

FCC 47 CFR PART 15 SUBPART E AND ANSI C63.4 : 2003

TEST REPORT (Class II Permissive Change Report)

For

WLAN Module

Model : WiFi Link 5300

Trade Name : Getac

Issued for

Getac Technology Corp.

No. 1, R&D Road 2, Hsinchu Science Based Industrial Park, Hsinchu, Taiwan

Issued by

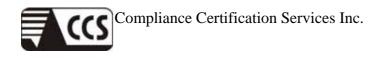
Compliance Certification Services Inc. Tainan Laboratory No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C. TEL: 886-6-580-2201

FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page ______ of ____1

Revision History


Rev.	Issue Date	Revisions	Effect Page	Revised By
00	11/18/2009	Initial Issue	All Page 41	Jeter Wu

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>3</u> of <u>41</u>

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	
2. EUT DESCRIPTION	
2.1 DESCRIPTION OF EUT & POWER	
2.2 DESCRIPTION OF CLASS II CHANGE	
3. DESCRIPTION OF TEST MODES	
4. TEST METHODOLOGY	
5. FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	
5.2 EQUIPMENT	
5.3 LABORATORY ACCREDITATIONS LISTINGS	
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	
6. CALIBRATION AND UNCERTAINTY	
6.1 MEASURING INSTRUMENT CALIBRATION	
6.2 MEASUREMENT UNCERTAINTY	
7. SETUP OF EQUIPMENT UNDER TEST	
8. APPLICABLE LIMITS AND TEST RESULTS	
8.1 RADIATED EMISSIONS	
8.1.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.1.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.2 POWERLINE CONDUCTED EMISSIONS	
APPENDIX SETUP PHOTOS	

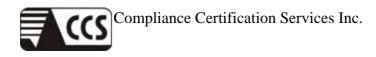
1. TEST REPORT CERTIFICATION

Applicant	:	Getac Technology Corp.
Address	:	No. 1, R&D Road 2, Hsinchu Science Based Industrial Park,
		Hsinchu, Taiwan
Equipment Under Test	•	WLAN Module
Model	:	WiFi Link 5300
Trade Name	:	Getac
Tested Date	:	October 20 ~ November 16, 2009

APPLICABLE STANDARD		
STANDARD	TEST RESULT	
FCC Part 15 Subpart E AND ANSI C63.4:2003	PASS	

Approved by:

er54


Jeter Wu Section Manager

Reviewed by:

Eric ang

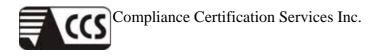
Eric Yang Assistant Section Manager

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	WLAN Module	
Model Number	WiFi Link 5300	
	IEEE 802.11a : 5150MHz ~ 5250MHz	
Frequency Range	5250MHz ~ 5350MHz	
	5470MHz ~ 5725MHz	
	5150MHz ~ 5250MHz	
	IEEE 802.11a : 0.044W	
	IEEE 802.11n HT20 : 0.048W	
	IEEE 802.11n HT40 : 0.049W	
	5250MHz ~ 5350MHz	
// D	IEEE 802.11a : 0.048W	
Transmit Power	IEEE 802.11n HT20 : 0.162W	
	IEEE 802.11n HT40 : 0.089W	
	5470MHz ~ 5725MHz	
	IEEE 802.11a : 0.056W	
	IEEE 802.11n HT20 : 0.170W	
	IEEE 802.11n HT40 : 0.087W	
Type of Modulation	OFDM	
Antenna Type	PIFA Antenna, Antenna Gain 2.79dBi	


Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: MAU035 filing to comply with Section 15.207,15.209 and 15.407 of the FCC Part 15, Subpart E Rules.
- 3. For more details, please refer to the User's manual of the EUT.

2.2 DESCRIPTION OF CLASS II CHANGE

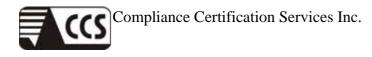
The major change filed under this application are :

- 1. Add a notebook top enclosure shape. (original notebook LCD panel is for 10.4", new enclosure is for 12.1")
- 2. Add a non-approved notebook LED backlight module for notebook LCD panel (Toshiba / LTD121EXEV/12.1" notebook LCD panel)

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>6</u> of <u>41</u>

3. DESCRIPTION OF TEST MODES

The EUT (WiFi Link 5300) has been tested under normal operating condition.


Only Test validation Radiated Emission Test (Below 1 GHz) and Power line Conducted Emissions.

EMC Pretest Configurations

The following test mode(s) were scanned during the preliminary test.

SKU	CATECODY	EMC/RF EMC/RF		EMC/RF	
ITEMs	CATEGORY	EMC-1 for RD	EMC-2 for RD	EMC-3 for RD	
	E	INTEL SU9400 Core2Duo	INTEL SU9400 Core2Duo	INTEL SU9400 Core2Duo	
CPU	Туре	ULV 1.4GHz	ULV 1.4GHz	ULV 1.4GHz	
Memory Module Type		DDRII SO-DIMM 4GB	DDRII SO-DIMM 2GB	DDRII SO-DIMM 4GB	
Turbo	Turbo	4GB; intel Mini PCI-E	4GB; intel Mini PCI-E	ACD, intal Mini DCL E	
memory	Memory	40B; Intel Mini PCI-E	40B; Intel Mini PCI-E	4GB; intel Mini PCI-E	
HDD	Capacity	320GB	160GB	320GB	
	Size	12.1"	12.1"	10.4"	
	Touchscreen	Mildex T/S & Waltop	Mildex T/S & Waltop	Mildex T/S & Waltop	
	Digitizer	Digitizer Co-existence.	Digitizer Co-existence.	Digitizer Co-existence.	
DISPLAY	Night vision	yes	yes	yes	
		Toshiba Upto 1000 Nist	Toshiba Upto 500 Nist	CPT Upto 1200 Nist Led	
	Panel	LED panel (After	CCFL panel (After	panel (After T/S) ,(Dual	
		T/S) ,(Dual mode)	T/S) ,(Dual mode)	mode)	
	Layout	US	US	US	
KBD	Others	rubber keyboard with BackLight	membrane keyboard	membrane keyboard	
PC Card /Express Card/Smart card reader		Smart Card Reader x 1 + Express Card x 1 ,co-existent	Smart Card Reader x 1 + Express Card x 1 ,co-existent	Smart Card Reader x 1 + PCMCIA Type II x 1	
Docking Port	Docking	1 (100 pins)	1 (100 pins)	1 (100 pins)	
Pass Through Function ANT conn		Yes	Yes	Yes	
Communicati	WLAN	Intel® WiFi Link 5300 3x3 802.11agn	Intel® WiFi Link 5300 3x3 802.11agn	Intel® WiFi Link 5300 3x3 802.11agn	
	Bluetooth	Yes	Yes	Yes	
on	3G Gobi2	Gobi2	Gobi2	Gobi2	
	GPS	Camera + GPS	Camera	GPS	
New Feature	Web Camera		Califera	UL2	
Battery	Number of Cell	9 Cells	9 Cells	9 Cells	
AC Adapter	Туре	GTK 60W	GTK 60W	GTK 60W	
I/O Port		RS232+RS422	RS232 + VGA	RS232+VGA	
HDD Heater		Yes	Yes	Yes	
Touch Pad		STD	Glove Touch pad	Glove Touch pad	
O.S		WINDOWS XP	WINDOWS XP	WINDOWS XP	
Dorman	ADM-6519M	\checkmark	\checkmark	\checkmark	
Power					

Note: After evaluated the samples, for modes (worst case) are chosen as a representative.

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page 7_0f 41____

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.407.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

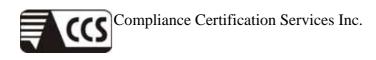
5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."


5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324H-1 for OATS -6.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC MRA: TW-1037
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI C-2882 R-2635
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 300 440-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	Testing Laboratory 1109
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-1

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

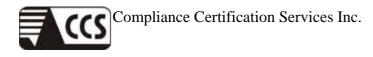
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4.

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>10</u> of <u>41</u>

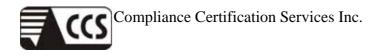
7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Wireless Communications Test Set	AGILENT	8960	MY48361017	
2	Notebook PC	Lenovo ideaPad	S10e_4068-RZ1	L3CEV2D	HFS-FL
3	Notebook PC	HP	nx6130	CNU543274R	CNTWM3B2200B GA
4	Bluetooth Headset	Motorola	H17	SJYN029A	IHDP6KE1
5	Modem	ZyXEL	Omni 56K	S1Z4107727	1880MNI56K
6	Modem	ZyXEL	Omni 56K	S1Z4107729	1880MNI56K
7	Monitor	DELL	2407WFPb	CN-0FC255-46633 -6CP-06JS	
8	Headset/Microph one	ERGOTECH	ET-E203	4719405008042	
9	Flash disk	SanDisk	SDCZ6-1024	BB0706I6B	
10	Flash disk	Transcend	CompactFlash51 2MB	1561433338	
11	Flash disk	Sayho	PR1014(256M)	104720	
12	Flash disk	SanDisk	SDSDM-1024	BB07251CTE	
13	Usb Flash disk	Transcend	Jet Flash V10(4G)	258909 0093	
14	Usb Flash disk	Transcend	Jet Flash V10(4G)	258909 0094	
15	CardReader Expresscard	UPTECH	UTE600	169170022	
16	PCMCIA Card	Billionton		00082900065	

	Signal Cable	Description
1 RJ-45 cable		Shielded 12m ×1
2 RJ-11cable		Unshielded 12m ×1

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>11</u> of <u>41</u>


SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

An executive program, "EMITEST.exe" under Win XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

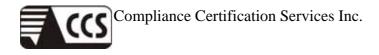
- 1. Setup all computers like the setup diagram.
- 2. All of the functions are under run.
- 3. The EUT reads the test program from the hard disk drive and run it.
- 4. The EUT sends"H" messages to the monitor, and the monitor displays"H" patterns on the screen.
- 5. The EUT sends"H" messages to the internal hard disk, and the hard disk reads and writes the message.
- 6. Repeat the steps from 4 to 5.
- 7. At the same time, the following programs were executed.
- 8. Executed "Windows Media Player" to play music via Bluetooth headset.
- 9. Executed "Winthrax.exe" to read/write data from external USB 2.0 devices.
- 10. Executed "ping.exe" to link with the remote workstation to receive and transmit data via RJ45 cable.
- 11. Executed "Hyper Terminal.exe" to link with the remote workstation to receive and transmit data by RJ11 cable.
- 12. Executed "Bluetooth" to link with the remote workstation to receive and transmit data with Bluetooth Headset.
- 13. Start test.

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>12</u> of <u>41</u>

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 RADIATED EMISSIONS

8.1.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS LIMITS


§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

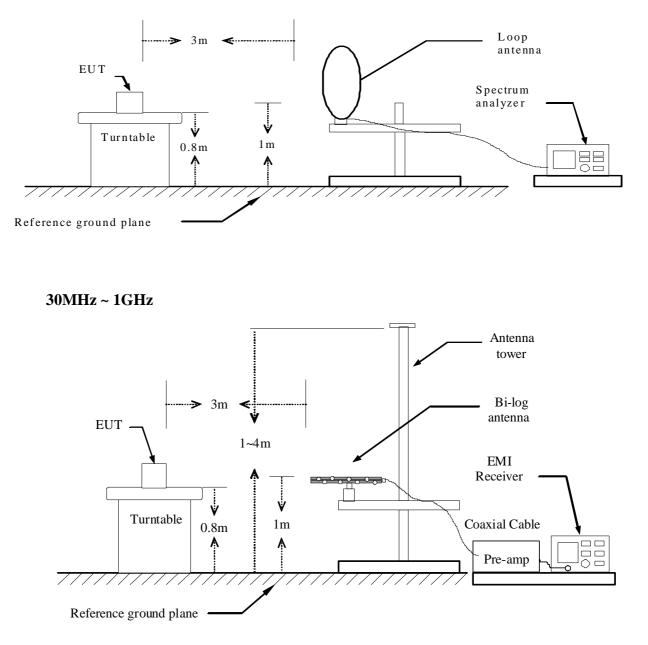
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

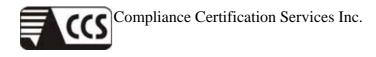
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

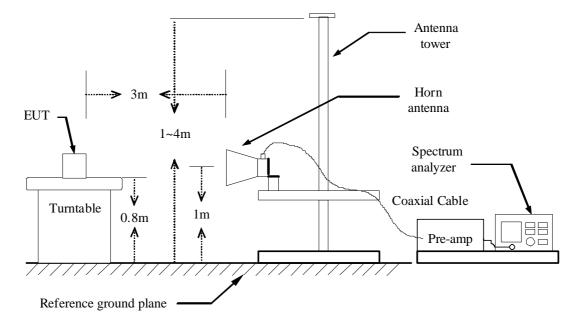
			a 1 1 1	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010
EMI TEST RECEIVER	R & S	ESCI	100221	05/17/2010
BILOG ANTENNA	SCHWARZBECK	VULB	9168_249	09/17/2010
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00078732	06/30/2010
PRE-AMPLIFIER	Agilent	8449B	3008A01471	08/02/2010
PRE-AMPLIFIER	HP	8447F	2944A03748	09/24/2010
Notch Filters Band Reject	Micro-Tronics	BRM50702-01	009	N.C.R.
Band Reject Filter	Micro-Tronics	BRC50703-01	004	N.C.R.
Band Reject Filter	Micro-Tronics	BRC50704-01	004	N.C.R.
Band Reject Filter	Micro-Tronics	BRC50705-01	007	N.C.R.
RF COAXIAL CABLE	HUBERSUHNER	SUCOFLEX 104PEA	SN31350	07/21/2010

TEST EQUIPMENT


Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.



TEST SETUP


The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

9kHz ~ 30MHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

8.1.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

BELOW 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

BELOW 1 GHz (30MHz ~ 1GHz)

Product Name	WLAN Module	Test Date	2009/10/28
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-1 Power Adapter (1)	TEMP & Humidity	25.2°C, 58%

	966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
77.53	48.06	-14.46	33.61	40.00	-6.39	Peak	
166.77	49.21	-10.32	38.89	43.50	-4.61	Peak	
276.38	46.32	-9.61	36.70	46.00	-9.30	Peak	
400.54	44.00	-5.87	38.13	46.00	-7.87	QP	
480.08	41.87	-4.05	37.82	46.00	-8.18	Peak	
749.74	37.32	1.33	38.65	46.00	-7.35	Peak	
960.23	45.50	4.75	50.25	54.00	-3.75	Peak	

966 Chamber at 3Meter / Vertical							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
56.19	46.60	-10.45	36.15	40.00	-3.85	QP	
65.89	51.20	-11.65	39.55	40.00	-0.45	QP	
398.60	43.80	-5.93	37.87	46.00	-8.13	QP	
480.08	44.06	-4.05	40.01	46.00	-5.99	Peak	
839.95	38.35	2.66	41.01	46.00	-4.99	Peak	
900.09	38.66	3.85	42.51	46.00	-3.49	Peak	
960.23	39.52	4.75	44.27	54.00	-9.73	Peak	

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) - PreAmp.Gain (dB)

4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

5. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

Product Name	WLAN Module	Test Date	2009/10/29
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-1 Power Adapter (2)	TEMP & Humidity	27°C, 57%

