Plexus MA220E

August 05, 2003

Report No. PLEX0348

Report Prepared By:

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: August 05, 2003 Plexus Model: MA220E

Emissions

Description	Pass	Fail
FCC Part 15.109 Class B:2000 Radiated Emissions	\boxtimes	
FCC Part 15.107 Class B:2003 Conducted Emissions	\boxtimes	
FCC Part 15.225 Field Strength of Fundamental	\boxtimes	
FCC Part 15.225 Field Strength of Spurious Emissions	\boxtimes	
FCC Part 15.225 Frequency Stability	\boxtimes	
FCC Part 15.207 AC Powerline Conducted Emissions	\boxtimes	

Modifications made to the product

• See the modifications page of the report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with the FCC (Federal Communications Commission), and accepted by the FCC in a letter maintained in our files.

Approved By:

Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 200629-0, Certificate Number: 200630-0.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (A2LA)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0302C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from

Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Industry Canada: Accredited by Industry Canada for performance of radiated measurements. Our open area test sites comply with RSP 100, Issue 7, section 3.3.

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-694 and R-677, Sultan: C-905, R-871 and R-1172, North Sioux City C-1246, R-1185 and R-1217)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

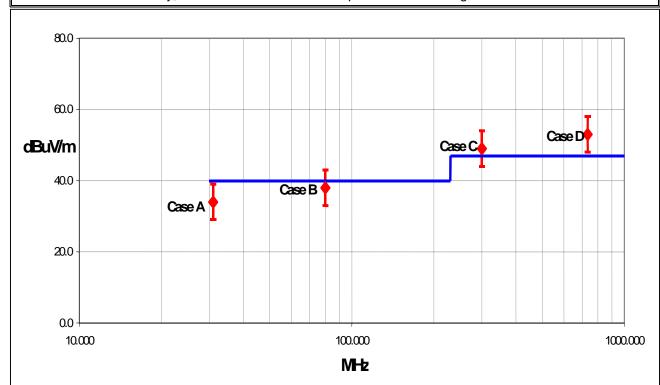
CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

	NVLAP	FCC	NIST	TUV PS	TUV Rheinland	Nemko	Technology International	Industry Canada	BSMI	VCCI	GOST	NATA
IEC 1000-4-2	/			/	/	/	<u> </u>					
IEC 1000-4-3	/			V	V	V	V					
IEC 1000-4-4	/			V	V	V	V					
IEC 1000-4-5	/			V	V	V	V					
IEC 1000-4-6	/			V	/	/	V					
IEC 1000-4-8	/			V	/	/	/					
IEC 1000-4-11	/			V	/	/	/					
IEC 1000-3-2	/			V	/	/	V					
IEC 1000-3-3	/			V	/	/	/					
AS/NZS 3548	/											V
CNS 13438	/								/			
ISO/IEC17025	/			V	V	/	/		/			
Radiated Emissions	/			V	/	/	/	/	/	/	/	
Conducted Emissions	/			V	V	/	/	/	/	/	/	
OATS Sites	/	/		V	/	/	/	/	/	/	/	
Hillsboro 5-Meter Chamber (EV01)	/	/		/	V	/	/	/	V	V	/	
TCB for Licensed Transmitters		/										
TCB for un-Licensed Transmitters		/										
Cab for R&TTE			V									
CAB for EMC			V									

This chart represents only a partial NVLAP Scope, please reference http://ts.nist.gov/ts/htdocs/210/214/214.htm for the full NVLAP Scope of Accreditation

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Pe	eriodic	D	ipole	
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

South Dakota

North Sioux City Facility

745 N. Derby Lane P.O. Box 217 North Sioux City, SD 57049 (605) 232-5267 FAX (605) 232-3873

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 1/28/03

Party Requesting the Test

Company Name:	Plexus
Address:	21717 30th Drive S.E.
City, State, Zip:	Bothell, WA 98021
Test Requested By:	John Prieve
Model:	MA220E
First Date of Test:	07-18-2003
Last Date of Test:	07-30-2003
Receipt Date of Samples:	07-18-2003
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	Serial, Ethernet, Wiegand

Functional Description of the EUT (Equipment Under Test):

Automatic fingerprint recognition terminal.

