

# **6.2.** Peak Power Spectral Density [Section 15.407(a)(1)(2)(3) ]

### 6.2.1. Test Procedure

 The Transmitter output of EUT was connected to the spectrum analyzer. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 30MHz or 50MHz RBW: 1MHz VBW: 3MHz Sweep time: 30 or 50 sec. Center frequency: fundamental frequency tested

### 2. Peak search was read to the peak power after maximum hold function is completed.

## 6.2.2. Test Setup



### 6.2.3. Test Data: (Normal Mode)

# Maximum Peak Output Power Density

|           |           |             |          |            | Temperature (deg. C): | 25        |
|-----------|-----------|-------------|----------|------------|-----------------------|-----------|
| Test Engi | neer:     | Jerry Chiou |          |            | Humidity (%):         | 50        |
| Channel   | Frequency | Spectrum    | Cable    | Peak Power | Limit                 | Pass/Fail |
|           | (Mhz)     | Reading     | Loss(dB) | Output     | (dBm/Mhz)             |           |
|           |           | (dBm)       |          | dBm/MHz)   |                       |           |
| 1         | 5180      | 0.55        | 1.20     | 1.75       | 4.00                  | Pass      |
| 4         | 5240      | 1.89        | 1.20     | 3.09       | 4.00                  | Pass      |
| 5         | 5260      | 1.73        | 1.20     | 2.93       | 11.00                 | Pass      |
| 8         | 5320      | 1.13        | 1.20     | 2.33       | 11.00                 | Pass      |



### 5180 MHz:



### 5240 MHz:





### 5260 MHz:



### 5320 MHz:





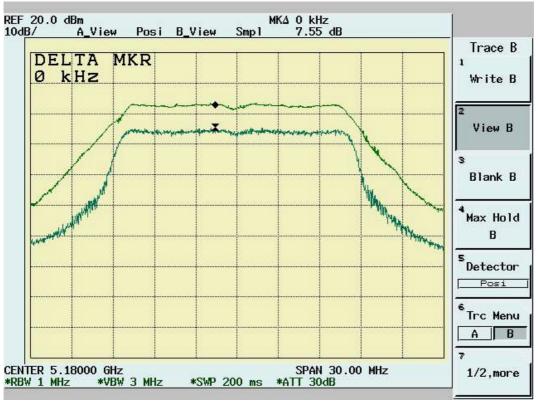
# 6.3. Peak Power Excursion Measurement [Section 15.407(a)(6)]

### 6.3.1. Test Procedure

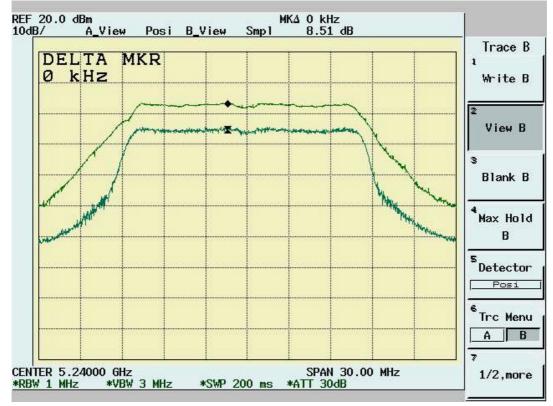
- The Transmitter output of EUT was connected to the spectrum analyzer.
   Frequency SPAN of Spectrum: 30MHz or 50MHz.
   Trace 1 : RBW: 1MHz, VBW: 3MHz. Using positive detector and Max -hold
   Trace 2 : RBW: 1MHz, VBW: 3MHz. Using Power average mode 100 times
- 5. Record the largest difference between Trace 1 and Trace 2.

### 6.3.2. Test Setup

|     | Spectrum<br>Analyzer |
|-----|----------------------|
| EUT | Analyzer             |
|     |                      |
|     |                      |

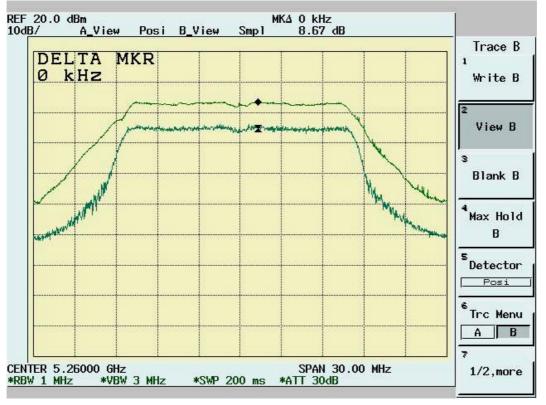

## 6.3.3. Test Data: (Normal Mode)

### **Peak Power Excursion**


|             |           |                            | Temperature (deg. C): | 25        |
|-------------|-----------|----------------------------|-----------------------|-----------|
| Test Engine | er:       | Jerry Chiou                | Humidity (%):         | 50        |
| Channel     | Frequency | Peak Power Excursion (dBm) | Limit                 | Pass/Fail |
|             | (Mhz)     |                            | dBm                   |           |
| 1           | 5180      | 7.55                       | 13                    | Pass      |
| 4           | 5240      | 8.51                       | 13                    | Pass      |
| 5           | 5260      | 8.67                       | 13                    | Pass      |
| 8           | 5320      | 8.45                       | 13                    | Pass      |



### 5180 MHz:




### 5240 MHz:






### 5260 MHz:



### 5320 MHz:





# **6.4.** Powerline Conducted Emissions

[Section 15.207 & 15.407 (b)(5)]

### 6.4.1. EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

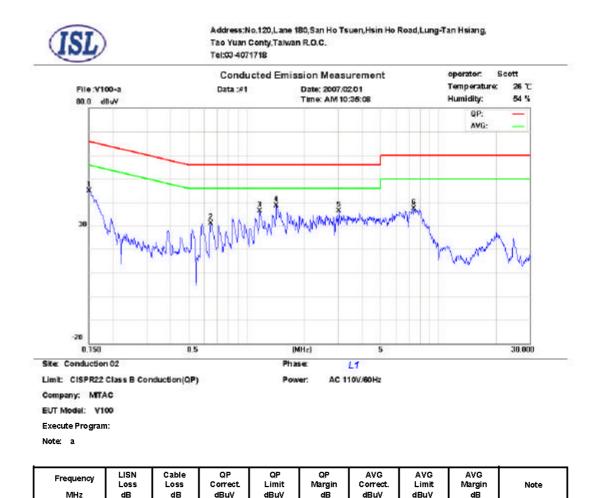
Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

### 6.4.2. Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than  $6d\beta$  below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than  $6d\beta$  below the applicable average limits, the emissions were also measured with the average detectors.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

### 6.4.3. EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: Detector Function: Bandwidth (RBW): 150 KHz--30MHz Quasi-Peak/Average 9KHz



