

Specific Absorption Rate (SAR) Test Report for Mitac Technology Corp on the

FULL Rugged Notebook Personal Computer

Report No.	: FA7O1107-1-2-01
Trade Name	: Getac
Model Name	: M230
FCC ID	: MAU025
Date of Testing	: Oct. 11 and 17, 2007
Date of Report	: Oct. 19, 2007
Date of Review	: Oct. 19, 2007

• The test results refer exclusively to the presented test model/sample only.

- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsiang, Taiwan, R.O.C.

Table of Contents

1. Statement of Compliance	
2. Administration Data	2
2.1 Testing Laboratory	2
2.2 Detail of Applicant	2
2.3 Detail of Manufacturer	2
2.4 Application Detail	2
3. General Information	
3.1 Description of Device Under Test (DUT)	3
3.2 Product Photo	4
3.3 Applied Standards:	5
3.4 Device Category and SAR Limits	6
3.5 Test Conditions:	
3.5.1 Ambient Condition	6
3.5.2 Test Configuration	6
4. Specific Absorption Rate (SAR)	7
4.1 Introduction	7
4.2 SAR Definition	7
5. SAR Measurement Setup	8
5.1 DASY4 E-Field Probe System	g
5.1.1 ET3DV6 E-Field Probe Specification 5.1.2 ET3DV6 E-Field Probe Calibration	10
5.1.2 ET3DV6 E-Field Probe Calibration	10
5.2 DATA Acquisition Electronics (DAE)	11 4 0
5.3 Robot	12
5.5 SAM Twin Phantom	
5.5 SAM TWIN Phantom	
5.7 Data Storage and Evaluation	14
5.7.1 Data Storage	15
5.7.2 Data Evaluation	15
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. Uncertainty Assessment	21
8. SAR Measurement Evaluation	23
8.1 Purpose of System Performance check	23
8.2 System Setup	23
8.3 Validation Results	25
9. Description for DUT Testing Position	26
10. Measurement Procedures	27
11. SAR Test Results	29
11.1 Notebook Bottom Touch	
12. References	31

Appendix A - System Performance Check Data Appendix B - SAR Measurement Data Appendix C - Calibration Data Appendix D - CDMA2000 Test Modes Appendix E - Product Photo Appendix F - Test Setup Photo

<u>1. Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum results found during testing for the **Mitac Technology Corp FULL Rugged Notebook Personal Computer Getac M230 is 0.041 W/kg for CDMA2000 Cellular band body SAR and 0.044 W/kg for CDMA2000 PCS band body SAR** with expanded uncertainty 21.9%. They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

sau noe

Jones Tsai Manager

Test Report No : FA7O1107-1-2-01

2. Administration Data

2.1 Testing Laboratory

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
	TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-328-4978

2.2 Detail of Applicant

Company Name :	Mitac Technology Corp
Address :	No. 1, R&D 2nd RD., Hsin-Chu Science Based Industrial Park Hsin-Chu
	Hsien, Taiwan, R.O.C.
Telephone Number :	886-3578-2280 ext:6200
Fax Number :	886-3577-4034
E-mail	Power Shao / Director of R&D / Power@mitac-mtc.com.tw

2.3 Detail of Manufacturer

Company Name :	Getac Technology (Kunshan) Co., Ltd
Address :	No. 269, 2nd Road, Export Processing Zone, Changjiang South, Road,
	Kunshan, Jiangsu, P.R.C Zip code: 215300

2.4 Application Detail

Date of reception of application:	Oct. 11, 2007
Start of test :	Oct. 11, 2007
End of test :	Oct. 17, 2007

3. General Information

3.1 Description of Device Under Test (DUT)

Description of Device Onder 1es		
DUT Type :	FULL Rugged Notebook Personal Computer	
Model Name :	M230	
FCC ID :	MAU025	
Tx Frequency :	CDMA2000 Cellular : 824 ~ 849 MHz	
1x Frequency :	CDMA2000 PCS : 1850 ~ 1910 MHz	
Dy Engenopou	CDMA2000 Cellular : 869 ~ 894 MHz	
Rx Frequency :	CDMA2000 PCS : 1930 ~ 1990 MHz	
	CDMA2000 1xRTT	
	Cellular : 24.11 dBm	
	PCS : 23.79 dBm	
	CDMA2000 1xEVDO Rev.0	
Maximum Output Power :	Cellular : 24.26 dBm	
	PCS : 23.80 dBm	
	CDMA2000 1xEVDO Rev.A	
	Cellular : 23.98 dBm	
	PCS : 23.55 dBm	
Power Rating (DC/AC, Voltage) :	DC 3.3V / 1.2A	
Antenna Type :	PIFA Antenna	
Antenna Gain :	3 dBi	
Type of Antenna Connector :	or: I-PEX	
HW Version	MC5725V REV 2.0	
SW Version	0.6.55	
Type of Modulation :	QPSK	
DUT Stage :	Production Unit	
A	Battery 1: GTK, BP-LP1850/32-01PI	
Accessory :	Battery 2: GTK, BP-LC2600/33-01SI	

Remark : The EUT have two battery slot for battery 1 and battery 2. The EUT is includes both battery 1 and battery 2 during SAR test.

Test Report No : FA7O1107-1-2-01

3.2 Product Photo

Please refer to Appendix E

Test Report No : FA7O1107-1-2-01

3.3 Applied Standards:

The Specific Absorption Rate (SAR) testing specification, method and procedure for this FULL Rugged Notebook Personal Computer is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions:

3.5.1 Ambient Condition

	MSL_850	MSL_1900	
Ambient Temperature (°C)	20-24°C		
Tissue simulating liquid temperature (°C)	21.6°C 21.7°C		
Humidity (%)	<60%		

3.5.2 Test Configuration

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.

Measurements were performed on the lowest, middle, and highest channel for each testing position for head SAR testing. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit for body SAR testing.

The DUT was set from the emulator to radiate maximum output power during all tests.

For body SAR testing, EUT is in CDMA2000 link mode, and its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

 ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

©2007 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. Page 7 of 31 Rev. 01

5. SAR Measurement Setup

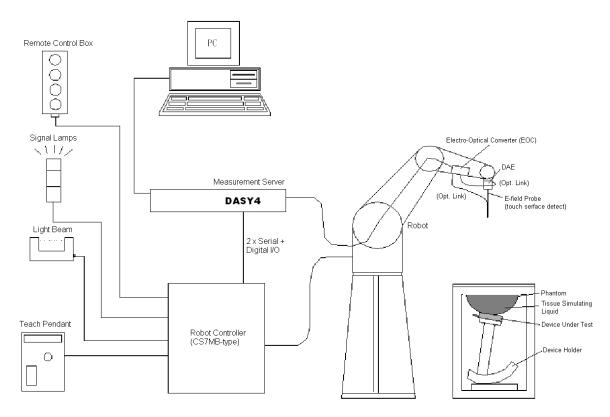


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- ➢ The SAM twin phantom
- ➢ A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

Construction	Symmetrical design with triangular core	
	Built-in optical fiber for surface detection	
	system	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents)	
Calibration	Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy $\pm 8\%$)	
Frequency	10 MHz to $>$ 3 GHz	3
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis)	
	\pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)	Fig. 5.
Dynamic Range	5μ W/g to > 100mW/g; Linearity: ±0.2dB	
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids on reflecting surface	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	
	Body diameter: 12mm	
	Tip diameter: 6.8mm	
	Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 3GHz	
	Compliance tests for mobile phones and Wireless LAN	
	Fast automatic scanning in arbitrary phantoms	

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

ET3DV6 sn1787

Sensitivity	X axis : 1.63 μV Y aν		is : 1.66 μV	Z axis : 2.08 μV	
Diode compression point	X axis : 92 mV Y		Y az	xis : 96 mV	Z axis : 91 mV
	Frequency (MHz)	X axis		Y axis	Z axis
Conversion factor	800~1000	6.58 / 6.10		6.58 / 6.10	6.58 / 6.10
(Head / Body)	1710~1910	5.16 / 4.68		5.16 / 4.68	5.16 / 4.68
	2350~2550	4.50 / 4.02		4.50 / 4.02	4.50 / 4.02
	Frequency (MHz)	Alpha		Depth	
Boundary effect (Head / Body)	800~1000	0.32 /	0.36	2.42 / 2.52	
	1710~1910	0.50 /	0.61	2.61 / 2.56	
	2350~2550	0.67 /	0.65	1.81 / 2.15	

NOTE:

> The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- ➢ Right head
- ➢ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp <i>i</i>
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Test Report No : FA7O1107-1-2-01

The formula for each channel can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with $V_i = compensated signal of channel i (i = x, y, z)$ $U_i = input signal of channel i (i = x, y, z)$ cf = crest factor of exciting field (DASY parameter) $dcp_i = diode compression point (DASY parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$
with V_i = compensated signal of channel i (i = x, y, z)
Norm := sensor sensitivity of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration	
Manufacture	Name of Equipment	i ype/widdei	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 08, 2007	Feb. 08, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 08, 2007	Feb. 08, 2008
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR) or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H₂0), resistivity $\geq 16M \Omega$ as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of body tissue simulating liquid for frequency band 850 MHz and 1900 MHz.

Ingredient	MSL_850	MSL-1900
Water	631.68 g	716.56 g
Cellulose	0 g	0 g
Salt	11.72 g	4.0 g
Preventol D-7	1.2 g	0 g
Sugar	600.0 g	0 g
DGMBE	0 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f=835 MHz	f= 1900 MHz
	$\varepsilon_{\rm r} = 55.2 \pm 5\%,$	$\epsilon_{\rm r} = 53.3 \pm 5 \%$,
	$\sigma = 0.97 \pm 5\%$ S/m	σ= 1.52±5% S/m

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Bands	Frequency(MHz)	Permittivity (ε_r)	Conductivity (σ)	Measurement Date
CDMA2000	824.70	54.8	0.960	
Cellular	836.52	54.7	0.972	Oct. 17, 2007
(824 ~ 849 MHz)	848.31	54.5	0.984	
CDMA2000	1851.25	52.2	1.46	
PCS	1880.00	52.2	1.48	Oct. 11, 2007
(1850 ~ 1910 MHz)	1908.75	51.4	1.54	

Table 6.2 shows the measuring results for muscle simulating liquid.

Table 6.2 Measuring Results for Muscle Simulating Liquid

The measuring data are consistent with $\varepsilon_r = 55.2 \pm 5\%$ and $\sigma = 0.97 \pm 5\%$ for body Cellular band and $\varepsilon_r = 53.3 \pm 5\%$ and $\sigma = 1.52 \pm 5\%$ for body PCS band.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 6.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape	
Multiplying factor ^(a)	$_{1/k}$ (b)	1/√3	1/√6	1/√2	

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	x
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	x
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	x
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	x
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	x
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	x
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	x
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	x
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	x
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	x
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	x
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator at frequency 835MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

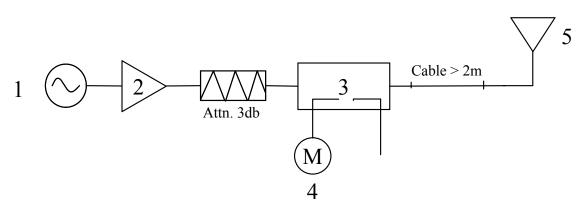


Fig. 8.1 System Evaluation Setup

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	SAR	SARTarget (W/kg)Measure data (W		Variation	Measurement Date
CDMA2000 Cellular	SAR (1g)	9.91	9.97	0.6 %	Oct. 17, 2007
(835MHz)	SAR (10g)	6.55	6.59	0.6 %	000.17,2007
CDMA2000	SAR (1g)	41.1	39.9	-2.9 %	Oct 11 2007
PCS (1900MHz)	SAR (10g)	21.8	21.2	-2.8 %	Oct. 11, 2007

 Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in one position. It is "Notebook Bottom Touch".

Remark: Please refer to Appendix F for the test setup photo.

10. Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the lowest, middle, and highest channel on each testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Notebook Bottom Touch

Band	Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
		1013	824.70	QPSK	23.87	-	-	-	-
	FCH_RC1	384	836.52	QPSK	24.04	-0.153	0.041	1.6	Pass
		777	848.31	QPSK	24.11	-	-	-	-
		1013	824.70	QPSK	23.88	-0.049	0.039	1.6	Pass
	FCH_RC3	384	836.52	QPSK	24.01	-0.116	0.041	1.6	Pass
		777	848.31	QPSK	24.11	-0.122	0.033	1.6	Pass
	FCH_RC3 with BT On	384	836.52	QPSK	24.01	0.149	0.04	1.6	Pass
		1013	824.70	QPSK	23.23	-	-	-	-
	FCH+SCH_RC3	384	836.52	QPSK	23.31	-0.121	0.037	1.6	Pass
		777	848.31	QPSK	23.49	-	-	-	-
	1xEVDO Rev.0	1013	824.70	QPSK	23.60	-	-	-	-
	RTAP 9.6K	384	836.52	QPSK	23.69	-0.19	0.035	1.6	Pass
CDMA2000	KIAI 9.0K	777	848.31	QPSK	23.85	-	-	-	-
CDMA2000 Cellular	1xEVDO Rev.0	1013	824.70	QPSK	23.84	-	-	-	-
Centulai	RTAP 38.4K	384	836.52	QPSK	23.90	0.139	0.038	1.6	Pass
	KIAI 50.4K	777	848.31	QPSK	24.15	-	-	-	-
	1xEVDO Rev.0 RTAP 153.6K	1013	824.70	QPSK	23.98	-	-	-	-
		384	836.52	QPSK	24.03	-0.067	0.039	1.6	Pass
	KIAI 155.0K	777	848.31	QPSK	24.26	-	-	-	-
	1xEVDO Rev.A RETAP 128	1013	824.70	QPSK	23.26	-	-	-	-
		384	836.52	QPSK	23.29	-0.137	0.04	1.6	Pass
	KETAI 120	777	848.31	QPSK	23.60	-	-	-	-
	1xEVDO Rev.A	1013	824.70	QPSK	23.79	-	-	-	-
	RETAP 2048	384	836.52	QPSK	23.75	-0.01	0.039	1.6	Pass
	KEITAI 2040	777	848.31	QPSK	23.98	-	-	-	-
	1xEVDO Rev.A	1013	824.70	QPSK	22.60	-	-	-	-
	RETAP 12288	384	836.52	QPSK	22.87	0.06	0.037	1.6	Pass
	KETAI 12200	777	848.31	QPSK	23.04	-	-	-	-
CDMA2000		25	1851.25	QPSK	23.63	-0.13	0.041	1.6	Pass
PCS	FCH_RC1	600	1880.00	QPSK	23.77	-0.176	0.044	1.6	Pass
		1175	1908.75	QPSK	23.44	0.086	0.039	1.6	Pass
	FCH_RC1 with BT On	600	1880.00	QPSK	23.77	0.189	0.041	1.6	Pass
		25	1851.25	QPSK	23.63	-	-	-	-
	FCH_RC3	600	1880.00	QPSK	23.79	-0.174	0.043	1.6	Pass
		1175	1908.75	QPSK	23.41	-	-	-	-
		25	1851.25	QPSK	23.02	-	-	-	-
	FCH+SCH_RC3	600	1880.00	QPSK	23.17	-0.164	0.04	1.6	Pass
		1175	1908.75	QPSK	22.85	-	-	-	-
	1xEVDO Rev.0	25	1851.25	QPSK	23.32	-	-	-	-
	RTAP 9.6K	600	1880.00	QPSK	23.45	0.12	0.041	1.6	Pass
		1175	1908.75	QPSK	23.10	-	-	-	-
	1xEVDO Rev.0	25	1851.25	QPSK	23.50	-	-	-	-
	RTAP 38.4K	600	1880.00	QPSK	23.63	0.169	0.041	1.6	Pass
	KIAI 30.4K	1175	1908.75	QPSK	23.24	-	-	-	-
	1xEVDO Rev.0	25	1851.25	QPSK	23.69	-	-	-	-

©2007 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.

Test Report No : FA7O1107-1-2-01

	RTAP 153.6K	600	1880.00	QPSK	23.80	-0.041	0.043	1.6	Pass
		1175	1908.75	QPSK	23.50	-	-	-	-
,	1xEVDO Rev.A	25	1851.25	QPSK	22.83	-	-	-	-
	RETAP 128	600	1880.00	QPSK	23.12	-0.037	0.035	1.6	Pass
	KETAI 120	1175	1908.75	QPSK	22.49	-	-	-	-
	1xEVDO Rev.A	25	1851.25	QPSK	22.94	-	-	-	-
-	RETAP 2048	600	1880.00	QPSK	23.55	0.092	0.037	1.6	Pass
	KETAI 2046	1175	1908.75	QPSK	22.89	-	-	-	-
	1xEVDO Rev.A RETAP 12288	25	1851.25	QPSK	23.42	-	-	-	-
		600	1880.00	QPSK	23.52	0.106	0.038	1.6	Pass
		1175	1908.75	QPSK	22.40	-	-	-	-

Test Engineer : John Tsai and Eric Huang

12. References

- FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

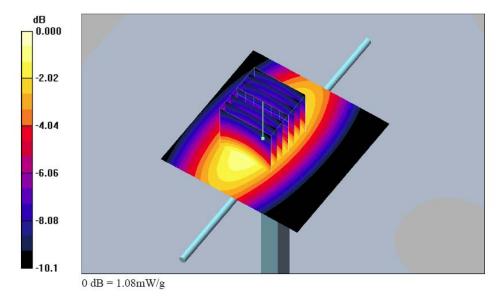
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date: 2007/10/17

System Check_Body_835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C


DASY4 Configuration:

Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
 Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (41x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.978 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.4 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.997 mW/g; SAR(10 g) = 0.659 mW/g Maximum value of SAR (measured) = 1.08 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date: 2007/10/11

System Check_Body_1900MHz

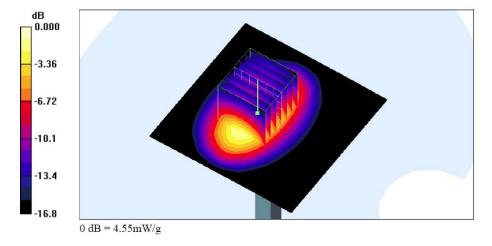
DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ε_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 8/28/2007

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 11/21/2006

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.68 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.4 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 6.72 W/kg SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.12 mW/g Maximum value of SAR (measured) = 4.55 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab

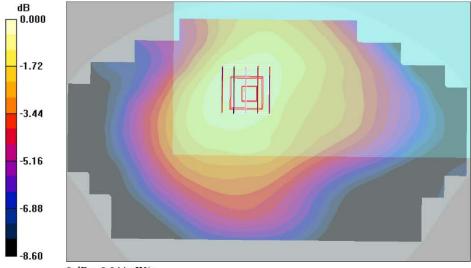
Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xRTT_FCH_RC1

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.972$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.62 V/m; Power Drift = -0.153 dB Peak SAR (extrapolated) = 0.058 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.044 mW/g

0 dB = 0.044 mW/g

Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xRTT_FCH_RC3

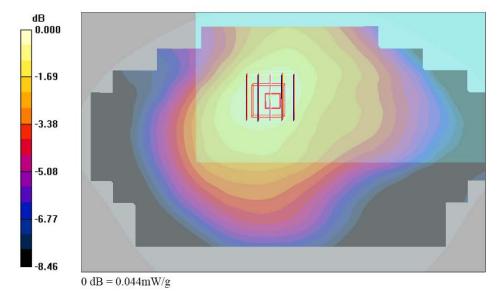
DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.043 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.57 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 0.057 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.044 mW/g

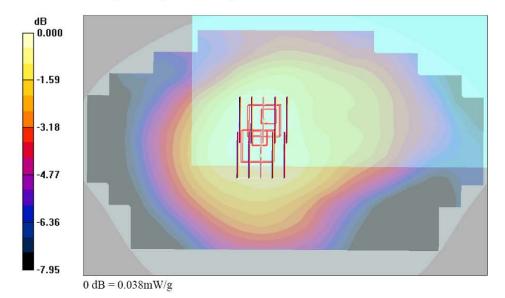
Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xRTT_FCH_RC3_Bluetooth On

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.042 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.12 V/m; Power Drift = 0.149 dB Peak SAR (extrapolated) = 0.058 W/kg SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.028 mW/g Maximum value of SAR (measured) = 0.042 mW/g

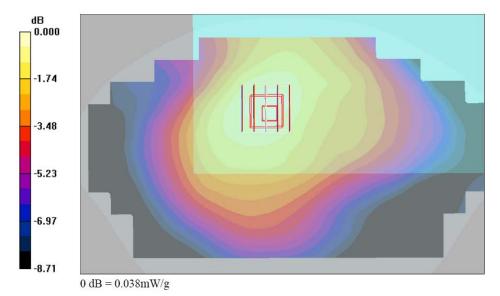
Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.12 V/m; Power Drift = 0.149 dB Peak SAR (extrapolated) = 0.047 W/kg SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.038 mW/g

Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xRTT_FCH+SCH_RC3

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.6 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.037 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.20 V/m; Power Drift = -0.121 dB Peak SAR (extrapolated) = 0.051 W/kg SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.026 mW/g Maximum value of SAR (measured) = 0.038 mW/g

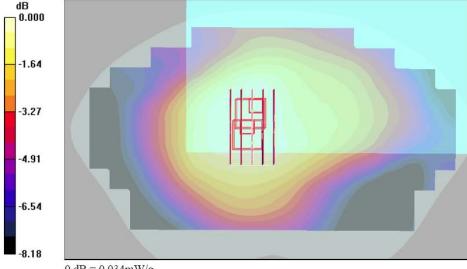
Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.0_9.6K

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.03 V/m; Power Drift = -0.190 dB Peak SAR (extrapolated) = 0.049 W/kg SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.025 mW/g Maximum value of SAR (measured) = 0.037 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.03 V/m; Power Drift = -0.190 dB Peak SAR (extrapolated) = 0.042 W/kg SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.024 mW/g Maximum value of SAR (measured) = 0.034 mW/g

0 dB = 0.034 mW/g

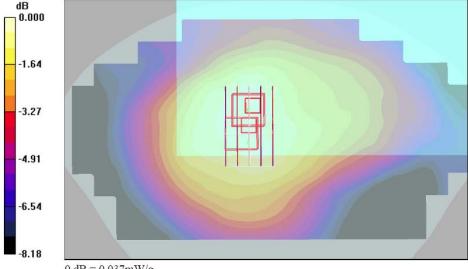
Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.0_38.4K

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.041 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.01 V/m; Power Drift = 0.139 dB Peak SAR (extrapolated) = 0.054 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.040 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.01 V/m; Power Drift = 0.139 dB Peak SAR (extrapolated) = 0.046 W/kg SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.025 mW/g Maximum value of SAR (measured) = 0.037 mW/g

0 dB = 0.037 mW/g

Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.0_153.6K

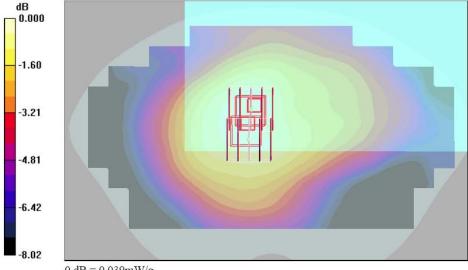
DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.7 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21


- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.041 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.18 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.054 W/kg SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.028 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.18 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.048 W/kg SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.039 mW/g

0 dB = 0.039 mW/g

Date : 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.A_128

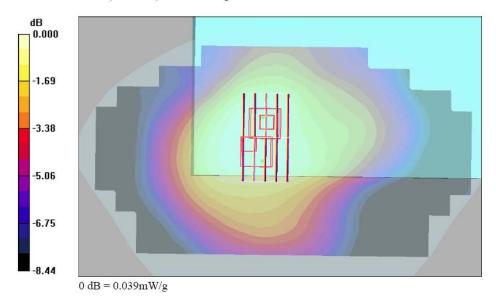
DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21


- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.042 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.96 V/m; Power Drift = -0.137 dB Peak SAR (extrapolated) = 0.058 W/kg SAR(1 g) = 0.04 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.043 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.96 V/m; Power Drift = -0.137 dB Peak SAR (extrapolated) = 0.046 W/kg SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.039 mW/g

Date : 2007/10/20

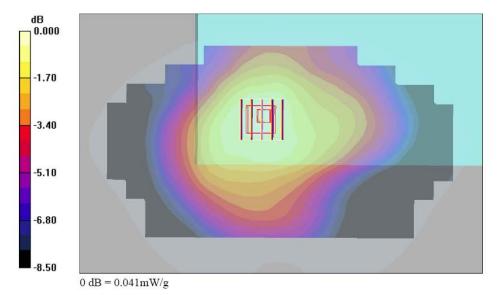
Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.A_2048

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.92 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 0.055 W/kg SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.028 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Date : 2007/10/17

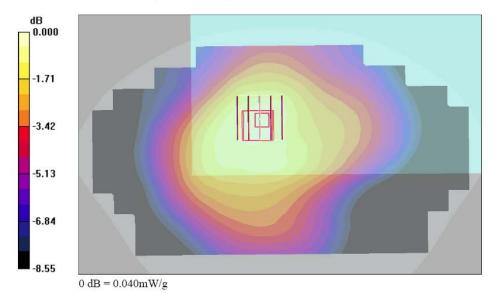
Body_CDMA2000 Ch384_Notebook Bottom Touch_1xEVDO_Rev.A_12288

DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.038 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.66 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 0.052 W/kg SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.040 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xRTT_FCH_RC1

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.047 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.99 V/m; Power Drift = -0.176 dB Peak SAR (extrapolated) = 0.066 W/kg SAR(1 g) = 0.044 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.047 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xRTT_FCH_RC1_Bluetooth On

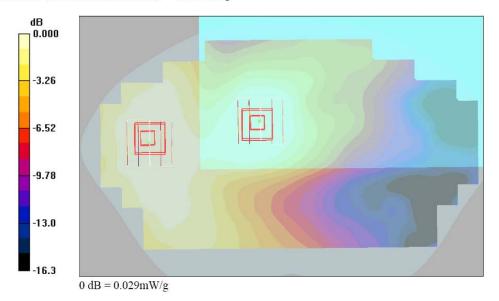
DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21


- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.09 V/m; Power Drift = 0.189 dB Peak SAR (extrapolated) = 0.064 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.026 mW/g Maximum value of SAR (measured) = 0.044 mW/g

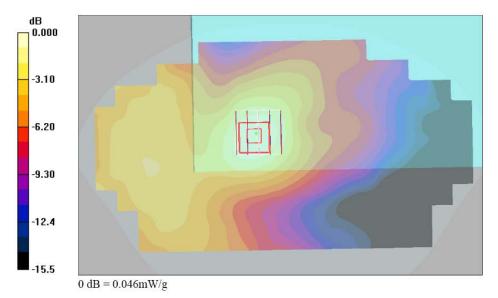
Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.09 V/m; Power Drift = 0.189 dB Peak SAR (extrapolated) = 0.043 W/kg SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.018 mW/g Maximum value of SAR (measured) = 0.029 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xRTT_FCH_RC3

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.048 mW/g

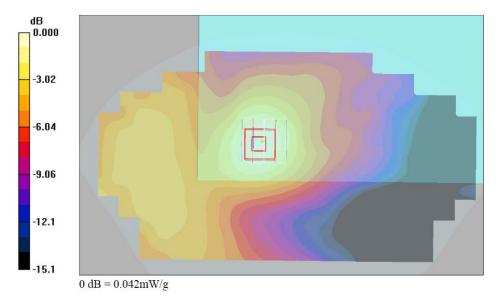
Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.98 V/m; Power Drift = -0.174 dB Peak SAR (extrapolated) = 0.066 W/kg SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.046 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xRTT_FCH+SCH_RC3

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

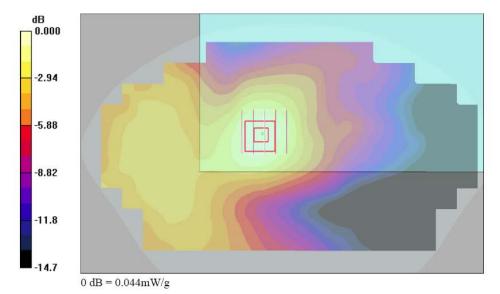
Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.54 V/m; Power Drift = -0.164 dB Peak SAR (extrapolated) = 0.060 W/kg SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.025 mW/g Maximum value of SAR (measured) = 0.042 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.0_9.6k

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.6 °C; Liquid Temperature : 21.7 °C


DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.57 V/m; Power Drift = 0.120 dB Peak SAR (extrapolated) = 0.062 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.026 mW/g Maximum value of SAR (measured) = 0.044 mW/g

Date: 2007/10/11

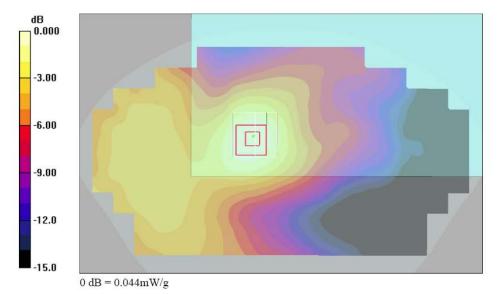
Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.0_38.4k

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.66 V/m; Power Drift = 0.169 dB Peak SAR (extrapolated) = 0.062 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.026 mW/g Maximum value of SAR (measured) = 0.044 mW/g

Date: 2007/10/11

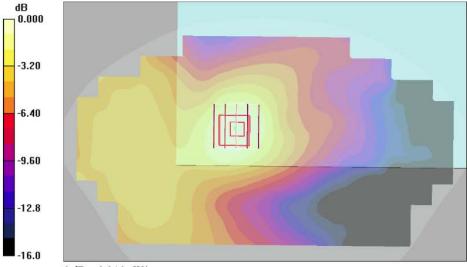
Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.0_153.6k

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.1 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.046 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.75 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.066 W/kg SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.046 mW/g

 $0 \, dB = 0.046 \, mW/g$

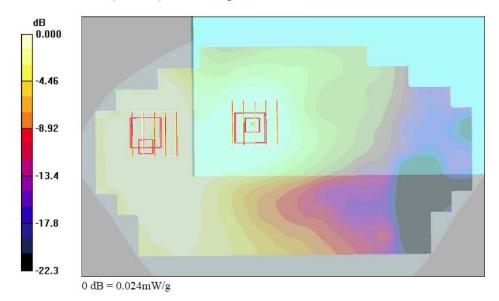
Date : 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.A_128

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.039 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.41 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.038 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.41 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 0.035 W/kg SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.015 mW/g Maximum value of SAR (measured) = 0.024 mW/g

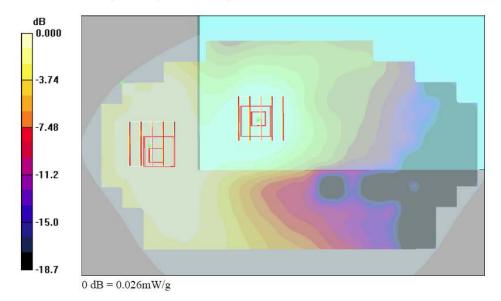
Date : 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.A_2048

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.040 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.49 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 0.057 W/kg SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.024 mW/g Maximum value of SAR (measured) = 0.040 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.49 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 0.038 W/kg SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.016 mW/g Maximum value of SAR (measured) = 0.026 mW/g

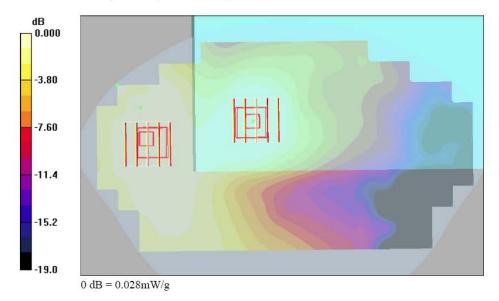
Date : 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xEVDO_Rev.A_12288

DUT: 701107

Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.042 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.51 V/m; Power Drift = 0.106 dB Peak SAR (extrapolated) = 0.058 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.024 mW/g Maximum value of SAR (measured) = 0.041 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.51 V/m; Power Drift = 0.106 dB Peak SAR (extrapolated) = 0.040 W/kg SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.017 mW/g Maximum value of SAR (measured) = 0.028 mW/g

Date: 2007/10/17

Body_CDMA2000 Ch384_Notebook Bottom Touch_1xRTT_FCH_RC3_2D

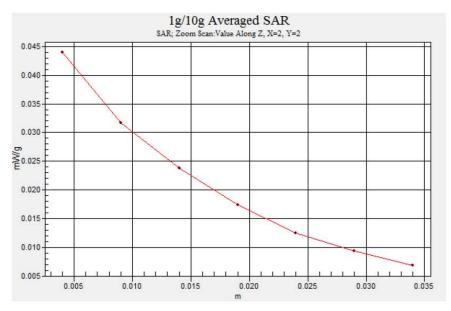
DUT: 701107

Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium: MSL_850 Medium parameters used: f = 837 MHz; σ = 0.972 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn577; Calibrated: 2006/11/21

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383

- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch384/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.043 mW/g

Ch384/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.57 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 0.057 W/kg SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.044 mW/g

Date: 2007/10/11

Body_CDMA2000 Ch600_Notebook Bottom Touch_1xRTT_FCH_RC1_2D

DUT: 701107

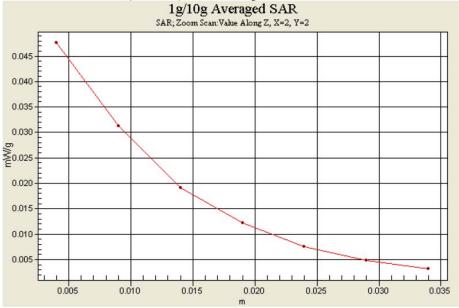
Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.4 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 8/28/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383


- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch600/Area Scan (111x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.047 mW/g

Ch600/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.99 V/m; Power Drift = -0.176 dB Peak SAR (extrapolated) = 0.066 W/kg

SAR(1 g) = 0.044 mW/g; SAR(10 g) = 0.027 mW/g

Maximum value of SAR (measured) = 0.047 mW/g

FCC SAR Test Report

Appendix C – Calibration Data

Engineering AG Zeughausstrasse 43, 8004 Zuric	h, Switzerland		chweizerischer Kalibrierdien: ervice suisse d'étalonnage ervizio svizzero di taratura viss Calibration Service
Accredited by the Swiss Federal C The Swiss Accreditation Servic	e is one of the signatorie	s to the EA	: SCS 108
Multilateral Agreement for the n Client Sporton (Aude			835V2-499_Mar06
CALIBRATION C	CERTIFICATE		
Object	D835V2 - SN: 49	9	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	March 15, 2006		
2 201 201 at 125	In Tolerance		
The measurements and the unce	ents the traceability to nati rtainties with confidence p	onal standards, which realize the physical units of robability are given on the following pages and are y facility: environment temperature (22 ± 3)°C and	e part of the certificate.
This calibration certificate docum The measurements and the unce	ents the traceability to nati- rtainties with confidence pl cted in the closed laborator	robability are given on the following pages and are	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been conduc	ents the traceability to nati- rtainties with confidence protection of the closed laborator	cobability are given on the following pages and are y facility: environment temperature (22 ± 3) °C and	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-05
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Oct-06 Aug-06 Aug-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	ents the traceability to nati- rtainties with confidence pro- sted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 13-Aug-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-05
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	ents the traceability to nati- rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 (10r) SN 1507 SN 601	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SEPEAG, No. ET3-1507_Oct05)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-08 Aug-06 Oct-08 Dec-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	ents the traceability to nati- rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Oct-06 Oct-05 Dec-06 Scheduled Check
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	ents the traceability to nati- rtainties with confidence pro- cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5066 (20g) SN: 5066 (20g) SN: 5067.2 (10r) SN 1507 SN 601 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	ents the traceability to nati- rtainties with confidence pro- cted in the closed laborator TE ortical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41000675	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DE3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	a part of the certificate. d humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Nov-07
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	ents the traceability to national intrainties with confidence proceed in the closed laborator of the critical for calibration) ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41092317 MY41000675 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	a part of the certificate. I humidity < 70%. Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	ents the traceability to nati- rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5047.2 (10r) SN: 5047.2 (10r) SN: 5047.2 (10r) SN: 601 ID # MY41092317 MY41090575 US37390585 S4206 Name	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DE3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	a part of the certificate. A humidity < 70%. Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 Signature

©2007 SPORTON International Inc. SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.