

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

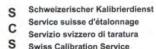
Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Sporton (Auden)

Certificate No: DAE3-577_Nov08

CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 577 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 12, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 30-Sep-08 (No: 7673) Sep-09 Keithley Multimeter Type 2001 SN: 0810278 30-Sep-08 (No: 7670) Sep-09 Secondary Standards ID# Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 06-Jun-08 (in house check) In house check: Jun-09 Name Function Calibrated by: Andrea Guntli Technician Approved by: Fin Bomholt R&D Director Issued: November 12, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577_Nov08


Page 1 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577 Nov08

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.437 ± 0.1% (k=2)	403.882 ± 0.1% (k=2)	404.321 ± 0.1% (k=2)
Low Range	3 93985 + 0.7% (k=2)	3 94699 ± 0.7% (k=2)	3.94542 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system

Certificate No: DAE3-577_Nov08

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	200000.5	0.00
Channel X + Input	20000	20006.28	0.03
Channel X - Input	20000	-19997.96	-0.01
Channel Y + Input	200000	199999.8	0.00
Channel Y + Input	20000	20003.35	0.02
Channel Y - Input	20000	-20003.31	0.02
Channel Z + Input	200000	200000.3	0.00
Channel Z + Input	20000	20006.28	0.03
Channel Z - Input	20000	-19999.42	0.00

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	200.64	0.32
Channel X - Input	200	-199.61	-0.19
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.39	-0.31
Channel Y - Input	200	-201.03	0.52
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.42	-0.29
Channel Z - Input	200	-200.73	0.36

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.38	13.83
	- 200	-13,53	-13.82
Channel Y	200	-5.55	-6.09
	- 200	5.06	5.66
Channel Z	200	-1.00	-0.72
	- 200	-0.80	-0.52

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	1.66	0.50
Channel Y	200	1.90		3.95
Channel Z	200	-0.95	0.48	-

Certificate No: DAE3-577_Nov08

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15967	16080
Channel Y	15851	16385
Channel Z	16197	16100

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.13	-1.22	2.29	0.58
Channel Y	-1.51	-2.99	0.83	0.52
Channel Z	0.02	-0.89	0.92	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	198.6
Channel Y	0.2001	199.4
Channel Z	0.2000	198.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

C

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: DAE4-679_May08

Object	DAE4 - SD 000 D	04 BA - SN: 679	
Calibration procedure(s)	QA CAL-06.v12 Calibration proces	dure for the data acquisition e	electronics (DAE)
Calibration date:	May 21, 2008		
Condition of the calibrated item	In Tolerance		
	ed in the closed laboratory	obability are given on the following page	
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702		Cal Date (Certificate No.) 04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465)	Scheduled Calibration Oct-08 Oct-08
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	2 SN: 6295803 SN: 0810278	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house)	Oct-08 Oct-08 Scheduled Check
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house)	Oct-08 Oct-08
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house) 25-Jun-07 (in house check)	Oct-08 Oct-08 Scheduled Check In house check: Jun-08
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	2 SN: 6295803 SN: 0810278	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (In house) 25-Jun-07 (In house check)	Oct-08 Oct-08 Scheduled Check In house check: Jun-08 Signature
Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1 Calibrated by: Approved by:	2 SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (In house) 25-Jun-07 (In house check)	Oct-08 Oct-08 Scheduled Check In house check: Jun-08

Certificate No: DAE4-679_May08

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-679 May08

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.509 ± 0.1% (k=2)	404.928 ± 0.1% (k=2)	405.207 ± 0.1% (k=2)
Low Range	3.98477 ± 0.7% (k=2)	3.94731 ± 0.7% (k=2)	3.98878 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	316°±1°
---	---------

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20003.57	0.02
Channel X - Input	20000	-19999.29	0.00
Channel Y + Input	200000	199999.4	0.00
Channel Y + Input	20000	20003.45	0.02
Channel Y - Input	20000	-20004.32	0.02
Channel Z + Input	200000	199999.8	0.00
Channel Z + Input	20000	20002.50	0.01
Channel Z - Input	20000	-20004.27	0.02

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	200.27	0.13
Channel X - Input	200	-199.47	-0.27
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	199.26	-0.37
Channel Y - Input	200	-199.82	-0.09
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.19	-0.41
Channel Z - Input	200	-200.77	0.39