966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
64.92	41.32	-11.53	29.79	40.00	-10.21	Peak
120.21	50.90	-12.78	38.11	43.50	-5.39	Peak
144.46	43.28	-10.47	32.81	43.50	-10.69	Peak
166.77	49.58	-10.32	39.26	43.50	-4.24	Peak
276.38	47.35	-9.61	37.74	46.00	-8.26	Peak
400.54	47.40	-5.87	41.53	46.00	-4.47	QP
960.23	35.55	4.75	40.30	54.00	-13.70	Peak

	966 Chamber at 3Meter / Vertical							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
39.70	46.80	-10.50	36.30	40.00	-3.70	QP		
50.37	46.40	-9.76	36.64	40.00	-3.36	Peak		
65.89	50.05	-11.65	38.40	40.00	-1.60	QP		
77.53	50.75	-14.46	36.30	40.00	-3.70	Peak		
166.77	50.20	-10.32	39.88	43.50	-3.62	QP		
276.38	47.64	-9.61	38.02	46.00	-7.98	Peak		
399.57	44.20	-5.90	38.30	46.00	-7.70	QP		

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	WLAN Module	Test Date	2009/10/30
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-2 Power Adapter (1)	TEMP & Humidity	27°C, 57%

966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
99.84	46.97	-15.27	31.70	43.50	-11.80	Peak
276.38	44.40	-9.61	34.78	46.00	-11.22	Peak
400.54	46.89	-5.87	41.02	46.00	-4.98	Peak
719.67	34.95	0.59	35.54	46.00	-10.46	Peak
798.24	37.21	1.92	39.13	46.00	-6.87	Peak
902.03	34.68	3.88	38.56	46.00	-7.44	Peak
960.23	35.70	4.75	40.44	54.00	-13.56	Peak

	966 Chamber at 3Meter / Vertical							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
30.97	49.09	-12.61	36.48	40.00	-3.52	Peak		
42.61	45.00	-10.13	34.87	40.00	-5.13	QP		
55.22	45.56	-10.33	35.23	40.00	-4.77	Peak		
64.92	49.60	-11.53	38.07	40.00	-1.93	QP		
75.59	48.98	-13.87	35.11	40.00	-4.89	Peak		
399.57	45.60	-5.90	39.70	46.00	-6.30	QP		
799.21	38.08	1.93	40.01	46.00	-5.99	Peak		

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	WLAN Module	Test Date	2009/10/30
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-2 Power Adapter (2)	TEMP & Humidity	27°C, 57%

966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
144.46	40.90	-10.47	30.43	43.50	-13.07	Peak
233.70	44.23	-11.51	32.72	46.00	-13.28	Peak
276.38	43.47	-9.61	33.86	46.00	-12.14	Peak
300.63	43.73	-8.83	34.90	46.00	-11.10	Peak
399.57	48.00	-5.90	42.10	46.00	-3.90	Peak
802.12	36.12	1.97	38.09	46.00	-7.91	Peak
960.23	38.22	4.75	42.97	54.00	-11.03	Peak

	966 Chamber at 3Meter / Vertical						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
42.61	47.07	-10.13	36.94	40.00	-3.06	Peak	
56.19	46.90	-10.45	36.45	40.00	-3.55	Peak	
64.92	47.20	-11.53	35.67	40.00	-4.33	QP	
77.53	51.10	-14.46	36.64	40.00	-3.36	QP	
99.84	50.89	-15.27	35.62	43.50	-7.88	Peak	
399.57	45.80	-5.90	39.90	46.00	-6.10	QP	
802.12	38.35	1.97	40.32	46.00	-5.68	Peak	

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	WLAN Module	Test Date	2009/10/26
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-3 Power Adapter (1)	TEMP & Humidity	22.3°C, 56%

966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
206.54	52.68	-12.62	40.07	43.50	-3.43	Peak
243.40	51.55	-10.82	40.73	46.00	-5.27	Peak
319.06	48.62	-8.30	40.32	46.00	-5.68	Peak
399.57	47.89	-5.90	41.99	46.00	-4.01	Peak
719.67	41.99	0.59	42.58	46.00	-3.42	Peak
900.09	36.47	3.85	40.32	46.00	-5.68	Peak
960.23	42.30	4.75	47.05	54.00	-6.95	QP

	966 Chamber at 3Meter / Vertical						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
30.97	49.84	-12.61	37.23	40.00	-2.77	Peak	
56.19	48.00	-10.45	37.55	40.00	-2.45	QP	
152.22	46.39	-10.10	36.29	43.50	-7.21	Peak	
400.54	47.88	-5.87	42.01	46.00	-3.99	Peak	
524.70	41.68	-3.20	38.48	46.00	-7.52	Peak	
719.67	38.76	0.59	39.35	46.00	-6.65	Peak	
933.07	35.63	4.35	39.98	46.00	-6.02	Peak	

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	WLAN Module	Test Date	2009/10/30
Model	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-3 Power Adapter (2)	TEMP & Humidity	27°C, 57%

966 Chamber at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
56.19	40.64	-10.45	30.19	40.00	-9.81	Peak
120.21	48.10	-12.78	35.31	43.50	-8.19	Peak
206.54	53.30	-12.62	40.68	43.50	-2.82	QP
243.40	51.08	-10.82	40.26	46.00	-5.74	Peak
319.06	49.24	-8.30	40.93	46.00	-5.07	Peak
400.54	47.39	-5.87	41.52	46.00	-4.48	Peak
960.23	37.77	4.75	42.51	54.00	-11.49	Peak

966 Chamber at 3Meter / Vertical						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
43.58	44.20	-10.01	34.19	40.00	-5.81	QP
56.19	47.31	-10.45	36.87	40.00	-3.13	Peak
64.92	48.40	-11.53	36.87	40.00	-3.13	QP
168.71	46.11	-10.49	35.62	43.50	-7.88	Peak
206.54	48.33	-12.62	35.71	43.50	-7.79	Peak
243.40	48.38	-10.82	37.56	46.00	-8.44	Peak
400.54	46.36	-5.87	40.50	46.00	-5.50	Peak

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

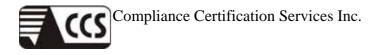
2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

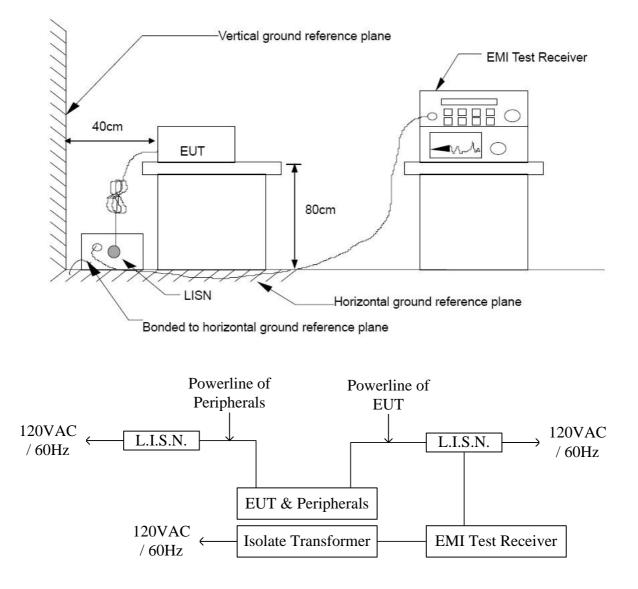
8.2 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.


The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.5 - 5	56	46
5 - 30	60	50

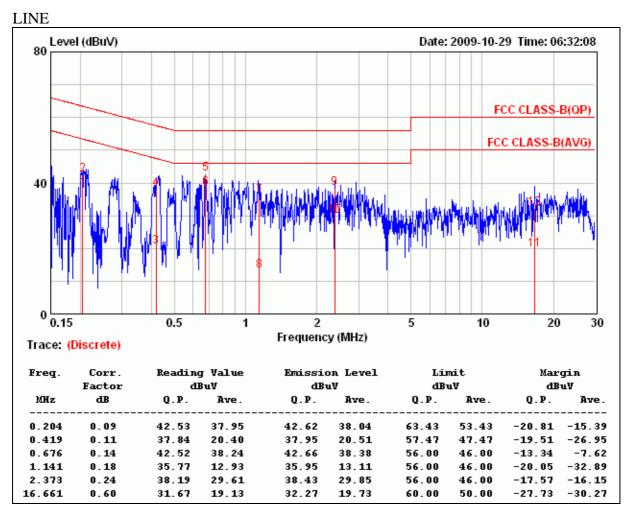

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/13/2010
TEST RECEIVER	R & S	ESHS 30	838550/003	02/02/2010
TEST RECEIVER	R & S	ESCS 30	826547/004	08/05/2010
PULSE LIMIT	R & S	ESH3-Z2	100117	09/17/2010
N TYPE COAXIAL	BELDEN	8268 M17/164	003	07/09/2010
CABLE	DELDEN	0200 WII // 104	005	07/09/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

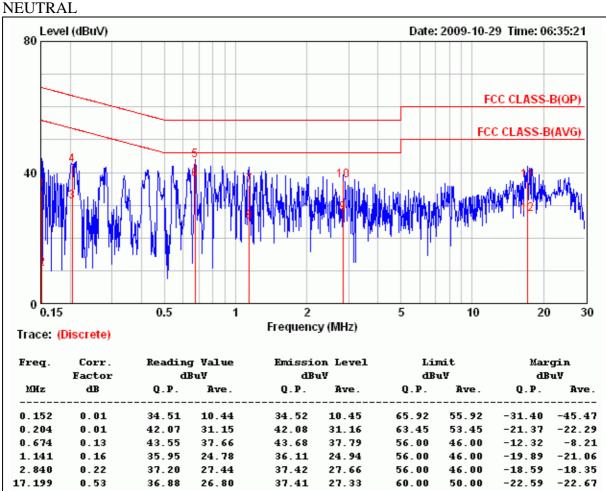
TEST PROCEDURE


The test procedure is performed in a $4m \times 3m \times 2.4m(L \times W \times H)$ shielded room.

The EUT along with its peripherals were placed on a $1.0m(W) \times 1.5m(L)$ and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chasis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chasis ground also bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

TEST RESULTS

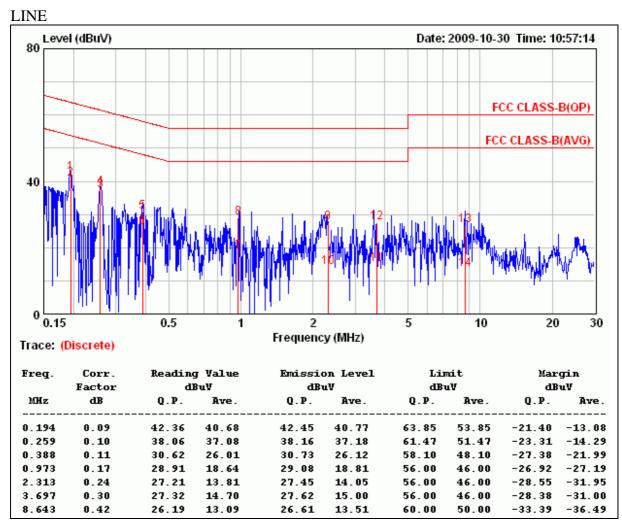
Product Name	WLAN Module	Test Date	2009/10/29
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-1 Power Adapter (1)	TEMP & Humidity	24.4 [°] C, 71%


Remark:

1. Correction Factor = Insertion loss + cable loss

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>25</u> of <u>41</u>

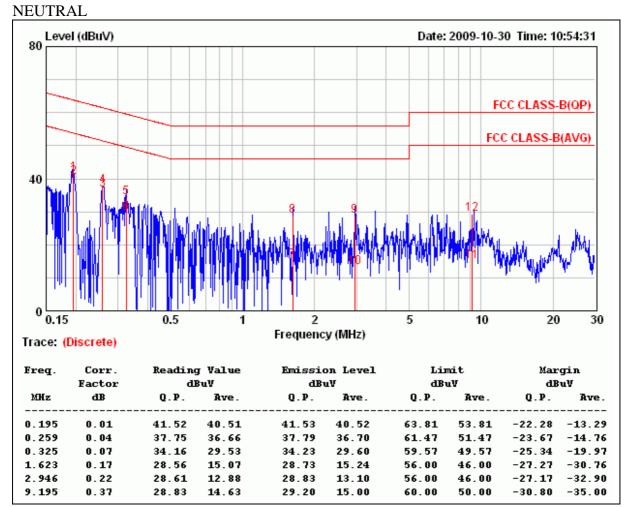
Product Name	WLAN Module	Test Date	2009/10/29
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-1 Power Adapter (1)	TEMP & Humidity	24.4 [°] C, 71%



Remark:

1. Correction Factor = Insertion loss + cable loss

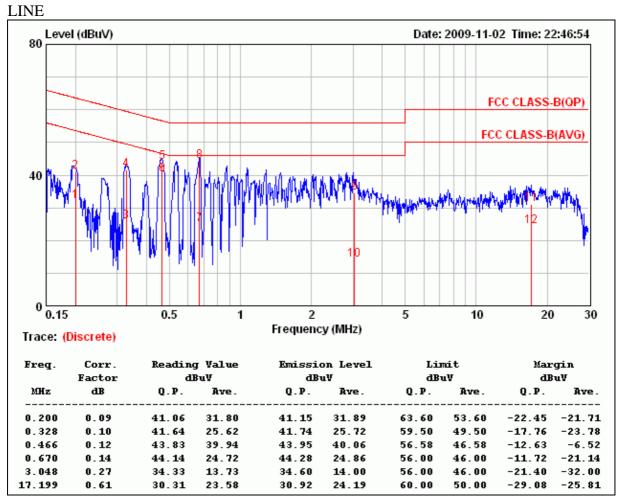
Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-1 Power Adapter (2)	TEMP & Humidity	24.4°C, 71%



1. Correction Factor = Insertion loss + cable loss

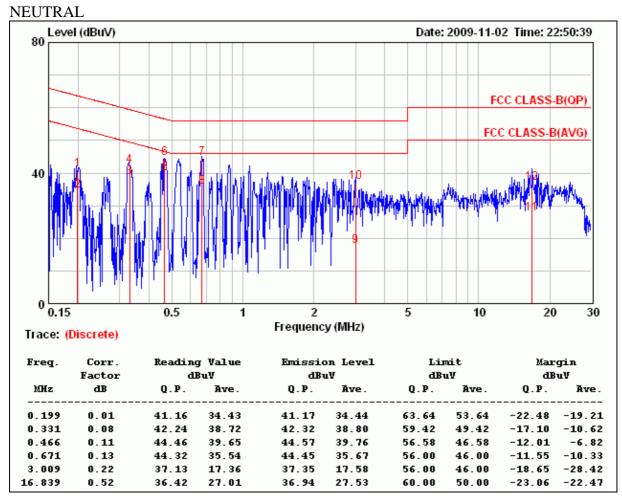
FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>27</u> of <u>41</u>

Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-1 Power Adapter (2)	TEMP & Humidity	24.4°C, 71%

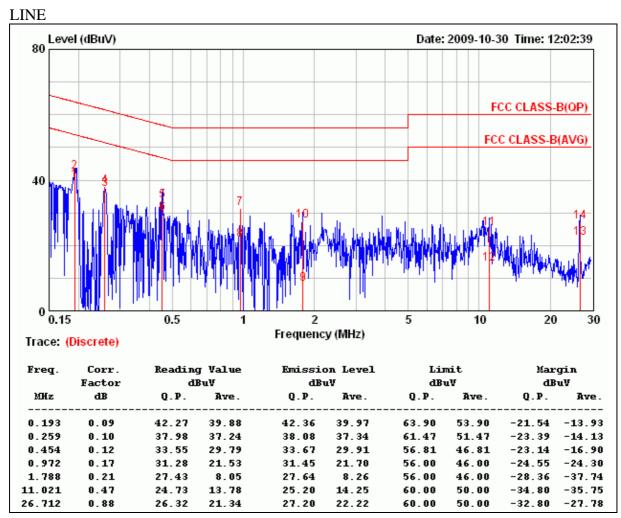


Remark:

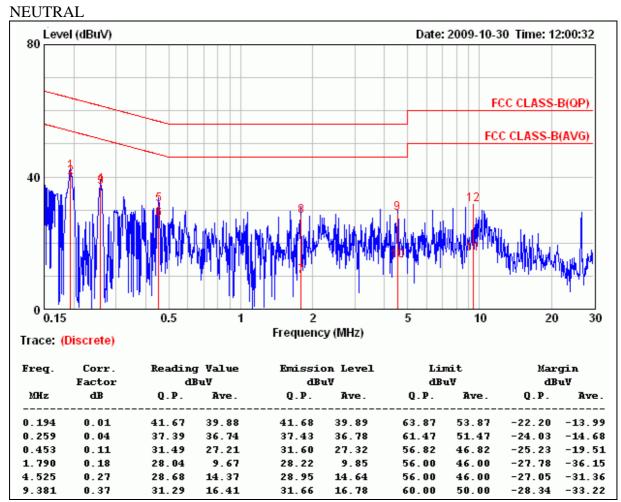
1. Correction Factor = Insertion loss + cable loss


Product Name	WLAN Module	Test Date	2009/11/02
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-2 Power Adapter (1)	TEMP & Humidity	25.1°C, 55%

1. Correction Factor = Insertion loss + cable loss

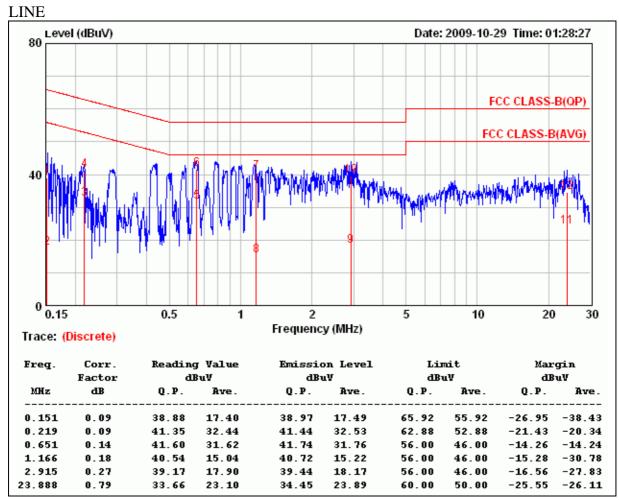

Product Name	WLAN Module	Test Date	2009/11/02
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-2 Power Adapter (1)	TEMP & Humidity	25.1°C, 55%

1. Correction Factor = Insertion loss + cable loss


Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-2 Power Adapter (2)	TEMP & Humidity	24.4 [°] C, 71%

1. Correction Factor = Insertion loss + cable loss

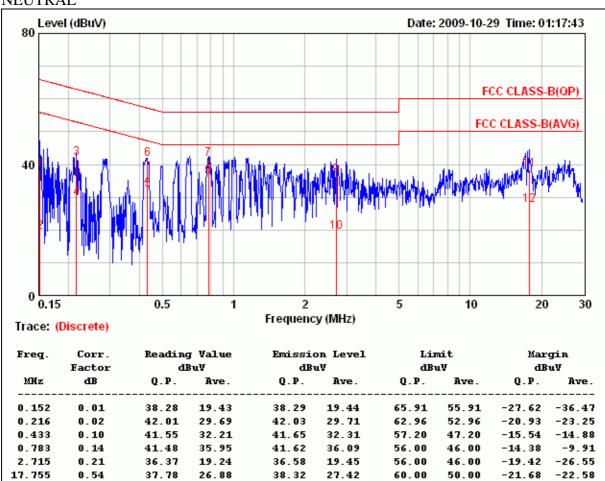
Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-2 Power Adapter (2)	TEMP & Humidity	24.4°C, 71%



1. Correction Factor = Insertion loss + cable loss

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page 32 of 41

Product Name	WLAN Module	Test Date	2009/10/29
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-3 Power Adapter (1)	TEMP & Humidity	24.4 [°] C, 71%



Remark:

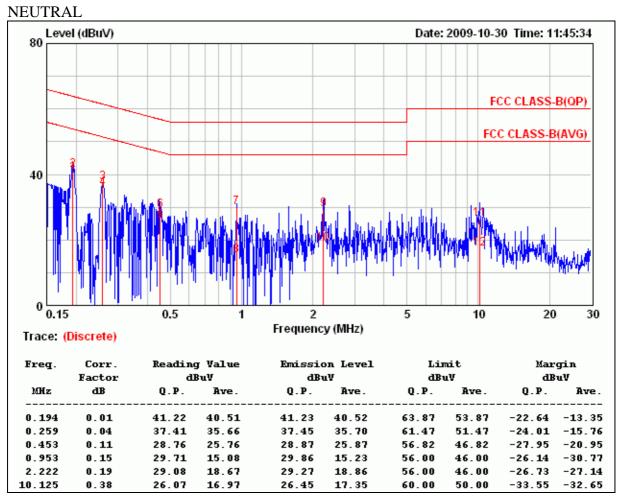
1. Correction Factor = Insertion loss + cable loss

Product Name	WLAN Module	Test Date	2009/10/29
Model Name	WiFi Link 5300	Test By	Rick Lin
Test Mode	Normal operating / EMC-3 Power Adapter (1)	TEMP & Humidity	24.4 [°] C, 71%


NEUTRAL

Remark:

1. Correction Factor = Insertion loss + cable loss

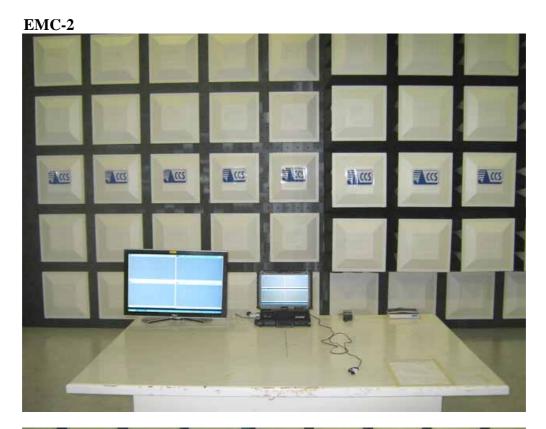

Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-3 Power Adapter (2)	TEMP & Humidity	24.4°C, 71%

1. Correction Factor = Insertion loss + cable loss

Product Name	WLAN Module	Test Date	2009/10/30
Model Name	WiFi Link 5300	Test By	Joe Peng
Test Mode	Normal operating / EMC-3 Power Adapter (2)	TEMP & Humidity	24.4°C, 71%

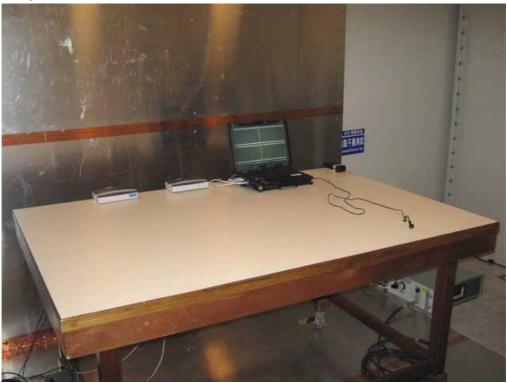
1. Correction Factor = Insertion loss + cable loss

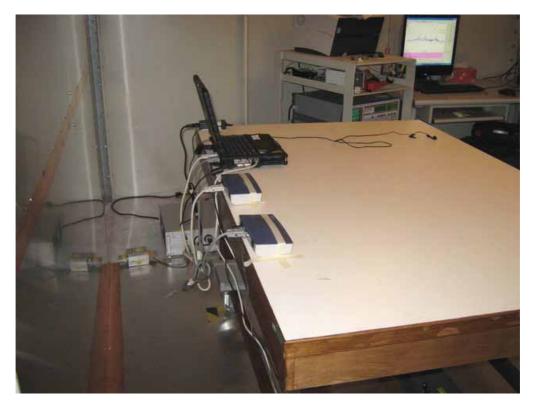
FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>36</u> of <u>41</u>


APPENDIX SETUP PHOTOS

RADIATED EMISSION MEASUREMENT SETUP





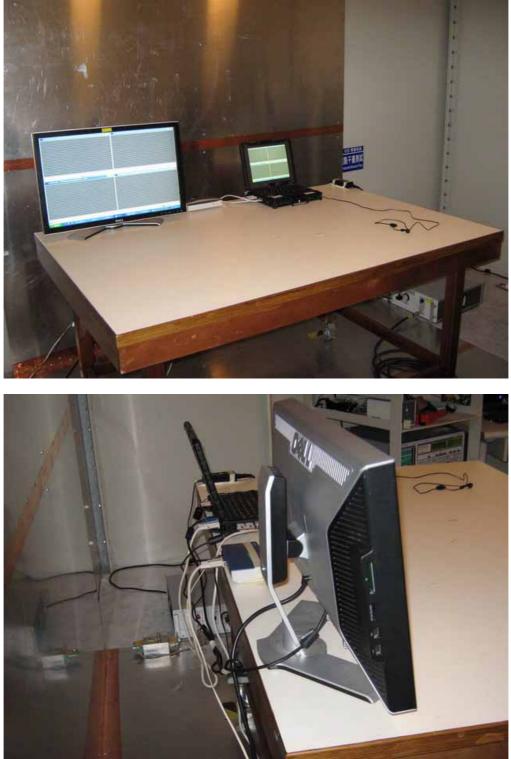


FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>39</u> of <u>41</u>

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

EMC-1

FCC ID : MAU035 Report No. : 91020301-RP1-1 Page <u>40</u> of <u>41</u>



 FCC ID
 : MAU035

 Report No.
 : 91020301-RP1-1

 Page
 41
 of
 41

