Date: 2008/3/4

Body_WCDMA Ch4182_NB Bottom Touch_RMC64K

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_n = 56.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (101x251x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00237 mW/g

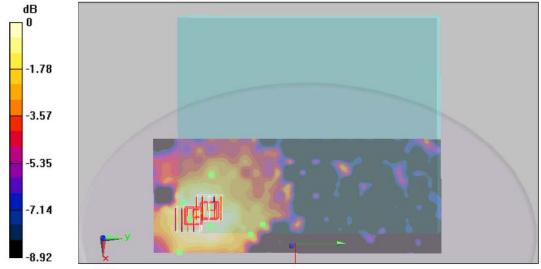
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.415 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.0027 W/kg

SAR(1 g) = 0.00209 mW/g; SAR(10 g) = 0.00156 mW/g

Maximum value of SAR (measured) = 0.00222 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.415 V/m; Power Drift = -0142 dB

Peak SAR (extrapolated) = 0.00292 W/kg

SAR(1 g) = 0.00202 mW/g; SAR(10 g) = 0.00154 mW/g

Maximum value of SAR (measured) = 0.00215 mW/g

0 dB = 0.00215 mW/g

Date: 2008/3/4

Body WCDMA Ch4182 NB Bottom Touch RMC384K

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.95$ mho/m; $\epsilon_r = 56.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00237 mW/g

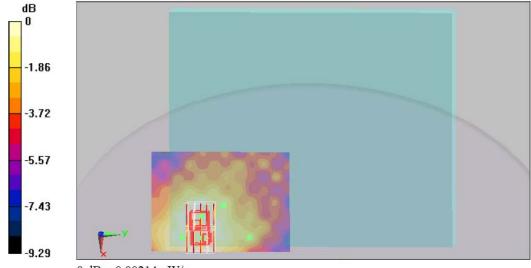
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.606 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.00259 W/kg

SAR(1 g) = 0.0021 mW/g; SAR(10 g) = 0.00161 mW/g

Maximum value of SAR (measured) = 0.00224 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.606 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.00263 W/kg

SAR(1 g) = 0.00202 mW/g; SAR(10 g) = 0.00154 mW/g

Maximum value of SAR (measured) = 0.00214 mW/g

0 dB = 0.00214 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/4

Body WCDMA Ch4182 NB Bottom Touch RMC12.2K+HSDPA

DUT: 821324

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_r = 56.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 22.9 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00238 mW/g

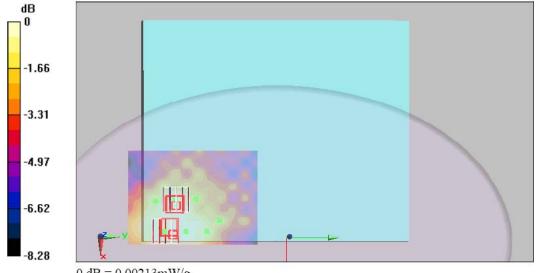
Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.499 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.00357 W/kg

SAR(1 g) = 0.00215 mW/g; SAR(10 g) = 0.00144 mW/g

Maximum value of SAR (measured) = 0.00238 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.499 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.00284 W/kg

SAR(1 g) = 0.0019 mW/g; SAR(10 g) = 0.00147 mW/g

Maximum value of SAR (measured) = 0.00213 mW/g

0 dB = 0.00213 mW/g

Date: 2008/3/4

Body WCDMA Ch4182 NB Bottom Touch RMC12.2K+HSDPA Bluetooth

DUT: 821324

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 56.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8°C; Liquid Temperature: 21.5°C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00231 mW/g

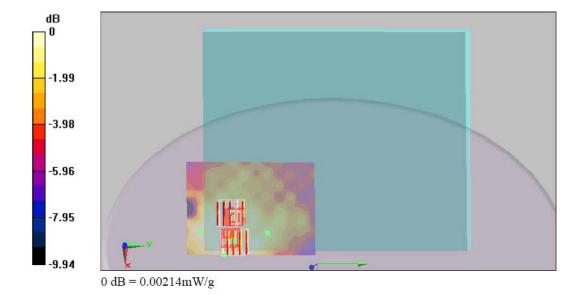
Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.505 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.00279 W/kg

SAR(1 g) = 0.00202 mW/g; SAR(10 g) = 0.00153 mW/g

Maximum value of SAR (measured) = 0.0022 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.505 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.00339 W/kg

SAR(1 g) = 0.00201 mW/g; SAR(10 g) = 0.00144 mW/g

Maximum value of SAR (measured) = 0.00214 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/4

Body_WCDMA Ch9400_NB Bottom Touch_RMC12.2K

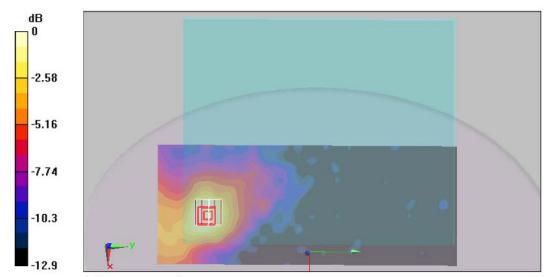
DUT: 821324

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 21.0 °C

DASY5 Configuration:


- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16

Maximum value of SAR (measured) = 0.014 mW/g

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (101x251x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.014 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.403 V/m; Power Drift = 0.193 dB Peak SAR (extrapolated) = 0.020 W/kg SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.00849 mW/g

DUT: 821324

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

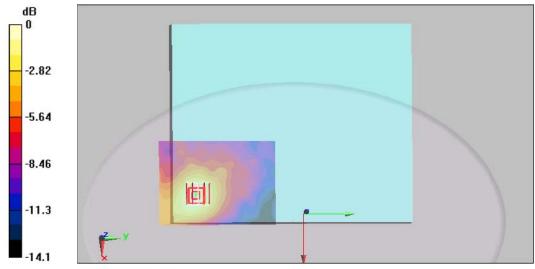
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.016 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.577 V/m; Power Drift = -0.180 dB Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00967 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

0 dB = 0.016 mW/g

Date: 2008/3/4

Body_WCDMA Ch9400_NB Bottom Touch_RMC64K

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

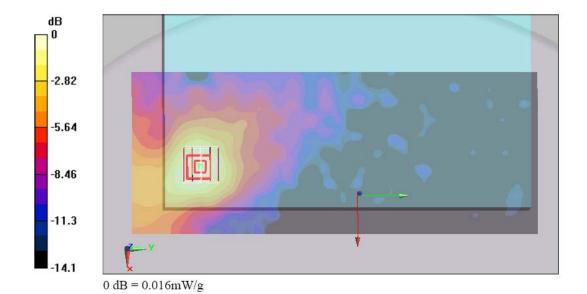
Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (101x251x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.016 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.615 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00957 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

Date: 2008/3/4

Body_WCDMA Ch9400 NB Bottom Touch RMC384K

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

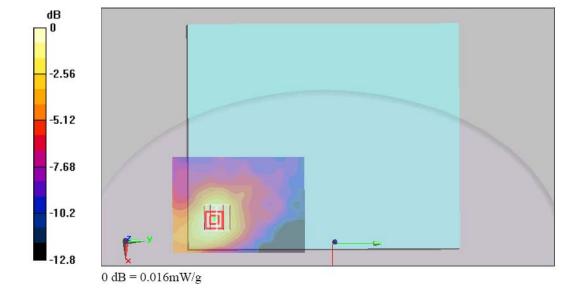
Ambient Temperature: 22.4 °C; Liquid Temperature: 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.016 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.322 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 0.023 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.0097 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

DUT: 821324

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

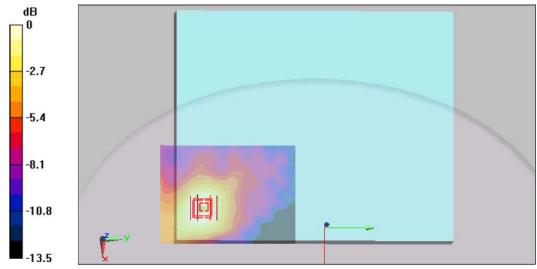
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.016 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.760 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00934 mW/g

Maximum value of SAR (measured) = 0.015 mW/g

0 dB = 0.015 mW/g

Date: 2008/3/4

Body_GSM850 Ch189_NB Bottom Touch_GPRS10_2D

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 56.4$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00284 mW/g

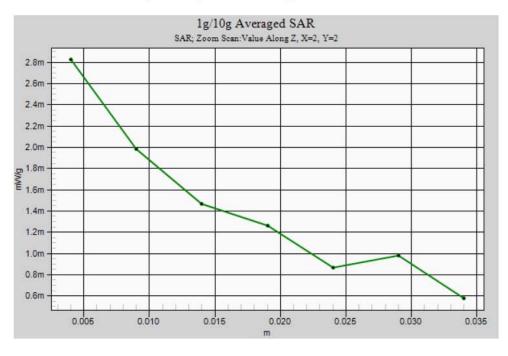
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.567 V/m; Power Drift = -0.131 dB

Peak SAR (extrapolated) = 0.0036 W/kg

SAR(1 g) = 0.00259 mW/g; SAR(10 g) = 0.00193 mW/g

Maximum value of SAR (measured) = 0.00282 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.567 V/m; Power Drift = -0.131 dB

Peak SAR (extrapolated) = 0.00313 W/kg

SAR(1 g) = 0.00238 mW/g; SAR(10 g) = 0.00177 mW/g

Maximum value of SAR (measured) = 0.00262 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/4

Body_PCS Ch810_NB Bottom Touch_GPRS12_2D

DUT: 821324

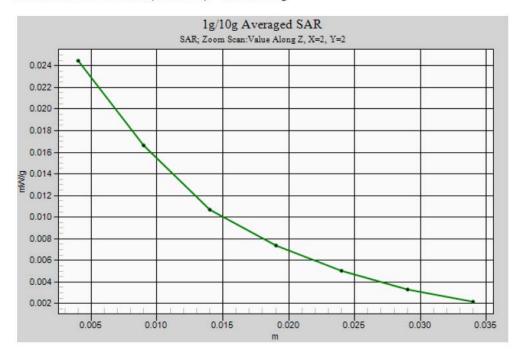
Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C; Liquid Temperature: 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch810/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.025 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.624 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.040 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.015 mW/gMaximum value of SAR (measured) = 0.024 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/4

Body WCDMA Ch4182 NB Bottom Touch RMC12.2K+HSDPA 2D

DUT: 821324

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 56.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

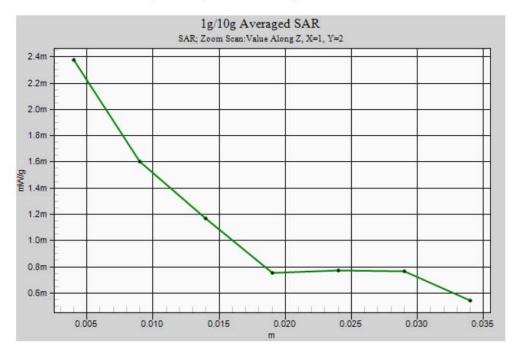
Maximum value of SAR (interpolated) = 0.00238 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.499 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.00357 W/kg

SAR(1 g) = 0.00215 mW/g; SAR(10 g) = 0.00144 mW/g


Maximum value of SAR (measured) = 0.00238 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.499 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.00284 W/kg

SAR(1 g) = 0.0019 mW/g; SAR(10 g) = 0.00147 mW/gMaximum value of SAR (measured) = 0.00213 mW/g

Date: 2008/3/4

Body WCDMA Ch9400 NB Bottom Touch RMC384K 2D

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 821324

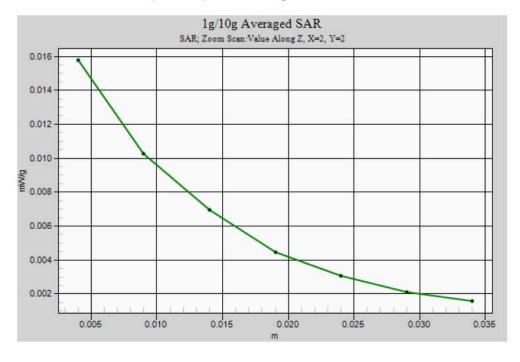
Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 21.0 °C

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Ch9400/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.016 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.322 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 0.023 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.0097 mW/gMaximum value of SAR (measured) = 0.016 mW/g

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Test Report No : FA821324

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D835V2-499_Mar06

Accreditation No.: SCS 108

eacts.	D0051/0 Ct1 40	0	
bject	D835V2 - SN: 49	9	
calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	March 15, 2006		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence pr	onal standards, which realize the physical units of obability are given on the following pages and are y facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate.
		Cal Data (Callegated by Castificate No.)	School and Calibration
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	ID# GB37480704	04-Oct-05 (METAS, No. 251-00516)	Scheduled Calibration Oct-06 Oct-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID#		Oct-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516)	Oct-06 Oct-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498)	Oct-06 Oct-06 Aug-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498)	Oct-06 Oct-06 Aug-06 Aug-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06 Oct-08 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090675	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090675	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agillent E4421B Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090675 US37390585 S4206 Name Judith Müller	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Laboratory Technician	Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06

Certificate No: D835V2-499_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar06

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.94mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.24 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.07 mW/g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar06

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.8 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		<u></u> //

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	9.80 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.91 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW/g
SAR normalized	normalized to 1W	6.48 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.55 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar06

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

DASY4 Validation Report for Head TSL

Date/Time: 15.03.2006 12:51:44

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB:

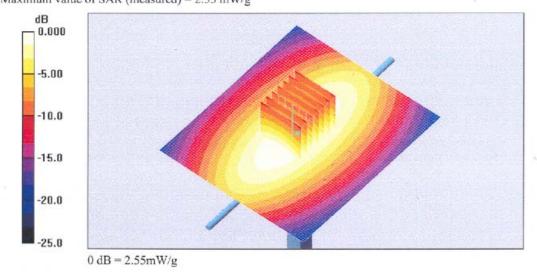
Medium parameters used: f = 835 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165


Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.7 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.55 mW/g

Certificate No: D835V2-499_Mar06

Page 6 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.9 jΩ	
Return Loss	- 29.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 5.1 jΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

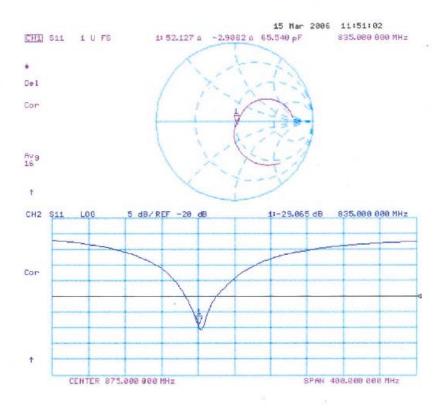
Floridad Delay (and disputes)	1 204
Electrical Delay (one direction)	1.391ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data


Manufactured by	SPEAG
Manufactured on	July 10, 2003

Certificate No: D835V2-499_Mar06

Page 5 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar06

Page 7 of 9