2. Common mode sensitivity

DASY measurement parameters; Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	4.20	4.06
	- 200	-2.14	-1.85
Channel Y	200	6.39	6.01
	- 200	-6.03	-5.79
Channel Z	200	-4.80	-5.16
	- 200	4.08	4.80

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	1.42	0.07
Channel Y	200	1.22	-	3.06
Channel Z	200	-1.13	1.08	

Certificate No: DAE4-679_May08

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16182	17365
Channel Y	15398	16603
Channel Z	16047	16211

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.05	-1.09	2.60	0.50
Channel Y	-0.43	-2.28	1.41	0.66
Channel Z	-0.33	-2.83	1.40	0.56

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	198.9
Channel Y	0.2000	197.7
Channel Z	0.1999	196.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1787 Aug08 Sporton (Auden) **CALIBRATION CERTIFICATE** ET3DV6 - SN:1787 Object QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 26, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Jan-09 DAE4 SN: 660 3-Sep-07 (No. DAE4-660_Sep07) Sep-08 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E U\$37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Calibrated by: Katja Pokovic Technical Manager Quality Manager Approved by: Niels Kuster Issued: August 26, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1787_Aug08

Page 1 of 9

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization ω or rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_Aug08

Page 2 of 9

August 26, 2008

Probe ET3DV6

SN:1787

Manufactured:

May 28, 2003

Last calibrated: Recalibrated:

August 28, 2007 August 26, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_Aug08

Page 3 of 9

August 26, 2008

DASY - Parameters of Probe: ET3DV6 SN:1787

Sensitivity in	Free Space ^A	
----------------	-------------------------	--

Diode Compression^B

NormX	1.63 ± 10.1%	$\mu V/(V/m)^2$	DCP X	90 mV
NormY	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	2.18 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.3	7.5
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.1	6.5
SAR _{be} [%]	With Correction Algorithm	8.0	0.6

Sensor Offset

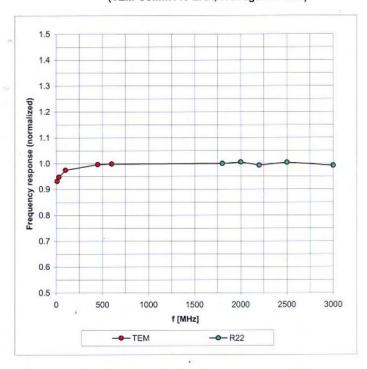
Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1787_Aug08

Page 4 of 9

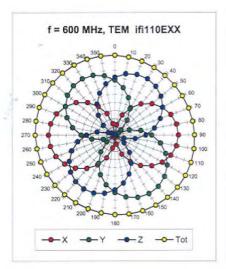

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

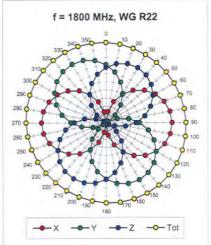
⁸ Numerical linearization parameter: uncertainty not required.

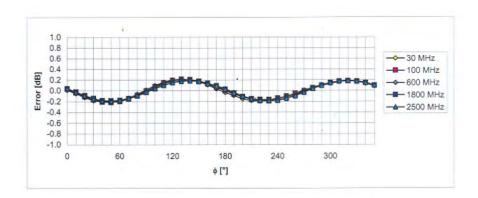
August 26, 2008

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

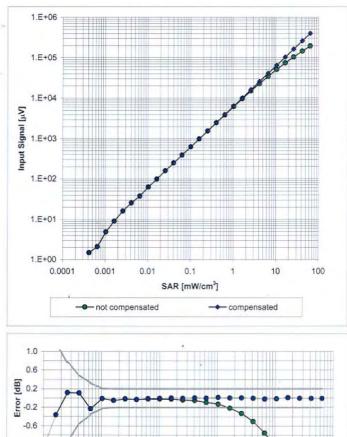

Certificate No: ET3-1787_Aug08

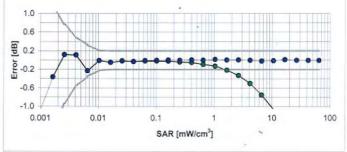

Page 5 of 9

August 26, 2008

Receiving Pattern (ϕ), ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

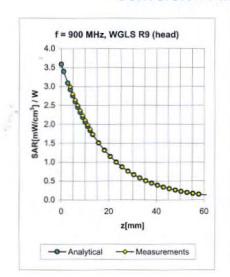

Certificate No: ET3-1787_Aug08

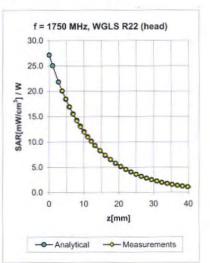

Page 6 of 9

August 26, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1787_Aug08

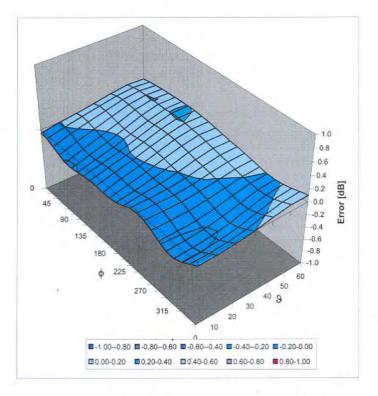
Page 7 of 9

August 26, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.30	2.80	6.06 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	$1.37 \pm 5\%$	0.53	2.11	5.36 ± 11.0% (k=2
1950	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.59	1.96	5.01 ± 11.0% (k=2)
2450	$\pm 50/\pm 100$	Head	39.2 ± 5%	1,80 ± 5%	0.77	1.57	4.49 ± 11.0% (k=2
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.31	2.98	5.91 ± 11.0% (k=2
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.60	2.20	4.73 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.68	1.95	4.49 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.90	1.51	3.79 ± 11.0% (k=2)

Certificate No: ET3-1787_Aug08


Page 8 of 9

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

August 26, 2008

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1787_Aug08

Page 9 of 9

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3514 Jan08

Accreditation No.: SCS 108

Sporton (Auden) CALIBRATION CERTIFICATE EX3DV3 - SN:3514 Object QA CAL-01.v6 and QA CAL.14.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes January 31, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE-critical for calibration) Scheduled Calibration Primary Standards Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 29-Mar-07 (METAS, No. 217-00670) Mar-08 Power sensor E4412A MY41495277 29-Mar-07 (METAS, No. 217-00670) Mar-08 Power sensor E4412A MY41498087 29-Mar-07 (METAS, No. 217-00670) Mar-08 Reference 3 dB Attenuator SN: S5054 (3c) 8-Aug-07 (METAS, No. 217-00719) Aug-08 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-07 (METAS, No. 217-00671) Mar-08 Reference 30 dB Attenuator SN: S5129 (30b) 8-Aug-07 (METAS, No 217-00720) Aug-08 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) Jan-09 DAE4 SN: 654 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) **Apr-08** Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Function Technical Manager Calibrated by: Katja Pokovic Niels Kuster Quality Manager Approved by: Issued: January 31, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3514_Jan08

Page 1 of 9

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage

C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

ConF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP Polarization o Polarization 9 diode compression point φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3514 Jan08

Page 2 of 9

January 31, 2008

Probe EX3DV3

SN:3514

Manufactured:

Last calibrated: Recalibrated:

December 15, 2002

February 21, 2007

January 31, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3514_Jan08

Page 3 of 9

January 31, 2008

DASY - Parameters of Probe: EX3DV3 SN:3514

Sensitivity in Free Space ^A	Diode Compression ^B
Considerity in 1100 opace	Biodo Compression

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 2300 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.9	3.3
SAR _{be} [%]	With Correction Algorithm	0.5	8.0

TSL 2600 MHz Typical SAR gradient: 11 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	6.3	3.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

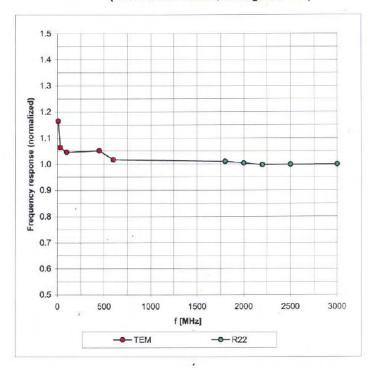
Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3514_Jan08

