

Page 1 of 79

Specific Absorption Rate (SAR) Test Report

for

MITAC Technology Corporation

on the

Tablet Personal Computer (with Intel PRO/Wireless 2200BG Network Connection inside) Model Number: CA27

> Test Report: EME-050081 Date of Report: Feb. 3, 2005 Date of test: Jan. 27, 2005

Total No of Pages Contained in this Report: 79

Accredited for testing to FCC Part 15

Tested by: Marx Yan	Marx Fan
Reviewed by: Jerry Liu	Jerry Lin

Review Date: Feb. 3, 2005

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, Taiwan Ltd.

Page 2 of 79

Table of Contents

1.0 Job Description4
1.1 Client Information4
1.2 Equipment under test (EUT)
1.3 Test plan reference
1.4 System test configuration5
1.4.1 Support equipment & System block diagram5
1.4.2 Test Position
1.4.3 Test Condition6
1.5 Modifications required for compliance
1.6 Additions, deviations and exclusions from standards
2.0 SAR Evaluation
2.1 SAR Limits8
2.2 Configuration Photographs9
2.3 SAR measurement system
2.4 SAR measurement system validation
2.4.1 System Validation result
2.4.2 System Performance Check result
2.5 Test Result
3.0 Test Equipment
3.1 Equipment List
3.2 Tissue Simulating Liquid
3.2.1 Body Tissue Simulating Liquid for evaluation test
3.2.2 Head Tissue Simulating Liquid for System performance Check test
3.2.3 Body Liquid results
3.2.4 Head Liquid results
3.3 E-Field Probe and 2450 Balanced Dipole Antenna Calibration
4.0 Measurement Uncertainty
5.0 Measurement Traceability
6.0 WARNING LABEL INFORMATION - USA
7.0 REFERENCES
8.0 DOCUMENT HISTORY
APPENDIX A - SAR Evaluation Data
APPENDIX B - Photographs51
APPENDIX C - E-Field Probe and 2450MHz Balanced Dipole Antenna Calibration Data 52

Page 3 of 79

STATEMENT OF COMPLIANCE

The MITAC sample device, model # CA27 was evaluated in accordance with the requirements for compliance testing defined in FCC OET Bulletin 65, Supplement C (Edition 01-01). Testing was performed at the Intertek Testing Services facility in Hsinchu, Taiwan.

For the evaluation, the dosimetric assessment system INDEXSAR SARA2 was used. The phantom employed was the box phantom of 2mm thick in one wall. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 20.6\%$.

The device was tested at their maximum output power declared by the MITAC.

In summary, the maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

Phantom	Position	SAR _{1g} , W/kg
2mm thick box phantom	EUT top side to the phantom,	0.809W/kg
wall	0 mm separation.	0.807 W/kg

In conclusion, the tested Sample device was found to be in compliance with the requirements defined in OET Bulletin 65, Supplement C (Edition 01-01) for body configurations.

Page 4 of 79

1.0 Job Description

1.1 Client Information

The CA27 has been tested at the request of:

Company: MITAC Technology Corporation

4F, No. 1, R&D Road 2, Hsinchu Science-Based

Industrial Park, Hsinchu 300, Taiwan

1.2 Equipment under test (EUT)

Product Descriptions:

Equipment	Tablet Personal Computer (with Intel PRO/Wireless 2200BG Network Connection insied)				
Trade Name	- Model No: CA27				
FCC ID	MAU015	S/N No.	Not Labeled		
Category	Portable	RF Exposure	Uncontrolled Environment		
Frequency Band	2412 – 2462 MHz	System	DSSS, OFDM		

EUT Antenna Description					
Type PIFA Configuration Fixed					
Dimensions	60 x 1.3 mm	Gain	3.26 dBi		
Location	Location No Exposed				

Use of Product : Wireless Data Communication

Manufacturer: MITAC Technology Corporation

Production is planned: [X] Yes, [] No

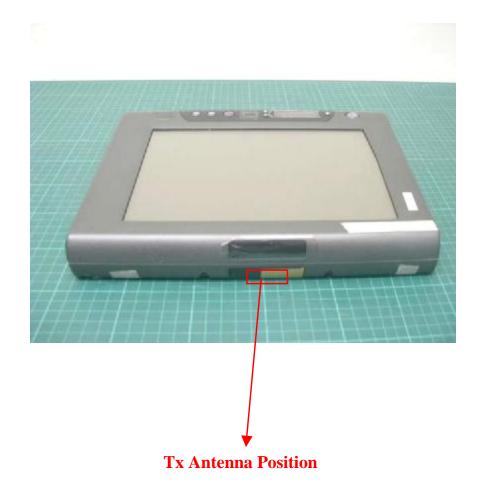
EUT receive date: Jan. 25, 2005

EUT received condition: Good operating condition prototype

Test start date: Jan. 27, 2005

Test end date: Jan. 27, 2005

Page 5 of 79


1.3 Test plan reference

FCC Rule: Part 2.1093, FCC's OET Bulletin 65, Supplement C (Edition 01-01) and IEEE 1528

1.4 System test configuration

1.4.1 Support equipment & System block diagram

Support Equipment				
Item # Equipment Brand Model No. S/N				
1	N/A	N/A	N/A	N/A

Page 6 of 79

1.4.2 Test Position

See the photographs as section 2.2

1.4.3 Test Condition

During tests the worst-case data (max RF coupling) was determined with following conditions:

Usage	N/A	Distance between antenna axis at the joint and the liquid surface:	top side position, separating 0mm	
Simulating human Head/ Body/Hand	Body	Body EUT Battery Device is powered from computer through batt		
802.11b	Channel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)
Conducted	Low Channel - 1	2412	16.131	16.130
output Power	Mid Channel - 6	2437	15.381	15.382
	High Channel- 11	2462	14.912	14.915
802.11g	Channel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)
Conducted	Low Channel - 1	2412	16.537	-
output Power	Mid Channel - 6	2437	15.974	15.979
	High Channel- 11	2462	15.586	-

The spatial peak SAR values were assessed for lowest, middle and highest operating channels, defined by the manufacturer.

The conducted output power was measured before and after the test using a wideband peak power meter.

Run the test program "shortcut to crtu" under Windows OS. The EUT was transmitted continuously during the test.

The EUT contains 802.11b and 802.11g functions. Both 802.11b and 802.11g middle channels were verified, and the worst case was found in 802.11b function. Therefore, the test was performed on low and high channel of 802.11b function and recorded in this report individually.

After verifying the maximum output power, the maximum output power was occurred at 1Mbps data rate in 802.11b function and 6Mbps data rate in 802.11g function.

All the test data were performed under the above transmission rate.

Page 7 of 79

1.5 Modifications required for compliance

Intertek Testing Services implemented no modifications.

1.6 Additions, deviations and exclusions from standards

The phantom employed was the box phantom of 2mm thick in vertical wall.

Page 8 of 79

2.0 SAR Evaluation

2.1 SAR Limits

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:

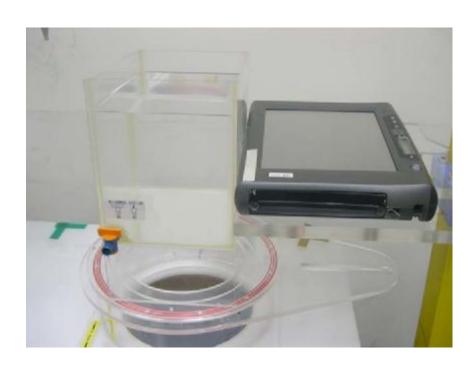
EXPOSURE	SAR
(General Population/Uncontrolled Exposure environment)	(W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

Report No.: EME-050081 Page 9 of 79 FCC ID.: MAU015

2.2 Configuration Photographs

SAR Measurement Test Setup

Test System



FCC ID. : MAU015 Report No.: EME-050081 Page 10 of 79

SAR Measurement Test Setup

EUT top side to phantom, 0 mm separation

FCC ID. : MAU015 Report No.: EME-050081 Page 11 of 79

SAR Measurement Test Setup

EUT top side to phantom, 0 mm separation-Zoon In

FCC ID. : MAU015 Report No.: EME-050081 Page 12 of 79

SAR Measurement Test Setup

EUT top side to phantom, 15 mm separation

FCC ID. : MAU015 Report No.: EME-050081 Page 13 of 79

SAR Measurement Test Setup

EUT top side to phantom, 15 mm separation-Zoon In



FCC ID. : MAU015 Report No.: EME-050081 Page 14 of 79

SAR Measurement Test Setup

EUT bottom to phantom, 0 mm separation

FCC ID. : MAU015 Report No.: EME-050081 Page 15 of 79

SAR Measurement Test Setup

EUT bottom to phantom, 0 mm separation-Zoon In

Page 16 of 79

2.3 SAR measurement system

Robot system specification

The SAR measurement system being used is the IndexSAR SARA2 system, which consists of a Mitsubishi RV-E2 6-axis robot arm and controller, IndexSAR probe and amplifier and SAM phantom Head Shape. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain the SAR readings from the DUT.

The system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

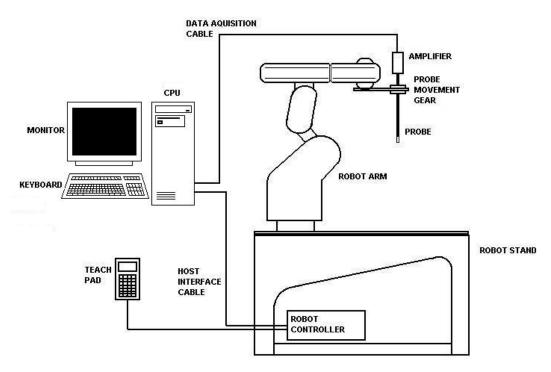


Figure 1: Schematic diagram of the SAR measurement system

The position and digitised shape of the phantom heads are made available to the software for accurate positioning of the probe and reduction of set-up time.

The SAM phantom heads are individually digitised using a Mitutoyo CMM machine to a precision of 0.02mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell. In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

The first 2 measurements points in a direction perpendicular to the surface of the phantom during the zoom scan and closest to the phantom surface, were only 3.5mm and the probe is kept at greater than half a diameter from the surface.

Page 17 of 79

2.4 SAR measurement system validation

Prior to the assessment, the system was verified to the $\pm 10\%$ of the specifications by using the system validation equipments. The validation was performed at 2450 MHz on the bottom side of box phantom.

