

Report No.: MFBEOO-WTW-P22041058 FCC ID: MADG060708-50-02B Test Model: G060708-50-02B Received Date: 2022/4/29 Test Date: 2022/6/42	
Test Model: G060708-50-02B Received Date: 2022/4/29	
Received Date: 2022/4/29	
Test Date: 2022/0/12	
Test Date: 2022/6/12	
Issued Date: 2022/7/15	
 Applicant: Microelectronics Technology Inc. Address: No. 1, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwar R.O.C. 	n,
Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Bra Hsin Chu Laboratory	Inch
Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan	,
Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan	,
FCC Registration / 723255 / TW2022 Designation Number:	

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Relea	ase Control Record	3
1	Certificate of Conformity	4
2	RF Exposure	5
2.1 2.2 2.3		5
3	Antenna Gain	6
4	Calculation Result	7

Release Control Record

Issue No.	Description	Date Issued
MFBEOO-WTW-P22041058	Original release.	2022/7/15

1 Certificate of Conformity

Product:	Triple Low Band RU
Brand:	MTI (Microelectronics Technology Inc.)
Test Model:	G060708-50-02B
Sample Status:	Engineering sample
Applicant:	Microelectronics Technology Inc.
Test Date:	2022/6/12
FCC Rule Part:	FCC Part 2 (Section 2.1091)
Standards:	KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _	Claire Kuan / Specialist	_, Date:	2022/7/15	
Approved by : _	May Chen / Manager	, Date:	2022/7/15	

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	0		Power Density (mW/cm ²)	Average Time (minutes)
	Limits For Gener	al Population / Uncor	trolled Exposure	
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout^{*}G) / (4^{*}pi^{*}r^{2})$

where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW/MHz

G = gain of antenna in linear scale

pi = 3.1416

 \boldsymbol{r} = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 1485 cm away from the body of the user. So, this device is classified as fixed station and installations by professional service persionnel device.

3 General Description of Antenna Gain

The antennas provided to the EUT, please refer to the following table:

	Directional Cross-Polarized Sector antenna with :
Antonno Turno	Band 26 Gain = 16 dBi
Antenna Type	Band 29 Gain = 17 dBi
	Band 71 Gain = 17 dBi
Antenna Connector	4x4.3-10 Female

Note:

- 1. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.
- 2. Based on the maximum RF power (conducted & EIRP) listed in this report, considerations pertaining to the maximum allowed EIRP (conducted power level), signal type and antenna gain should be considered for each installation.

Power

4 Calculation Result

For 5G NR Band n26 (20W)

5MHz (Sin	gle Carrier): QPSK					
	Conducted Average Power					
Frequency		Max Conducted	Directional	Max EIRP	Max EIRP	
Band	(dBm)	Average Power	Gain	Power	Power	

Band (MHz)	(de ANT2	an) ANT3	- Totaol (dBm)	Gain (dBi)	Power (dBm)	Power (mW)	(cm)	Density (mW/cm ²)	(mW/cm ²)	
866.5	43.12	43.07	46.11	16.00	62.11	1625548.756	1485	0.05866	0.57767	

For 5G NR Band n29 (60W)

10M (Single Carrier): 256QAM

Frequency Band (MHz)	- Per	verage Power Chain 3m) ANT1	Max Conducted Average Power - Totaol (dBm)	Directional	Max EIRP Power (dBm)	Max EIRP Power (mW)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm ²)
722.5	47.98	47.31	50.67	17.00	67.67	5847900.841	1485	0.21103	0.48167

For 5G NR Band n71 (30W)

20M (Single Carrier): 256QAM

Frequency Band (MHz)		(dE	Chain 3m)		Max Conducted Average Power - Totaol (dBm)	Directional	Max EIRP Power (dBm)	Max EIRP Power (mW)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm ²)
642	44.86	45.08	45.17	44.54	50.94	17.00	67.94	6223002.852	1485	0.22456	0.42800

For 5G NR Band n26(20W) + n29 (60W) + n71(30W)

5M+10M+20M (Single Carrier): QPSK

Frequency Band (MHz)	Condu		verage Chain 3m)		Max Conducted Average Power	Directional Gain	Max EIRP Power	Max EIRP Power	Distance	Power Density	Limit
	ANT0	ANT1	ANT2	ANT3	- Totaol (dBm)	(dBi)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm²)
866.5	NA	NA	42.49	42.46	45.49	16.00	61.49	1409288.798	1485	0.05086	0.57767
723	47.29	47.32	NA	NA	50.31	17.00	67.32	5395106.225	1485	0.19469	0.48200
627	44.65	44.82	44.51	44.68	50.69	17.00	67.69	5874893.525	1485	0.21200	0.41800

Note:

1. EIRP Power = Conducted Power+ Antenna gain

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Conclusion:

The formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1 CPD = Calculation power density LPD = Limit of power density

Band n26 + Band n29 + Band n71 = 0.05086/0.57767 + 0.19469/0.482 + 0.212/0.418 = 0.99914

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ----