FCC PART 15.225 EMI MEASUREMENT AND TEST REPORT

For

RF Ideas, Inc.

4238B. Arlington Heights Rd, #224, Arlington Heights, IL 60004

FCC ID: M9MRFID1356I150

This Report Concerns:

☐ Original Report
☐ OEM RFID1356 USB Reader / AIR ID
☐ Test Engineer:
☐ Jerry Wang
☐ Report No.:
☐ R0505113
☐ Report Date:
☐ 2005-05-17
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ Common Type:
☐ OEM RFID1356 USB Reader / AIR ID
☐ OEM RFID1356 USB Re

Reviewed By: Daniel Deng

Prepared By: Bay Area Compliance Laboratory Corporation (BACL)

230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is specially limited to the above client company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
SCHEMATICS AND BLOCK DIAGRAM	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT	٥
INTERFACE PORTS AND CABLING	
TEST SETUP CONFIGURATION	
TEST SETUP BLOCK DIAGRAM	
SUMMARY OF TEST RESULTS	
§ 15.35, § 15.205, § 15.209, § 15.225 - RADIATED EMISSION TEST	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
SUMMARY OF TEST RESULTS	
RADIATED EMISSIONS TEST RESULT DATA @ 3M	
§ 15.203 – ANTENNA REQUIEMENT	
STANDARD APPLICABLE	
ANTENNA CONNECTED CONSTRUCTION	
§ 15.207 – CONDUCTED EMISSIONS TEST	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
RECEIVER ANALYZER SETUP	
TEST EQUIPMENT.	
TEST PROCEDURE	
SUMMARY OF TEST RESULTS	
CONDUCTED EMISSIONS TEST DATA	
PLOT OF CONDUCTED EMISSIONS TEST DATA	13
§ 15.225(E) - FREQUENCY STABILITY MEASUREMENT	16
STANDARD APPLICABLE	
TEST PROCEDURE	16
TEST EQUIPMENT LIST AND DETAILS.	16

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The RF Ideas, Inc. 's product, FCC ID: M9MRFID1356I150 or the "EUT" as referred to in this report is an OEM RFID1356 USB Reader / AIR ID. The EUT measures approximately 70mm (L) x 50mm (W) x 10mm (H).

* The test data gathered is from production samples, serial number: 6094-50-02, provided by the manufacturer.

Objective

This Type approval report is prepared on behalf of *RF Ideas, Inc.* in accordance with Part 2, Subpart J, and Part 15 Subpart C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules, Part 15, sec 15.35, sec 15.203, sec 15.205, sec 15.207, sec 15.209 and sec 15.225.

Related Submittal(s)/Grant(s)

No Related Submittals.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

RF Ideas, Inc.	FCC ID: M9MRFID1356I150
Additionally, BACL is a National Institute of Sunder the National Voluntary Laboratory Accreditations is attached hereinafter and can alattp://ts.nist.gov/ts/htdocs/210/214/scopes/2001	

Report # R0505113Rpt Page 4 of 17 FCC ID 15.225 Report

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to ANSI C63.4-2003.

EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components.

Special Accessories

As shown in the following test setup block diagram, all interface cables used for compliance testing are shielded.

Schematics and Block Diagram

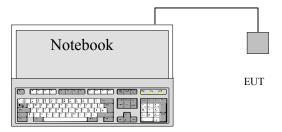
Please refer to Appendix D.

Equipment Modifications

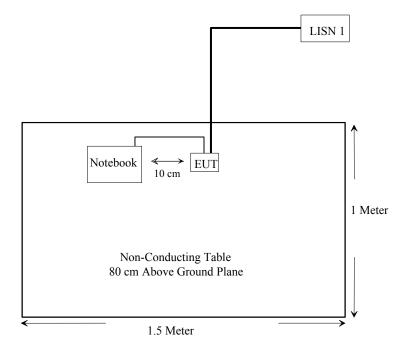
No modifications were made to the EUT

Local Support Equipment

Manufacturer	Description	Model	Serial Number	FCC ID
Compaq	Notebook	Presario 2100	CNF43403FB	DOC


Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number	FCC ID
Potrans Electrical Corporation	AC-DC Power Adaptor	UP07231240	N/A	N/A


Interface Ports and Cabling

Manufacturer/Description	Length (M)	From	То	
Shielded USB Cable	0.3	USB Port/Host	EUT	

Test Setup Configuration

Test Setup Block Diagram

Report # R0505113Rpt Page 6 of 17 FCC ID 15.225 Report

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§ 15.35 § 15.205 § 15.209 § 15.225	Radiated Emission	within the measurement uncertainty
§ 15.207	Conducted Emission	Compliant
§15.225(e)	Frequency Stability	Compliant

§ 15.35, § 15.205, § 15.209, § 15.225 - RADIATED EMISSION TEST

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ±4.0 dB.

EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of test table and bundle when necessary.

The notebook connected to 120Vac/60Hz power source.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR 15.33, the EUT was tested to 1 GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30 – 1000MHz Above 1000MHz	100kHz 1MHz	100kHz 1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Amplifier, Pre	8447D	2944A10187	2004-08-25
ETS	Antenna, Loop, H-Field, Passive	6512	34167	2005-05-09
Sunol Sciences	Antenna, Loop (30MHz-2GHz)	JB1	A013105-3	2005-02-11
HP	Plotter	7475A	2517A05739	N/R
Sunol Sciences	System Controller	SC99V	122303-1	N/R
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2004-09-29

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -4 dB of specification limitation), and are distinguished with a "QP" in the data table.

The EUT was operating at normal to represent worst case during final qualification test. Therefore, this configuration was used for final test data recorded in the following table of this report.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Summary of Test Results

According to the final data in the following table, the EUT measures within the measurement uncertainty ±4.0 dB, and had the worst margin of:

-2.9 dB (QP) at 40.68 MHz in the Vertical polarization

Environmental Conditions

Temperature:	23° C
Relative Humidity:	45%
ATM Pressure:	1021 mbar

Testing was performed by Jerry Wang on 2005-05-13.

Radiated Emissions Test Result Data @ 3M

Indio	CATED	TABLE	Anti	ENNA		Correct	ION FAC	ΓOR	FCC 1	5 SUBPART C
Freq	Reading	Angle	Height	Polar	Antenna	Cable	Amp.	Correction Reading	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB
40.68	50.4	200	1	V	13.9	1.4	28.6	37.1	40	-2.9 QP
216.96	49.7	180	1.2	V	10.6	3.1	27.6	35.8	46	-10.2
271.4	45.3	200	1.2	V	13.2	3.4	27.4	34.5	46	-11.5
365.6	43.2	200	1.2	V	14.8	4.1	27.8	34.3	46	-11.7
40.68	40.8	200	1.5	Н	13.9	1.4	28.6	27.5	40	-12.5
244	46.1	180	1.5	Н	11.5	3.3	27.5	33.4	46	-12.6
215.7	44.7	180	1.2	V	10.6	3.1	27.6	30.8	43.5	-12.7
135.67	42.3	200	1.5	Н	13.8	2.4	28.1	30.4	43.5	-13.1
108.4	45.3	270	1.5	Н	11.0	2.1	28.2	30.2	43.5	-13.3
324.2	42.3	180	1.2	V	14.1	3.8	27.5	32.7	46	-13.3
108.48	45.2	200	1.2	V	11.0	2.1	28.2	30.1	43.5	-13.4
216.96	46.4	200	1.5	Н	10.6	3.1	27.6	32.5	46	-13.5
54.15	44.9	180	1.2	V	8.3	1.6	28.5	26.3	40	-13.7
108.48	44.5	180	1.5	Н	11.0	2.1	28.2	29.4	43.5	-14.1
406.9	39.5	200	1.2	V	15.4	4.6	28.1	31.4	46	-14.6
244	43.9	200	1.2	V	11.5	3.3	27.5	31.2	46	-14.8
13.56	64.5	180	1	V	15.8	0.3	27.3	53.3	104	-50.7 *
13.56	62.3	200	1.2	Н	15.8	0.3	27.3	51.1	104	-52.9 *

^{*} Fundamental

§ 15.203 – ANTENNA REQUIEMENT

Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

"The antenna for this device is an integral antenna that the end user cannot access. Furthermore the device is for indoor/outdoor use as detailed in the Users Manual and Operational Description".

Antenna Connected Construction

This device has an integral antenna; it is a permanently attached antenna.

§ 15.207 – CONDUCTED EMISSIONS TEST

Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

EUT Setup

The measurement was performed in the shielded room, using the same setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC 15 Class B limits.

The notebook connected to 120Vac/60Hz power source.

External I/O cables were draped along the edge of the test table and bundle when necessary.

Receiver Analyzer Setup

The EMI test receiver was set to investigate the spectrum from 150 KHz to 30 MHz.

Test Equipment

Manufacturer	Description	Model	Serial Number	Cal. Date
Rohde & Schwarz	LISN	ESH2-Z5	871884/039	2004-08-16
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2004-09-15
Fluke	Calibrated Voltmeter	189	18485-38	2004-07-18

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the host system was connected to the mains outlet of the LISN-1.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB of specification limits). Quasi-peak readings are distinguished with a "**Qp**".

Summary of Test Results

According to the data in the following table, the EUT <u>complies with the FCC 15 Class B</u> Conducted margin for a Class B device, and these test results is deemed as satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations, with the worst margin reading of:

-17.0 dB at 0.15 MHz in the Neutral conductor

Environmental Conditions

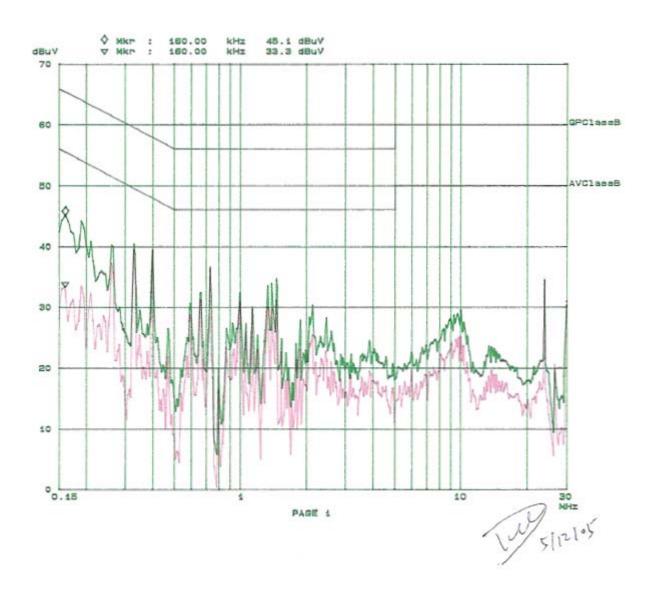
Temperature:	21° C
Relative Humidity:	48%
ATM Pressure:	1020 mbar

Testing was performed by Daniel Deng on 2005-05-12.

Conducted Emissions Test Data

	LINE CON	FCC 15 CLASS B			
Frequency	Amplitude	Detector Phase		Limit	Margin
MHz	dBμV/m	Qp/Ave/Peak	Qp/Ave/Peak Line/Neutral		dB
0.150	49.0	QP	Neutral	66.00	-17.0
0.165	48.2	QP	Neutral	65.21	-17.0
0.270	41.3	QP	Neutral	61.12	-19.8
0.160	45.1	QP	Line	65.46	-20.4
0.165	34.5	Ave	Neutral	55.21	-20.7
0.170	44.1	QP	Line	64.96	-20.9
0.170	33.6	Ave	Line	54.96	-21.4
0.155	44.2	QP	Line	65.73	-21.5
0.160	33.3	Ave	Line	55.46	-22.2
0.155	32.9	Ave	Line	55.73	-22.8
0.150	31.1	Ave	Neutral	56.00	-24.9

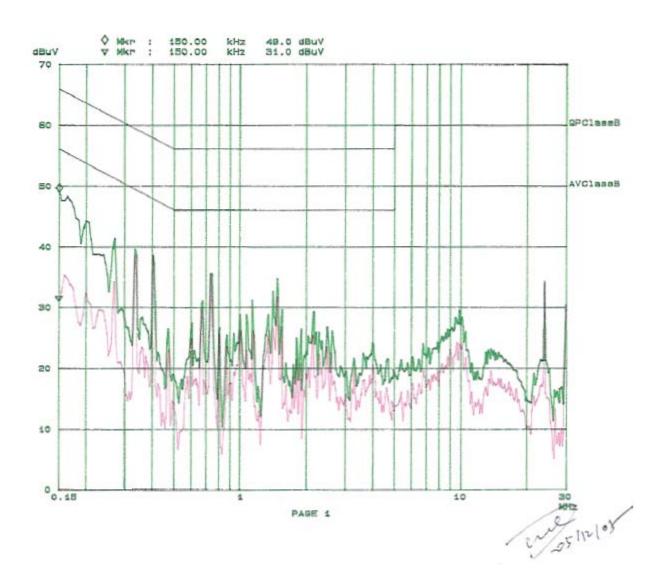
Plot of Conducted Emissions Test Data


Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference.

Bay Area Compliance Laboratory Corp 12. May 05 15: 35 Class B

EUT: Manuf: Op Cond: Operator: RFID RFIDEAS INC> Normal Daniel Comment: 120VAC

Scan Settings (3 Ranges)


	Frequencies		-	-	Receiv	er Sett	ngs	
Start	Stop	Step	IF B	W De	tector	M-Time	Atten	Preamp
150k	116	5k	98		P+AV	2020	10dBLN	OFF
414	5M	iok	96		P+AV	ime	10dBLN	DFF
5M	MOE	100k	98	0	P+AV	1mg	10dBLN	OFF

Bay Area Compliance Laboratory Corp 12. May 05 15:14 Class B

RFID RFIDEAS INC> EUT: Manuf: Op Cond: Normal Operator: Deniel Comment: 120VAC

Scan Settir	nge (3 Ranges	2)					
	Frequencies			Receiv	er Sett!	ings	<u>-</u>
Start	Stop	Step	IN BM	Detector	M-Time	Atten	Presmp
150k	1M	5k	9k	QP+AV	20ms	10dBLN	OFF
1M	SM	10k	ak	QP+AV	ime	10dBLN	OFF
EM	ROM	100%	mile	DPAAV	4 mm	4 OARL N	OFF

§ 15.225(e) - FREQUENCY STABILITY MEASUREMENT

Standard Applicable

According to FCC §15.225(e), the frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure

Frequency stability versus environmental temperature

The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

Frequency Stability versus Input Voltage

At room temperature (25±5°C), an external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial No.	Calibration Date	
HP	Counter, Microwave Frequency	5342A	2232A06380	2004-09-07	
Tenny	Temperature Chamber	Versa Tenna	N/A	2004-04-23	

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Results

Environmental Conditions

Temperature:	16° C
Relative Humidity:	56%
ATM Pressure:	1019 mbar

Testing was performed by Jerry Wang on 2005-05-17.

Reference Frequency: 13.5600 MHz								
Temperature	Power Supplied	Frequency Measure with Time Elapsed						
(C)	(Vac)	MCF (MHz)	PPM Error					
50	110V	13.5606	44.2					
40	110V	13.5606	44.2					
30	110V	13.5605	36.8					
20	110V	13.5605	36.8					
10	110V	13.5605	36.8					
0	110V	13.5605	36.8					
-10	110V	13.5604	29.4					
-20	110V	13.5604	29.4					

Frequency Stability Versus Input Voltage

Reference Frequency: 13.5600 MHz									
-	Frequency Measure with Time Elapsed								
Power Supplied	2 Minutes		5 Minu	tes	10 Minutes				
(Vac)	Measured Frequency	Frequency Error	Measured Frequency	Frequency Error	Measured Frequency	Frequency Error			
(,)	MHz	PPM	MHz	PPM	MHz	PPM			
126.5	13.5606	44.2	13.5608	59.00	13.5608	59.0			
110.0	13.5602	14.7	13.5603	22.12	13.5602	14.7			
93.5	13.5608	59.0	13.5607	51.60	13.5608	59.0			

Conclusion: The EUT complied with the applicable Frequency Stability Limits.