Client Justification for EUT Selection:

Not Provided

Client Justification for Test Selection

These tests satisfy the requirements for the FCC.

Modifications

	Equipment modifications							
Item #	Test	Date	Modification	Note				
1	AC Power Line Conducted Emissions	07-18-2003	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.				
2	Spurious Radiated Emissions	07-18-2003	Ferrite 0444173551 clamped around all cables exiting EUT.	This modification is in addition to previous modifications.				
3	Field Strength of Fundamental	07-19-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test (Ferrite).				
4	Frequency Stability	07-30-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test (Ferrite).				

Field Strength of Fundamental

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified	d Band Investigated:		
Single			
Operating Modes Inve	estigated:		
Typical			
Automore Investigate	al.		
Antennas Investigate	a:		
Integral			
Data Rates Investigat	ad·		
Typical	eu.		
Турісаі			
Output Power Setting	(s) Investigated:		
Typical	, (c)		
. 71			
Power Input Settings	Investigated:		
120 VAC, 60 Hz.			
,			
Software\Firmwar	e Applied During Tes	st	
Exercise software	Morpho Access	Version	Unknown
Description			

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220E	SMU-0004
Power Adapter 1	Elpac Power Systems	FW3012	013283
Ferrite (on all cables)	N/A	0444173551	N/A

The system was tested using standard operating modes, which do not require software.

Field Strength of Fundamental

Revision 3/12/03

Remote Equipment

Description	Manufacturer	Model/Part Number	Serial Number
Remote laptop	Dell	PPX	N/A
USB Adapter	B&B Electronics	USTL4	N/A
Wiegand to Comm Adapter	N/A	N/A	N/A
Power Adapter 2	Dell	AA20031	0009364U

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	No	0.5	Yes	EUT	Unterminated
DC Leads	PA	1.7	Yes	EUT	Power Adapter 1
AC Power	No	1.6	No	Power Adapter 1	AC Mains
AC Power	No	1.0	No	Power Adapter 2	AC Mains
DC Leads	PA	1.6	Yes	Remote laptop	Power Adapter 2
LAN	No	6.0	Yes	EUT	Remote laptop
Comm	PA	1.7	PA	Remote laptop	Wiegand to Comm Adapter
Keys/Mouse	PA	0.25	PA	Remote laptop/ Key/mouse port	Remote laptop/Comm port
Wiegand	PA	6.0	Yes	EUT	Wiegand to Comm Adapter
USB	Yes	1.3	No	USB Adapter	Remote laptop
Serial	Yes	6.0	Yes	EUT	USB Adapter

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Antenna, Loop	EMCO	6502	AOA	01/08/2002	36 mo

Field Strength of Fundamental

Revision 3/12/03

Test Description

Requirement: The field strength of the fundamental emission shall comply with the limits, as defined in 47 CFR 15.225. Field strength limits are specified at a distance of 30 meters.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its only available channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992).

The emissions were measured at both 3 meters and 5 meters. Per 15.31(f)(2), the results were extrapolated to 30 meters based upon the measured extrapolation factor. This factor was determined for each emission, at each antenna polarity.

Completed by:

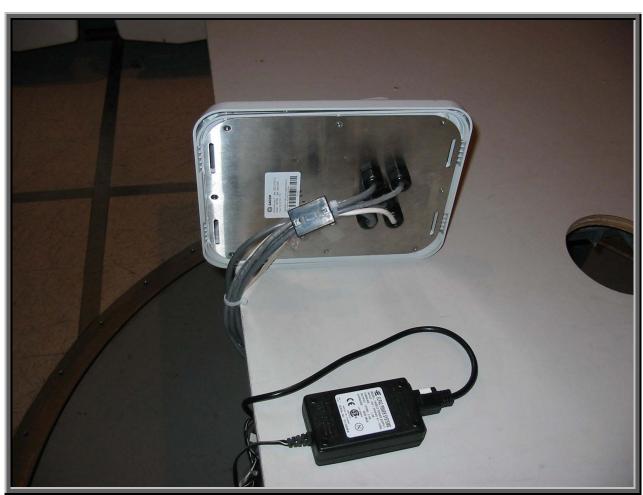
Holy Soling

	ORTHWES												٦,	٦	re	· [١.	Т	Λ	C	HE	ī	-								REV df3.11	
E	EMC											•	וע	٦.	10	L) F	\ I <i>I</i>	H	0										06/23/		
-	erial Nu			MII-																						Wor	k Order	: PLE : 07/1		1	\dashv	
3		stom		lexu																					1	Гетр	erature		0/03			
		ende																									umidity					
	ust. Re			olly	Ashk	anne	eihad	d										Pow	er· ′	120\	VAC, 6	0Hz		E	Barome		ressure ob Site:					
	SPECIF	FICA	OITA	NS															011		into, c	01.12										
	Specifi						5																					2000				
AMPI	E CAL			NSI	.63.4	1																					Year	: 1992	2			
Rad	iated Em	nissio	ns: Fi	eld St																			Factor	+ Ext	ernal Atte	enuati	on					
	icted Em		ns: A	djuste	Leve	l = Me	asure	ed Le	evel -	+ Tra	ınsdu	cer F	acto	r + C	able A	ttenua	ation	Factor	+ Ex	terna	al Attenu	ator										
	/iegand,		ernet	run to	remo	te PC.	Feri	rite o	on al	II cak	oles.																					
JT O	PERAT	TING	э мо	DES																												
an rea	dy mod	de																														
-VIA	TIONS	FR	ом т	EST	STA	NDA	RD																									
devia	itions.		OWI I	01	JIA																											
SUL	TS																											Run		6		
SS																													<u> </u>	O .		
her																			T							,	. ,	2			\Box	
																						//	1 8,	_	Sil	Ly)	1	/				
																						H	on) /	/ 9 -	"				_		
																									Test	ted B	y:			_		
	120.0	n																														
	120.0	١ ٢																														
	100.0	o 📙								Ш																						
	80.0	o 🕂	+				++			\mathbb{H}		Н	+	+	-		-		+	_		_		-			+			+		
_																																
dBuV/m																																
3	60.0	0 +	+		+		++			+		\forall	+	+	+	+	+		+		++			+		+	+			+		
8																																
																			П													
	40.0	٥ 🕇										Н							Ħ			\$										
		1											_						J													
	00.																															
	20.0	۲ †								П		П		П								•										
	0.0	ر ل																Ш								\perp						
		13.50	00	1	3.51	0	13	3.52	20		13.	530)	1	3.54	0	1	3.550)		13.560		13.5	70	13	3.580	,	13.59	0	13.600	0	
																		ИHz	,													
																		VII 12	•													
														-			F	xterna	1					Г.	Distance	1		T		Compar	red to	
	Freq			Amplit			actor			imuth			eight		Dista			tenuatio		Po	olarity	De	etector		djustment		djusted		c. Limit	Spec	c.	
	(MHz)			(dBu	v)	(0	dB)		(deg	grees	5)	(me	eters)	<u> </u>	(met	ers)	<u> </u>	(dB)			see				(dB)	0	BuV/m	dB	suV/m	(dB))	Comments
		13.5	65		52.7		10	.5		176	6.0		2	.8		3.0	1	C	0.0		ments		QP		25.2	2	38.0)	80.0	-4	42.0 A	Antenna Perp to gnd;
		12 5	65		17.1		10	. 5		150	0.0		,	6		E O		,			see ments		ΩP		10.0	2	20.0	,	90.0		42.0	Antonna Born to and
		13.5	UU		47.1		10.	1.0		159	7.U			.6		5.0		().U (ments see		QP		19.6	,	38.0	,	80.0	-4	42.U	Antenna Perp to gnd;
		13.5	65		47.6		10	.5		254	1.0		2	.2		3.0		C	0.0	com	ments		QP		22.1	1	36.0)	80.0	-4	44.0 A	Antenna Par to gnd; F
		40 5	65		42.7		10).5		220	0.0		2	.8		5.0		,).() 4		see ments		QP		17.2	2	36.0)	80.0	-4	44.0	Antenna Par to gnd; P
		135					10									5.0					see		٠.		17.2	_	50.0		50.0	-		sinia i ai to grid, i
		13.5																			,00											
		13.5			46.4		10).5		277	7.0		1	.0		3.0		C	0.0	com	ments		QP		42.4	4	14.5	5	80.0	-(65.5	Antenna Perp to gnd;

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon a the measured fall-off (at each frequency / polarity).

EUT: MA220E


S/N:

Date: 7/18/2003 **Job Number:** PLEX0348

Frequency (MHz)	Loop Antenna Polarity	Test Distance	Adjusted Level (dBuV/m)	Fall-Off from 3 to 5 m (dB)	Extrapolation Factor for Specification Limit (dB / decade)	Test Distance of Spec. Limit (meters)	Distance Adjustment Factor (dB)
(1911 12)	Dor/Cnd	(incleis)	(abaviii)	()	(ub / decade)	(51616)	()
13.565	Par/Gnd, Perp/EUT	3	58.1	4.9	22.1	30.0	22.1
13.565	Par/Gnd,	5	53.2	4.9	22.1	30.0	
	Perp/EUT	· ·					17.2
13.565	Perp/Gnd, Perp/EUT	3	56.9	9.4	42.4	30.0	42.4
13.565	Perp/Gnd, Perp/EUT	5	47.5	9.4	42.4	30.0	33.0
13.565	Perp/Gnd, Par/EUT	3	63.2	5.6	25.2	30.0	25.2
13.565	Perp/Gnd, Par/EUT	5	57.6	5.6	25.2	30.0	19.6

Field Strength of Spurious Emissions

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Ba	and Investigated	d:		
Single				
Operating Modes Investi	gated:			
Typical				
Antennas Investigated:				
Integral				
Data Rates Investigated:				
Typical				
Турісаі				
Output Power Setting(s)	Investigated:			
Typical	ga.co			
71				
Power Input Settings Inv	estigated:			
120 VAC, 60 Hz.				
Frequency Range In	vestigated			
Start Frequency	10 kHz		Stop Frequency	1 GHz

Field Strength of Spurious Emissions

Revision 3/12/03

Software\Firmware Applied During Test										
Exercise software	Morpho Access	Version	Unknown							
Description										
The system was tested	l using standard operating	modes, which do not	require software.							

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220E	SMU-0004
Power Adapter 1	Elpac Power Systems	FW3012	013283
Ferrite (on all cables)	N/A	0444173551	N/A

Remote Equipment

Description	Manufacturer	Model/Part Number	Serial Number
Remote laptop	Dell	PPX	N/A
USB Adapter	B&B Electronics	USTL4	N/A
Wiegand to Comm Adapter	N/A	N/A	N/A
Power Adapter 2	Dell	AA20031	0009364U

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	No	0.5	Yes	EUT	Unterminated
DC Leads	PA	1.7	Yes	EUT	Power Adapter 1
AC Power	No	1.6	No	Power Adapter 1	AC Mains
AC Power	No	1.0	No	Power Adapter 2	AC Mains
DC Leads	PA	1.6	Yes	Remote laptop	Power Adapter 2
LAN	No	6.0	Yes	EUT	Remote laptop
Comm	PA	1.7	PA	Remote laptop	Wiegand to Comm Adapter
Keys/Mouse	PA	0.25	PA	Remote laptop/ Key/mouse port	Remote laptop/Comm port
Wiegand	PA	6.0	Yes	EUT	Wiegand to Comm Adapter
USB	Yes	1.3	No	USB Adapter	Remote laptop
Serial	Yes	6.0	Yes	EUT	USB Adapter

