Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 1 of 51

Recognized by the Federal Communications Commission

Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3463 (IC)

Commission

Accredited by the German Accreditation Council DAR–Registration Number TTI–P–G 081/94-D0

Independent ETSI compliance test house

Accredited Bluetooth® Test Facility (BQTF)

Test report no.	:	4-1462-12-05/04
Applicant	:	Sagem SA
Type	:	OT208
Test Standard	:	FCC Part 22, 24
		RSS132, 133
FCC ID	:	М9Н95ОТ208
Certification No. IC	:	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 2 of 51

Table of contents

1	GENI	ERAL INFORMATION	3
	1.1. A	DMINISTRATIVE DATA OF THE TEST FACILITY	3
	1.1.1	Identification of the testing laboratory	
		OTES	
		ETAILS OF APPLICANT	
		PPLICATION DETAILS	
		EST ITEM	
		EST SETUP	
1	1.7 T	EST STANDARDS	6
2	STAT	EMENT OF COMPLIANCE	7
2	2.1 S	UMMARY OF MEASUREMENT RESULTS	7
	2.1.1	PCS 1900	
	2.1.2	GSM 850	<i>7</i>
3	MEAS	SUREMENTS AND RESULTS	8
3	3.1 P.	ART PCS 1900	8
	3.1.1	RF Power Output	
	3.1.2	Radiated Emissions	
	3.1.3	Receiver Radiated Emissions	22
3	3.2 P.	ART GSM 850	
	3.2.1	RF Power Output	
	3.2.2	Radiated Emissions	
	3.2.3	Receiver Radiated Emissions	
4	USED	TESTEQUIPMENT	41
AN	INEX A	: TEST SET-UP PHOTOS	45
AN	INEX B:	EXTERNAL PHOTOS OF THE EUT	50

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 3 of 51

1 General information

1.1. Administrative data of the test facility

1.1.1 Identification of the testing laboratory

Company name: Cetecom ICT Services GmbH Address: Untertürkheimerstr. 6-10

D-66117 Saarbruecken

Germany

Laboratory accreditation: DAR-Registration No. TTI-P-G081/94-D0

Bluetooth Qualification Test Facility (BQTF)

Federal Communications Commission (FCC)

Identification/Registration No: 90462

Responsible for testing laboratory: Gillmann D. / Hausknecht D.

Phone: +49 681 598 0 Fax: +49 681 598 9075 email: info@ict.cetecom.de

1.2. Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Responsible for testing laboratory (Gillmann D. / Hausknecht D.)

Responsible for test report (Gillmann D. / Hausknecht D.)

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 4 of 51

1.3 Details of Applicant

Name : Sagem SA

Address : 2-4, rue du Petit Albi

City : 95800 Cergy Saint-Christophe

Country : France

Phone : + 33 1 34 25 37 37

Fax : + 33 1 34 25 74 11

Contact : Jean Marquet

Phone : + 33 1 34 25 37 37

Fax : + 33 1 34 25 74 11

e-mail : jean.marquet@sagem.com

1.4 Application Details

Date of receipt of application : 2004-11-09 Date of receipt of EUT : 2005-01-12

Date(s) of test : 2005-01-17 to 2005-01-18

Date of report : 2005-01-18

Untertürkheimer Str. 6-10, 66117 Saarbruecken

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 5 of 51

1.5 Test Item

RSC-Laboratory

Type of equipment : Dual Band GSM850 / PCS 1900 handset

Type name : OT208 Manufacturer : Sagem SA

Address : 2-4, rue du Petit Albi

City : 95800 Cergy Saint-Christophe

Country : France

Frequency : 1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz

Type of modulation : 300KGXW

Number of channels : 300 (PCS1900) and 125 (PCS850)

Antenna : Integral antenna

Power supply (normal) : 3.9V DC

Output power GSM 850 : cond.: 31.8 dBm Peak

ERP: 28.8 dBm (Burst);

Output power GSM 1900 : cond : 30.7 dBm Peak

EIRP: 31.4 dBm (Burst)

 $\begin{array}{lll} Transmitter \ Spurious \ (worst \ case) & - \ mW \ / \ dBm \\ Receiver \ Spurious \ (worst \ case) & - \ \mu V \ / m \ @ \ 3 \ m \end{array}$

FCC ID : M9H95OT208

Certification No. IC

Open Area Test Site IC No. : 3436

IC Standards : RSS132, Issue 1, RSS133, Issue 2, Rev. 1

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2005-01-18 RSC 8431 Gillmann, D.

Date Section Name

Untertürkheimer Str. 6-10, 66117 Saarbruecken

RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 6 of 51

1.6 Test Setup

Hardware : V0x

Software : JY B40 1, JY B42

Mobile (radiated measurements) : 351816.95.001485.01

The radiated measurements were performed with an AC charging unit (Type: AC/DC Adaptor PS53/1789 Multi)

1.7 Test Standards

IC:

FCC: CFR Part 22 H

CFR Part 24 E RSS 132, Issue 1

RSS 133, Issue 2, Rev. 1

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 7 of 51

2 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

2.1 Summary of Measurement Results

2.1.1 PCS 1900

Section in	Test Name	Verdict
this Report		
3.1.1	RF Power Output	pass
3.1.2	Radiated Emissions	pass
3.1.3	Receiver Radiated Emissions	pass

2.1.2 GSM 850

Section in this Report	Test Name	Verdict
3.2.1	RF Power Output	pass
3.2.2	Radiated Emissions	pass
3.2.3	Receiver Radiated Emissions	pass

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 8 of 51

3 Measurements and results

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. Device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link).

3.1 PART PCS 1900

3.1.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 2, Rev. 1, Section 6.2

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Test Results: Output Power (conducted)

		Peak	Average	
Frequency	Power Step	Output Power	Output Power	
(MHz)		(dBm)	(dBm)	
1850.2	0	30.7	30.6	
1880.0	0	30.4	30.3	
1909.8	0	30.7	30.6	
Measurement uncerta	ainty	±0.5 dB	±0.5 dB	

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 9 of 51

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

A cc

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (1) Repeat for all different test signal frequencies

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 10 of 51

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz Video BW : same Detector Mode : positive

Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):

DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Untertürkheimer Str. 6-10, 66117 Saarbruecken **RSC-Laboratory**

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Page 11 of 51 Date: 2005-01-18

Limits:

Power Step	Burst PEAK EIRP (dBm)
0	<33

Test Results: Output Power (radiated)

Frequency		BURST PEAK EIRP
(MHz)	Power Step	(dBm)
1850.2	0	31.4
1880.0	0	31.4
1909.8	0	31.2
Measurement uncertainty	±3 dB	

CETECOM

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 12 of 51

3.1.2 Radiated Emissions

Reference

FCC: CFR Part 24.238, 2.1053
IC: RSS 133, Issue 2, Rev. 1, Section 6.3

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an ad justable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43+10\log(P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 13 of 51

Measurement Results: Radiated Emissions

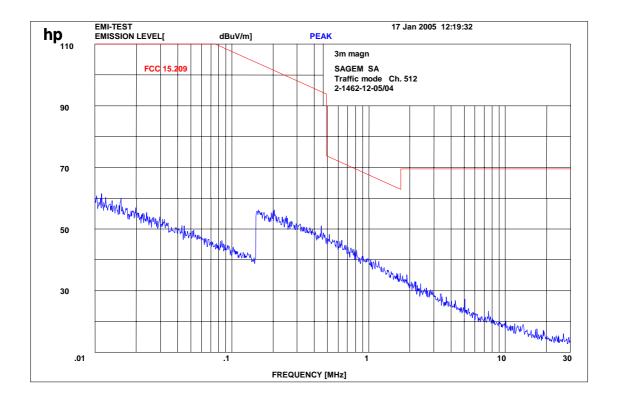
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization, the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch512	Level	Tx ch661	Level	Tx ch810	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	3700.4		3760		3819.6	
3	5550.6		5640		5729.4	
4	7400.8		7520		7639.2	
5	9251.0		9400		9549.0	
6	11101.2		11280		11458.8	
7	12951.4		13160		13368.6	
8	14801.6		15040		15278.4	
9	16651.8		16920		17188.2	
10	18502.0		18800		19098.0	

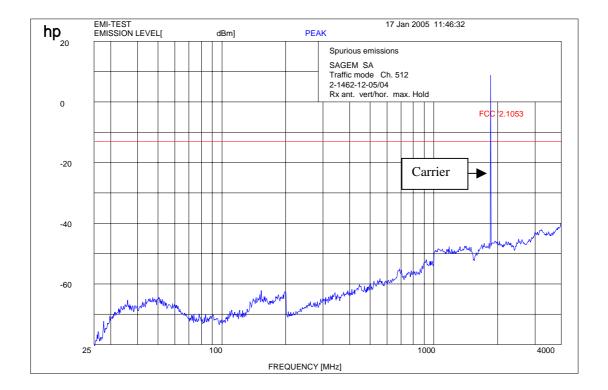
No peaks found < 20 dB below limit.


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 14 of 51

Traffic mode up to 30 MHz (Valid for all 3 channels)

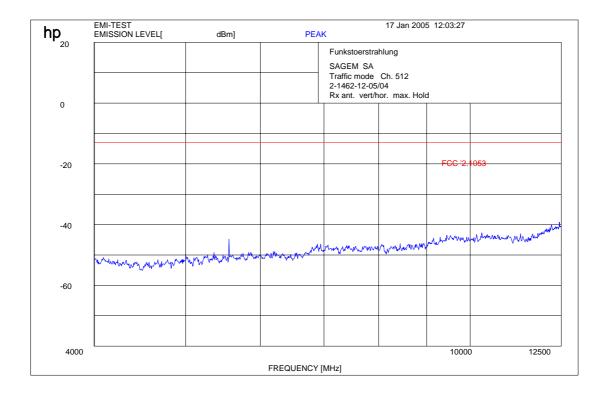

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 15 of 51

Channel 512 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1GHz : RBW / VBW 1 \text{ MHz}$

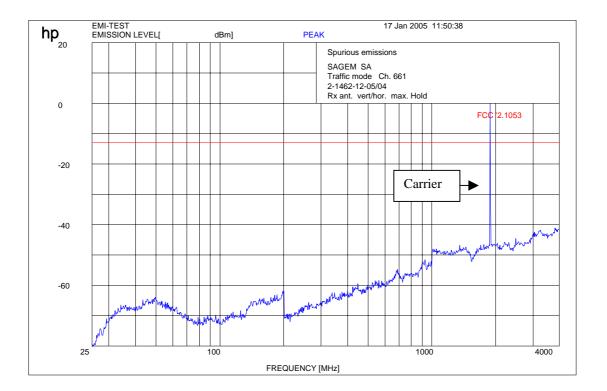

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 16 of 51

Channel 512 (4 GHz – 12.5 GHz)

1 GHz : RBW/VBW: 100 kHz $f \ge 1$ GHz : RBW / VBW 1 MHz

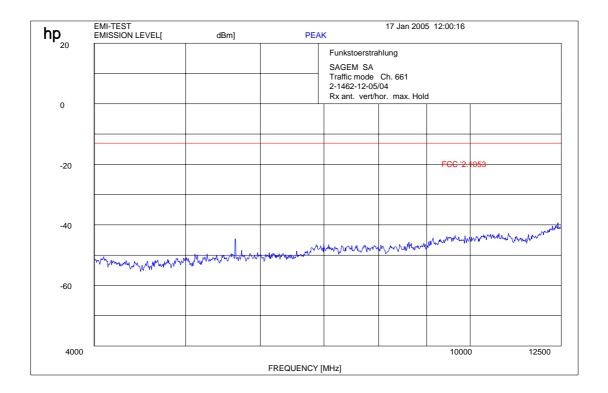

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 17 of 51

Channel 661 (30 MHz - 4 GHz)

 $f < 1 \ GHz : RBW/VBW : 100 \ kHz$ $f \ge 1 GHz : RBW / VBW \ 1 \ MHz$ Carrier suppressed with a rejection filter

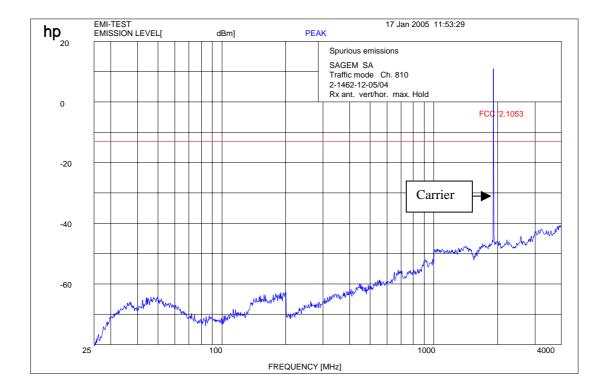

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 18 of 51

Channel 661 (4 GHz – 12.5 GHz)

 $f < 1~GHz: RBW/VBW: 100~kHz \\ \hspace{1.5cm} f \geq 1GHz: RBW / VBW ~1~MHz$

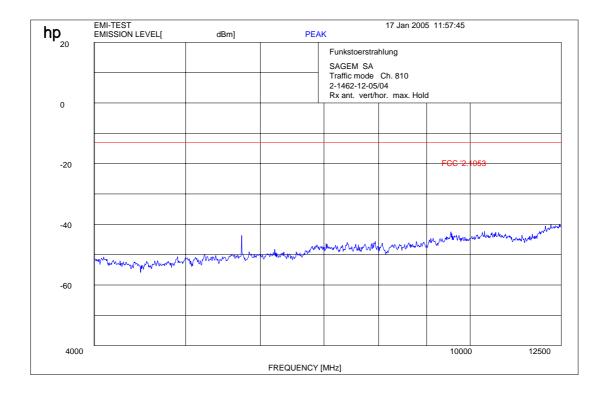

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 19 of 51

Channel 810 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1GHz : RBW / VBW 1 \text{ MHz}$


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

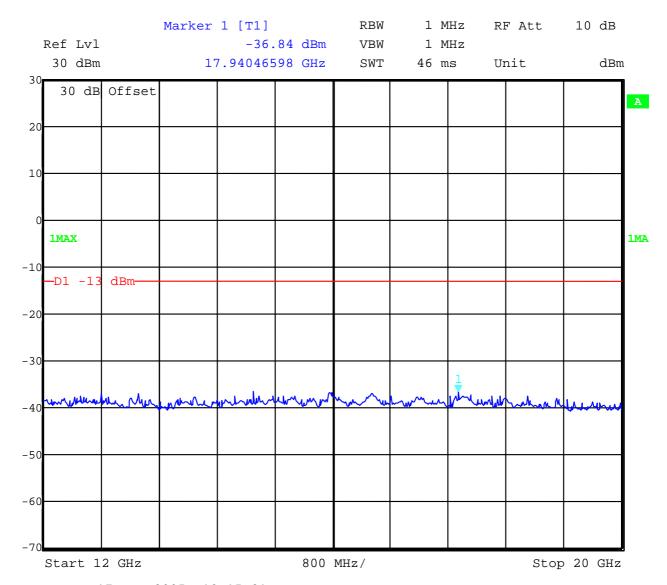
Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 20 of 51

Channel 810 (4 GHz – 12.5 GHz)

f < 1~GHz: RBW/VBW: 100~kHz $f \ge 1GHz: RBW / VBW 1~MHz$ Carrier suppressed with a rejection filter

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory


Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 21 of 51

This plot is valid for all 3 channels (worst case)

12 GHz - 20 GHz

Date: 17.JAN.2005 13:15:21

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 22 of 51

Fax: -9075

3.1.3 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053

IC: RSS 133, Issue 2, Rev. 1, Section 6.3

Measurement Results

	SPURIOUS EMISSIONS LEVEL (μV/m)							
	Idle mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
no	peaks	found						
Measurer	Measurement uncertainty							

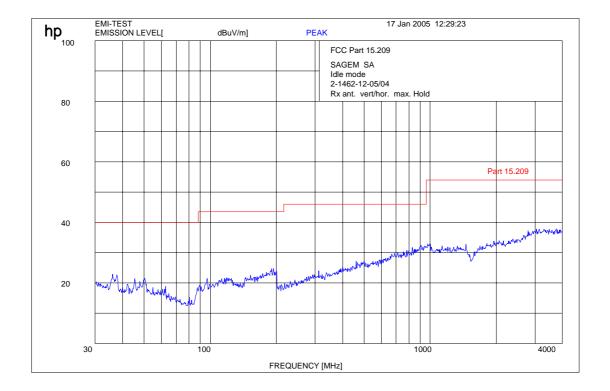
 $f < 1 \; GHz : RBW/VBW : 100 \; kHz \qquad \qquad f \geq 1GHz : RBW/VBW : 1 \; MHz$

H = Horizontal; V= Vertical

For measurement distance see table below

Limits: § 15.109

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

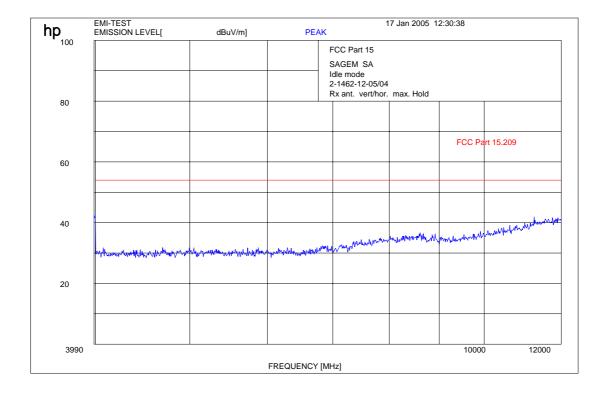

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 23 of 51

IDLE MODE (30 MHz - 4 GHz)

1 GHz : RBW/VBW: 100 kHz $f \ge 1$ GHz : RBW / VBW 1 MHz

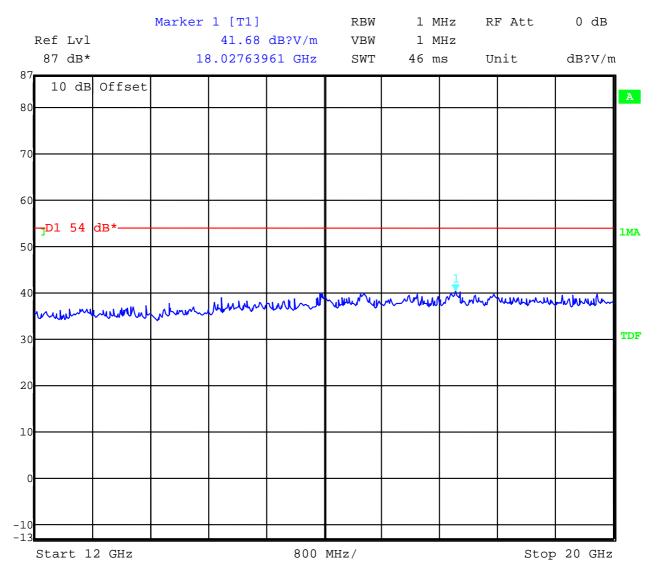

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 24 of 51

Idle Mode (4 GHz – 12.0 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 25 of 51

Idle Mode (12 GHz - 20 GHz)

Date: 17.JAN.2005 13:19:08

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 26 of 51

3.2 PART GSM 850

3.2.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 1, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 824.2 MHz, 836.2 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
5	+33	± 2

Measurements Results Output Power (conducted)

		Peak	Average	
Frequency	Power Step	Output Power	Output Power	
(MHz)	_	(dBm)	(dBm)	
824.2	5	31.4	31.3	
836.4	5	31.7	31.6	
848.8	5	31.8 31.7		
Measurement uncertainty		±0.5 dB		

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 **RSC-Laboratory** Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 27 of 51

ERP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (1) Repeat for all different test signal frequencies

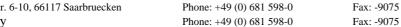
Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

: equal to the signal source Center Frequency

Resolution BW : 10 kHz Video BW : same Detector Mode : positive : off Average

Span : 3 x the signal bandwidth


(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

- (c) Select the frequency and E-field levels for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

Untertürkheimer Str. 6-10, 66117 Saarbruecken **RSC-Laboratory**

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 28 of 51

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Power Step	Burst Peak
	(dBm)
0	<33

Measurement Results Output Power (Radiated)

		BURST Peak		
Frequency	Power Step	(dBm)		
(MHz)		ERP		
824.2	5	27.6		
836.4	5	28.3		
848.8	5	28.8		
Measurement uncertainty: 1.5%				

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 29 of 51

3.2.2 Radiated Emissions

Reference

FCC: CFR Part 22.917, 2.1053

IC: RSS 132, Issue 1, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 30 of 51

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.2 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

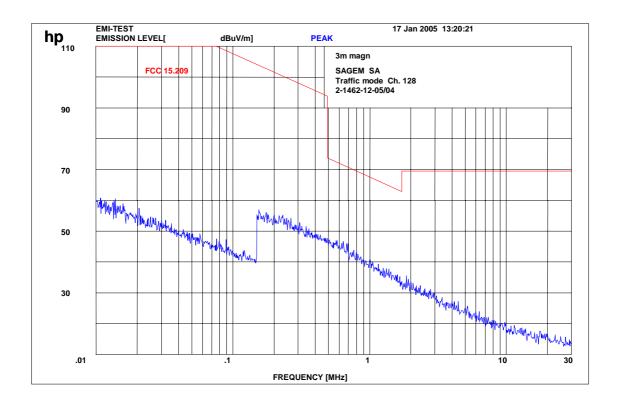
All measurements were done in horizontal and vertical polarization, the plots shows the worst case.

As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128	Level	Tx ch190	Level	Tx ch251	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	1648.4		1673.2		1697.6	
3	2472.6		2509.8		2546.4	
4	3296.8		3346.4		3395.2	
5	4121.0		4183.0		4244.0	
6	4945.2		5019.6		5092.8	
7	5769.4		5856.2		5941.6	
8	6593.6		6692.8		6790.4	
9	7417.8		7529.4		7639.2	
10	8242.0		8366.0		8488.0	

No peaks found < 20 dB below limit.

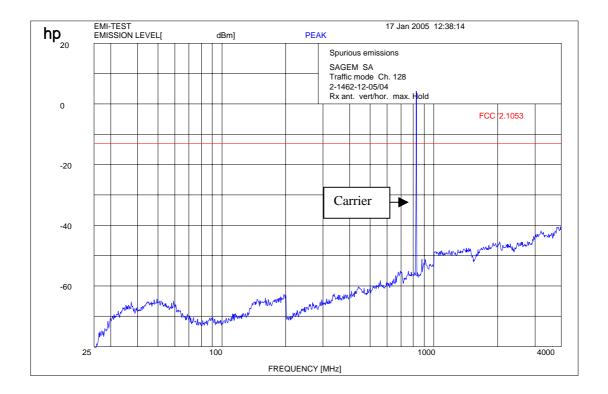
Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory


Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 31 of 51

Traffic mode up to 30 MHz (Valid for all 3 channels)

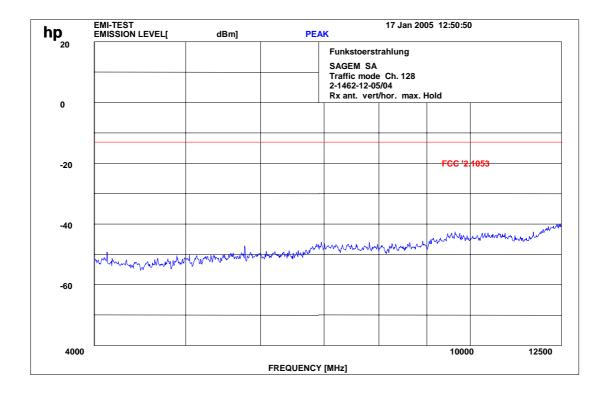

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 32 of 51

Channel 128 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1GHz : RBW / VBW 1 \text{ MHz}$

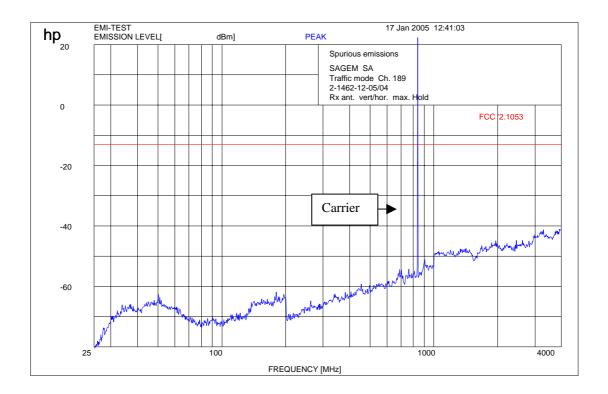

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 33 of 51

Channel 128 (4 GHz – 12.5 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$

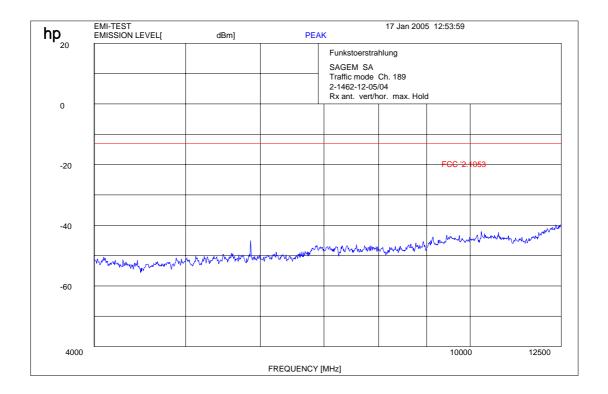

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 34 of 51

Channel 189 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW / VBW 1 \text{ MHz}$

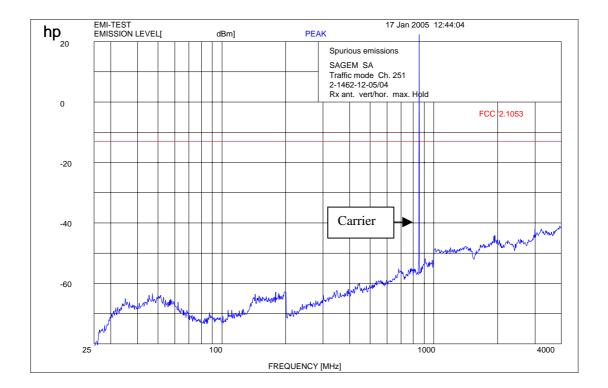

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 35 of 51

Channel 189 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW / VBW 1 \text{ MHz}$

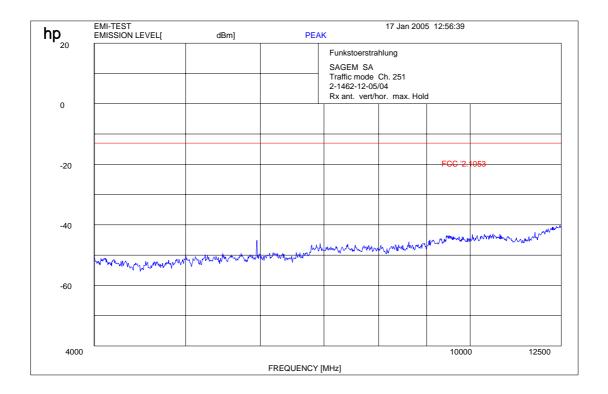

Untertürkheimer Str. 6-10, 66117 Saarbruecken Ph RSC-Laboratory Ph

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 36 of 51

Channel 251 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW / VBW 1 \text{ MHz}$


Untertürkheimer Str. 6-10, 66117 Saarbruecken Ph RSC-Laboratory Ph

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 37 of 51

Channel 251 (4 GHz – 12.5 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$

Carrier suppressed with a rejection filter

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 38 of 51

3.2.3 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053

IC: RSS 132, Issue 1, Section 4.6 and 6.6

		5	SPURIOUS I	EMISSIONS	LEVEL (µV/m	1)		
	Idle mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
No	Peaks	Found						
Measurement uncertainty			±3 dB					

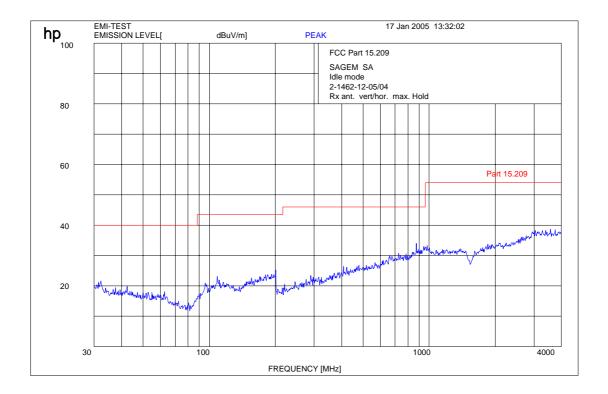
f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 GHz: RBW/VBW: 1 \text{ MHz}$

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

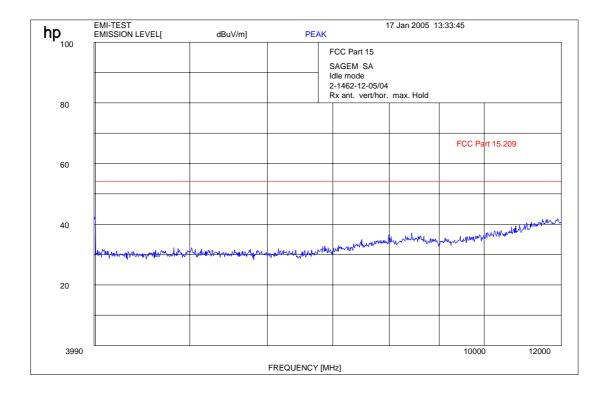

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 39 of 51

Idle-Mode (30 MHZ - 4 GHZ)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 40 of 51

IDLE-MODE (4 GHz - 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1GHz : RBW / VBW 1 \text{ MHz}$

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 41 of 51

4 Used Testequipment

Anachoic chamber C:

Device	Manufacturer	Type	S/N Number	Inv. No. Cetecom
Spektrum Analyser	HP	8566B	2747A05306	300001000
Spektrum Analyser Display	HP	85662A	2816A16541	300002297
Quasi-Peak-Adapter	HP	85650A	2811A01131	300000999
Power Dupply	HP	6032A	2818A03450	300001040
Power Attenuator	Byrd	8325	1530	300001595
Bikonical Antenna	EMCO	3104	3758	300001602
Log. Period. Antenna	EMCO	3146	2130	300001603
Double Ridged Antenna	EMCO	HP 3115P	3088	300001032
Active Loop Antenna	EMCO	6502	2210	300001015
Antenna VDE/FCC		HP11965B		300002298
SRM-Drive	HP	9144A	2823e46556	300001044
Software	HP	EMI		300000983
Busisolator	Kontron			300001056
Absorberhalle	MWB		87400/02	300000996
Salzsäule	Kontron			300001055
Antenna	R&S	HMO20	832211/003	300002243
Indukt.Tast Antenna	R&S	HFH 2 Z4	881468/026	300001464
System-Rack	HP I.V.	85900	*	300000222
Spectrum Analyzer	HP	8566B	2747A05275	300000219
Quasi-Peak-Adapter	HP	85650A	2811A01135	300000216
RF-Preselector	HP	85685A	2837A00779	300000218
Rahmen Antenne	R&S	HFH2-Z2	891847-35	300001169
Leitungsteiler	HP	11850C		300000997
Breitband-Hornantenne EMI	HP	35155P		300002300
PC	HP	Vectra VL		300001688
VHF Meßantenne	Schwarzbeck	VHA 9103		300001778
Spectrum Analyzer Display	HP	85662A	2816A16497	300001690
VHF Meßantenna	Schwarzbeck	VHA 9103		300001780
Biconical Antenna	EMCO	3104 C	9909-4868	300002590

SRD Laboratory:

	300001207	Type	S/N Number	Inv. No. Cetecom
Device				
Spectrum Analyzer	300001208	494AP	B010241	300000863
Spectrum Analyzer	HP	71210A (70000)	2731A02347	300000321
Spectrum Analyzer Display	HP	70206A	2840A01553	300002017
Reference Frequency	HP	70310A	2736A00707	300002018
Local Oscillator	HP	70900A	2842A02221	300002019
ZF-Modul 10Hz-300 kHz	HP	70902A	2840A02145	300002020
ZF-Modul 100 kHz-3 MHz	HP	70903A	2835A01069	300002021
HF-Teil für 71210A 100Hz- 22GHz	HP	70908A		300002022
Spectrum Analyzer 2	HP	85660B	3138A07614	
Spectrum Analyzer Display 2	HP	85662A	3144A20627	

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 42 of 51

				T
Signal Generator DC-600 KHz	HP	8904A	2822A01213	300001157
Signal Generator DC-600 KHz	HP	8904A	2822A01214	300001158
Powersupply	HP	6038A	3122A11097	300001204
Netznachbildung	R&S	ESH3-Z5	828576/020	300001210
Amplituden Controller	R&S	SMDU-Z2	871829/051	300002309
Trenntrafo	Erfi	913501		300001205
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B		300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001175
Powersensor	HP	8484A	2237A10156	300001130
Powersensor	HP	8482A	2237A06016	300001110
Relais Matrix	R&S	PSU	282628/004	300001139
Powersupply	Zentro	150	2007	300001211
Oszilloscope	Tektronix	7633	2007	300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001111
Quasi-Peak Adapter	HP	85650A	2811A01204	300001300
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300002300
Oszilloscope	HP	54510A	3022A02062	300001170
Funkmeßplatz	Schomandl	FD1000	34982	300001202
Signal Generator	R&S	SMPC	882416/019	300001113
Frequency counter	HP	5340A	2116A08138	300001102
Power Meter	HP	436A	2031U01461	300001104
Powersensor	HP	8482A	2031001401	300001103
	HP	8484A		300001100
Powersensor	HP			
Powersungly	HP	8485A	2752 4 0 4966	300001161
Powersupply	I .	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001132
Signal Generator NF	R&S	SPN	880139/068	300001142
Trenntrafo	Erfi	MPL	91350	300001151
Attenuator	JFW	30 db	1350h/104	300001703
Attenuator	JFW	10 db	1350h/103	300001704
Attenuator	JFW	20 db	1350h/106	300001705
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755		300001791

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 43 of 51

D	IIID	04044	2227 4 10404	200001666
Powersensor	HP	8484A	2237A10494	300001666
Powersupply	HP	6038A	3122A11097	300001204
Netznachbildung	R&S	ESH3-Z5	828576/020	300001210
Amplituden Controller	R&S	SMDU-Z2	871829/051	300002309
Trenntrafo	Erfi	913501		300001205
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B		300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro		2007	300001109
Oszilloscope	Tektronix	7633		300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300001176
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001115
Signal Generator	R&S	SMPC	882416/019	300001162
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001105
Powersensor	HP	8482A	2031001101	300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001107
Powersupply	HP	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001132
Signal Generator NF	R&S	SPN	880139/068	300001132
Trenntrafo	Erfi	MPL	91350	300001142
Attenuator	JFW	30 db	1350h/104	300001131
Attenuator	JFW	10 db	1350h/103	300001703
Attenuator	JFW	20 db	1350h/106	300001704
	JFW	20 db	1350h/105	300001703
Attenuator Filter		153755	133011/103	300001766
	Spinner		2227 4 10404	
Powersensor	HP	8484A	2237A10494	300001666

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 44 of 51

Powersensor	HP	8485A	2238A00849	300001668
Bandfilter	Telonic	TTF7255EE	20293-11	300001300
Bandfilter	Telonic	TTF12555EE	20292-6	300001300
Bandfilter	Telonic	TTF25055EE	20291-8	300001302
Bandfilter	Telonic	TTF50055EE	20290-7	300001304
Bandfilter	Telonic	TTF100055EE	20289-7	300001303
Bandfilter	Telonic	TTA300055EESN	20370-2	300001307
Bandstop	Telonic	TTR3753EE1	30013-1	300001312
Bandstop	Telonic	TTR723EE	20417-2	300001314
Bandstop	Telonic	TTR95-3EE	20372-4	300001318
Bandstop	Telonic	TTR1903EE	30036-4	300001318
Bandstop	Telonic	TTR3753EE	20369-5	300001320
Bandstop	Telonic	TTR750-3EE1	90177-1	300001321
Highpass	Pro Nova	HDP120-6GG	ohne	300002387
			HJ67-01?	
Highpass	Pro Nova	HMC500-6AA		300001350
Highpass	Narda	NHP 9000	0004 JV70-01	300001362
Highpass	Narda	HDP16-6GH	J V /0-01	300001364
Highpass	RSD	HDP50-6GH,		300001371
TT' 1	DCD	HDP200-6GG		200000270
Highpass	RSD	2099-02-01	20201100726	300000370
Signal Generator 0.1-2060 MHz	HP	8657A	2838U00736	300001009
Radio Code Analyzer	Schlumberger	SL4922		300001038
Signal Analyzer	B&K	2033	2504401242	300001047
Frequency counter	HP	5386A	2704A01243	300000998
Laufzeitelement	WR-Elektronik	2.550.40/4.54	00000	300001036
Powersupply Stromversorgung	Systron	M5P 40/15A	828233	300001291
Powersupply	Heiden	1108-32	1701	300001392
Powersupply	Heiden	1108-32	1802	300001383
Powersupply	Heiden	1108-32	003202	300001187
Powersupply	Zentro	LA 2x30/5GB1	2011	300001276
Powersupply	Zentro	LA 2x30/5GB2	2012	300001275
Powersupply	Zentro	LA 30/5GA	2041,2042	300001287
Trenntrafo	Grundig	RT5A	8781	300001277
Trenntrafo	Grundig	RT5A	9242	300001263
Multimeter	Goerz Elektro	Unigor 6e P	911 355	300001625
Multimeter	Goerz Elektro	Unigor 6e P	911 391	300001281
Climatic Box	Heraeus Voetsch	VUK04/500	32679	300000299
Powersensor + Att.	HP	8482B	2703A02586	300001492
Attenuator 30 dB	HP	8498A	1801A02445	300001475
Signal Generator NF	HP		2822A01203	300001004
Attenuator	Spinner	BN 534171 D	51881	300001516
Attenuator coaxial	Bird	8325	2429	300001513
Impulsbegrenzer	R&S	ESH 3 Z2		300001460
4Port Box	R&S	4Port Box	860457/005	300001472
Signal Generator 0.1-4200 MHz	HP	8665A	2833A0011	300002299
NF-Spektrumanalyzer	B&K	2033A		300002301
Swissphone Freifeld-Messbox	Swissphone Schweiz			300002302
Trenntrafo regelbar	Grundig	RT5H	9242	300001628
Signal Generator	HP	8111A	2215G00867	300001117