Procedures

The SAR evaluation was performed with the following procedures:

- a. The SAR distribution was measured at the exposed side of the bottom of the box phantom and was measured at a distance of 8 mm from the inner surface of the shell. The feed power was 1/5 W.
- b. The dimension for this cube is 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - i) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 5 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - ii) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
 - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

The test scan procedure for system validation also apply to the general scan procedure except for the set-up position. For general scan, the EUT was placed at the side of phantom. For validation scan, the dipole antenna was placed at the bottom of phantom

Page 18 of 79

2.4.1 System Validation result

System Validation (2450 MHz Head)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
2450	CW	52.4	54.688	4.37%

Please see the plot below:

Page 19 of 79

 \mathbf{Z}

-220.7

2004/10/1 **Position: Bottom** Date: Filename: 2450val10-15.txt **Phantom:** Box1.csv

Device Tested: SARA2 system **Head Rotation:** 0

Antenna: 2450dipole **Test Frequency:** 2450MHz 23dBm/CW **Shape File:** none.csv **Power Level:**

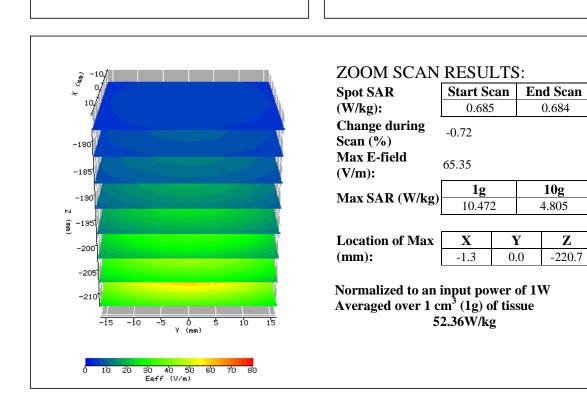
Probe: 0149

Cal File: SN0149_2450_CW_HEAD

> \mathbf{X} \mathbf{Z} Y Air 365 444 414 **DCP** 20 20 20 Lin .561 .561 .561

2 Amp Gain: Averaging: 1 **Batteries**

Replaced:


Cal Factors:

Liquid: 15.5cm

2450MHz Head Type:

1.804 **Conductivity:** 38.122 **Relative Permittivity:** Liquid Temp (deg C): 23.3 23 **Ambient Temp (deg C):** 50 Ambient RH (%): 1000 Density (kg/m3): **Software Version:** 2.3VPM

Crest Factor = 1

Page 20 of 79

2.4.2 System Performance Check result

System performance check (2450 MHz Head)					
Frequency MHz					
2450	CW	52.4	48.955	-6.57%	

Please see the plot below:

Page 21 of 79

Date: 2005/1/26

Filename: 2450performance check

050125-200mW.txt

Device Tested: 2450 MHz performance

check

Antenna: 2450 Dipole antenna

Shape File: none.csv

Position: Bottom of phantom box
Phantom: HeadBox1-val..csv

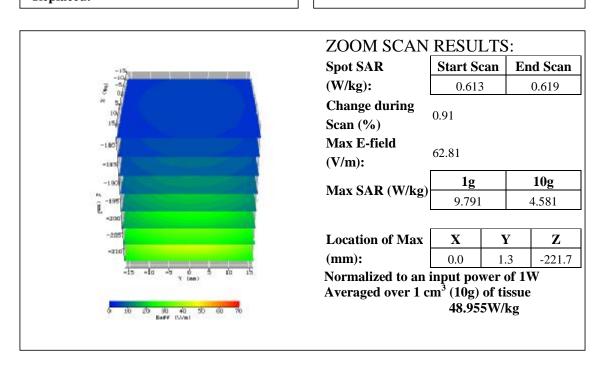
Head Rotation: 0

Test Frequency: 2450 MHz **Power Level:** 23 dBm

Probe: 0149

Cal File: SN0149_2450_CW_HEAD

	X	Y	Z
Air	365	444	414
DCP	20	20	20
T in	504	504	504


Amp Gain: 2
Averaging: 1
Batteries
Replaced:

Cal Factors:

Liquid: 15.5cm
Type: 2450 MHz head

Conductivity: 1.828
Relative Permittivity: 39.931
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1

Page 22 of 79

2.5 Test Result

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

FCC ID.: MAU015 Report No.: EME-050081 Page 23 of 79

Measurement Results

Trade Name:	-		Model No.:	CA27	
Serial No.:	Not Labl	ed	Test Engineer:	Marx Yan	
	TEST CONDITIONS				
Ambient Temp	erature	23.5 °C	Relative Humidit	ty	50.2 %
Test Signal Sou	irce	Test Mode	Signal Modulation	n	DSSS, OFDM
Output Power	Before	See page 6	Output Power At	fter SAR	See page 6
SAR Test			Test		
Test Duration		23 min. each scan	Number of Batte	ry Change	1

	EUT Position										
Channel (MHz)	Operating Mode	Crest Factor	Description	Distance (mm)	Measured SAR _{1g} (W/kg)	Plot Number					
2437	OFDM	1	Top side to phantom	0	0.221	1					
2437	DSSS	1	Top side to phantom	0	0.809	2					
2412	DSSS	1	Top side to phantom	0	0.561	3					
2462	DSSS	1	Top side to phantom	0	0.645	4					
2437	OFDM	1	Top side to phantom	15	0.008	5					
2437	DSSS	1	Top side to phantom	15	0.029	6					
2437	OFDM	1	Bottom to phantom	0	0.134	7					
2437	DSSS	1	Bottom to phantom	0	0.576	8					

Note 1: Configuration at middle channel with more than -3dB of applicable limit.

Page 24 of 79

3.0 Test Equipment

3.1 Equipment List

The Specific Absorption Rate (SAR) tests were performed with the INDEXSAR SARA2 SYSTEM.

The following major equipment/components were used for the SAR evaluations:

	SAR Measurement System								
EQUIPMENT	SPECIFICATIONS S/N # LAST CA								
Balanced Validation dipole	2450MHz	EC381-4	03/26/2003						
Controller	Mitsubishi CR-E116	EP320-1	N/A						
Robot	Mitsubishi RV-E2	EP320-2	N/A						
	Repeatability: ± 0.04mm; Number of Axes: 6								
E-Field Probe	IXP-050	EC356	05/2004						
	Frequency Range: Probe outer diameter: 5.2 mm; probe tip and the dipole center: 2.7 mm	Length: 350 mm;	Distance between the						
Data Acquisition	SARA2	N/A	N/A						
	Processor: Pentium 4; Clock speed: 1.5GHz; OS: Win Software: SARA2 ver. 2.3VPM (Virtual Probe Mina) RS232;						
Phantom	2mm wall thickness box phantom	N/A	N/A						
	Shell Material: clear Perspex; Thickness: 2 ± 0.1 mm D) mm ³ ; Dielectric constant: less than 2.85 above 500		225.5 x 200 (W x L x						
Device holder	Material: clear Perspex; Dielectric constant: less than 2.85 above 500MHz	N/A	N/A						
Simulated Tissue	Mixture	N/A	01/26/2005						
	Please see section 3.2 for details								
RF Power Meter	Boonton 4231A with 51011-EMC power sensor	EC359	03/22/2004						
	Frequency Range: 0.03 to 8 GHz, <24dBm								
Vector Network Analyzer	HP 8753B HP 85046A	EC375	08/19/2004						
	Frequency Range: 300k to 3GHz								
Signal Generator	R&S SMR27	EC354	08/19/2004						
	Frequency Range: 10M to 27GHz, <120dBuV								
Wideband Peak Power Meter/ Sensor	EC396	10/18/2004							
	Frequency Range: 100MHz~18GHz								

Page 25 of 79

3.2 Tissue Simulating Liquid

The head and body tissue parameters should be used to test operating frequency band of transmitters. When a transmission band overlaps with one of the target frequencies, the tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within $\pm 5\%$ of the parameters specified at that target frequency.

3.2.1 Body Tissue Simulating Liquid for evaluation test

Body Ingredients Frequency (2.45 GHz)						
DGBE (Dilethylene Glycol Butyl Ether)	26.7%					
Salt	0.04%					
Water	73.2%					

The dielectric parameters were verified prior to assessment using the HP 85046A dielectric probe kit and the HP 8753B network Analyzer. The dielectric parameters were:

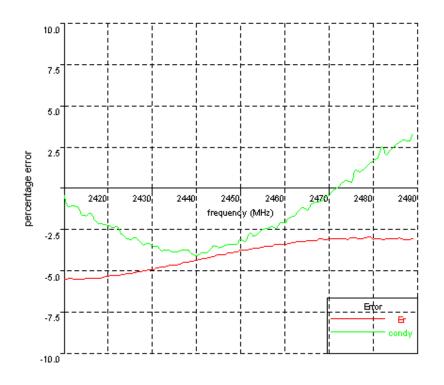
Frequency	Temp.	e r/ Relati	ive Perm	ittivity	s / Condu	r *(kg/m³)		
(MHz)	(℃)	measured	target	△(±5%)	measured	target	△(±5%)	1 (ng /m/)
2450	23.4	50.72	52.7	-3.8%	1.89	1.95	3.08%	1000

^{*} Worst-case assumption

3.2.2 Head Tissue Simulating Liquid for System performance Check test

Head Ingredients Frequency (2.45 GHz)						
DGBE (Dilethylene Glycol Butyl Ether)	53.3%					
Water	46.7%					

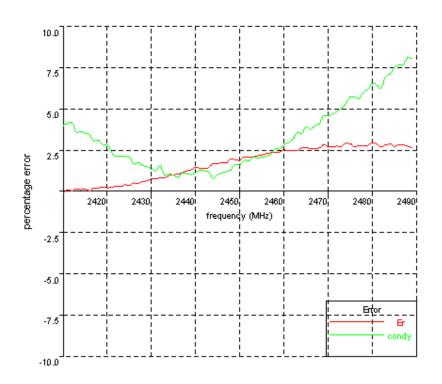
The dielectric parameters were verified prior to assessment using the HP 85046A dielectric probe kit and the HP 8753B network Analyzer. The dielectric parameters were:


Frequency	Temp.			nittivity	s / Condu	r *(kg/m³)		
(MHz)	(℃)	measured	target	△(±5%)	measured	target	△(±5%)	1 (1-g/1-1)
2450	23.6	39.93	39.2	1.86%	1.83	1.80	1.67%	1000

^{*} Worst-case assumption

Page 26 of 79

3.2.3 Body Liquid results



Page 27 of 79

3.2.4 Head Liquid results

2410, 39.2345433256, -1.8346923863 2411, 39.3086266014, -1.838452495 2411, 39.3086266014, -1.838452495 2411, 39.3076615581, 1.839933076 2413, 39.3195342162, -1.8300057131 2413, 39.3195342162, -1.8300057131 24453, 40.015591053, -1.8353697097 2414, 39.3050424214, -1.8317748307 24453, 40.0115551725, -1.8411494543 2414, 39.3050424214, -1.8317748307 24453, 40.0420932479, -1.8411494543 2416, 39.2742357732, -1.8306498379 2455, 40.085901742, -1.841494543 2416, 39.2742357732, -1.8306498379 2456, 40.088128787, -1.845049801 2417, 39.3330377942, -1.8246464418 2457, 40.1068490056, -1.8478832868 2418, 39.334604754, -1.827636092 2419, 39.3609683365, -1.822446932 2420, 39.334604754, -1.823630692 2420, 39.334604754, -1.823630692 2421, 39.357514106, -1.8165546449 2421, 39.357514106, -1.8165546449 2422, 39.3619947439, -1.81544192 2422, 39.3619947439, -1.81544192 2424, 39.40347253, -1.8145593957 2425, 39.3904387163, -1.814593957 2426, 39.446221967, -1.8079301334 2426, 39.446221967, -1.8079301334 2426, 39.446221967, -1.8079301334 2426, 39.446221967, -1.8079301334 2426, 39.446221967, -1.8079301334 2426, 39.4486211247, -1.8108310181 2428, 39.4789493875, -1.808328936 2436, 39.6377113888, -1.806963008 2470, 40.235633315, -1.8907584185 2428, 39.4789493875, -1.808328956 2431, 39.5281436213, -1.8062388525 2443, 39.6048499084, -1.80166013 2429, 39.4851852624, -1.8080989222 2469, 40.281519159, -1.9088705297 2433, 39.527113888, -1.8060963008 2470, 40.235603351, -1.9057831549 2437, 39.661394217, -1.8108333891 2447, 40.243611979, -1.9088705279 2434, 39.6048499084, -1.8016669 2447, 39.67894894, -1.8016669 2447, 39.67894894, -1.8016669 2447, 39.67894894, -1.8016669 2447, 39.67894894, -1.8016669 2447, 39.67894894, -1.8016669 2447, 39.67894894, -1.8016669 2448, 39.87482694, -1.8016669 2447, 39.67894894, -1.8016669 2448, 39.87482694, -1.8016669 2447, 39.6789536, -1.8184862664 2448, 39.8748269843, -1.89166634 2447, 40.245611992, -1.9918340666 2444, 39.8748269843, -1.8116664766 2443, 39.784869031, -1.81656623 2444, 39.8748269843, -1.81666234 2444, 39	Date: 26 Jan. 2005	Temperature: 23.6 ℃	Type: 2450 MHz/ head (FCC)	Tested by: Marx
2449, 39.9485036452, -1.8286978984 2489, 40.1846735022, -1.991204627	2410, 39,2345433256, -1,8344 2411, 39,3086266014, -1,838- 2412, 39,2776615581, -1,8395 2413, 39,3195342162, -1,8307 2414, 39,3050424214, -1,8317 2415, 39,3166133893, -1,8312 2416, 39,2742357732, -1,8307 2417, 39,3330377942, -1,8207 2419, 39,3609683365, -1,8222 2420, 39,3344604754, -1,8237 2421, 39,337514106, -1,8165 2422, 39,337514106, -1,8165 2422, 39,3619947439, -1,812 2424, 39,403047253, -1,8145 2425, 39,3904387163, -1,814 2425, 39,3948648319, -1,813 2424, 39,403047253, -1,814 2426, 39,4446221967, -1,807 2427, 39,4286471247, -1,8108 2428, 39,4789493875, -1,808 2429, 39,4851852624, -1,808 2431, 39,527113858, -1,8062 2433, 39,5277113858, -1,8062 2433, 39,5278138, -1,8062 2433, 39,5278138, -1,8082 2433, 39,5430352187, -1,802 2434, 39,6048499084, -1,804 2435, 39,6208898726, -1,804 2436, 39,6379476536, -1,804 2437, 39,6651394217, -1,808 2439, 39,7360984559, -1,808 2440, 39,796944894, -1,8109 2441, 39,76641457789, -1,818 2444, 39,8761342896, -1,815 2444, 39,8743890531, -1,813 2446, 39,8943669344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816 2447, 39,8743690344, -1,816	\$923863 \$52495 \$33076 \$057131 \$7748307 \$925057 \$4498379 \$464418 \$587714 \$46932 \$36692 \$46449 \$812077 \$44192 \$93957 \$389178 \$301334 \$310181 \$3301334 \$310181 \$3328936 \$989222 \$99957 \$3485525 \$064751 \$257416 \$6520155 \$260663 \$7756625 \$2333891 \$08663 \$7756625 \$2333891 \$08656 \$051165 \$751627 \$780743 \$927635 \$69457 \$556733 \$942736 \$244726 \$625643 \$0258922	2450, 39.9317422561, -1.8286370292 2451, 40.0203753947, -1.8350947215 2452, 40.0085901503, -1.8353697097 2453, 40.0115551725, -1.8413283098 2454, 40.0420932479, -1.8413283098 2455, 40.059770421, -1.8428695698 2456, 40.0881282787, -1.8450498001 2457, 40.1068490056, -1.8478832868 2458, 40.1136226977, -1.855491435 2459, 40.1260167091, -1.8561312898 2460, 40.1698186623, -1.8621279813 2461, 40.1513251701, -1.865640765 2462, 40.1616813276, -1.8704733576 2463, 40.1449768565, -1.8784277836 2464, 40.2095410739, -1.8793502588 2465, 40.220498643, -1.8876686933 2466, 40.1997641505, -1.8855161669 2467, 40.1982988691, -1.8907584185 2468, 40.2046483684, -1.891060113 2469, 40.281591159, -1.9038705297 2470, 40.2356303512, -1.9050912356 2471, 40.2311816453, -1.9082731211 2472, 40.2436119792, -1.9122341493 2473, 40.2406291082, -1.9167409299 2474, 40.3157303762, -1.9231916333 2475, 40.2964154993, -1.991235488 2477, 40.249949577, -1.9321169245 2479, 40.2262891523, -1.9328531548 2477, 40.249949577, -1.9321169245 2479, 40.239649579, -1.911689468312 2480, 40.3206095916, -1.952777624 2481, 40.2771498129, -1.9518340266 2482, 40.2232154967, -1.994410859482 2489, 40.22308009725, -1.99579714153 2488, 40.2267898319, -1.98797714153 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267988319, -1.9807748532 2488, 40.2267980775, -1.9907408191	Tested by: Marx

Page 28 of 79

3.3 E-Field Probe and 2450 Balanced Dipole Antenna Calibration

Probe calibration factors and dipole antenna calibration are included in Appendix C.

Page 29 of 79

4.0 Measurement Uncertainty

The uncertainty budget has been determined for the INDEXSAR SARA2 measurement system according to IEEE P1528 documents [3] and is given in the following table. The extended uncertainty (95% confidence level) was assessed to be 20.6 % for SAR measurement, and the extended uncertainty (95% confidence level) was assessed to be 20.2 % for system performance check.

Table 1 Exposure Assessment Uncertainty

Example of measurement uncertainty assessment SAR measurement

(blue entries are site-specific)

(blue entries are site-specific)	T					1	1		ı	ı	
а	b			С	d	е		f	g	h	ı
Uncertainty Component	Sec.	(dB)	ГоІ. (+,	/-) (%)	Prob. Dist.	Divisor (descrip)			c1 (10g)	Standard Uncertainty (%) 1g	Standard Uncertainty (%) 10g
Measurement System		(42)		(70)							
Probe Calibration	E2.1			2.5	N	1 or k	1	1	1	2.50	2.50
Axial Isotropy	E2.2	0.25	5.93	5.93	R	√3	1.73	0	0	0.00	0.00
Hemispherical Isotropy	E2.2	0.45	10.92	10.92	R	√3	1.73	1	1	6.30	6.30
Boundary effect	E2.3		4	4.00	R	√3	1.73	1	1	2.31	2.31
Linearity	E2.4	0.04	0.93	0.93	R	√3	1.73	1	1	0.53	0.53
System Detection Limits	E2.5		1	1.00	R	√3	1.73	1	1	0.58	0.58
Readout Electronics	E2.6		1	1.00	Ν	1 or k	1.00	1	1	1.00	1.00
Response time	E2.7		0	0.00	R	√3	1.73	1	1	0.00	0.00
Integration time	E2.8		1.4	1.40	R	√3	1.73	1	1	0.81	0.81
RF Ambient Conditions	E6.1		3	3.00	R	√3	1.73	1	1	1.73	1.73
Probe Positioner Mechanical Tolerance	E6.2		0.6	0.60	R	√3	1.73	1	1	0.35	0.35
Probe Position wrt. Phantom Shell	E6.3		3	3.00	R	√3	1.73	1	1	1.73	1.73
SAR Evaluation Algorithms	E5		8	8.00	R	√3	1.73	1	1	4.62	4.62
Test Sample Related											
Test Sample Positioning	E4.2		2	2.00	N	1	1.00	1	1	2.00	2.00
Device Holder Uncertainty	E4.1		2	2.00	N	1	1.00	1	1	2.00	2.00
Output Power Variation	6.6.2		5	5.00	R	√3	1.73	1	1	2.89	2.89
Phantom and Tissue Parameters											
Phantom Uncertainty (shape and thickness)	E3.1		4	4.00	R	√3	1.73	1	1	2.31	2.31
Liquid conductivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.64	0.43	1.85	1.24
Liquid conductivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.64	0.43	0.70	0.47
Liquid permittivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.6	0.49	1.73	1.41
Liquid permittivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.6	0.49	0.66	0.54
Combined standard uncertainty					RSS					10.5	10.3
Expanded uncertainty	(95% Confidence Level)				k=2					20.6	20.3

FCC ID. : MAU015 Report No.: EME-050081 Page 30 of 79

Table 2 System Check (Verification)

Example of measurement uncertainty assessment for system performance check

(blue entries are site-specific)

(blad diffiled and diff opposite)	I .										
а	b			С	d	е		f	g	h	ı
Uncertainty Component	Sec.		Tol. (+ <i>,</i>		Prob. Dist.	Divisor (descrip)			c1 (10g)	Standard Uncertainty (%) 1g	Standard Uncertainty (%) 10g
		(dB)		(%)							
Measurement System											
Probe Calibration	E2.1			2.5	N	1 or k	1	1	1	2.50	2.50
Axial Isotropy	E2.2	0.25	5.93	5.93	R	√3	1.73	0	0	0.00	0.00
Hemispherical Isotropy	E2.2	0.45	10.92	10.92	R	√3	1.73	1	1	6.30	6.30
Boundary effect	E2.3		4	4.00	R	√3	1.73	1	1	2.31	2.31
Linearity	E2.4	0.04	0.93	0.93	R	√3	1.73	1	1	0.53	0.53
System Detection Limits	E2.5		1	1.00	R	√3	1.73	1	1	0.58	0.58
Readout Electronics	E2.6		1	1.00	N	1 or k	1.00	1	1	1.00	1.00
Response time	E2.7		0	0.00	R	√3	1.73	1	1	0.00	0.00
Integration time	E2.8		1.4	1.40	R	√3	1.73	1	1	0.81	0.81
RF Ambient Conditions	E6.1		3	3.00	R	√3	1.73	1	1	1.73	1.73
Probe Positioner Mechanical Tolerance	E6.2		0.6	0.60	R	√3	1.73	1	1	0.35	0.35
Probe Position wrt. Phantom Shell	E6.3		3	3.00	R	√3	1.73	1	1	1.73	1.73
SAR Evaluation Algorithms	E5		8	8.00	R	√3	1.73	1	1	4.62	4.62
Dipole											
Dipole axis to liquid distance	8, E4.2		2	2.00	N	1	1.00	1	1	2.00	2.00
Input power and SAR drift measurement	8, 6.6.2		5	5.00	R	√3	1.73	1	1	2.89	2.89
Phantom and Tissue Parameters											
Phantom Uncertainty (thickness)	E3.1		4	4.00	R	√3	1.73	1	1	2.31	2.31
Liquid conductivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.64	0.43	1.85	1.24
Liquid conductivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.64	0.43	0.70	0.47
Liquid permittivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.6	0.49	1.73	1.41
Liquid permittivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.6	0.49	0.66	0.54
Combined standard uncertainty					RSS					10.3	10.1
Expanded uncertainty	(95% Confidence Level)				k=2					20.2	19.9

Page 31 of 79

5.0 Measurement Traceability

All measurements described in this report are traceable to Chinese National Laboratory Accreditation (CNLA) standards or appropriate national standards.

6.0 WARNING LABEL INFORMATION - USA

See user manual.

Page 32 of 79

7.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1999
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C to OET Bulletin 65, Washington, D.C. 20554, 1997
- [3] IEEE Standards Coordinating Committee 34, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", IEEE Std 1528TM-2003

Page 33 of 79

8.0 DOCUMENT HISTORY

Revision/ Job Number	Writer Initials	Date	Change
N/A	S.L.	Feb. 3, 2005	Original document

Page 34 of 79

APPENDIX A - SAR Evaluation Data

Power drift is the measurement of power drift of the device over one complete SAR scan. To assess the drift of the power of the device under test, a SAR measurement was made in the middle of the zoom scan volume at the start of the scan and a measurement at this point was then also made after the measurement scan. The difference between the two measurements should be less than 5%.

Page 35 of 79

Plot #1(1/2)

Device Tested:

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 0mm

Filename: top 0mm mid 11g.txt **Phantom:** HeadBox2-test.csv

Tablet Personal Computer Head Rotation: 0

Antenna:PIFA antennaTest Frequency:2437 MHzShape File:CA27-top side.csvPower Level:15.974 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

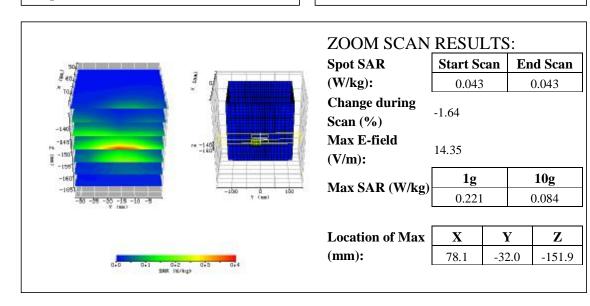
 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

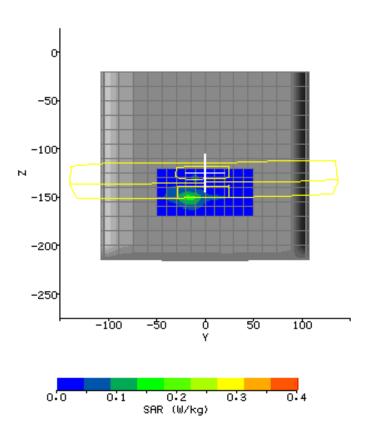

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 36 of 79

Plot #1(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 37 of 79

Plot #2(1/2)

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 0mm

Filename: top 0mm mid 11b.txt **Phantom:** HeadBox2-test.csv

Device Tested: Tablet Personal Computer **Head Rotation:** 0

Antenna:PIFA antennaTest Frequency:2437 MHzShape File:CA27-top side.csvPower Level:15.381 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

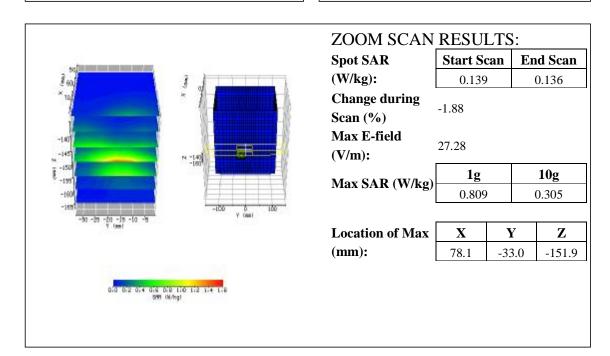
 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

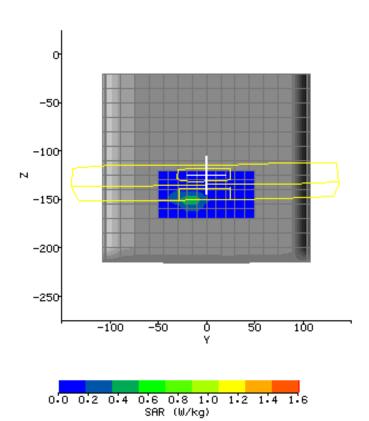

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 38 of 79

Plot #2(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps	
			•	
Y	-50.0	50.0	10.0	
Z	-170.0	-120.0	5.0	

Page 39 of 79

Plot #3(1/2)

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 0mm

Filename: top 0mm low 11b.txt **Phantom:** HeadBox2-test.csv

Device Tested: Tablet Personal Computer **Head Rotation:** 0

Antenna:PIFA antennaTest Frequency:2412 MHzShape File:CA27-top side.csvPower Level:16.131 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

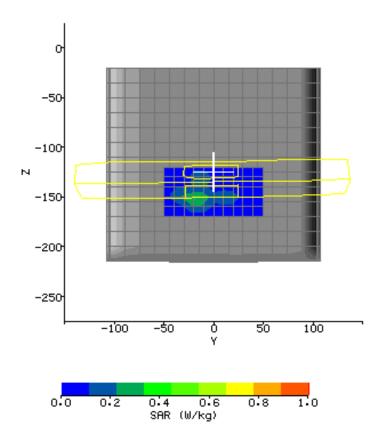

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 40 of 79

Plot #3(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 41 of 79

Plot #4(1/2)

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 0mm

Filename: top 0mm high 11b.txt **Phantom:** HeadBox2-test.csv

Device Tested: Tablet Personal Computer **Head Rotation:** 0

Antenna:PIFA antennaTest Frequency:2462 MHzShape File:CA27-top side.csvPower Level:14.912 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

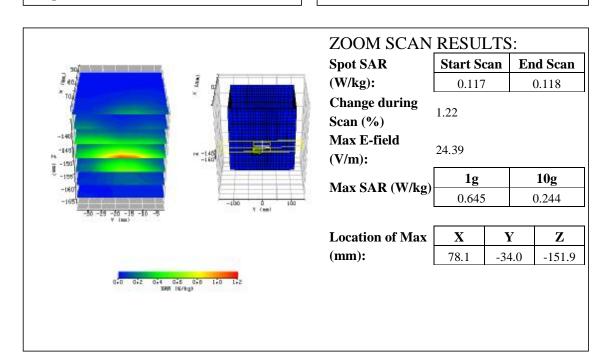
 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

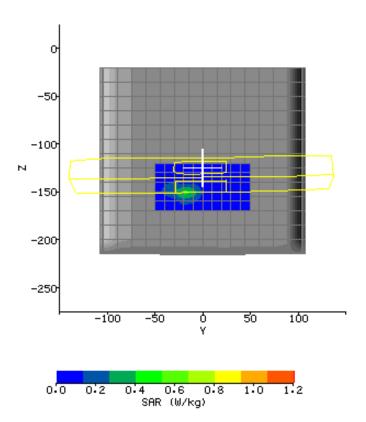

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 42 of 79

Plot #4(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 43 of 79

Plot #5(1/2)

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 15mm

Filename: top 15mm mid 11g.txt **Phantom:** HeadBox2-test.csv

Device Tested: Tablet Personal Computer **Head Rotation:** 0

Antenna:PIFA antennaTest Frequency:2437 MHzShape File:CA27-top side.csvPower Level:15.974 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

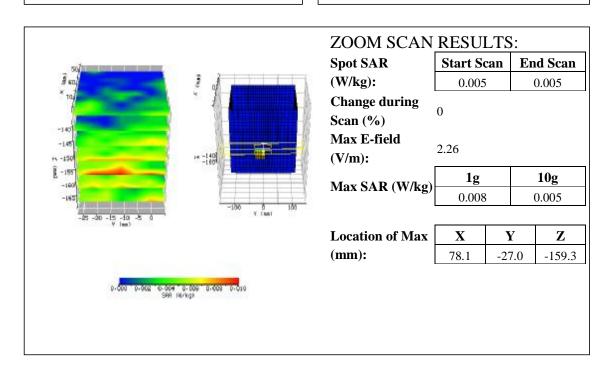
 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