### 6.4.4. Test Data: Power Line Conducted Emissions (Hot)



\*:Maximum data x:Over limit

0.1500

0.6474

1.1657

1.4257

3.0253

7.4465

0.1

0.2

0.2

0.2

0.3

0.46

0.02

0.07

0.07

0.08

0.12

0.18

43.20

34.30

38.00

42.00

26.20

37.80

66.0

56.0

56.0

56.0

56.0

60.0

-22.8

-21.7

-18.0

-14.0

-29.8

-22.2

40.00

31.90

34.70

37.20

22.20

36.30

56.0

46.0

46.0

46.0

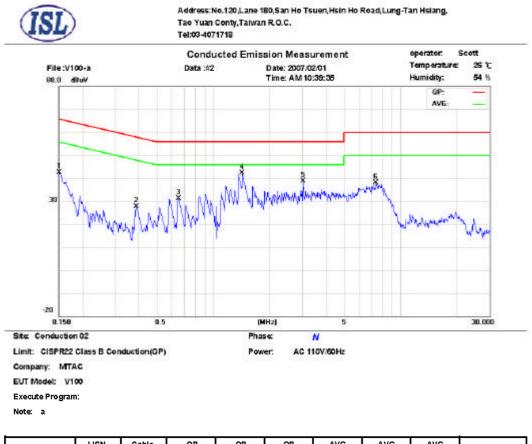
46.0

50.0

-16.0

-14.1

-11.3


-8.80

-23.8

-13.7



## **Power Line Conducted Emissions (Neutral)**



|   | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|---|------------------|--------------------|---------------------|-----------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
|   | 0.1500           | 0.1                | 0.02                | 42.60                 | 66.0                | -23.4              | 39.60                   | 56.0                 | -16.4               |      |
|   | 0.3893           | 0.19               | 0.09                | 28.70                 | 58.0                | -29.3              | 26.90                   | 48.0                 | -21.1               |      |
|   | 0.6543           | 0.2                | 0.07                | 24.00                 | 56.0                | -32.0              | 19.90                   | 46.0                 | -26.1               |      |
| * | 1.4257           | 0.2                | 0.08                | 44.10                 | 56.0                | -11.9              | 40.40                   | 46.0                 | -5.60               |      |
|   | 3.0253           | 0.2                | 0.12                | 26.10                 | 56.0                | -29.9              | 22.40                   | 46.0                 | -23.6               |      |
|   | 7.3680           | 0.31               | 0.18                | 35.40                 | 60.0                | -24.6              | 30.60                   | 50.0                 | -19.4               |      |

\*:Maximum data x:Over limit

\* NOTE: Mode and Channel 1, 2, 3,4,5 of Turbo Mode to get the maximum reading of all these channels Margin = Amplitude + Insertion Loss- Limit A margin of -8dB means that the emission is 8dB below the limit



# 6.5. Radiated Emission Measurement [Section 15.209 & 15.407(b)(5)]

### 6.5.1. EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

### 6.5.2. Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

1GHz – 40GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. During test the EMI receiver and spectrum was setup according to para. 6.5.3.

For the test of  $2^{nd}$  to  $10^{th}$  harmonics frequencies, the equipment setup was also refer to para.6.5.3. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.

| 1                           | <b>v</b> 8      |  |
|-----------------------------|-----------------|--|
| Frequency Range Tested:     | 30MHz~1000MHz   |  |
| Detector Function:          | Quasi-Peak Mode |  |
| Resolution Bandwidth (RBW): | 120KHz          |  |
| Video Bandwidth (VBW)       | 1MHz            |  |
| Frequency Range Tested:     | 1GHz – 40 GHz   |  |
| Detector Function:          | Peak Mode       |  |
| Resolution Bandwidth (RBW): | 1MHz            |  |
| Video Bandwidth (VBW)       | 3MHz            |  |
| Frequency Range Tested:     | 30MHz – 40 GHz  |  |
| Detector Function:          | Average Mode    |  |
| Resolution Bandwidth (RBW): | 1MHz            |  |
| Video Bandwidth (VBW)       | 10 Hz           |  |
|                             |                 |  |

### 6.5.3. EMI Receiver/Spectrum Analyzer Configuration

# 6.5.4. Test Data (30MHz - 1GHz).

### 30M - 1GHz Open Field Radiated Emissions (Horizontal)

|           |        |         |           |            |             |          | Operate | or:JerryChio | u           |
|-----------|--------|---------|-----------|------------|-------------|----------|---------|--------------|-------------|
|           |        |         |           |            |             |          |         |              | ature(C):25 |
|           |        |         |           |            |             |          |         | Hum          | idity(%):63 |
| Frequency | RxAmp. | AntFact | CableLoss | PreAmpGain | Corrct.Emi. | Limit    | Margin  | Ant.Pos      | TablePos    |
| MHz       | (dBuV) | (dB/m)  | (dB)      | (dB)       | (dBuV/m)    | (dBuV/m) | (dB)    | (cm)         | (deg)       |
| 59.1      | 19.28  | 6.72    | 1.33      | 0.00       | 27.33       | 40.00    | -12.67  | 96.00        | 245.00      |
| 68.8      | 22.93  | 6.16    | 1.51      | 0.00       | 30.60       | 40.00    | -9.40   | 96.00        | 219.00      |
| 88.2      | 23.45  | 8.54    | 1.67      | 0.00       | 33.66       | 43.50    | -9.84   | 96.00        | 219.00      |
| 95.96     | 18.16  | 9.91    | 1.79      | 0.00       | 29.87       | 43.50    | -13.63  | 96.00        | 35.00       |
| 99.84     | 14.61  | 10.57   | 1.92      | 0.00       | 27.11       | 43.50    | -16.39  | 96.00        | 35.00       |
| 102.75    | 14.55  | 11.10   | 1.93      | 0.00       | 27.57       | 43.50    | -15.93  | 96.00        | 61.00       |
| 105.66    | 14.84  | 11.62   | 1.93      | 0.00       | 28.38       | 43.50    | -15.12  | 96.00        | 35.00       |
| 111.48    | 18.73  | 12.43   | 1.90      | 0.00       | 33.06       | 43.50    | -10.44  | 96.00        | 61.00       |
| 158.04    | 21.85  | 10.12   | 2.36      | 0.00       | 34.33       | 43.50    | -9.17   | 96.00        | 219.00      |
| 177.44    | 16.34  | 9.35    | 2.49      | 0.00       | 28.17       | 43.50    | -15.33  | 96.00        | 193.00      |
| 197.81    | 21.01  | 9.16    | 2.60      | 0.00       | 32.76       | 43.50    | -10.74  | 96.00        | 245.00      |
| 202.66    | 22.27  | 9.17    | 2.63      | 0.00       | 34.07       | 43.50    | -9.43   | 96.00        | 245.00      |