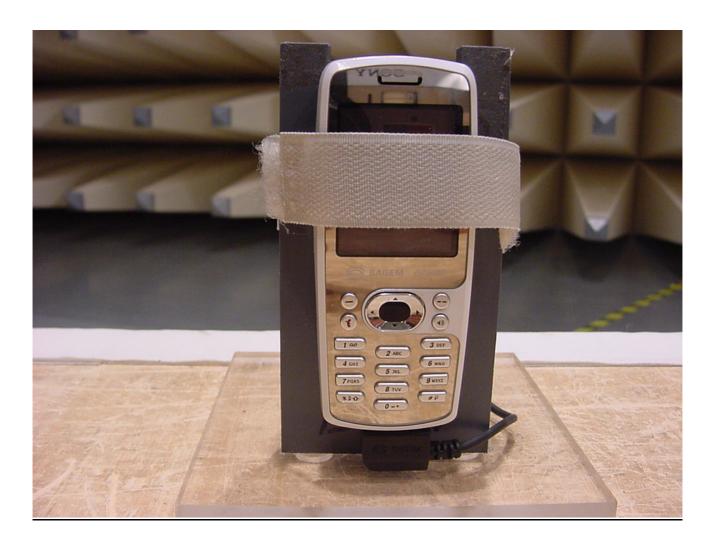
Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 45 of 51

ANNEX A: Test Set-up Photos

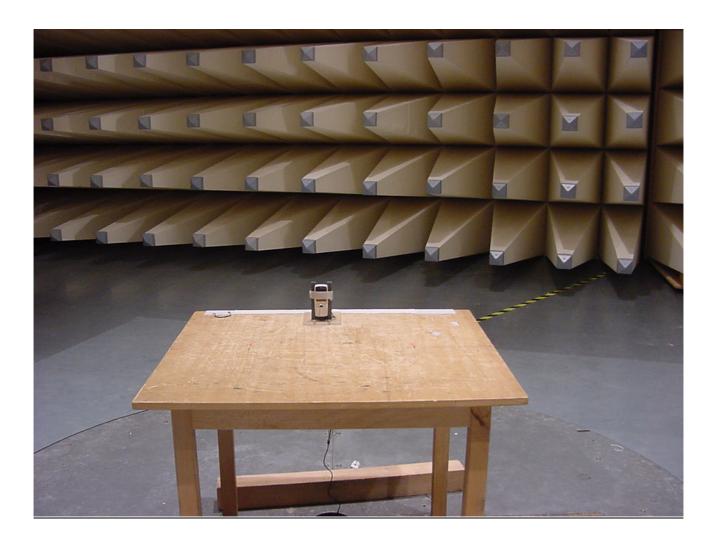
Photo 1:


CETECOM ICT Services GmbH
Untertürkheimer Str. 6-10, 66117 Saarbruecken
RSC-Laboratory
Phone: +49 (or Phone: +4 Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Page 46 of 51 Date: 2005-01-18

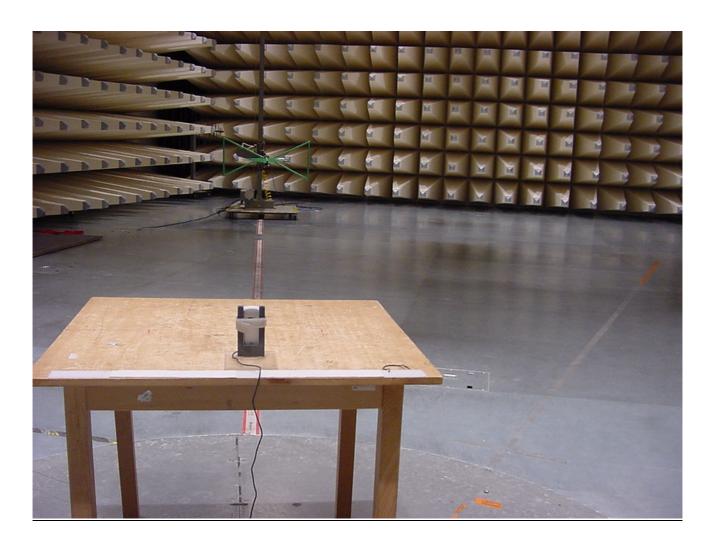
Photo 2:


Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 47 of 51

Photo 3:


Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 48 of 51

Photo 4:

Untertürkheimer Str. 6-10, 66117 Saarbruecken
RSC-Laboratory
Phone: +49 (0) 681 598-0
Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 49 of 51

Photo 5:

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075

Fax: -9075

Test report no.: 4-1462-12-05/04 Date: 2005-01-18 Page 50 of 51

ANNEX B: External Photos of the EUT

Photo 1:

CETECOM ICT Services GmbH
Untertürkheimer Str. 6-10, 66117 Saarbruecken
RSC-Laboratory
Phone: +49 (0 Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 4-1462-12-05/04 Page 51 of 51 Date: 2005-01-18

Photo 2:

