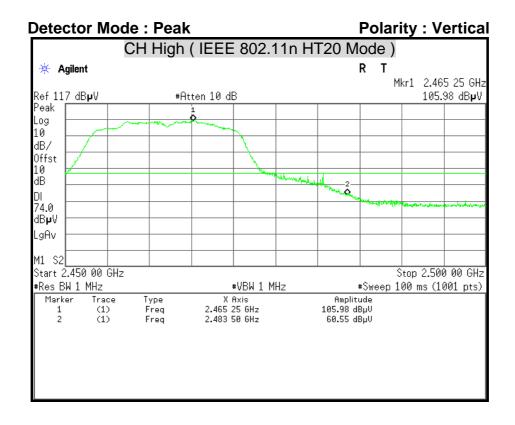

FCC ID: MAU045

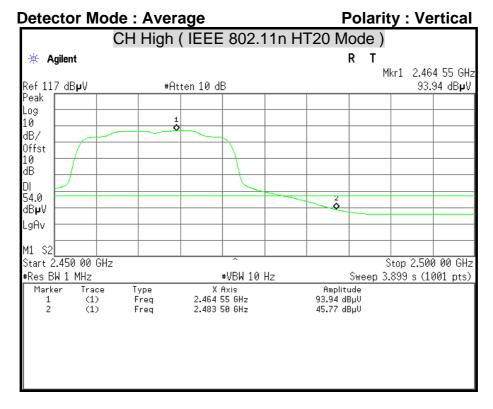

Detector Mode: Peak Polarity: Horizontal

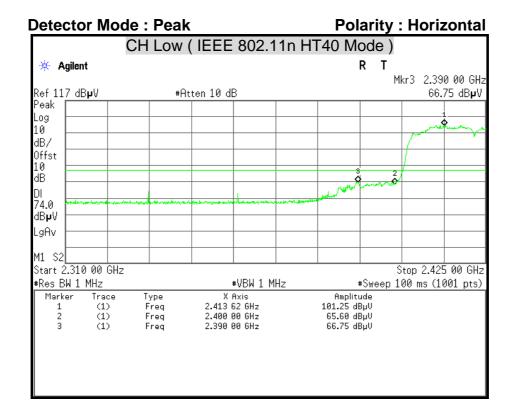

Report No.: T110602301-RP1

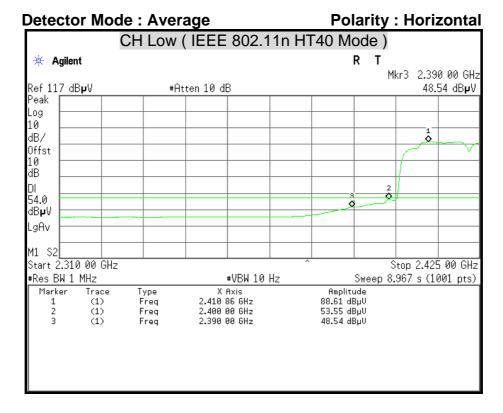


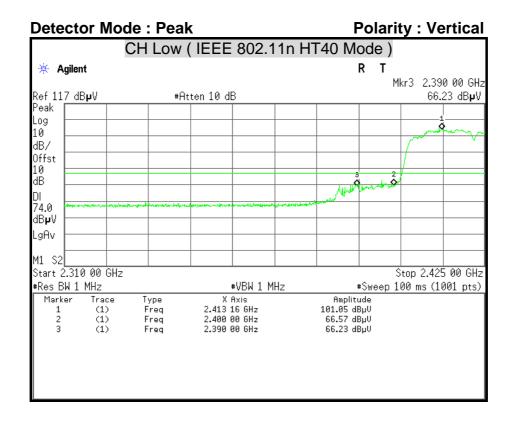

Detector Mode: Average Polarity: Horizontal

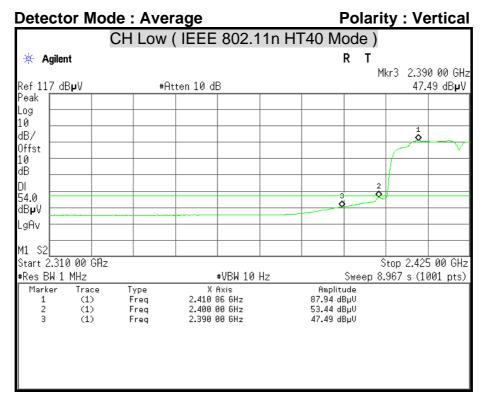


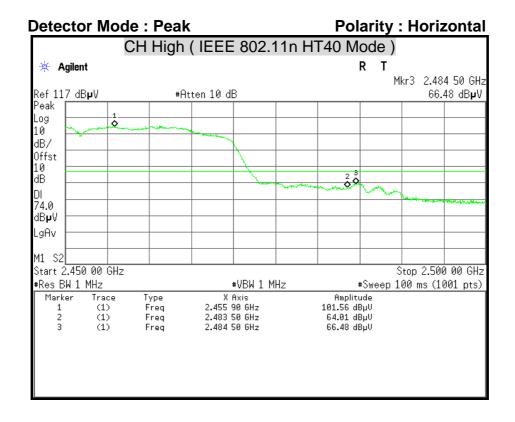


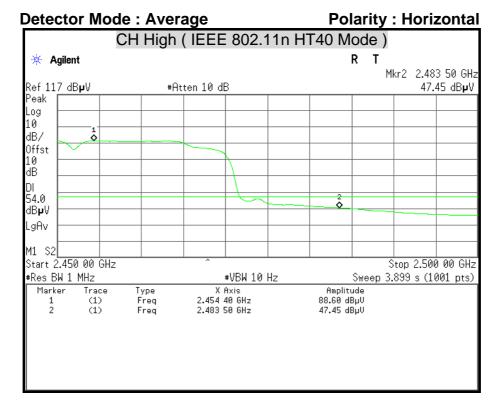


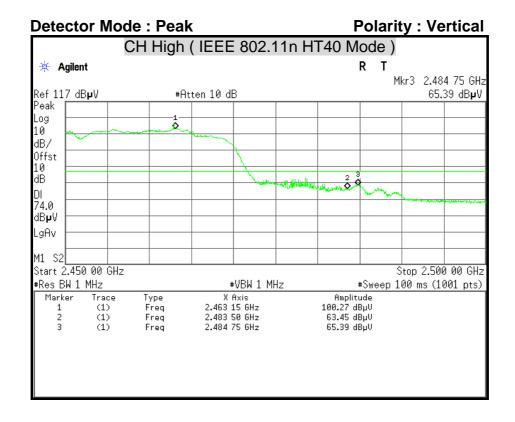


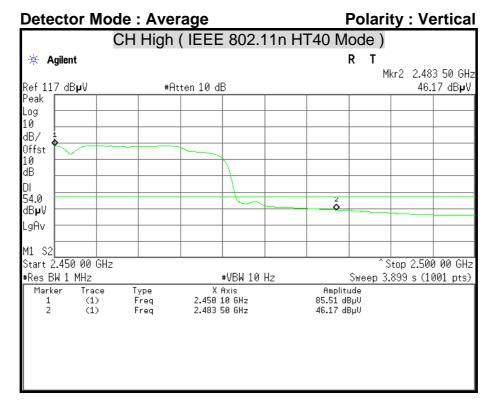










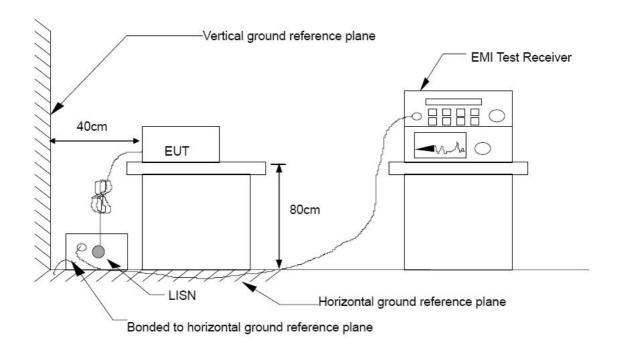


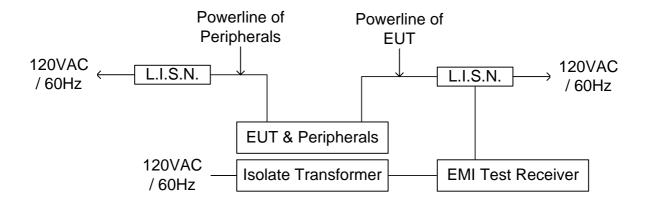
7.7 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)			
(MHz)	Quasi-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5.00	56	46		
5.00 - 30.0	60	50		


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/08/2011
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/14/2012
EMI Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/24/2011
Pulse Limit	ROHDE & SCHWARZ	ESH3-Z2	100117	09/17/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T110602301-RP1

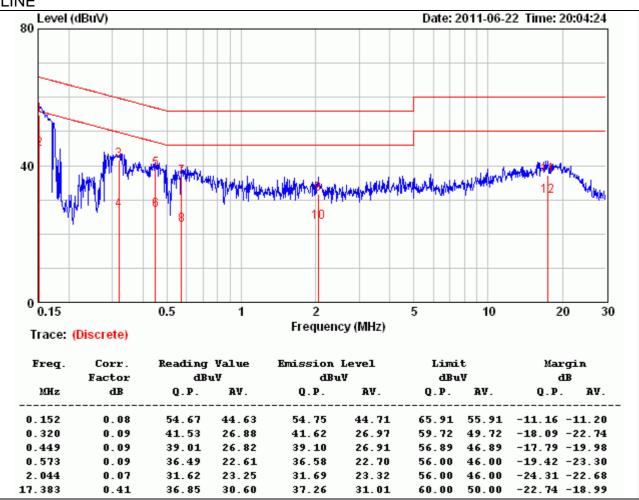
TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.4:2003.

The test procedure is performed in a 4m × 3m × 2.4m (LxWxH) shielded room.

The EUT along with its peripherals were placed on a 1.0m (W) \times 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

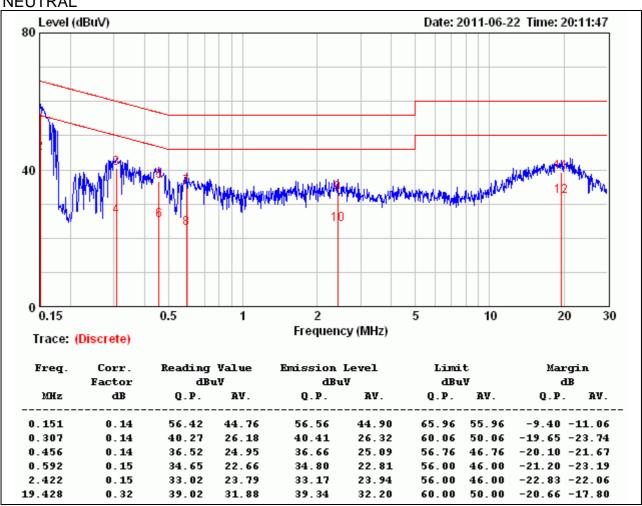

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	NOTEBOOK COMPUTER	Test By	Rueyyan Lin
Model	X500	Test Date	2011/06/22
Test Mode	TX Mode	Temp. & Humidity	24.5°C, 56%

LINE



Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

Product Name	NOTEBOOK COMPUTER	Test By	Rueyyan Lin	
Model	X500	Test Date	2011/06/22	
Test Mode	TX Mode	Temp. & Humidity	24.5°C, 56%	

NEUTRAL

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value