### 30M – 1GHz Open Field Radiated Emissions (Vertical)

|           |        |         |           |            |             |          | Operat | or:JerryChic | ou           |
|-----------|--------|---------|-----------|------------|-------------|----------|--------|--------------|--------------|
|           |        |         |           |            |             |          |        | 1            | rature(C):25 |
|           |        |         |           |            |             |          |        | Hun          | nidity(%):63 |
| Frequency | RxAmp. | AntFact | CableLoss | PreAmpGain | Corrct.Emi. | Limit    | Margin | Ant.Pos      | TablePos.    |
| MHz       | (dBuV) | (dB/m)  | (dB)      | (dB)       | (dBuV/m)    | (dBuV/m) | (dB)   | (cm)         | (deg)        |
| 70.74     | 22.55  | 6.16    | 1.55      | 0.00       | 30.25       | 40.00    | -9.75  | 96.00        | 245.00       |
| 89.17     | 23.28  | 8.73    | 1.66      | 0.00       | 33.68       | 43.50    | -9.82  | 96.00        | 219.00       |
| 95.96     | 18.13  | 9.91    | 1.79      | 0.00       | 29.84       | 43.50    | -13.66 | 96.00        | 35.00        |
| 105.66    | 15.46  | 11.62   | 1.93      | 0.00       | 29.01       | 43.50    | -14.49 | 96.00        | 35.00        |
| 108.57    | 14.66  | 12.14   | 1.94      | 0.00       | 28.74       | 43.50    | -14.76 | 96.00        | 61.00        |
| 111.48    | 15.78  | 12.43   | 1.90      | 0.00       | 30.12       | 43.50    | -13.38 | 96.00        | 61.00        |
| 155.13    | 17.70  | 10.15   | 2.31      | 0.00       | 30.16       | 43.50    | -13.34 | 96.00        | 219.00       |
| 159.98    | 17.04  | 10.10   | 2.39      | 0.00       | 29.53       | 43.50    | -13.97 | 96.00        | 219.00       |
| 162.89    | 17.05  | 9.93    | 2.39      | 0.00       | 29.37       | 43.50    | -14.13 | 96.00        | 219.00       |
| 197.81    | 16.45  | 9.16    | 2.60      | 0.00       | 28.20       | 43.50    | -15.30 | 96.00        | 245.00       |
| 202.66    | 16.30  | 9.17    | 2.63      | 0.00       | 28.10       | 43.50    | -15.40 | 96.00        | 245.00       |
| 334.58    | 13.27  | 14.03   | 3.30      | 0.00       | 30.60       | 46.00    | -15.40 | 96.00        | 140.00       |

\* NOTE: During the pre-test, the EUT has been tested for Channel 1, 4, 5, 8, 9, 12 of Normal Mode and Channel 1, 2, 3, 4, 5 of Turbo mode and transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.

Margin=Corrected Amplitude-Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit



RBW:1MHz

# 6.5.5. Test Data (1GHz – 40 GHz, Transmitting).

### 1GHz~ 40 GHz (Horizontal), Normal Mode, 5180 MHz

|                                                |      |         | Operator:Jerr | ryChiou |       |         |         |        | I       | RBW:1MHz          |  |
|------------------------------------------------|------|---------|---------------|---------|-------|---------|---------|--------|---------|-------------------|--|
|                                                |      | Hun     | nidity(%):57  |         |       |         |         |        |         |                   |  |
|                                                |      |         |               |         |       |         |         |        |         | Temperature(C):22 |  |
| Frequency Rx_R. Ant_F. Cab_L. PreAmpl Emission |      |         |               |         |       |         |         | Margin | A.Tower | T.Table           |  |
| MI                                             | Hz   | dBuV    | dB/m          | dB      | dB    | dBuV/m  | dBuV/m  | dB     | cm      | deg               |  |
| 7559                                           | 9.84 | 30.96pk | 39.98         | 2.26    | 26.51 | 46.69pk | 54.00av | -7.31  | 100     | 191               |  |

# 1GHz~ 40 GHz (Vertical), Normal Mode, 5180 MHz

Operator:JerryChiou

|           |         | - r    | · / • · · · · · |         |          |         |        | -       |              |
|-----------|---------|--------|-----------------|---------|----------|---------|--------|---------|--------------|
|           |         |        |                 |         |          |         |        | Hun     | nidity(%):57 |
|           |         |        |                 |         |          |         |        | Temper  | rature(C):22 |
| Frequency | Rx_R.   | Ant_F. | Cab_L.          | PreAmpl | Emission | Limit   | Margin | A.Tower | T.Table      |
| MHz       | dBuV    | dB/m   | dB              | dB      | dBuV/m   | dBuV/m  | dB     | cm      | deg          |
| 1330.87   | 43.11pk | 26.02  | 2.21            | 23.88   | 47.46pk  | 54.00av | -6.54  | 101     | 89           |

Note: "\*": Fundamental Frequency

" pk": peak reading

"av": average reading

The Spectrum noise level+Correction Factor<Limit-6 dB

Margin = Corrected Amplitude - Limit

Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit.



### 1GHz~ 40 GHz (Horizontal), Normal Mode, 5240 MHz

|                                                             |         | Operator:Jerr | ryChiou      |              |         |         |       | I   | RBW:1MHz |
|-------------------------------------------------------------|---------|---------------|--------------|--------------|---------|---------|-------|-----|----------|
|                                                             |         |               | Hun          | nidity(%):57 |         |         |       |     |          |
|                                                             |         | Temper        | rature(C):22 |              |         |         |       |     |          |
| Frequency Rx_R. Ant_F. Cab_L. PreAmpl Emission Limit Margin |         |               |              |              |         |         |       |     | T.Table  |
| MHz                                                         | dBuV    | dB/m          | dB           | dB           | dBuV/m  | dBuV/m  | dB    | cm  | deg      |
| 5416.38                                                     | 35.75pk | 35.93         | 2.83         | 27.49        | 47.02pk | 54.00av | -6.98 | 100 | 120      |

## 1GHz~ 40 GHz (Vertical), Normal Mode, 5240 MHz

Operator:JerryChiou

RBW:1MHz Humidity(%):57 Temperature(C):22

|           |         |        |        |         |          |         |        | Temper  | ature(C).22 |
|-----------|---------|--------|--------|---------|----------|---------|--------|---------|-------------|
| Frequency | Rx_R.   | Ant_F. | Cab_L. | PreAmpl | Emission | Limit   | Margin | A.Tower | T.Table     |
| MHz       | dBuV    | dB/m   | dB     | dB      | dBuV/m   | dBuV/m  | dB     | cm      | deg         |
| 5035.16   | 36.24pk | 35.63  | 2.25   | 27.26   | 46.86pk  | 54.00av | -7.14  | 100     | 10          |

Note: "\*": Fundamental Frequency

" pk": peak reading

"av": average reading

The Spectrum noise level+Correction Factor<Limit-6 dB

Margin = Corrected Amplitude - Limit

Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit.



### 1GHz~ 40 GHz (Horizontal), Normal Mode, 5260 MHz

|           |         | Operator:Jerr | yChiou |         |          |         |        | RB        | W:1MHz    |
|-----------|---------|---------------|--------|---------|----------|---------|--------|-----------|-----------|
|           |         |               |        |         |          |         |        | Humid     | ity(%):57 |
|           |         |               |        |         |          |         |        | Temperatu | rre(C):22 |
| Frequency | Rx_R.   | Ant_F.        | Cab_L. | PreAmpl | Emission | Limit   | Margin | A.Tower   | T.Table   |
| MHz       | dBuV    | dB/m          | dB     | dB      | dBuV/m   | dBuV/m  | dB     | cm        | deg       |
| 5042.36   | 37.30pk | 35.63         | 2.27   | 27.27   | 47.93pk  | 54.00av | -6.07  | 100       | 12        |

### 1GHz~ 40 GHz (Vertical), Normal Mode, 5260 MHz

| Operator: Jerry Chiou |         |        |        |         |          |         |        | RB        | W:1MHz    |
|-----------------------|---------|--------|--------|---------|----------|---------|--------|-----------|-----------|
|                       |         |        |        |         |          |         |        |           |           |
|                       |         |        |        |         |          |         |        | Temperatu | rre(C):22 |
| Frequency             | Rx_R.   | Ant_F. | Cab_L. | PreAmpl | Emission | Limit   | Margin | A.Tower   | T.Table   |
| MHz                   | dBuV    | dB/m   | dB     | dB      | dBuV/m   | dBuV/m  | dB     | cm        | deg       |
| 5330.07               | 35.90pk | 35.86  | 2.81   | 27.44   | 47.13pk  | 54.00av | -6.87  | 100       | 95        |

Note: "\*": Fundamental Frequency

" pk": peak reading

"av": average reading

The Spectrum noise level+Correction Factor<Limit-6 dB

Margin = Corrected Amplitude – Limit

 $Corrected \ Amplitude = Radiated \ Amplitude + Antenna \ Correction \ Factor + Cable \ Loss - Pre-Amplifier \ Gain \ Contract \ Gain \ Gain \ Contract \ Gain \ Ga$ 

A margin of -8dB means that the emission is 8dB below the limit.



Frequency MHz 5099.9

### 1GHz~ 40 GHz (Horizontal), Normal Mode, 5320 MHz

|           | Operator:JerryChiou |        |        |         |          |         |        | RB                | W:1MHz    |
|-----------|---------------------|--------|--------|---------|----------|---------|--------|-------------------|-----------|
|           |                     |        |        |         |          |         |        |                   | ity(%):57 |
|           |                     |        |        |         |          |         |        | Temperature(C):22 |           |
| Frequency | Rx_R.               | Ant_F. | Cab_L. | PreAmpl | Emission | Limit   | Margin | A.Tower           | T.Table   |
| MHz       | dBuV                | dB/m   | dB     | dB      | dBuV/m   | dBuV/m  | dB     | cm                | deg       |
| 5071.13   | 39.64pk             | 35.66  | 2.34   | 27.28   | 50.35pk  | 54.00av | -3.65  | 100               | 20        |

## 1GHz~40 GHz (Vertical), Normal Mode, 5320 MHz

|         | Operator:JerryChiou RBW:1MH |           |         |          |         |        |           |           |  |
|---------|-----------------------------|-----------|---------|----------|---------|--------|-----------|-----------|--|
|         | Humid                       | ity(%):57 |         |          |         |        |           |           |  |
|         |                             |           |         |          |         |        | Temperatu | rre(C):22 |  |
| Rx_R.   | Ant_F.                      | Cab_L.    | PreAmpl | Emission | Limit   | Margin | A.Tower   | T.Table   |  |
| dBuV    | dB/m                        | dB        | dB      | dBuV/m   | dBuV/m  | dB     | cm        | deg       |  |
| 38.55pk | 35.68                       | 2.40      | 27.30   | 49.33pk  | 54.00av | -4.67  | 100       | 29        |  |

" \* ": Fundamental Frequency Note:

" pk": peak reading

"av": average reading

The Spectrum noise level+Correction Factor<Limit-6 dB

Margin = Corrected Amplitude - Limit

Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit.



# **6.6.** Band Edge Measurement (Section 15.407 (b) (1) (2))

### 6.6.1. Test Procedure (Conducted)

1. The Transmitter output of EUT was connected to the spectrum analyzer. Equipment mode: Spectrum analyzer

| Peak Mode: |          |
|------------|----------|
| SPAN       | 100MHz   |
| RBW        | 1MHz     |
| VBW        | 1MHz     |
| Sweep Time | 200msec. |

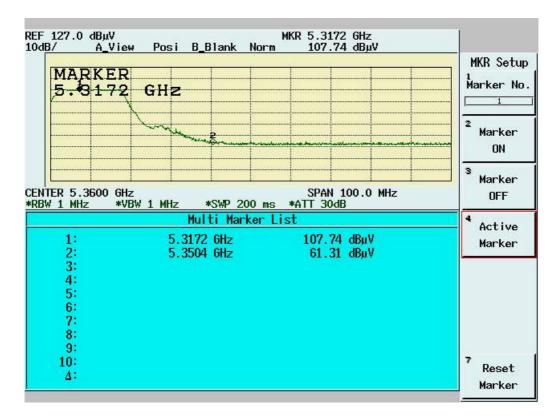
- 2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed.
- 3. Find the next peak frequency outside the operation frequency band.

### 6.6.2. Test Setup (Conducted)



## 6.6.3. Test Data (conducted):

### **Band Edge measurement (Conducted)** Temperature 25 (deg. C): Test Engineer: Jerry Chiou Humidity (%): 50 Outside Corrected Limit: Frequency Spectrum Corrected Pass Channel (MHz) Emissions (dBuV EIRP) Reading Factor or **Normal Mode** (dBuV) (dB)(dBuV EIRP) Fail 60.07 5.17 65.24 1 5145.4 80 Pass 8 61.31 5.17 5350.4 66.48 80 Pass


Note: Corrected Emissions=Spectrum + Corrected Factor Corrected Factor=Cable Loss+Antenna Peak Gain (dBi)



|                                                                                                                  | VED        |                     |                            | r              | -                             |                             |              | 1      | - | <u> </u> | Multi M                |
|------------------------------------------------------------------------------------------------------------------|------------|---------------------|----------------------------|----------------|-------------------------------|-----------------------------|--------------|--------|---|----------|------------------------|
| and the second | KER        |                     | _                          |                |                               |                             |              |        | 1 |          | Multi MM               |
| J. 1                                                                                                             | 014        | ап                  | <u> </u>                   |                |                               |                             |              |        | • | 7        | Setup                  |
|                                                                                                                  |            |                     |                            |                |                               |                             |              |        |   |          | <sup>2</sup> MKR Lis   |
| electrication contractor                                                                                         | mMethonika | hika an Thios and t |                            |                | 2                             |                             |              |        |   |          |                        |
|                                                                                                                  |            |                     |                            |                |                               |                             |              |        |   |          | <sup>3</sup> Peak Lis  |
| ER 5.1                                                                                                           | 400 GHz    |                     |                            |                |                               | SDAM                        | 100.0        | ) MH-  |   |          |                        |
| / 1 MHz                                                                                                          |            | W 1 MH              |                            |                | )0 ms<br><mark>ker Lis</mark> | ATT 30                      | dB           | ) MI12 |   |          | Level<br>4<br>Peak Lis |
| 1:<br>2:<br>3:<br>4:                                                                                             |            | <u>W 1 MH</u>       | Mul <sup>.</sup><br>5.1814 | ti Marl        | ker Lis                       | KATT 304<br>t               | dB<br>6 dBµ' | V      |   |          | 4                      |
| 1:<br>2:<br>3:<br>4:<br>5:<br>6:                                                                                 |            | <u>W 1 MH</u>       | Mul <sup>.</sup><br>5.1814 | ti Marl<br>GHz | ker Lis                       | <u>ATT 30</u><br>t<br>105.1 | dB<br>6 dBµ' | V      |   |          | 4<br>Peak Lis          |
| 1:<br>2:<br>3:<br>4:<br>5:                                                                                       |            | <u>W 1 MH</u>       | Mul <sup>.</sup><br>5.1814 | ti Marl<br>GHz | ker Lis                       | <u>ATT 30</u><br>t<br>105.1 | dB<br>6 dBµ' | V      |   |          | 4<br>Peak Lis          |