Page 4 of 9

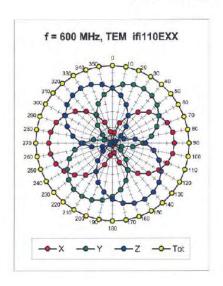

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8)

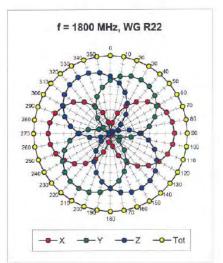
⁸ Numerical linearization parameter: uncertainty not required,

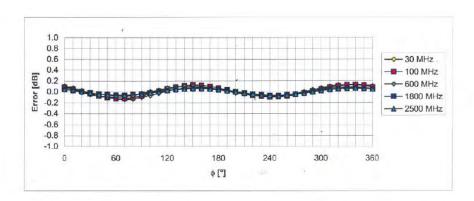
January 31, 2008

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

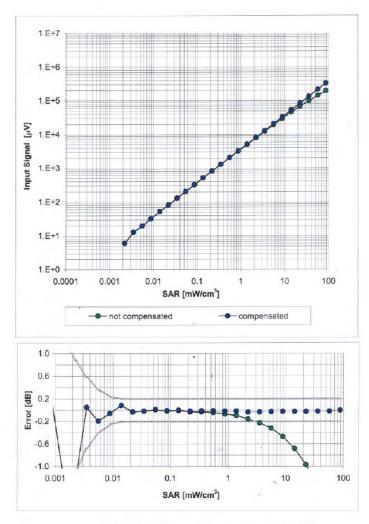

Certificate No: EX3-3514_Jan08


Page 5 of 9

January 31, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

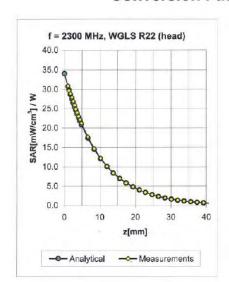

Certificate No: EX3-3514_Jan08

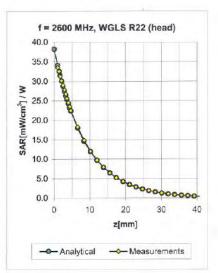
Page 6 of 9

January 31, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3514_Jan08

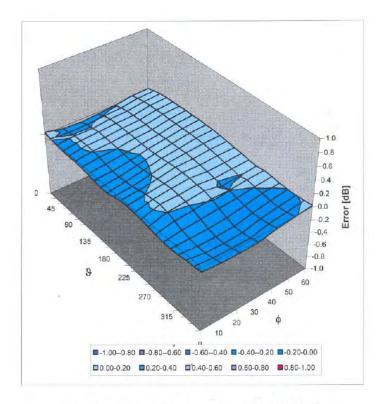
Page 7 of 9

January 31, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
2300	± 50 / ± 100	Head	39.4 ± 5%	1.71 ± 5%	0.76	0.52	7.73	± 11.8% (k=2)
2600	± 50 / ± 100	Head	39.0 ± 5%	1.96 ± 5%	0.62	0.60	7.31	± 11.8% (k=2)
3500	±50/±100	Head	$37.9 \pm 5\%$	2.91 ± 5%	0.36	1.03	7.09	± 13.1% (k=2)
				· e				
0000	. 50 / . 400	Dede	50.0 . 50/	4.05 + 50/	0.00	0.04	7.50	. 44.02/ /1-25
2300	±50/±100	Body	$52.8 \pm 5\%$	1.85 ± 5%	0.63	0.64	7.59	± 11.8% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.52	, 0.76	6.91	± 11.8% (k=2)
3500	± 50 / ± 100	Body	51.3 ± 5%	$3.31 \pm 5\%$	0.40	1.33	6.32	±13.1% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.70	4.34	± 13.1% (k=2)
5300	± 50 / ± 100	Body	48.9 ± 5%	5.42 ± 5%	0.38	1.70	4.06	± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.43	1.70	3.98	± 13.1% (k=2)
5600	± 50 / ± 100	Body	48.5 ± 5%	5.77 ± 5%	0.35	1.70	4.19	± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.30	1.70	4.20	± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: EX3-3514_Jan08

Page 8 of 9

January 31, 2008

Deviation from Isotropy in HSL

Error (\$\phi\$, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3514_Jan08

Page 9 of 9