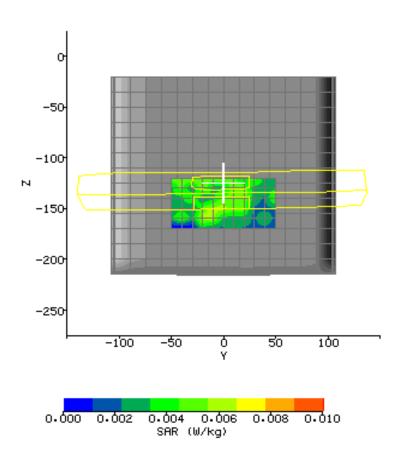

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID.: MAU015 Report No.: EME-050081 Page 44 of 79

Plot #5(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 45 of 79

Plot #6(1/2)

Date: 2005/1/27 **Position:** EUT top side at phantom

box outside 15mm

Filename: top 15mm mid 11b.txt **Phantom:** HeadBox2-test.csv **Device Tested:** Tablet Personal Computer **Head Rotation:** 0

Device Tested:Tablet Personal ComputerHead Rotation:0Antenna:PIFA antennaTest Frequency:2437 MHz

Shape File: CA27-top side.csv Power Level: 15.381 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

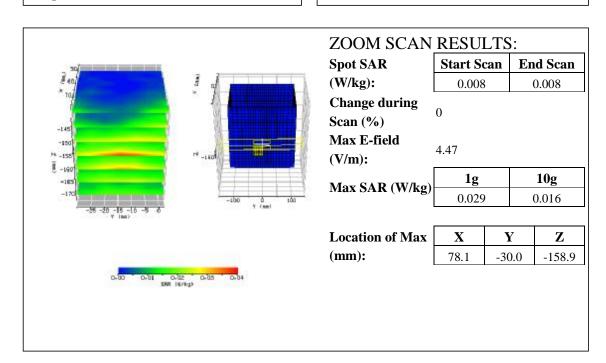
 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

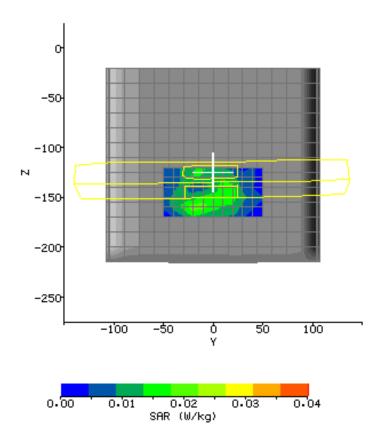

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 46 of 79

Plot #6(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 47 of 79

Plot #7(1/2)

Date: 2005/1/27 **Position:** EUT bottom at phantom box

outside 0mm

Filename: bottom 0mm mid 11g.txt Phantom: HeadBox2-test.csv

Head Rotation: 0

Antenna:PIFA antennaTest Frequency:2437 MHzShape File:CA27-rear side.csvPower Level:15.974 dBm

Probe: 0149

Device Tested:

Cal File: SN0149_2450_CW_BODY

 X
 Y
 Z

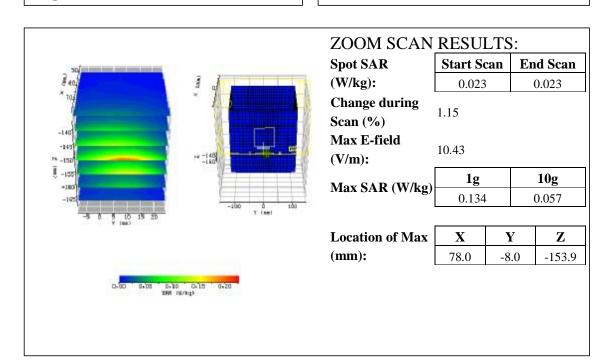
 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Tablet Personal Computer

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

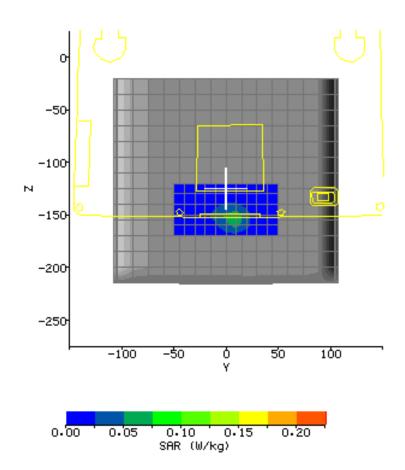

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 48 of 79

Plot #7(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 49 of 79

Plot #8(1/2)

Date: 2005/1/28 **Position:** EUT bottom at phantom box

outside 0mm

Filename: bottom 0mm mid 11b.txt Phantom: HeadBox2-test.csv

Device Tested: Tablet Personal Computer **Head Rotation:** 0

Antenna:PIFA antennaTest Frequency:2437 MHzShape File:CA27-rear side.csvPower Level:15.381 dBm

Probe: 0149

Cal File: SN0149_2450_CW_BODY

 X
 Y
 Z

 Air
 365
 444
 414

 DCP
 20
 20
 20

 Lin
 .561
 .561
 .561

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

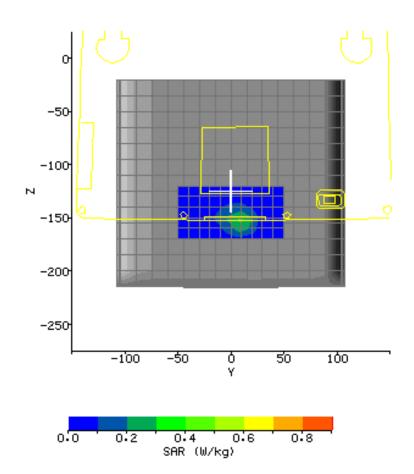

Cal Factors:

Liquid: 15.5cm

Type: 2450 MHz Body

Conductivity: 1.889
Relative Permittivity: 50.716
Liquid Temp (deg C): 23.2
Ambient Temp (deg C): 23.5
Ambient RH (%): 50.2
Density (kg/m3): 1000
Software Version: 2.3VPM

Crest Factor: 1


FCC ID. : MAU015 Report No.: EME-050081 Page 50 of 79

Plot #8(2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-50.0	50.0	10.0
Z	-170.0	-120.0	5.0

Page 51 of 79

APPENDIX B - Photographs

(External)

(Antenna)

Page 52 of 79

APPENDIX C - E-Field Probe and 2450MHz Balanced Dipole Antenna Calibration Data

FCC ID.: MAU015 Report No.: EME-050081 Page 53 of 79

IMMERSIBLE SAR PROBE CALIBRATION REPORT Part Number: IXP – 050

S/N 0149

May 2004

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: **enquiries@indexsar.com**

Page 54 of 79

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N 0149) and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of CENELEC [1] and IEEE [2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below

CALIBRATION PROCEDURE

1. Equipment Used

For the first part of the characterisation procedure, the probe is placed in an isotropy measurement jig as pictured in Figure 1. In this position the probe can be rotated about its axis by a non-metallic belt driven by a stepper motor.

The probe is attached via its amplifier and an optical cable to a PC. A schematic representation of the test geometry is illustrated in Figure 2.

A balanced dipole (900 MHz) is inserted horizontally into the bracket attached to a second belt (Figure 1). The dipole can also be rotated about its axis. A cable connects the dipole to a signal generator, via a directional coupler and power meter. The signal generator feeds an RF amplifier at constant power, the output of which is monitored using the power meter. The probe is positioned so that its sensors line up with the rotation center of the source dipole. By recording output voltage measurements of each channel as both the probe and the dipole are rotated, data are obtained from which the spherical isotropy of the probe can be optimised and its magnitude determined.

The calibration process requires E-field measurements to be taken in air, in 900 MHz simulated brain liquid and at other frequencies/liquids as appropriate.

2. Linearising probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{lin} = U_{o/o} + U_{o/o}^{2} / DCP$$
 (1)

where U_{lin} is the linearised signal, $U_{o/p}$ is the raw output signal in voltage units and DCP is the diode compression potential in similar voltage units.

Page 55 of 79

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the schottky diodes used as the sensors. For the IXP-050 probes with CW signals the DCP values are typically 0.10V (or 20 in the voltage units used by Indexsar software, which are V*200).

3. Selecting channel sensitivity factors to optimise isotropic response

The basic measurements obtained using the calibration jig (Fig 1) represent the output from each diode sensor as a function of the presentation angle of the source (probe and dipole rotation angles). The directionality of the orthogonally-arranged sensors can be checked by analysing the data using dedicated Indexsar software, which displays the data in 3D format as in Figure 3. The left-hand side of this diagram shows the individual channel outputs after linearisation (see above). The program uses these data to balance the channel outputs and then applies an optimisation process, which makes fine adjustments to the channel factors for optimum isotropic response.

The next stage of the process is to calibrate the Indexsar probe to a W&G EMR300 E-field meter in air. The principal reasons for this are to obtain conversion factors applicable should the probe be used in air and to provide an overall measure of the probe sensitivity.

A multiplier is applied to factors to bring the magnitudes of the average E-field measurements as close as possible to those of the W&G probe.

The following equation is used (where linearised output voltages are in units of V*200):

$$E_{air}^{2}$$
 (V/m) = U_{linx} * Air Factor_x
+ U_{liny} * Air Factor_y
+ U_{linz} * Air Factor_z (2)

It should be noted that the air factors are not separately used for normal SAR testing. The IXP-050 probes are optimised for use in tissue-simulating liquids and do not behave isotropically in air.

4. 900 MHz Liquid Calibration

Conversion factors for use when the probes are immersed in tissue-simulant liquids at 900 MHz are determined either using a waveguide or by comparison to a reference probe that has been calibrated by NPL. Waveguide procedures are described later. The summary sheet indicates the method used for the probe S/N 0149.