### Band Edge Conducted measurement (Normal Mode Channel 1)

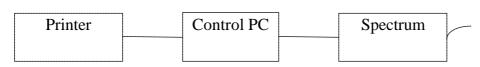
## Band Edge Conducted Measurement (Normal Mode Channel 8)





1. Antenna and Turntable test procedure same as Radiated Emissions measurement listed in Para. 6.5

Equipment mode: Spectrum analyzer


| Peak Mode: |          |
|------------|----------|
| SPAN       | 100MHz   |
| RBW        | 1MHz     |
| VBW        | 3MHz     |
| Sweep Time | 200msec. |
| AVE Mode:  |          |
| SPAN       | 100MHz   |
| RBW        | 1MHz     |
| VBW        | 10Hz     |
| Sweep Time | 20 sec.  |

2. Using Peak Search to read the peak power of Carrier frequencies after Maximun Hold function is completed.

- Find the next peak frequency outside the operation frequency band.
   Get the spectrum reading after Maximun Hold function is completed.







-102-



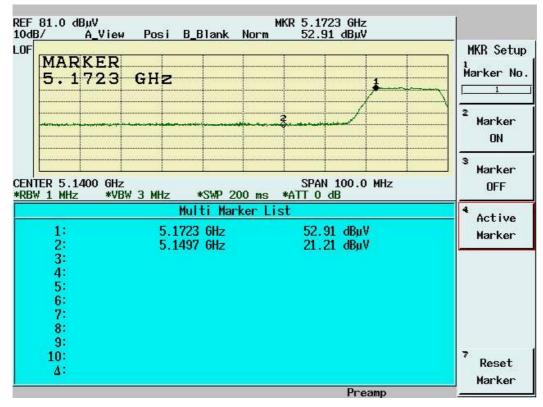
# 6.6.6. Test Data (Radiated):

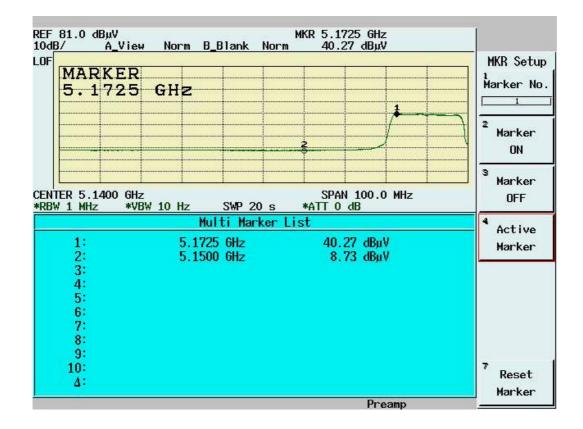
# **Band Edge measurement (Radiated)**

|                |           |             | Temperature (deg. C): | 25       |               |           |
|----------------|-----------|-------------|-----------------------|----------|---------------|-----------|
| Test Engineer: |           | Jerry Chiou |                       |          | Humidity (%): | 50        |
| Outside        | Frequency | Spectrum    | Correction            | Emission | Limit         | Pass/Fail |
| Channel        |           | Reading     | Factor                | Level    |               |           |
| (Normal)       | (MHz)     | (dBuV)      | (dB/m)                | (dBuV/m) | (dBuV/m)      |           |
| 1              | 5140 7    | 21.21       | 20.02                 | (0.24    | 74            | Daaa      |
| (Peak)         | 5149.7    | 21.21       | 39.03                 | 60.24    | 74            | Pass      |
| 1              | 5150      | 0.72        | 20.02                 | 1776     | 54            | Dese      |
| (Average)      | 5150      | 8.73        | 39.03                 | 47.76    | 54            | Pass      |
| 8              | 5250 1    | 01.51       | 20.24                 | 60.05    | 7.4           | D         |
| (Peak)         | 5350.1    | 21.51       | 39.34                 | 60.85    | 74            | Pass      |
| 8              | 5250      | 0.12        | 20.24                 | 40.47    | 54            | Deer      |
| (Average)      | 5350      | 9.13        | 39.34                 | 48.47    | 54            | Pass      |

Note: "pk": peak reading

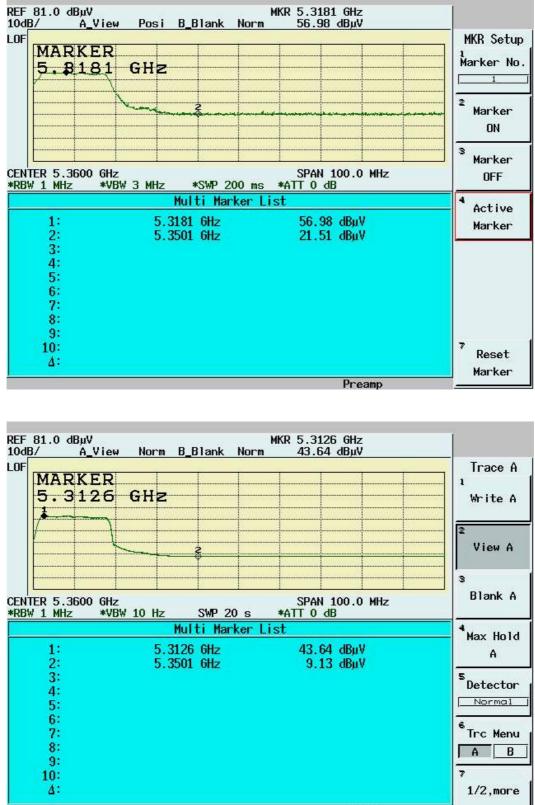
"av": average reading


Emission Level=Spectrum Reading+Correction Factor


Correction Factor = Antenna Factor+cable loss

Both Horizontal and Vertical polarization have been tested and the worst data is listed above.




### **Restricted Band Radiated measurement –5150MHz**







### Restricted Band Radiated measurement -5320MHz



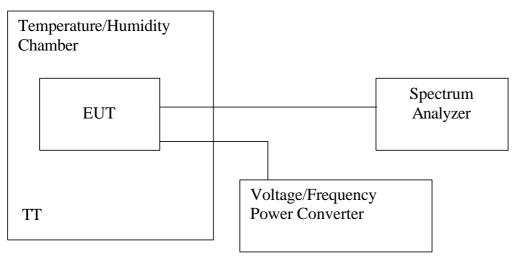
Preamp



**6.7. RF Exposure Measurement [Section 15.407(f)(4) & 1.1307(b)]** Refer to SAR Test Report



# 6.8. Frequency Stability [Section 15.407(g)]


## 6.8.1. Limits of Frequency Stability Measurement

The frequency tolerance of the carrier sing shall be maintained within +/- 0.02% of the operating frequency over the operation temperature range of EUT ( $0^{0}C \sim 35^{0}C$ ), and variation in the primary supply voltage from 85% to 115% of the rated supply voltage (120V AC) at 20<sup>0</sup>C.

# 6.8.2. Test Procedure

- 1. The EUT was placed in the Temperature/Humidity Chamber and powered by a Voltage/Frequency Power converter.
- 2. Connect the RF output of EUT to Spectrum. Turn on the EUT.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the chamber temperature to stabilize. Turn the EUT on and measure the operating frequency after 2, 5, 10 minutes.
- 5. Set the Voltage/Frequency Power Converter to 85% and 115% of supply voltage, then repeat step 2, 3, 4 respectively.
- 6. Repeat step 2, 3, 4, 5 with the temperature of chamber set to the lowest temperature.
- 7. Repeat step 2, 3, 4, 5 with the temperature of chamber set to  $20^{\circ}$ C.

# 6.8.3. Test Setup





### 6.8.4. Test Data

| Test Engi            | neer:           | Jerry Chiou |          |           |         |           |         |           |         |
|----------------------|-----------------|-------------|----------|-----------|---------|-----------|---------|-----------|---------|
| Operating Frequency: |                 | 532         | 20 (Mhz) |           |         |           |         |           |         |
| Temp.                | Power<br>Supply | 0 minutes   |          | 2 minutes |         | 5 minutes |         | 10 mir    | utes    |
| ( <sup>0</sup> C)    | (VAC)           | (MHz)       | (%)      | (MHz)     | (%)     | (MHz)     | (%)     | (MH       | Iz)     |
| 50                   | 138             | 5319.9620   | -0.0007  | 5319.9610 | -0.0007 | 5319.9720 | -0.0005 | 5319.9410 | -0.0011 |
|                      | 120             | 5319.9660   | -0.0006  | 5319.9460 | -0.0010 | 5319.9810 | -0.0004 | 5319.9620 | -0.0007 |
|                      | 102             | 5319.9640   | -0.0007  | 5319.9410 | -0.0011 | 5319.9820 | -0.0003 | 5319.9660 | -0.0006 |
| 20                   | 138             | 5319.9420   | -0.0011  | 5319.9600 | -0.0008 | 5319.9730 | -0.0005 | 5319.9610 | -0.0007 |
|                      | 120             | 5319.9420   | -0.0011  | 5319.9640 | -0.0007 | 5319.9560 | -0.0008 | 5319.9980 | 0.0000  |
|                      | 102             | 5319.9410   | -0.0011  | 5319.9580 | -0.0008 | 5319.9340 | -0.0012 | 5319.9660 | -0.0006 |
| -30                  | 138             | 5319.9690   | -0.0006  | 5319.9640 | -0.0007 | 5320.0290 | 0.0005  | 5319.9520 | -0.0009 |
|                      | 120             | 5319.9600   | -0.0008  | 5319.9550 | -0.0008 | 5319.9810 | -0.0004 | 5319.9930 | -0.0001 |
|                      | 102             | 5319.9570   | -0.0008  | 5319.9950 | -0.0001 | 5319.9960 | -0.0001 | 5319.9940 | -0.0001 |



# **6.9.** Transmitter Power Control (TPC)

### 6.9.1. Limit:

| Frequency Range (MHz)    | Mean EIRP Limit           | Mean EIRP Limit      |
|--------------------------|---------------------------|----------------------|
|                          | (Highest power level)     | (Lowest power level) |
| 5150 - 5350, 5470 - 5725 | 30 dBm e.i.r.p.           | 24 dBm e.i.r.p.      |
| 5150 - 5350, 5470 - 5725 | Less than 27 dBm e.i.r.p. | NA.                  |

### 6.9.2. Test data

Temp. ( ):25

| Test Engr:Jerry Ch     | Humidity (%):55                         |       |         |         |  |  |  |
|------------------------|-----------------------------------------|-------|---------|---------|--|--|--|
|                        | Effective Radiated Power (dBm e.i.r.p.) |       |         |         |  |  |  |
| Test conditions        | 5180Mhz 5240M                           |       | 5260Mhz | 5320Mhz |  |  |  |
|                        | AV                                      | AV    | AV      | AV      |  |  |  |
| Highest Power<br>Level | 11.39                                   | 13.85 | 13.43   | 12.61   |  |  |  |
| Lowest Power<br>Level  | NA                                      | NA    | NA      | NA      |  |  |  |

Note1: Measurement uncertainty=+/-0.5dB Note 2: AV=Average Power



# **6.10.** Dynamic Frequency Selection (DFS)

Refer to DFS Test Report



# 7. Appendix

## 7.1. Appendix A: Measurement Procedure for Power line Conducted Emissions

The measurements are performed in a  $3.5m \ge 3.4m \ge 2.5m$  shielded room, which referred as Conduction 01 test site, or a  $3m \ge 3m \ge 2.3m$  test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m  $\ge 1.5m$  table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the required standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum emission. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.



# 7.2. Appendix B: Test Procedure for Radiated Emissions

### Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

### Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum emission. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

