SAR TEST REPORT Product: Notebook Personal Computer Model(s): V100 (with SIERRA EVDO Module, Model:MC5725V) (with WLAN a/b/g Module, INTEL, Model:WM3945ABG) (with Bluetooth Module, BILLIONTON, Model:GUBTCR42M) **Applicant: MITAC Technology Corporation** Address: 4F, No.1, R&D Road 2, Hsinchu Science-Based industrial Park, Hsinchu 300, Taiwan, R. O. C. ### Test Performed by: ### **International Standards Laboratory** <Lung-Tan LAB> *Site Registration No. BSMI: SL2-IN-E-0013; TAF: 0997; NVLAP: 200234-0; IC: IC4164-1; VCCI: R-1435, C-1440, T-299; NEMKO: ELA 113B *Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738 Report No.: ISL-07LR033SAR-F Issue Date: 2008/01/29 # **Contents of Report** | 1. | General | | |-----|---|----| | | 1.1 Certification of Accuracy of Test Data | | | | 1.2 Applicant & Manufacturer Information | 2 | | 2. | Description of Equipment Under Test (EUT) | 3 | | | 2.1 Test Environment | | | 3. | SAR Measurement System | 5 | | | 3.1 ALSAS-10U System Description | | | | 3.1.1 Applications | | | | 3.1.2 Area Scans | | | | 3.1.3 Zoom Scan (Cube Scan Averaging) | | | | 3.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty | | | | 3.2 Isotropic E-Field Probe | | | | 3.2.1 Isotropic E-Field Probe Specification | | | | 3.3 Boundary Detection Unit and Probe Mounting Device | | | | 3.4 Daq-Paq (Analog to Digital Electronics) | | | | 3.5 Axis Articulated Robot | | | | 3.6 ALSAS Universal Workstation. | | | | 3.7 Universal Device Positioner | | | | 3.8 Phantom Types | | | | 3.8.1 APREL Laboratories Universal Phantom | | | 4. | Tissue Simulating Liquid | | | 4. | 4.1 The composition of the tissue simulating liquid | | | | 4.1 The composition of the dissue simulating riquid | | | | | | | _ | | | | 5. | SAR Measurement Procedure | | | | 5.1 SAR System Validation | | | | 5.1.1 Validation Dipoles | | | | 5.1.2 Validation Result | | | | 5.2 Arrangement Assessment Setup | | | | 5.2.1 Test Positions of Device Relative to Head | | | | 5.2.2 Definition of the "Cheek" Position | | | | 5.2.3 Definition of the "Tilted" Position | | | | 5.2.4 Test Positions for body-worn | | | | 5.3 SAR Measurement Procedure | | | 6. | SAR Exposure Limits | | | 7. | Test Equipment List | | | 8. | Measurement Uncertainty | | | 9 | | | | 10. | EUT test Position | | | | 10.1. EUT Test Position: Tablet Mode | 25 | | | 10.2. EUT Test Position: Laptop Mode | | | 11. | Test Result Summary | 27 | | | 11.1. WLAN + WWAN + Bluetooth - Laptop mode | | | | 11.2. WLAN + WWAN + Bluetooth - Tablet mode | | | | 11.3. FCH RC1 | | | | 11.4. FCH RC1 | 30 | | | 11.5. 1xEVDO Rev.0 RTAP 153.6K | | | | 11.6. 1xEVDO Rev.0 RTAP 153.6K | | | | | | | | 11.7. 1xEVDO Rev.A RTAP 1228.8k | 32 | |-----|--|----| | | 11.8. 1xEVDO Rev.A RTAP 1228.8k | | | 12. | Appendix A: Photographs of Test Setup | 33 | | 13. | Appendix B: Photographs of EUT | | | 14. | Appendix C: SAR System Validation Data | | | 15. | Appendix D: SAR Measurement Data (for WWAN) | | | 16. | Appendix E: Probe Calibration Data | | | 17. | Appendix F: Dipole Calibration Data | | | 18. | Appendix G: SAR Measurement Data (for WLAN +Bluetooth) | | ### 1. General ### 1.1 Certification of Accuracy of Test Data Standards: FCC OET65 Supplement C June 2001 **Equipment Tested**: Notebook Personal Computer Model: V100 **Applied by** MITAC Technology Corporation Sample received Date: 2007/10/26 **Final test Date**: refer to the date of test data **Report Engineer:** Daphne Liu **Test Site:** SAR test site Test Summary Body Maximum SAR Measurement (1g) 802.11b +EVDO835 +BT :0.401 W/g 802.11g +EVDO835 +BT :0.758 W/g 802.11a +EVDO835 +BT :0.488 W/g 802.11b +EVDO1900 +BT :0.799 W/g 802.11g +EVDO1900 +BT :1.156 W/g 802.11a +EVDO1900 +BT :0.886 W/g **Test Engineer:** Jerry Chiou All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent test lab, International Standards Laboratory. The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards. Approve & Signature Roy Hsieh / Manager Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 36 pages, including 1 cover page, 2 contents page, and 33 pages for the test description. **Report Number: ISL-07LR033SAR-F** FCC ID:MAU028 # 1.2 Applicant & Manufacturer Information Applicant: Mitac Technology Corp No. 1, R&D 2nd RD., Hsin-Chu Science Based Industrial Park Hsin-Chu Hsien, Taiwan Manufacturer 1:Mitac Technology Corp No. 1, R&D 2nd RD., Hsin-Chu Science Based Industrial Park Hsin-Chu Hsien, Taiwan Manufacturer 2:Getac Technology (Kunshan) Co., Ltd No. 269, 2nd Road, Export Processing Zone, Changjiang South, Road, Kunshan, Jiangsu, P.R.C Zip code: 215300 ## 2. Description of Equipment Under Test (EUT) **Product Name** Notebook Personal Computer Model No. V100 FCC ID MAU028 WWAN module MC5725V WWAN FCC ID N7NMC5725 WWAN TX Frequency CDMA2000 Cellular: 824MHz~849MHz CDMA2000 PCS: 1850MHz ~ 1910MHz WWAN Rx Frequency CDMA2000 Cellular: 869MHz~894MHz CDMA2000 PCS: 1930MHz ~ 1990MHz **CDMA2000 1xRTT (RC1)** WWAN Maximum Power(conducted) Cellular: 24.11 dBm PCS: 23.79 dBm CDMA2000 1xEVDO Rev.0 (153.6k) Cellular: 24.26 dBm PCS: 23.8 dBm CDMA2000 1xEVDO Rev.A (1228.8k) Cellular: 23.04 dBm PCS: 23.52 dBm WWAN Antenna Type PIFA Antenna WWAN Antenna Gain 0.52dBi (850MHz), 2.06dBi(1900MHz) WWAN Type of Antenna I-PEX Connector WWAN HW version SIERRA, Model: MC5725V, REV2.0 WWAN SW version 0.6.55 WLAN module Intel, Model: WM3945ABG WLAN FCCID PD9WM3945ABG WLAN TX Frequency 2412 MHz ~ 2462 MHz 5150 MHz ~ 5350 MHz 5725 MHz ~ 5825 MHz WLAN Type of 802.11b: DSSS Modulation 802.11g: OFDM 802.11a: OFDM WLAN Max. Output 802.11b: 14.95dBm Power 802.11g: 18.57dBm (Conducted) 802.11a: 14.45dBm WLAN Antenna Peak Gain 1.61(802.11b/g) 3.97(802.11a) -4- FCC ID:MAU028 WLAN Transfer Rate 802.11b: 1~11Mbps 802.11g: 6~54Mbps 802.11a: 6~54Mbps BT module BILLIONTON (Model:GUBTCR42M) BT FCC ID NLFGUBTCR42M Emission designators 1M25F9W Power Type Tablet PC Antenna Type Internal Device Category Portable RF Exposure Environment Uncontrolled ### 2.1 Test Environment #### **Ambient conditions of test site** | Item | Required | Actual | |------------------|----------|--------| | Temperature (°C) | 18-25 | 22.4 | | Humidity (%RH) | 30-70 | 51 | ## 3. SAR Measurement System ### 3.1 ALSAS-10U System Description **ALSAS-10-U** is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies and FDTD odeling to provide a platform which is repeatable with minimum uncertainty. #### 3.1.1 Applications Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue. #### 3.1.2 Area Scans Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. #### 3.1.3 Zoom Scan (Cube Scan Averaging) The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm. When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis. #### 3.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm: $$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{a} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$ ### 3.2 Isotropic E-Field Probe The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the
frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below: | Calibration Frequency | Air Calibration | Tissue Calibration | |-----------------------|-----------------|--------------------| | 835MHz | TEM Cell | Temperature | | 900MHz | TEM Cell | Temperature | | 1800MHz | TEM Cell | Temperature | | 1900MHz | TEM Cell | Temperature | | 2450MHz | Waveguide | Temperature | | 5200MHz | Waveguide | Temperature | | 5800MHz | Waveguide | Temperature | The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below: SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface. The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes. $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ **Report Number: ISL-07LR033SAR-F** #### 3.2.1 Isotropic E-Field Probe Specification | Calibration in Air | Frequency Dependent | |-------------------------|---| | | Below 2GHz Calibration in air performed in a TEM Cell | | | Above 2GHz Calibration in air performed in waveguide | | Sensitivity | $0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$ | | Dynamic Range | 0.0005 W/kg to 100W/kg | | Isotropic Response | Better than 0.2dB | | Diode Compression point | Calibration for Specific Frequency | | (DCP) | | | Probe Tip Radius | < 5mm | | Sensor Offset | 1.56 (+/- 0.02mm) | | Probe Length | 290mm | | Video Bandwidth | @ 500 Hz: 1dB | | | @1.02 KHz: 3dB | | Boundary Effect | Less than 2% for distance greater than 2.4mm | | Spatial Resolution | Diameter less than 5mm Compliant with Standards | -8- ### 3.3 Boundary Detection Unit and Probe Mounting Device ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z). The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq. ### 3.4 Daq-Paq (Analog to Digital Electronics) ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module. | ADC | 12 Bit | |--------------------------|---| | Amplifier Range | 20mV to 200mV and 150mV to 800mV | | Field Integration | Local Co-Processor utilizing proprietary integration algorithms | | Number of Input Channels | 4 in total 3 dedicated and 1 spare | | Communication | Packet data via RS232 | #### 3.5 Axis Articulated Robot ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis. | Robot/Controller Manufacturer | Thermo CRS | |-------------------------------|-----------------------------------| | Number of Axis | Six independently controlled axis | | Positioning Repeatability | 0.05mm | | Controller Type | Single phase Pentium based C500C | | Robot Reach | 710mm | | Communication | RS232 and LAN compatible | #### 3.6 ALSAS Universal Workstation ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process. #### 3.7 Universal Device Positioner The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability. ### 3.8 Phantom Types The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat. -11- #### **APREL SAM Phantoms** The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines. #### 