The conversion factor, referred to as the 'liquid factor' is also applied to the measurements of each channel. The following equation is used (where output voltages are in units of V*200):

$$\begin{array}{lll} E_{liq}^{2} \left(\text{V/m} \right) & = & U_{linx} * \text{Air Factor}_{x}^{*} \text{Liq Factor}_{x} \\ & + U_{liny} * \text{Air Factor}_{y}^{*} \text{Liq Factor}_{y} \\ & + U_{linz} * \text{Air Factor}_{z}^{*} \text{Liq Factor}_{z} \end{array} \tag{3}$$

A 3D representation of the spherical isotropy for probe S/N 0149 using these factors is shown in Figure 3.

Page 56 of 79

The rotational isotropy can also determined from the calibration jig measurements and is reported as the 900MHz isotropy in the summary table. Note that waveguide measurements can also be used to determine rotational isotropy (Fig. 5).

The design of the cells used for determining probe conversion factors are waveguide cells is shown in Figure 4. The cells consist of a coax to waveguide transition and an openended section of waveguide containing a dielectric separator. Each waveguide cell stands in the upright positition and is filled with liquid within 10 mm of the open end. The seperator provides a liquid seal and is designed for a good electrical transition from air filled guide to liquid filled guide. The choice of cell depends on the portion of the frequency band to be examined and the choice of liquid used. The depth of liquid ensures there is negligible radiation from the waveguide open top and that the probe calibration is not influenced by reflections from nearby objects. The return loss at the coaxial connector of the filled waveguide cell is measured initially using a network analyser and this information is used subsequently in the calibration procedure. The probe is positioned in the centre of the waveguide and is adjusted vertically or rotated using stepper motor arrangements. The signal generator is connected to the waveguide cell and the power is monitored with a coupler and a power meter. A fuller description of the waveguide method is given below.

The liquid dielectric parameters used for the probe calibrations are listed in the Tables below. The final calibration factors for the probe are listed in the summary chart.

WAVEGUIDE MEASUREMENT PROCEDURE

The calibration method is based on setting up a calculable specific absorption rate (SAR) in a vertically-mounted WG8 (R22) waveguide section [1]. The waveguide has an air-filled, launcher section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the liquid interface. A TE₀₁ mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid section is calculated from the forward power and reflection coefficient measured at the input to the waveguide. At the centre of the cross-section of the waveguide, the local spot SAR in the liquid as a function of distance from the window is given by functions set out in IEEE1528 as below:

Because of the low cutoff frequency, the field inside the liquid nearly propagates as a TEM wave. The depth of the medium (greater than three penetration depths) ensures that reflections at the upper surface of the liquid are negligible. The power absorbed in the liquid is determined by measuring the waveguide forward and reflected power. Equation (4) shows the relationship between the SAR at the cross-sectional center of the lossy waveguide and the longitudinal distance (z) from the dielectric separator

$$SAR(z) = \frac{4(P_f - P_b)}{rahd}e^{-2z/d}$$
(4)

Page 57 of 79

where the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth d, which is the reciprocal of the waveguide-mode attenuation coefficient, is determined from a scan along the z-axis and compared with the theoretical value determined from Equation (5) using the measured dielectric properties of the lossy liquid.

$$d = \left[\operatorname{Re} \left\{ \sqrt{(p/a)^2 + jwm_o (s + jwe_o e_r)} \right\} \right]^{-1}.$$
 (5)

Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 30 dB at the most important frequencies used for personal wireless communications. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 2500 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N 0149

The probe was calibrated at 900, 1800, 1900 and 2450MHz MHz in liquid samples representing both brain liquid and body fluid at these frequencies. The calibration was for CW signals only, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The axial isotropy of the probe was measured by rotating the probe about its axis in 10 degree steps through 360 degrees in this orientation.

The reference point for the calibration is in the centre of the probe's cross-section at a distance of 2.7 m from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software.

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

DIELECTRIC PROPERTIES OF LIQUIDS

The dielectric properties of the brain and body tissue-simulant liquids employed for calibration are listed in the tables below. The measurements were performed prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2].

AMBIENT CONDITIONS

Measurements were made in the open laboratory at $22 \pm 2.0^{\circ}$ C. The temperature of the liquids in the waveguide used was measured using a mercury thermometer.

Page 58 of 79

RESPONSE TO MODULATED SIGNALS

To measure the response of the probe and amplifier to modulated signals, the probe is held vertically in a liquid-filled waveguide.

An RF amplifier is allowed to warm up and stabilise before use. A spectrum analyser is used to demonstrate that the peak power of the RF amplifier for the CW signals and the pulsed signals are within 0.1dB of each other when the signal generator is switched from CW to modulated output. Subsequently, the power levels recorded are read from a power meter when a CW signal is being transmitted.

The test sequence involves manually stepping the power up in regular (e.g. 2 dB) steps from the lowest power that gives a measurable reading on the SAR probe up to the maximum that the amplifiers can deliver.

At each power level, the individual channel outputs from the SAR probe are recorded at CW and then recorded again with the modulation setting. The results are entered into a spreadsheet. Using the spreadsheets, the modulated power is calculated by applying a factor to the measured CW power (e.g. for GSM, this factor is 9.03dB). This process is repeated 3 times with the response maximised for each channel sensor in turn.

The probe channel output signals are linearised in the manner set out in Section 1 above using equation (1) with the DCPs determined from the linearisation procedure. Calibration factors for the probe are used to determine the E-field values corresponding to the probe readings using equation (3). SAR is determined from the equation

SAR (W/kg) =
$$E_{lig}^{2}$$
 (V/m) * σ (S/m) / 1000 (6)

Where σ is the conductivity of the simulant liquid employed.

Using the spreadsheet data, the DCP value for linearising each of the individual channels (X, Y and Z) is assessed separately. The corresponding DCP values are listed in the summary page of the calibration factors for each probe.

Figure 7 shows the linearised probe response to GSM signals, Figure 8 the response to GPRS signals (GSM with 2 timeslots) and Figure 9 the response to CDMA IS-95A and W-CDMA signals.

Additional tests have shown that the modulation response is similar at 1800MHz and is not affected by the orientation between the source and the probe.

Page 59 of 79

VPM (Virtual Probe Miniaturisation)


SAR probes with 3 diode-sensors in an orthogonal arrangement are designed to display an isotropic response when exposed to a uniform field. However, the probes are ordinarily used for measurements in non-uniform fields and isotropy is not assured when the field gradients are significant compared to the dimensions of the tip containing the three orthogonally-arranged dipole sensors.

It becomes increasingly important to assess the effects of field gradients on SAR probe readings when higher frequencies are being used. For Indexsar IXP-050 probes, which are of 5mm tip diameter, field gradient effects are minor at GSM frequencies, but are major above 5GHz. Smaller probes are less affected by field gradients and so probes, which are significantly less than 5mm diameter, would be better for applications above 5GHz.

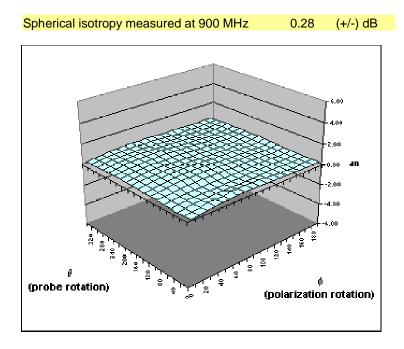
The IndexSAR report IXS0223 describes theoretical and experimental studies to evaluate the issues associated with the use of probes at arbitrary angles to surfaces and field directions. Based upon these studies, the procedures and uncertainty analyses referred to in P1528 are addressed for the full range of probe presentation angles.

In addition, generalized procedures for correcting for the finite size of immersible SAR probes are developed. Use of these procedures enables application of schemes for virtual probe miniaturization (VPM) – allowing probes of a specific size to be used where physically-smaller probes would otherwise be required.

Given the typical dimensions of 3-channel SAR probes presently available, use of the VPM technique extends the satisfactory measurement range to higher frequencies.

Page 60 of 79

Surface Isotropy diagram of IXP-050 Probe S/N 0149 at 900MHz after VPM


Probe tip radius 1.25 X Ch. Angle to red dot 7

	He	ad	Body		
Frequency	Bdy. Corrn. – f(0)	Bdy. Corrn. – d(mm)	Bdy. Corrn. – f(0)	Bdy. Corrn. – d(mm)	
900	0.2	1.0	0.31	2.0	
1800	0.2	2.0	0.27	1.6	
1900	0.19	1.7	0.3	1.4	
2450	0.24	2.0	0.72	2.0	

FCC ID. : MAU015 Report No.: EME-050081 Page 61 of 79

SUMMARY OF CALIBRATION FACTORS FOR PROBE IXP-050 S/N 0149

	Χ	Υ	Z	
Air factors	365	444	414	(V*200)
DCPs	20	20	20	(V*200)
GSM	13.4	9.6	7.9	(V*200)
CDMA	20	20	20	(V*200)

f (MHz)	A	xial isot	ropy	SAR conve	rsion factors	Notes
	(+	-/- dB)		(liq/air)		
	В	RAIN	BODY	BRAIN	BODY	
45	0	0.08	0.07	0.344	0.360	1,2,3
83	5	0.08	0.07	0.344	0.360	1,2,3
90	0	0.08	0.07	0.344	0.360	1,2,3
180	0	0.10	0.11	0.438	0.477	1,2,3
190	0	0.11	0.12	0.441	0.504	1,2,3
245	0	0.11	0.11	0.504	0.561	1,2,3

Notes	
1)	Calibrations done at 22C +/- 2C
2)	Waveguide calibration
3)	Checked using box-phantom validation test

(the graph shows a simple, spreadsheet representation of surface shown in 3D in Figure 3 below)

FCC ID.: MAU015 Report No.: EME-050081 Page 62 of 79

PROBE SPECIFICATIONS

Indexsar probe 0149, along with its calibration, is compared with CENELEC and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N 0149	CENELEC [1]	IEEE [2]
Overall length (mm)	350	L'J	
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole	2.7		
centers (mm)			
Dynamic range	S/N 0149	CENELEC [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to 35 W/kg	>35	>100	100
Linearity of response	S/N 0149	CENELEC [1]	IEEE [2]
Over range 0.01 – 100 W/kg (+/- dB)	0.125	0.50	0.25
Isotropy (measured at 900MHz)	S/N 0149	CENELEC [1]	IEEE [2]
Axial rotation with probe normal to source (+/- dB) at 900, 1800, 1900 and 2450 MHz	0.12 Max (See table above)	0.5	0.25
Spherical isotropy covering all orientations to source (+/- dB)	0.28	1.0	0.50
Construction	dipole sens prism core, charges by covered at enclosure r used in the	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. No adhesives are used in the immersed section. Outer case materials are PEEK and heat-shrink sleeving.	
Chemical resistance		e resistant to g taining simulan	

probes should be removed, cleaned and

dried when not in use.

Page 63 of 79

REFERENCES

[1] CENELEC, EN 50361, July 2001. Basic Standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones.

[2] IEEE 1528, Recommended practice for determining the spatial-peak specific absorption rate (SAR) in the human body due to wireless communications devices: Experimental techniques.

FCC ID. : MAU015 Report No.: EME-050081 Page 64 of 79

Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

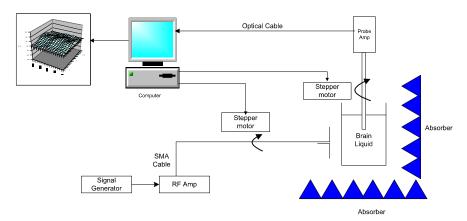


Figure 2. Schematic diagram of the test geometry used for isotropy determination

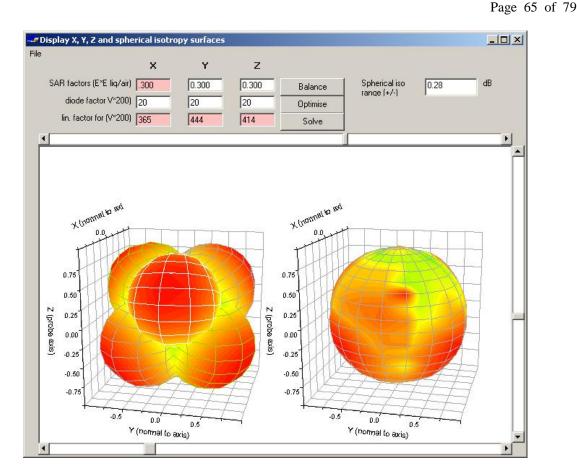
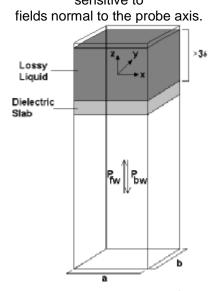
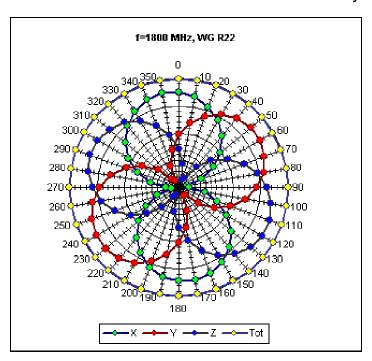


Figure 3. Graphical representation of the probe response to fields applied from each direction. The diagram on the left shows the individual response characteristics of each of the three channels and the diagram on the right shows the resulting probe sensitivity in each direction. The colour range in the figure images the lowest values as blue and the maximum values as red. For the probe S/N 0149, this range is (+/-) 0.28 dB. The probe is more sensitive to fields parallel to the axis and less sensitive to




Figure 4. Geometry used for waveguide calibration (after Ref [2]. Section A.3.2.2)

FCC ID. : MAU015 Report No.: EME-050081 Page 66 of 79

IXP-050 S/N 0149

11-May-04

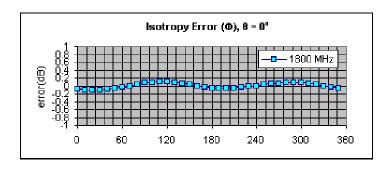
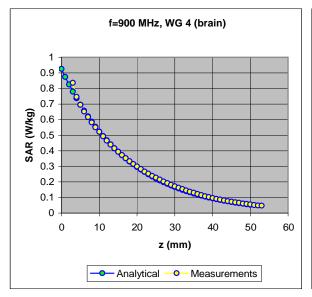
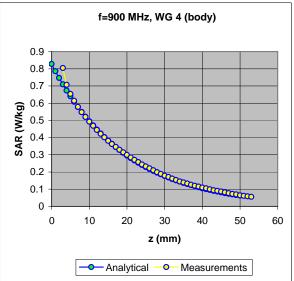
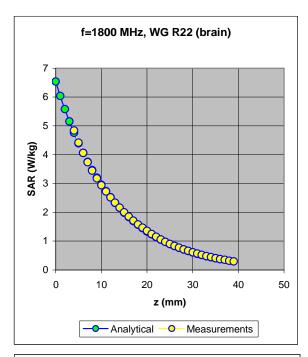
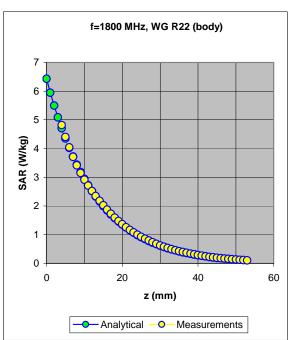
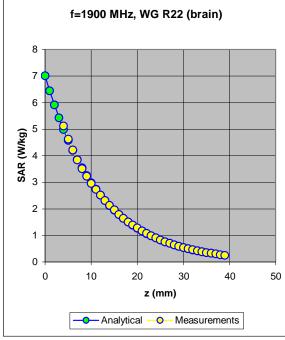
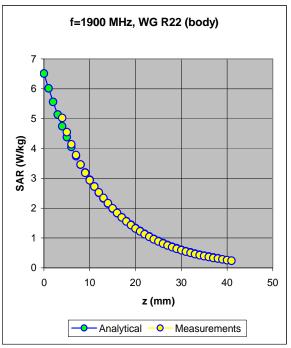



Figure 5. Example of the rotational isotropy of probe S/N 0149 obtained by rotating the probe in a liquid-filled waveguide at 1800 MHz. Similar distributions are obtained at the other test Frequencies (900 and 2450 MHz) both in brain liquids and body fluids (see summary table).

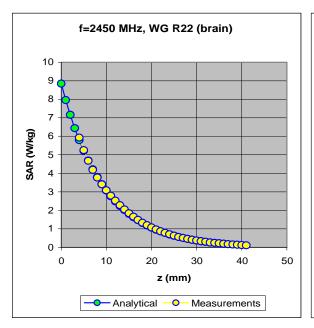
Page 67 of 79


Figure 6. The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.



Page 68 of 79



Page 69 of 79

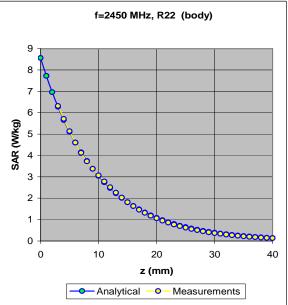


Figure 7. The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

FCC ID. : MAU015 Report No.: EME-050081 Page 70 of 79

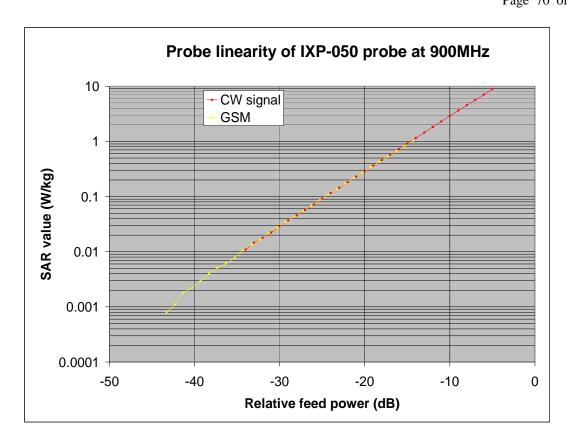


Figure 8. The GSM response of an IXP-050 probe at 900MHz

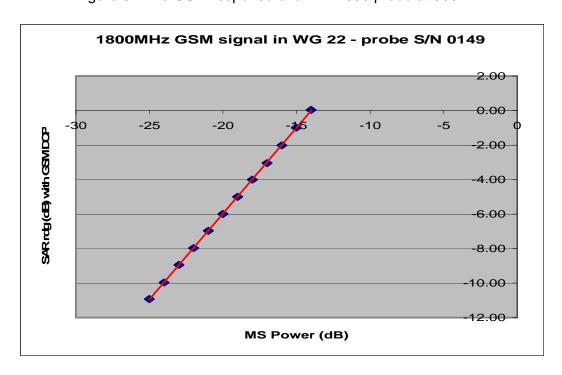


Figure 8a. The actual GSM response of IXP-050 probe S/N 0149 at 1800MHz

FCC ID. : MAU015 Report No.: EME-050081 Page 71 of 79

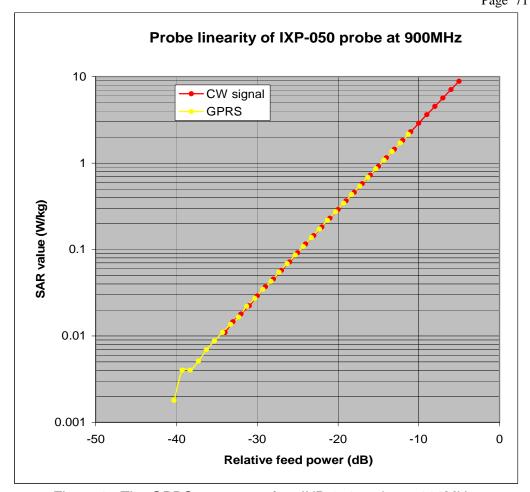
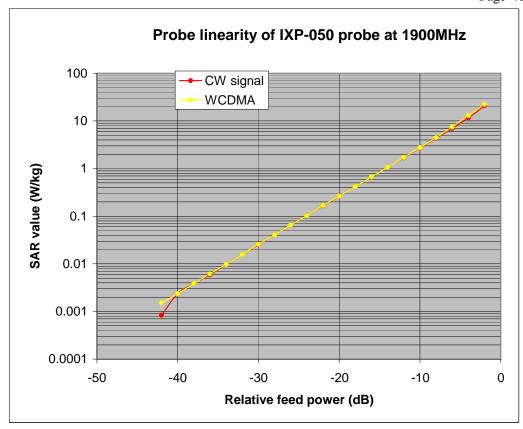



Figure 9. The GPRS response of an IXP-050 probe at 900MHz.

FCC ID. : MAU015 Report No.: EME-050081 Page 72 of 79

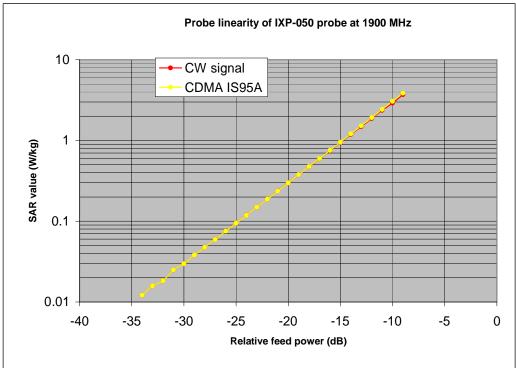


Figure 10. The CDMA response of an IXP-050 probe at 1900MHz.

Report No.: EME-050081 Page 73 of 79 FCC ID.: MAU015

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Liquid used	Relative permittivity (measured)	Conductivity (S/m) (measured)
900 MHz BRAIN	40.92	0.99
900 MHz BODY	57.27	1.045
1800 MHz BRAIN	40.63	1.37
1800 MHz BODY	52.89	1.53
1900 MHz BRAIN	40.33	1.47
1900 MHz BODY	52.84	<i>1.55</i>
2450 MHz BRAIN	40.73	1.82
2450 MHz BODY	<i>54.5</i> 6	2.04

FCC ID.: MAU015 Report No.: EME-050081 Page 74 of 79

Report No. SN0048_2450 26th March 2003

INDEXSAR 2450MHz validation Dipole Type IXD-245 S/N 0048

Performance measurements

MI Manning

Indexsar, Oakfield House, Cudworth Lane, Newdigate, Surrey RH5 5DR. UK.

Tel: +44 (0) 1306 631233 Fax: +44 (0) 1306 631834 e-mail: enquiries@indexsar.com

FCC ID.: MAU015

Report No.: EME-050081
Page 75 of 79
Indexsar Limited
Oakfield House
Cudworth Lane
Newdigate
Surrey RH5 5DR

Tel: +44 (0) 1306 631 233 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Calibration / Conformance statement Balanced Validation dipole

Type:	IXD-245 2450MHz
N C .	Y I GAD YW
Manufacturer:	IndexSAR, UK
Serial Number:	0048
Place of Calibration:	IndexSAR, UK
	ares that the IXD series dipole named above has been checked for conformity e draft IEEE 1528 and CENELEC En 50361 standards on the date shown
Date of Calibration/Check:	26 th March 2003
	be periodically re-checked using the procedures set out in the dipole ortant that the cautions regarding handling of the dipoles (given in the ed to.
Next Calibration Date:	March 2005
Where applicable, the standards	were carried out using the methods described in the calibration document. sused in the calibration process are traceable to the UK's National Physical
Laboratory.	
•	kınladley
Calibrated By:	kınladley
	Kinladley M.I.Manif

FCC ID.: MAU015 Report No.: EME-050081 Page 76 of 79

1. Tests on Validation Dipole

Tests have been performed on a balanced dipole made for 2450MHz application according to the construction guidelines, dimensions and tolerances given in the draft IEEE1528 standard [1]. Measurements have been made of the impedance and return loss when positioned against the liquid-filled phantom and a validation test has been performed according to the procedures set out in IEEE 1528 [1].

2. Measurement Conditions

Measurements were performed using a box-shaped phantom made of PMMA with dimensions designed to meet the accuracy criteria for reasonably-sized phantoms that do not have liquid capacities substantially in excess of the volume of liquid required to fill the Indexsar upright SAM phantoms used for SAR testing of handsets against the ear.

An HP 8753B vector network analyser was used for the return loss measurements. The dipole was placed in a special holder made of low-permittivity, low-loss materials. This holder enables the dipole to be positioned accurately in the centre of the base of the Indexsar box-phantom used for flat-surface testing and validation checks.

The validation dipoles are supplied with special spacers made from a low-permittivity, low-loss foam material. These spacers are fitted to the dipole arms to ensure that, when the dipole is offered up to the phantom surface, the spacing between the dipole and the liquid surface is accurately aligned according to the guidance in the relevant standards documentation. The spacers are rectangular with a central hole equal to the dipole arm diameter and dimensioned so that the longer side can be used to ensure a spacing of 15mm from the liquid in the phantom (for tests at 900MHz and below) and the shorter side can be used for tests at 1800MHz and above to ensure a spacing of 10mm from the liquid in the phantom. The spacers are made on a CNC milling machine with an accuracy of $1/40^{th}$ mm but they may suffer wear and tear and need to be replaced periodically. The material used is Rohacell, which has a relative permittivity of approx. 1.05 and a negligible loss tangent.

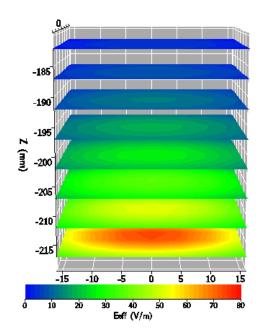
The apparatus supplied by Indexsar for dipole validation tests thus includes:

Balanced dipoles for each frequency required are dimensioned according to the guidelines given in IEEE 1528 [1]. The dipoles are made from semi-rigid 50 Ohm co-ax, which is joined by soldering and is gold-plated subsequently. The constructed dipoles are easily deformed, if mis-handled, and periodic checks need to be made of their symmetry.

Rohacell foam spacers designed for presenting the dipoles to 2mm thick PMMA box phantoms. These components also suffer wear and tear and should be replaced when the central hole is a loose-fit on the dipole arms or if the edges are too worn to ensure accurate alignment. The standard spacers are dimensioned for use with 2mm wall thickness (additional spacers are available for 4mm wall thickness).

Page 77 of 79

3. SAR Validation Measurement


A SAR validation check was performed with the box-phantom located on the SARA2 phantom support base on the SARA2 robot system. Tests were then conducted at a feed power level of approx. 0.25W. The actual power level was recorded and used to normalise the results obtained to the standard input power conditions of 1W (forward power). The ambient temperature was 24°C.

The phantom was filled with a 2450MHz brain liquid using a recipe from [1], which was measured using an Indexsar DiLine kit at 2450MHz. Measurements were taken at 23°C and 30°C and interpolation was used to find the properties at 24°C which were as below:

Relative Permittivity 39.221 Conductivity 1.8714 S/m

The SARA2 software version 0.420N was used with an Indexsar probe previously calibrated using waveguide techniques.

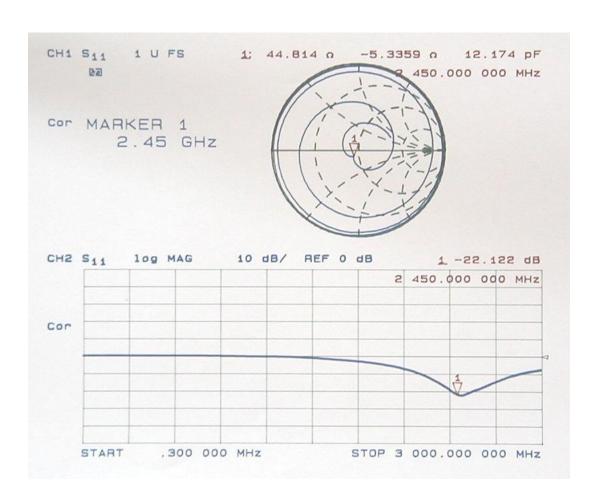
The 3D measurement made using the dipole at the bottom of the phantom box is shown below:

The volume-averaged SAR results, normalised to an input power of 1W (forward power) are:

Averaged over 1 cm³ (1g) of tissue 51.376 W/kg Averaged over 10cm³ (10g) of tissue 23.888 W/kg

These results can be compared with Table 8.1 in [1]. The agreement is within 10%.

Page 78 of 79


4. Dipole impedance and return loss

The dipoles are designed to have low return loss ONLY when presented against a lossy-phantom at the specified distance. A Vector Network Analyser (VNA) was used to perform a return loss measurement on the specific dipole when in the measurement-location against the box phantom. The distance was as specified in the standard i.e. 10mm from the liquid (for 2450MHz). The Indexsar foam spacers (described above) were used to ensure this condition during measurement.

The impedance was measured at the SMA-connector with the network analyser. The following parameters were measured:

Dipole impedance at 2450 MHz Re{Z} = **44.814** Ω Im{Z} = **-5.3359** Ω

Return loss at 2450MHz -22.122 dB

Page 79 of 79

5. Dipole handling

The dipoles are made from standard, copper-sheathed coaxial cable. In assembly, the sections are joined using ordinary soft-soldering. This is necessary to avoid excessive heat input in manufacture, which would destroy the polythene dielectric used for the cable. The consequence of the construction material and the assembly technique is that the dipoles are fragile and can be deformed by rough handling. Conversely, they can be straightened quite easily as described in this report.

If a dipole is suspected of being deformed, a normal workshop lathe can be used as an alignment jig to restore the symmetry. To do this, the dipole is first placed in the headstock of the lathe (centred on the plastic or brass spacers) and the headstock is rotated by hand (do NOT use the motor). A marker (lathe tool or similar) is brought up close to the end of one dipole arm and then the headstock is rotated by 0.5 rev. to check the opposing arm. If they are not balanced, judicious deformation of the arms can be used to restore the symmetry.

If a dipole has a failed solder joint, the dipole can be fixed down in such a way that the arms are co-linear and the joint re-soldered with a reasonably-powerful electrical soldering iron. Do not use gas soldering irons. After such a repair, electrical tests must be performed as described below.

Please note that, because of their construction, the dipoles are short-circuited for DC signals.

6. Tuning the dipole

The dipole dimensions are based on calculations that assumed specific liquid dielectric properties. If the liquid dielectric properties are somewhat different, the dipole tuning will also vary. A pragmatic way of accounting for variations in liquid properties is to 'tune' the dipole (by applying minor variations to its effective length). For this purpose, Indexsar can supply short brass tube lengths to extend the length of the dipole and thus 'tune' the dipole. It cannot be made shorter without removing a bit from the arm. An alternative way to tune the dipole is to use copper shielding tape to extend the effective length of the dipole. Do both arms equally.

It should be possible to tune a dipole as described, whilst in place in the measurement position as long as the user has access to a VNA for determining the return loss.

7. Reference

[1] Draft recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human body due to wireless communications devices: Measurement Techniques. Draft CD1.1 – December 29, 2002.