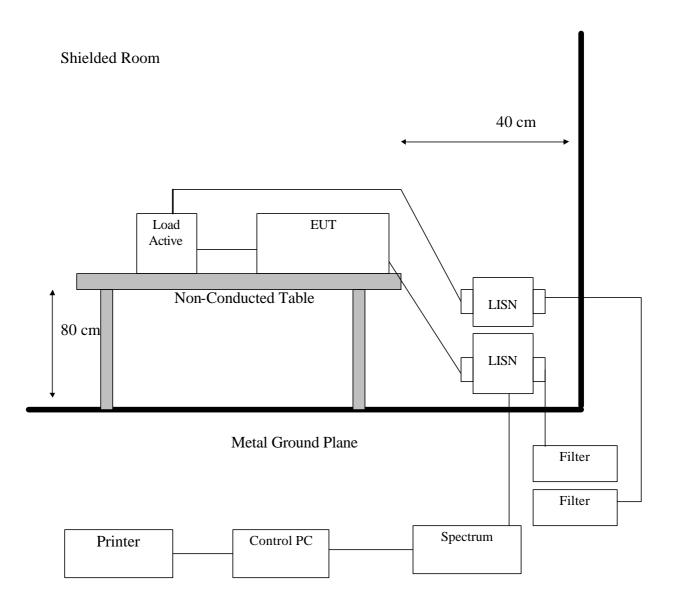


# 7.3. Appendix C: Test Equipment

# 7.3.1. Test Equipment List

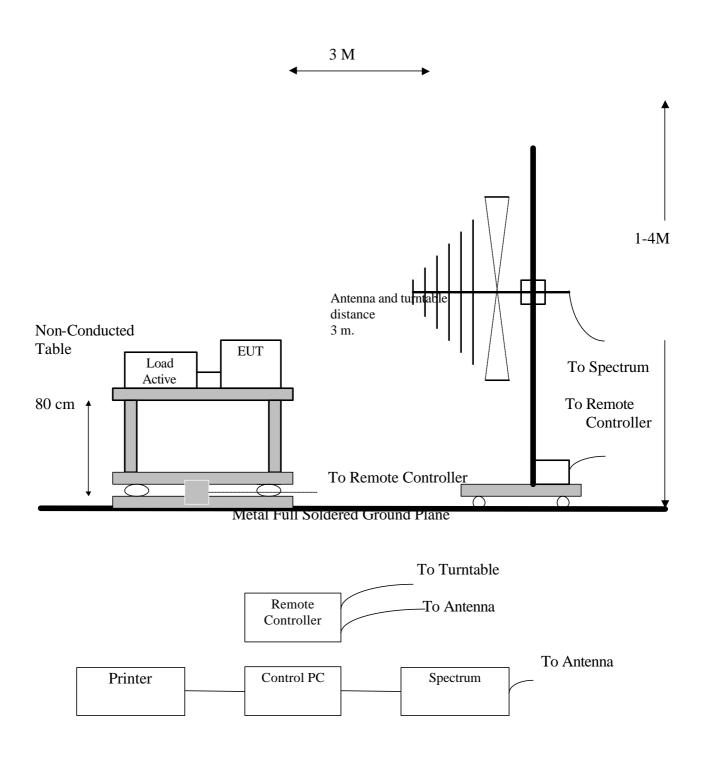
| Location   | Equipment Name                          | Brand                 | Model                            | S/N                  | Last Cal.<br>Date | Next Cal.<br>Date |
|------------|-----------------------------------------|-----------------------|----------------------------------|----------------------|-------------------|-------------------|
| Conduction | Coaxial Cable 1F-C2                     | Harbourindustr<br>ies | RG400                            | 1F-C2                | 05/20/2006        | 05/20/2007        |
| Conduction | Digital<br>Hygro-Thermometer<br>Conduct | MicroLife             | HT-2126G                         | ISL-Conductio<br>n02 | 11/30/2006        | 11/30/2007        |
| Conduction | EMI Receiver 02                         | HP                    | 85460A                           | 3448A00183           | 10/01/2006        | 10/01/2007        |
| Conduction | LISN 01                                 | R&S                   | ESH2-Z5                          | 890485/013           | 05/05/2006        | 05/05/2007        |
| Conduction | LISN 06                                 | R&S                   | ESH3-Z5                          | 828874/009           | 12/13/2006        | 12/13/2007        |
| Radiation  | BILOG Antenna 08                        | Schaffner             | CBL6112B                         | 2756                 | 06/07/2006        | 06/07/2007        |
| Radiation  | Coaxial Cable Chmb<br>02-10M            | Belden                | RG-8/U                           | Chmb 02-10M          | 12/28/2006        | 12/28/2007        |
| Radiation  | Digital<br>Hygro-Thermometer<br>Chmb 02 | MicroLife             | HT-2126G                         | Chmb 02              | 11/30/2006        | 12/30/2007        |
| Radiation  | EMI Receiver 03                         | HP                    | 85460A                           | 3448A00209           | 04/01/2006        | 04/01/2007        |
| Radiation  | Spectrum Analyzer 13                    | Advantest             | R3132                            | 121200411            | 02/17/2006        | 02/17/2007        |
| Radiation  | Horn Antenna 02                         | Com-Power             | AH-118                           | 10088                | 07/22/2006        | 07/22/2006        |
| Radiation  | Horn Antenna 04                         | Com-Power             | AH-826                           | 081-001              | 01/13/2006        | 01/13/2007        |
| Radiation  | Horn Antenna 05                         | Com-Power             | AH-640                           | 100A                 | 09/30/2006        | 09/30/2007        |
| Radiation  | Microwave Cable RF<br>SK-01             | HUBER+SUH<br>NERAG.   | Sucoflex 102                     | 22139 /2             | 07/07/2006        | 07/07/2007        |
| Chamber 05 | Peak Power Analyzer                     | HP                    | 8990A                            | 3621A01269           | 03/28/2006        | 03/28/2007        |
| Chamber 05 | Power Sensor Radar                      | HP                    | 84815A                           | 3318A01828           | 03/28/2006        | 03/28/2007        |
| Radiation  | Preamplifier 02                         | MITEQ                 | AFS44-00102<br>650-40-10P-4<br>4 | 728229               | 11/28/2006        | 11/28/2007        |
| Radiation  | Preamplifier 10                         | MITEQ                 | JS-26004000-<br>27-5A            | 818471               | 11/22/2006        | 11/22/2007        |
| Radiation  | High Pass Filter 01                     | HEWLETT-PA<br>CKARD   | 84300-80038                      | 001                  | N/A               | N/A               |
| Radiation  | High Pass Filter 02                     | HEWLETT-PA<br>CKARD   | 84300-80039                      | 005                  | N/A               | N/A               |
| Radiation  | Spectrum Analyzer 14                    | Advantest             | R3182                            | 140600028            | 11/22/2006        | 11/22/2007        |

Note: Calibration is traceable to NIST or national or international standards.


### **7.3.2.** Software for Controlling Spectrum/Receiver and Calculating Test Data

| Radiation/Conduction | Filename | Version | Issued Date |
|----------------------|----------|---------|-------------|
| Conduction           | Tile.exe | 1.12E   | 7/7/2000    |
| Radiation            | Tile.exe | 1.12C   | 6/16/2000   |




# 7.4. Appendix D: Layout of EUT and Support Equipment

## 7.4.1. General Conducted Test Configuration





## 7.4.2. General Radiation Test Configuration





# 7.5. Appendix E: Description of Support Equipment

### 7.5.1. Description of Support Equipment

# **Support Unit 1.**

| Description:       | Aceex Modem                        |  |  |  |
|--------------------|------------------------------------|--|--|--|
|                    | (for serial interface port)        |  |  |  |
| Model Number:      | DM1414                             |  |  |  |
| Serial Number:     | 0301000558                         |  |  |  |
| Power Supply Type: | Linear, Power Adapter              |  |  |  |
|                    | (AC to AC Xfmr, Wall Mounted Type) |  |  |  |
| Power Cord:        | Nonshielded, Without Grounding Pin |  |  |  |
| FCC ID:            | IFAXDM1414                         |  |  |  |
|                    |                                    |  |  |  |

# Support Unit 2.

| Description:                                        | Aceex Modem                                                                                                                 |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                     | (for serial interface port)                                                                                                 |
| Model Number:                                       | DM1414                                                                                                                      |
| Serial Number:                                      | 0301000557                                                                                                                  |
| Power Supply Type:                                  | Linear, Power Adapter                                                                                                       |
|                                                     | (AC to AC Xfmr, Wall Mounted Type)                                                                                          |
| Power Cord:                                         | Nonshielded, Without Grounding Pin                                                                                          |
| FCC ID:                                             | IFAXDM1414                                                                                                                  |
| Serial Number:<br>Power Supply Type:<br>Power Cord: | DM1414<br>0301000557<br>Linear, Power Adapter<br>( AC to AC Xfmr, Wall Mounted Type )<br>Nonshielded, Without Grounding Pin |

# Support Unit 3.

Description: Manufacturer : Model Number: Serial Number Power Supply Type: 1394 Port: USB: Power In: Power Cable: External Hard Disk Case TeraSys F12-UF NA YHI(Model:YS-1015U12) one 6-Pins one 4-Pins one Non-shielded, Detachable, (Can Dismantle)



Description:

Manufacturer :

Serial Number

1394 Port:

Power In:

Power Cable:

USB:

Model Number:

Power Supply Type:

External Hard Disk Case TeraSys F12-UF NA YHI(Model:YS-1015U12) one 6-Pins one 4-Pins one Non-shielded, Detachable, (Can Dismantle)

# Support Unit 5.

Description:ATAModel Number:1221Serial Number:N/APower Supply Type:N/APower Cord:N/AFCC ID:N/A

ATA Microphone and HeadSet 1221K N/A N/A N/A N/A



## 7.5.2. Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Read and write to the disk drives.
- B. Send H pattern to the serial port device (Modem).
- C. Send H pattern to the serial port device (Modem).
- D. Read and write data the external hard disk through EUT USB port.
- E. Send audio signal to the Microphone and HeadSet through Headphone Port.
- F. Receive audio signal from Microphone and HeadSet through Microphone Port.
- G. The RF software makes the transmitter continuously sending RF signals
- H. Repeat the above steps.

|                                     | Filename   | Issued Date |
|-------------------------------------|------------|-------------|
| CRTU 3945ABG<br>version 4.0.18.0000 | CRTU.exe   | 2005/10/16  |
| Modem 1                             | Hm.bat     | 8/20/1991   |
| Modem 1                             | Hm.bat     | 8/20/1991   |
| Headphone                           | Wmplay.exe | 12/16/2002  |



# 7.5.3. I/O Cable Condition of EUT and Support Units

| Description           | Path                                                                  | Cable Length | Cable Type                     | Connector Type |
|-----------------------|-----------------------------------------------------------------------|--------------|--------------------------------|----------------|
| AC Power Cord         | 110V (~240V) to<br>AC Power Cord<br>Inlet (3-pin)                     | 1.8M         | Nonshielded, Detachable        | Plastic Head   |
| Modem Data<br>Cable*2 | Modem to PC<br>COM 1 port                                             | 1.5M         | Shielded, Detachable           | Metal Head     |
| USB Data Cable*2      | USB external hard<br>disk to EUT USB<br>Port                          | 1.8M         | Shielded, Un-detachable        | Metal Head     |
| Audio Data Cable      | Microphone and<br>HeadSet to EUT<br>Line In Port and<br>Line Out Port | 1.8M         | Non-shielded,<br>Un-Detachable | Plastic Head   |



# 7.6. Appendix F: Accuracy of Measurement

| Test Site: | Conduction 02 |
|------------|---------------|
|            |               |

| Item | Source of Uncertainty                                                                  | Probability<br>Distribution | Total Uncertainties (dB) |       | Standard Uncertainty (dB) |       |
|------|----------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------|---------------------------|-------|
| 1    | Systematic Effects:<br>(Assessment from 20<br>repeat observation; 1<br>reading on EUT) | Normal                      | k=2                      | 0.104 | k=1                       | 0.052 |
| 2    | Random Effects:<br>(Assessment from 20<br>random observations;<br>1 reading on EUT)    | Normal                      | k=2                      | 0.330 | k=1                       | 0.165 |
| 3    | Receiver Calibration                                                                   | Rectangular                 | k=1.73                   | 1.000 | k=1                       | 0.577 |
| 4    | LISN Factor<br>Calibration                                                             | Normal                      | k=2                      | 1.200 | k=1                       | 0.600 |
| 5    | Cable Loss<br>Calibration                                                              | Normal                      | k=2                      | 1.000 | k=1                       | 0.500 |
| 6    | Combined Standard<br>Uncertainty Uc(y)                                                 | Normal                      |                          |       | k=1                       | 0.850 |
| 7    | Total Uncertainty<br>@95% mim.<br>Confidence Level                                     | Normal                      | k=2                      | 1.701 |                           |       |

Measurement Uncertainty Calculations:

Uc (y) = square root ( $u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2$ )

U = 2 \* Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.



| Item | Source of Uncertainty                                                                  | Probability<br>Distribution | Total Uncerta | inties (dB) | Standard Unce | ertainty (dB) |
|------|----------------------------------------------------------------------------------------|-----------------------------|---------------|-------------|---------------|---------------|
| 1    | Systematic Effects:<br>(Assessment from 20<br>repeat observation; 1<br>reading on EUT) | Normal                      | k=2           | 0.067       | k=1           | 0.034         |
| 2    | Random Effects:<br>(Assessment from 20<br>random observations; 1<br>reading on EUT)    | Normal                      | k=2           | 0.103       | k=1           | 0.052         |
| 3    | Receiver Calibration                                                                   | Rectangular                 | k=1.73        | 1.000       | k=1           | 0.577         |
| 4    | Antenna Factor<br>Calibration                                                          | Normal                      | k=2           | 1.700       | k=1           | 0.850         |
| 5    | Cable Loss Calibration                                                                 | Normal                      | k=2           | 1.000       | k=1           | 0.500         |
| 6    | Combined Standard<br>Uncertainty Uc(y)                                                 | Normal                      |               |             | k=1           | 1.029         |
| 7    | Total Uncertainty<br>@95% mim.<br>Confidence Level                                     | Normal                      | k=2           | 2.059       |               |               |

Test Site: Chamber 02-3M

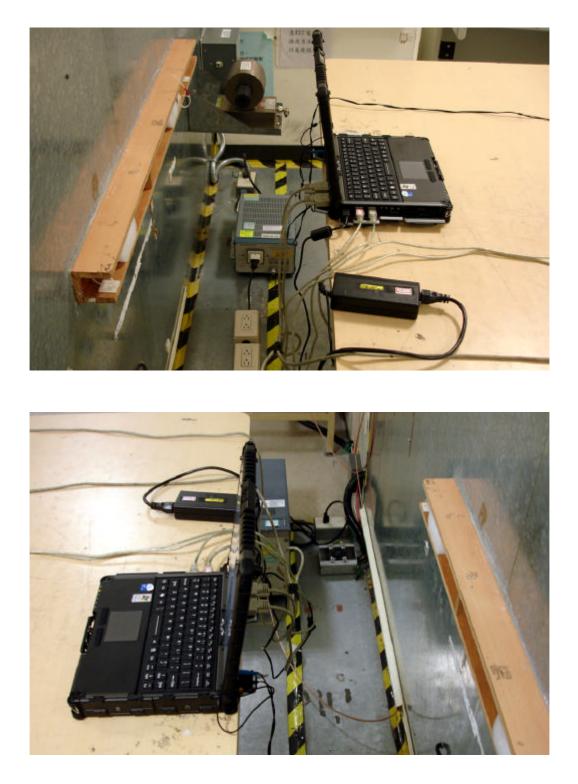
Measurement Uncertainty Calculations:

Uc (y) = square root ( $u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2$ )

U = 2 \* Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.




# 7.7. Appendix G: Photographs of EUT Configuration Test Set Up

The Front View of Highest Conducted Set-up For EUT





## The Back View of Highest Conducted Set-up For EUT



 International Standards Laboratory
 Report Number: 07LR008FC

 HC LAB:NVLAP:200234-0;VCCI: R-341,C-354; NEMKO:ELA 113A;BSMI:SL2-IN-E-0037;SL2-R1-E-0037;TAF:1178; IC:IC4067

 LT LAB: NVLAP:200234-0;VCCI: R-1435,C-1440;NEMKO:ELA 113B; BSMI:SL2-IN-E-0013;TAF:0997; IC:IC4164-1



The Front View of Highest Radiated Set-up For EUT



The Back View of Highest Radiated Set-up For EUT





# 7.8. Appendix H: Antenna Spec.

Please refer to the attached file.