3.8.1 APREL Laboratories Universal Phantom The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528. The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement. # 4. Tissue Simulating Liquid ### 4.1 The composition of the tissue simulating liquid | INGREDIENT | 835MHz | 835MHz | 1900MHz | 1900MHz | |------------|--------|--------|---------|---------| | (% Weight) | Head | Body | Head | Body | | Water | 40.45 | 52.40 | 54.90 | 40.5 | | Salt | 1.45 | 1.400 | 0.18 | 0.50 | | Sugar | 57.60 | 45.00 | 0.00 | 58.0 | | HEC | 0.40 | 1.00 | 0.00 | 0.50 | | Preventol | 0.10 | 0.10 | 0.00 | 0.50 | | DGBE | 0.00 | 0.00 | 44.92 | 0.00 | ### 4.2 Tissue Calibration Result The dielectric parameters of the liquids were verified prior to the SAR evaluation using Agilent Dielectric Probe Kit and Agilent E5071B Vector Network Analyzer #### <Data> | Head Tissue Simulant Measurement | | | | | | |----------------------------------|------------------------------|------------------------|---------------------|--------------|--| | Frequency | Description | Dielectric Parameters | | Tissue Temp. | | | [MHz] | Description | εr | σ [s/m] | [°C] | | | 835MHz | Reference result ± 5% window | 41.5
39.42 to 43.57 | 0.9
0.85 to 0.94 | N/A | | | | 14-JAN-2008 | 42.15 | 0.91 | 22.1 | | | Body Tissue Simulant Measurement | | | | | | |----------------------------------|------------------|-----------------------|--------------|--------------|--| | Frequency | Description/ | Dielectric Parameters | | Tissue Temp. | | | [MHz] | Calibration date | ε _r | σ [s/m] | [°C] | | | | Reference result | 55.2 | 0.97 | N/A | | | 835MHz | ± 5% window | 52.44 to 57.96 | 0.92 to 1.02 | IN/A | | | | 14-JAN-2008 | 55.44 | 0.96 | 22.1 | | | Head Tissue Simulant Measurement | | | | | | |----------------------------------|------------------|-----------------------|--------------|--------------|--| | Frequency | Description | Dielectric Parameters | | Tissue Temp. | | | [MHz] | Description | ε _r | σ [s/m] | [°C] | | | | Reference result | 40.0 | 1.4 | N/A | | | 1900MHz | ± 5% window | 38 to 42 | 1.33 to 1.47 | IN/A | | | | 14-JAN-2008 | 40.00 | 1.41 | 22.1 | | | Body Tissue Simulant Measurement | | | | | | |----------------------------------|------------------|-----------------------|--------------|--------------|--| | Frequency | Description/ | Dielectric Parameters | | Tissue Temp. | | | [MHz] | Calibration date | ε _r | σ [s/m] | [°C] | | | | Reference result | 53.3 | 1.52 | N/A | | | 1900MHz | ± 5% window | 50.64 to 55.96 | 1.45 to 1.59 | IN/A | | | | 14-JAN-2008 | 50.92 | 1.50 | 22.1 | | ### 4.3 Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. | Target Frequency | Не | ead | Во | ody | |------------------|-------------------|---------|-------------------|---------| | (MHz) | $\epsilon_{ m r}$ | σ (S/m) |
$\epsilon_{ m r}$ | σ (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$ ### 5. SAR Measurement Procedure ### 5.1 SAR System Validation ### **5.1.1** Validation Dipoles The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles. | * | Frequency | L (mm) | h (mm) | d (mm) | |---|-----------|--------|--------|--------| | V | 835MHz | 161.0 | 89.8 | 3.6 | | | 900MHz | 149.0 | 83.3 | 3.6 | | | 1800MHz | 72.0 | 41.7 | 3.6 | | V | 1900MHz | 68.0 | 39.5 | 3.6 | | | 2450MHz | 51.5 | 30.4 | 3.6 | | | 5200MHz | 23.6 | 14.0 | 3.6 | | | 5800MHz | 21.6 | 12.6 | 3.6 | ^{*}Note: "V" indicates Frequency used of EUT #### **5.1.2** Validation Result <Data> **System Performance Check at 835MHz** Validation Kit: ASL-D-835-S-2 | Frequency [MHz] | Description | SAR [w/kg]
1g | SAR [w/kg]
10g | Tissue Temp. [°C] | |-----------------|------------------------------|----------------------|---------------------|-------------------| | 835 MHz | Reference result ± 5% window | 9.5
8.55 to 10.45 | 6.2
5.58 to 6.84 | N/A | | | 14-JAN-2008 | 8.991 | 5.864 | 22.1 | Note: All SAR values are 1W forward power. ### **System Performance Check at 1900MHz** Validation Kit: ASL-D-1900-S-2 | Frequency [MHz] | Description | SAR [w/kg]
1g | SAR [w/kg]
10g | Tissue Temp. [°C] | |-----------------|------------------------------|------------------------|------------------------|-------------------| | 1900 MHz | Reference result ± 5% window | 39.7
35.73 to 43.67 | 20.5
18.45 to 22.55 | N/A | | | 14-JAN-2008 | 40.864 | 20.197 | 22.1 | Note: All SAR values are 1W forward power. ### 5.2 Arrangement Assessment Setup #### 5.2.1 Test Positions of Device Relative to Head This specifies exactly two test positions for the handset against the head phantom, the "cheek" position and the "tilted" position. The handset should be tested in both positions on the left and right sides of the SAM phantom. If the handset construction is such that it cannot be positioned using the handset positioning procedures described in 4.2.2.1 and 4.2.2.2 to represent normal use conditions (e.g., asymmetric handset), alternative alignment procedures should be considered with details provided in the test report. Figure 4.1a Fixed Case Figure 4.1b Clam Shell #### 5.2.2 Definition of the "Cheek" Position The "cheek" position is defined as follows: - a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.) - b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 4.1a and 4.1b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 4.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 4.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets. - c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 4.2), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna. - e. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane). - f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF. - g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 4.2 the physical angles of rotation should be noted. Figure 4.2 – Phone position 1, "cheek" or "touch" position. #### **5.2.3** Definition of the "Tilted" Position The "tilted" position is defined as follows: - a. Repeat steps (a) (g) of 4.2.1.1 to place the device in the "cheek position." - b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees. - c. Rotate the handset around the horizontal line by 15 degrees. - d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the head). Figure 4.3 – Phone position 2, "tilted" position. #### 5.2.4 Test Positions for body-worn Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distance may be use, but not exceed 2.5 cm. #### 5.3 SAR Measurement Procedure The ALSAS-10U calculates SAR using the following equation, $$SAR = \frac{\sigma |E|^2}{\rho}$$ σ: represents the simulated tissue conductivity ρ: represents the tissue density The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings. Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid. The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area. The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³). # 6. SAR Exposure Limits SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure. Limits for General Population/Uncontrolled Exposure (W/kg) | F | (8) | |--|--------------------------------| | Type Exposure | Uncontrolled Environment Limit | | Spatial Peak SAR (1g cube tissue for brain or body) | 1.60 W/kg | | Spatial Average SAR (whole body) | 0.08 W/kg | | Spatial Peak SAR (10g for hands, feet, ankles and wrist) | 4.00 W/kg | # 7. Test Equipment List | Instrument | Manufacturer | Model No. | Serial No. | Last
Calibration | |-------------------------------------|--------------|------------------------|-------------|---------------------| | Vector Network Analyzer | Agilent | E5071B | MY42402726 | 04/19/2007 | | Dielectric Probe Kit | Aglient | 85070E | MY44300124 | N/A | | Signal Generator | Anritsu | MG3642A | 6200162550 | 02/15/2007 | | Signal Generator | Anritsu | MG3692A | 020311 | 09/15/2007 | | Power Meter | Agilent | E4418B | GB41299009 | 04/03/2007 | | Power Sensor | Agilent | 84815A | 3318A01828 | 12/07/2007 | | Data Acquisition Package | Aprel | ALS-DAQ-PAQ-2 | 110-00212 | NA | | Aprel Laboratories Probe | Aprel | ALS-E020 | 266 | 07/09/2007 | | Aprel Reference Dipole
835MHz | Aprel | ALS-D-835-S-2 | 180-00553 | 02/20/2007 | | Aprel Reference Dipole
900MHz | Aprel | ALS-D-900-S-2 | 190-00613 | 02/20/2007 | | Aprel Reference Dipole
1800MHz | Aprel | ALS-D-1800-S-2 | 200-00653 | 02/20/2007 | | Aprel Reference
Dipole
1900MHz | Aprel | ALS-D-1900-S-2 | 210-00703 | 02/20/2007 | | Aprel Reference Dipole 2450MHz | Aprel | ALS-D-2450-S-2 | 220-00753 | 02/20/2007 | | Aprel Reference Dipole 5200MHz | Aprel | ALS-D-5200-S-2 | 230-00802 | 02/20/2007 | | Aprel Reference Dipole 5800MHz | Aprel | ALS-D-5800-S-2 | 240-00852 | 02/20/2007 | | Boundary Detection Sensor
System | Aprel | ALS-PMDPS-2 | 120-00253 | N/A | | Universal Work Station | Aprel | ALS-UWS | 100-00153 | N/A | | Device Holder 2.0 | Aprel | ALS-H-E-SET-2 | 170-00503 | N/A | | Left Ear SAM Phantom | Aprel | ALS-P-SAM-L | 130-00305 | N/A | | Right Ear SAM Phantom | Aprel | ALS-P-SAM-R | 140-00355 | N/A | | Universal Phantom | Aprel | ALS-P-UP-1 | 150-00405 | N/A | | Aprel Dipole Spacer | Aprel | ALS-DS-U | 250-00903 | N/A | | SAR Software | Aprel | ALSAS-10U
Ver.2.2.0 | B0D5F-112FE | N/A | | CRS C500C Controller | Thermo | ALS-C500 | RCF0440278 | N/A | | CRF F3 Robot | Thermo | ALS-F3 | RAF0440252 | N/A | | Power Amplifier | Mini-Circuit | ZVE-8G | D030305 | N/A | Note: All equipment upon which need to be calibrated are with calibration period of 1 year. # 8. Measurement Uncertainty **Exposure Assessment Measurement Uncertainty** | LAPOSUI | C 1135C55IIICII | t Micasui | cincii o | iteer taim | · · | | |-----------|--|--|--|--|--|---| | Tolerance | Probability | . | c_i^1 | c_i^{1} | | Standard | | | | Divisor | • | • | | Uncer-tainty | | , arac | 2150110001011 | | (-8) | (108) | (1-g) % | (10g) % | | | | | | | | | | | | | | 1 | | 3.5 | | | | | $(1-cp)^{1/2}$ | $(1-cp)^{1/2}$ | | 1.5 | | | | | | - | | 4.4 | | | | | 1 | 1 | | 0.6 | | | | | 1 | 1 | | 2.7 | | | | | 1 | 1 | | 0.6 | | 1.0 | normal | 1 | 1 | 1 | 1.0 | 1.0 | | 0.8 | rectangular | | 1 | 1 | 0.5 | 0.5 | | 1.7 | rectangular | | 1 | 1 | 1.0 | 1.0 | | 3.0 | rectangular | | 1 | 1 | 1.7 | 1.7 | | 0.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | 2.9 | rectangular | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | | | | | | | | | | 3.7 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.1 | 2.1 | | | | | | | | | | 4.0 | normal | 1 | 1 | 1 | 4.0 | 4.0 | | | | | | | | | | 2.0 | normal | 1 | 1 | 1 | 2.0 | 2.0 | | 1.6 | rectangular | $\sqrt{3}$ | 1 | 1 | 0.9 | 0.9 | 3.4 | rectangular | $\sqrt{3}$ | 1 | 1 | 2.0 | 2.0 | | | | | | | | | | 5.0 | rectangular | $\sqrt{3}$ | 0.7 | 0.5 | 2.0 | 1.4 | | | | | | | | | | 4.6 | normal | 1 | 0.7 | 0.5 | 3.2 | 2.3 | | | | | | | | | | 5.0 | rectangular | $\sqrt{3}$ | 0.6 | 0.5 | 1.7 | 1.4 | | | | | | | | | | 2.3 | normal | 1 | 0.6 | 0.5 | 1.4 | 1.1 | | | RSS | | | | 9.9 | 9.5 | | | | | | | | | | | Normal(k=2) | | | | 19.8 | 18.9 | | | Tolerance Value 3.5 3.7 10.9 1.0 4.7 1.0 0.8 1.7 3.0 0.4 2.9 3.7 4.0 2.0 1.6 3.4 5.0 4.6 5.0 | Tolerance Value Probability Distribution 3.5 normal 3.7 rectangular 10.9 rectangular 1.0 rectangular 1.0 rectangular 1.1 normal 0.8 rectangular 1.7 rectangular 1.8 rectangular 1.9 rectangular 1.0 normal 0.9 rectangular 1.0 normal 0.1 rectangular 1.1 rectangular 1.2 rectangular 1.3 rectangular 1.4 rectangular 1.5 rectangular 1.6 rectangular 1.6 rectangular 1.6 rectangular 1.7 rectangular 1.8 rectangular 1.9 rectangular 1.0 normal 1.1 rectangular 1.1 rectangular 1.2 normal 1.3 rectangular 1.4 rectangular 1.5 | Tolerance ValueProbability DistributionDivisor3.5normal13.7rectangular $\sqrt{3}$ 10.9rectangular $\sqrt{3}$ 1.0rectangular $\sqrt{3}$ 1.0rectangular $\sqrt{3}$ 1.0normal10.8rectangular $\sqrt{3}$ 1.7rectangular $\sqrt{3}$ 3.0rectangular $\sqrt{3}$ 0.4rectangular $\sqrt{3}$ 2.9rectangular $\sqrt{3}$ 3.7rectangular $\sqrt{3}$ 4.0normal12.0normal11.6rectangular $\sqrt{3}$ 3.4rectangular $\sqrt{3}$ 3.4rectangular $\sqrt{3}$ 4.6normal15.0rectangular $\sqrt{3}$ 4.6normal15.0rectangular $\sqrt{3}$ 2.3normal1RSS | Tolerance Value Probability Distribution Divisor c_i^{-1} (1g) 3.5 normal 1 1 3.7 rectangular $\sqrt{3}$ (1-cp) $^{1/2}$ 10.9 rectangular $\sqrt{3}$ (1-cp) $^{1/2}$ 10.9 rectangular $\sqrt{3}$ 1 4.7 rectangular $\sqrt{3}$ 1 1.0 rectangular $\sqrt{3}$ 1 1.0 normal 1 1.0 normal 1 1.0 normal 1 1.0 normal $\sqrt{3}$ 1 1.7 rectangular $\sqrt{3}$ 1 3.0 rectangular $\sqrt{3}$ 1 2.9 rectangular $\sqrt{3}$ 1 3.7 rectangular $\sqrt{3}$ 1 4.0 normal 1 1 2.0 normal 1 1 1.6 rectangular $\sqrt{3}$ 1 1 3.4 rectangular $\sqrt{3}$ 1 1 5.0 rectangular $\sqrt{3}$ 0.7 4.6 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Value Distribution Divisor (1g) (10g) Uncertainty (1-g) % 3.5 normal 1 1 1 1 3.5 3.5 3.7 rectangular $\sqrt{3}$ $(1-cp)^{1/2}$ $(1-cp)^{1/2}$ (1.5) | 9. # 10.EUT test Position The Conducted Power output of EUT | The Conducted Power output of EUT | | | | | | | | |-----------------------------------|-----------|------------|-------------|--|--|--|--| | | 1xRTT | Mode | | | | | | | Freq. | RC1 | RC3 | RC3, | | | | | | (MHz) | | | S032+FSH | | | | | | 824.7 | 23.87 | 23.88 | 23.23 | | | | | | 836.52 | 24.04 | 24.01 | 23.13 | | | | | | 848.31 | 24.11 | 24.11 | 23.49 | | | | | | 1851.25 | 23.63 | 23.63 | 23.02 | | | | | | 1880.0 | 23.77 | 23.79 | 23.17 | | | | | | 1908.75 | 23.44 | 23.41 | 22.85 | | | | | | | Rev.0 N | Mode | | | | | | | Freq. | 9.6kbps | 38.4kbps | 153.6kbps | | | | | | (MHz) | _ | | _ | | | | | | 824.7 | 23.60 | 23.84 | 23.98 | | | | | | 836.52 | 23.69 | 23.0 | 24.03 | | | | | | 848.31 | 23.85 | 24.15 | 24.26 | | | | | | 1851.25 | 23.32 | 23.50 | 23.69 | | | | | | 1880.0 | 23.45 | 23.63 | 23.80 | | | | | | 1908.75 | 23.10 | 23.24 | 23.50 | | | | | | | Rev.A l | Mode | | | | | | | Freq. | 12.8 kbps | 204.8 kbps | 1228.8 kbps | | | | | | (MHz) | _ | | | | | | | | 824.7 | 23.26 | 23.79 | 22.60 | | | | | | 836.52 | 23.29 | 23.75 | 22.87 | | | | | | 848.31 | 23.60 | 23.98
 23.04 | | | | | | 1851.25 | 22.83 | 22.94 | 23.42 | | | | | | 1880.0 | 23.12 | 23.55 | 23.52 | | | | | | 1908.75 | 22.49 | 22.89 | 23.40 | | | | | ### 10.1. EUT Test Position: Tablet Mode In order to meet SAR requirement, the WWAN TX antennas located in BODY SIDE will be disabled. | | Antenna | Laptop
Mode
Mode1 | | Tablet Mo | ode | 802.11
a/b/g | WWAN | | |------|-------------------------------|-------------------------|--------|-----------|---------|-----------------|-------|-------| | | | | Mode2 | Mode3 | Mode4 | Mode5 | | | | WLAN | Main | Enable | Enable | Enable | Enable | Enable | Tx/Rx | NA | | | Aux | Enable | Enable | Enable | Enable | Enable | Tx/RX | NA | | WWAN | Main | Enable | Enable | Enable | Disable | Enable | NA | Tx/Rx | | | Aux | Enable | Enable | Enable | Disable | Enable | NA | Rx | | Scr | reen orien
vs.
Body sic | | | | | | | | | | | | | Bodv S | ide | | | | *Note 1: System does not function for the mode3, when WWAN is enabled ### 10.2. EUT Test Position: Laptop Mode The EUT is put on the laptop of user. The antennas for WWAN & WLAN are enabled. # 11. Test Result Summary ### 11.1. WLAN + WWAN + Bluetooth - Laptop mode | SAR Measuren | nent | | | | | | |--|-------------------------|--------------------------|--------------|--------|--------|----------| | Ambient Temperature (°C): 22.4 ± 1 Relative Humidity (%): 51 | | | | | | | | Liquid Temper | ature (°C) : 22.1±1 | Depth of Liquid (cm):>15 | | | | | | | Transmitting | Frequency (1 | MHz) | WLAN | WWAN | SUM | | EUT Position | Antenna | | | SAR 1g | SAR 1g | SAR 1g | | (See Note 1) | (Bluetooth always on) | WLAN | WWAN | (W/Kg) | (W/Kg) | (W/Kg) | | | (Bidetootii aiways oii) | | | | | (Note 2) | | | 8 | 02.11b + EVI | OO + BT | | | | | Mode1 | WLAN: Main, WWAN:Main | 2437 | 836.4 | 0.130 | 0.102 | 0.232 | | Mode1 | WLAN: Aux, WWAN:Main | 2437 | 836.4 | 0.059 | 0.102 | 0.161 | | Mode1 | WLAN: Main, WWAN:Main | 2437 | 1851.2 | 0.130 | 0.098 | 0.228 | | Mode1 | WLAN: Aux, WWAN:Main | 2437 | 1851.2 | 0.059 | 0.098 | 0.157 | | | 8 | 02.11g + EVI | OO + BT | | | | | Mode1 | WLAN: Main, WWAN:Main | 2437 | 836.4 | 0.487 | 0.102 | 0.589 | | Mode1 | WLAN: Aux, WWAN:Main | 2437 | 836.4 | 0.356 | 0.102 | 0.458 | | Mode1 | WLAN: Main, WWAN:Main | 2437 | 1851.2 | 0.487 | 0.098 | 0.585 | | Mode1 | WLAN: Aux, WWAN:Main | 2437 | 1851.2 | 0.356 | 0.098 | 0.454 | | | 802.11a (5 | 150~5350MH | Iz) + EVDO · | + BT | | | | Mode1 | WLAN: Main, WWAN:Main | 5320 | 836.4 | 0.142 | 0.102 | 0.244 | | Mode1 | WLAN: Aux, WWAN:Main | 5260 | 836.4 | 0.096 | 0.102 | 0.198 | | Mode1 | WLAN: Main, WWAN:Main | 5320 | 1851.2 | 0.142 | 0.098 | 0.240 | | Mode1 | WLAN: Aux, WWAN:Main | 5260 | 1851.2 | 0.096 | 0.098 | 0.194 | | | 802.11a (5 | 725~5825MH | Iz) + EVDO - | + BT | | | | Mode1 | WLAN: Main, WWAN:Main | 5805 | 836.4 | 0.217 | 0.102 | 0.319 | | Mode1 | WLAN: Aux, WWAN:Main | 5805 | 836.4 | 0.182 | 0.102 | 0.284 | | Mode1 | WLAN: Main, WWAN:Main | 5805 | 1851.2 | 0.217 | 0.098 | 0.315 | | Mode1 | WLAN: Aux, WWAN:Main | 5805 | 1851.2 | 0.182 | 0.098 | 0.280 | | | | | | | | | Note 1: Refer to paragraphs 9.1 and 9.2 for the detailed definition of EUT Position Note 2: "SUM SAR 1g" is the SUM of WLAN SAR data and WWAN SAR data. The WLAN SAR data and WWAN SAR data was tested separately using appropriate frequency setting. Note 3: The SAR values were referred to Appendix G ### 11.2. WLAN + WWAN + Bluetooth - Tablet mode | SAR Measur | rement | | | | | | | |--------------|----------------------|--------------|-------------|------------|---------------|---------------|----------| | Ambient Ter | nperature (°C) : 2 | 22.4 ±1 | | | Relative Hum | idity (%): 51 | | | Liquid Temp | perature (°C) : 22 | .1±1 | | | Depth of Liqu | uid (cm):>15 | | | EUT | Transmitting | | Frequency (| MHz) | WLAN | WWAN | SUM | | Position | Transmitting Antenna | | | | SAR 1g | SAR 1g | SAR 1g | | | (Bluetooth alwa | ve on) | WLAN | WWAN | (W/Kg) | (W/Kg) | (W/Kg) | | (See Note 1) | (Diuctooth aiwa | <u> </u> | | | | | (Note 2) | | | | | | 35MHz) + B | _ | | | | Mode2 | WLAN: Main, | WWAN:Main | 2437 | 836.4 | 0.130 | 0.271 | 0.401 | | Mode3 | WLAN: Main, | WWAN:Main | 2437 | 836.4 | 0.130 | 0.035 | 0.165 | | Mode4 | WLAN: Main, | WWAN:disable | 2437 | 836.4 | 0.130 | N/A | 0.130 | | Mode5 | WLAN: Main, | WWAN:Aux | 2437 | 836.4 | 0.130 | 0.073 | 0.203 | | Mode2 | WLAN: Main, | WWAN:Main | 2437 | 1880 | 0.130 | 0.669 | 0.799 | | Mode3 | WLAN: Main, | WWAN:Main | 2437 | 1880 | 0.130 | 0.019 | 0.149 | | Mode4 | WLAN: Main, | WWAN:disable | 2437 | 1880 | 0.130 | N/A | 0.130 | | Mode5 | WLAN: Main, | WWAN:Aux | 2437 | 1880 | 0.130 | 0.051 | 0.181 | | | | 80 | 02.11g + EV | DO + BT | | | | | Mode2 | WLAN: Main, | WWAN:Main | 2437 | 836.4 | 0.487 | 0.271 | 0.758 | | Mode3 | WLAN: Main, | WWAN:Main | 2437 | 836.4 | 0.487 | 0.035 | 0.522 | | Mode4 | WLAN: Main, | WWAN:disable | 2437 | 836.4 | 0.487 | N/A | 0.487 | | Mode5 | WLAN: Main, | WWAN:Aux | 2437 | 836.4 | 0.487 | 0.073 | 0.560 | | Mode2 | WLAN: Main, | WWAN:Main | 2437 | 1880 | 0.487 | 0.669 | 1.156 | | Mode3 | WLAN: Main, | WWAN:Main | 2437 | 1880 | 0.487 | 0.019 | 0.506 | | Mode4 | WLAN: Main, | WWAN:disable | 2437 | 1880 | 0.487 | N/A | 0.487 | | Mode5 | WLAN: Main, | WWAN:Aux | 2437 | 1880 | 0.487 | 0.051 | 0.538 | | | | <u> </u> | 150~5350MF | Hz) + EVDO | + BT | | | | Mode2 | WLAN: Main, | WWAN:Main | 5320 | 836.4 | 0.142 | 0.271 | 0.413 | | Mode3 | WLAN: Main, | WWAN:Main | 5320 | 836.4 | 0.142 | 0.035 | 0.177 | | Mode4 | WLAN: Main, | WWAN:disable | 5320 | 836.4 | 0.142 | N/A | 0.142 | | Mode5 | WLAN: Main, | WWAN:Aux | 5320 | 836.4 | 0.142 | 0.073 | 0.215 | | Mode2 | WLAN: Main, | WWAN:Main | 5320 | 1880 | 0.142 | 0.669 | 0.811 | | Mode3 | WLAN: Main, | WWAN:Main | 5320 | 1880 | 0.142 | 0.019 | 0.161 | | Mode4 | WLAN: Main, | WWAN:disable | 5320 | 1880 | 0.142 | N/A | 0.142 | | Mode5 | WLAN: Main, | WWAN:Aux | 5320 | 1880 | 0.142 | 0.051 | 0.193 | | | | 802.11a (5' | 725~5825MF | Hz) + EVDO | + BT | | | | Mode2 | WLAN: Main, | WWAN:Main | 5805 | 836.4 | 0.217 | 0.271 | 0.488 | | Mode3 | WLAN: Main, | WWAN:Main | 5805 | 836.4 | 0.217 | 0.035 | 0.252 | | Mode4 | WLAN: Main, | WWAN:disable | 5805 | 836.4 | 0.217 | N/A | 0.217 | | Mode5 | WLAN: Main, | WWAN:Aux | 5805 | 836.4 | 0.217 | 0.073 | 0.290 | | Mode2 | WLAN: Main, | WWAN:Main | 5805 | 1880 | 0.217 | 0.669 | 0.886 | | Mode3 | WLAN: Main, | WWAN:Main | 5805 | 1880 | 0.217 | 0.019 | 0.236 | | Mode4 | WLAN: Main, | WWAN:disable | 5805 | 1880 | 0.217 | N/A | 0.217 | | Mode5 | WLAN: Main, | WWAN:Aux | 5805 | 1880 | 0.217 | 0.051 | 0.268 | | | | | | | | | | Note 1: Refer to paragraphs 9.1 and 9.2 for the detailed definition of EUT Position Note 3: The SAR values were referred to Appendix G Note 2: "SUM SAR 1g" is the SUM of WLAN SAR data and WWAN SAR data. The WLAN SAR data and WWAN SAR data was tested separately using appropriate frequency setting. ## 11.3. FCH_RC1 | SAR Measure | ment | | | | | | | | | | |--|-------------------------|-----------|---------------------------|-------------|--------|--------|--|--|--|--| | Ambient Temp | erature (°C) . | : 22.4 ±1 | Relative Humidity (%): 51 | | | | | | | | | Liquid Temperature (°C): 22.1±1 Depth of Liquid (cm):>15 | | | | | | | | | | | | Test Mode: l | Test Mode : US Cellular | | | | | | | | | | | Test Position | Antenna | Frequ | ency | Conducted | SAR 1g | Limit | | | | | | Body | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | | | | Mode 2 | Internal | Low | 826.4 | 23.87 | 0.226 | 1.6 | | | | | | Mode 2 | Internal | Mid | 836.4 | 24.04 | 0.201 | 1.6 | | | | | | Mode 2 | Internal | High | 846.6 | 24.11 | 0.185 | 1.6 | | | | | | Mode 3 | Internal | Low | 826.4 | 23.87 | | 1.6 | | | | | | Mode 3 | Internal | Mid | 836.4 | 24.04 | 0.035 | 1.6 | | | | | | Mode 3 | Internal | High | 846.6 | 24.11 | | 1.6 | | | | | | Mode 5 | Internal | Low | 826.4 | 23.87 | | 1.6 | | | | | | Mode 5 | Internal | Mid | 836.4 | 24.04 | 0.073 | 1.6 | | | | | | Mode 5 | Internal | High | 846.6 | 24.11 | | 1.6 | | | | | | Mode 1 | Internal | Low | 826.4 | 23.87 | | 1.6 | | | | | | Mode 1 | Internal | Mid | 836.4 | 24.04 | 0.102 | 1.6 | | | | | | Mode 1 | Internal | High | 846.6 | 24.11 | | 1.6 | | | | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. 1.6 1.6 1.6 Mode 1 Mode 1 Mode 1 Internal Internal Internal ### 11.4. FCH_RC1 | ment | | | | | | | | |------------------------------------|--
--|---|---|---|--|--| | Ambient Temperature (°C) : 22.4 ±1 | | | | Relative Humidity (%): 51 | | | | | ature (°C) : 2 | 22.1±1 | Depth of Liquid (cm):>15 | | | | | | | US PCS | | | | | | | | | Antenna | Frequency | | Conducted | SAD 1a | Limit | | | | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | | Internal | Low | 1852.4 | 23.63 | 0.350 | 1.6 | | | | Internal | Mid | 1880.0 | 23.77 | 0.651 | 1.6 | | | | Internal | High | 1907.5 | 23.44 | 0.276 | 1.6 | | | | Internal | Low | 1852.4 | 23.63 | | 1.6 | | | | Internal | Mid | 1880.0 | 23.77 | 0.019 | 1.6 | | | | Internal | High | 1907.5 | 23.44 | | 1.6 | | | | Internal | Low | 1852.4 | 23.63 | | 1.6 | | | | Internal | Mid | 1880.0 | 23.77 | 0.051 | 1.6 | | | | Internal | High | 1907.5 | 23.44 | | 1.6 | | | | | Antenna Type Internal | reture (°C): 22.4 ±1 reture (°C): 22.1±1 US PCS Antenna Type Type Thannel Internal | erature (°C) : 22.4 ±1 tature (°C) : 22.1±1 US PCS Antenna Type Frequency Channel MHz Internal Low 1852.4 Internal High 1907.5 Internal Low 1852.4 Internal Mid 1880.0 Internal High 1907.5 Internal Low 1852.4 Internal Low 1852.4 Internal Mid 1880.0 | erature (°C): 22.4 ±1 Relative Hum Pature (°C): 22.1±1 Depth of Lique US PCS Frequency Conducted power (dBm) Internal Low 1852.4 23.63 Internal Mid 1880.0 23.77 Internal High 1907.5 23.44 Internal Low 1852.4 23.63 Internal High 1907.5 23.44 Internal High 1907.5 23.44 Internal High 1907.5 23.44 Internal High 1852.4 23.63 Internal Low 1852.4 23.63 Internal Mid 1880.0 23.77 | Relative Humidity (%): 51 rature (°C): 22.4 ±1 Depth of Liquid (cm):>15 US PCS Antenna Type Frequency Conducted power (dBm) SAR 1g (W/Kg) Internal Low 1852.4 23.63 0.350 Internal High 1907.5 23.44 0.276 Internal Low 1852.4 23.63 Internal Mid 1880.0 23.77 0.019 Internal High 1907.5 23.44 Internal High 1907.5 23.44 Internal Low 1852.4 23.63 Internal Low 1852.4 23.63 Internal Mid 1880.0 23.77 0.051 | | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. 1852.4 1880.0 1907.5 Low Mid High 23.63 23.77 23.44 0.098 ### 11.5. 1xEVDO Rev.0 RTAP 153.6K | SAR Measure | ment | | | | | | | |--|----------|-----------|-------|--|--------|--------|--| | Ambient Temperature (°C) : 22.4 ±1
Liquid Temperature (°C) : 22.1±1 | | | | Relative Humidity (%): 51 Depth of Liquid (cm):>15 | | | | | | | | | | | | | | Test Position | Antenna | Frequency | | Conducted | SAR 1g | Limit | | | Body | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | Mode 2 | Internal | Low | 824.2 | 23.98 | 0.229 | 1.6 | | | Mode 2 | Internal | Mid | 836.6 | 24.03 | 0.271 | 1.6 | | | Mode 2 | Internal | High | 848.8 | 24.26 | 0.221 | 1.6 | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. ### 11.6.1xEVDO Rev.0 RTAP 153.6K | SAR Measure | ment | | | | | | | |--|----------|-----------|--------|--|--------|--------|--| | Ambient Temperature (°C) : 22.4 ±1
Liquid Temperature (°C) : 22.1±1 | | | | Relative Humidity (%): 51 Depth of Liquid (cm):>15 | | | | | | | | | | | | | | Test Position | Antenna | Frequency | | Conducted | SAR 1g | Limit | | | Body | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | Mode 2 | Internal | Low | 1850.2 | 23.69 | 0.610 | 1.6 | | | Mode 2 | Internal | Mid | 1880.0 | 23.8 | 0.669 | 1.6 | | | Mode 2 | Internal | High | 1909.8 | 23.5 | 0.434 | 1.6 | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. ### 11.7.1xEVDO Rev.A RTAP 1228.8k | SAR Measurement | | | | | | | | | |-----------------------------------|-------------------------|-----------|-------|---------------------------|--------|--------|--|--| | Ambient Temperature (°C): 22.4 ±1 | | | | Relative Humidity (%): 51 | | | | | | Liquid Temperature (°C): 22.1±1 | | | | Depth of Liquid (cm):>15 | | | | | | Test Mode: 1 | Test Mode : US Cellular | | | | | | | | | Test Position | Antenna | Frequency | | Conducted | SAR 1g | Limit | | | | Body | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | | Mode 2 | Internal | Low | 826.4 | 22.6 | 0.221 | 1.6 | | | | Mode 2 | Internal | Mid | 836.4 | 22.87 | 0.244 | 1.6 | | | | Mode 2 | Internal | High | 846.6 | 23.04 | 0.184 | 1.6 | | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. ### 11.8.1xEVDO Rev.A RTAP 1228.8k | SAR Measure | ment | | | | | | | |------------------------------------|-----------------------------|-----------|--------|---------------------------|--------|--------|--| | Ambient Temperature (°C) : 22.4 ±1 | | | | Relative Humidity (%): 51 | | | | | Liquid Temper | Temperature (°C) : 22.1±1 D | | | Depth of Liquid (cm):>15 | | | | | Test Mode: | US PCS | | | | | | | | Test Position | Antenna | Frequency | | Conducted | SAR 1g | Limit | | | Body | Type | Channel | MHz | power (dBm) | (W/Kg) | (W/Kg) | | | Mode 2 | Internal | Low | 1852.4 | 23.42 | 0.577 | 1.6 | | | Mode 2 | Internal | Mid | 1880.0 | 23.52 | 0.571 | 1.6 | | | Mode 2 | Internal | High | 1907.5 | 23.4 | 0.604 | 1.6 | | Note: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option. - 12. Appendix A: Photographs of Test Setup - 13. Appendix B: Photographs of EUT - 14. Appendix C: SAR System Validation Data - 15. Appendix D: SAR Measurement Data (for WWAN) - 16.
Appendix E: Probe Calibration Data - 17. Appendix F: Dipole Calibration Data - 18. Appendix G: SAR Measurement Data (for WLAN - +Bluetooth)