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Field Strength of Spurious Emissions

Revision 3/12/03

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Antenna, Loop	EMCO	6502	AOA	01/08/2002	36 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	01/06/2003	12 mo

Test Description

Requirement: Per 47 CFR 15.225, the field strength of any emissions outside the band of 13.553 – 13.567 MHz shall comply with the limits as defined in 47 CFR 15.209.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its only available channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992).

Below 30 MHz, the emissions were measured at both 3 meters and 5 meters. Per 15.31(f)(2), the results were extrapolated to the specification test distance (either 30 or 300 meters) based upon the measured extrapolation factor. This factor was determined for each emission, at each antenna polarity.

Above 30 MHz, the emissions were measured at 3 meters and compared to the 3-meter limit. No extrapolation factor was required.

Completed by:

Holy Arlingho

NORTHWEST **OATS DATA SHEET EMC** Work Order: PLEX0348 EUT: MA220E Serial Number: SMU-0004 Date: 07/25/03 Customer: Plexus Temperature: 75 Attendees: John Prieve Humidity: 37% Cust. Ref. No. Barometric Pressure 29.99 Power: 120VAC, 60Hz Tested by: Dan Haas Job Site: EV01 SPECIFICATIONS Specification: FCC Part 15.225 Year: 2000 Method: ANSI C63.4 Year: 1992 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Serial, Wiegand, LAN run to remote PC. ferrite on all cables. Longer Mifare interface cable w/ 2 turn ferrite (Fair-Rite, PN:PN:PN:0431173951). **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD RESULTS Run# Pass 8 Other Caril gran Tested By: 120.0 100.0 80.0 dBuV/m 60.0 0000 40.0 • 20.0 0.0 10.000 100.000 1000.000 MHz External Distance Compared to Amplitude Azimuth Height Distance Spec, Limit Frea Factor Attenuation Polarity Detecto Adjustment Adjusted (dBuV) (dB) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) V-Bilog 40.696 60.1 -20.9 59.0 1.0 3.0 0.0 0.0 39.2 40.0 -0.8 284.869 57.9 -14.4 156.0 0.0 H-Bilog PΚ 0.0 43.5 46.0 -2.5 135.652 59.5 -19.6 162.0 1.0 3.0 0.0 V-Bilog PΚ 0.0 39.9 43.0 -3.1 542.608 V-Bilog PΚ -3.2 51.2 -8.4 350.0 1.0 3.0 0.0 0.0 42.8 46.0 556.173 50.4 -8.1 360.0 3.0 0.0 V-Bilog PK 0.0 42.3 46.0 -3.7 1.0 H-Bilog PΚ -3.7 312.000 55.7 -13.4 309.0 3.0 0.0 42.3 46.0 1.0 0.0 H-Bilog PK 271.304 57.3 -15.1 299.0 1.0 3.0 0.0 0.0 42.2 46.0 -3.8 298.814 55.9 -13.8 142.0 1.0 3.0 0.0 H-Bilog PΚ 0.0 42.1 46.0 -3.9 54.261 57.8 -22.0 11.0 1.0 3.0 0.0 V-Bilog PΚ 0.0 35.8 40.0 -4.2 569.740 49.3 -7.8 343.0 1.0 3.0 0.0 V-Bilog PΚ 0.0 41.5 46.0 -4.5 67.826 56.2 -20.8 189.0 1.0 3.0 0.0 V-Bilog PK 0.0 35.4 40.0 -4.6 H-Bilog 569.740 -7.8 329.0 PΚ 40.9 46.0 -5.1 48.7 1.5 3.0 0.0 0.0 H-Bilog PΚ 135.652 57.1 -19.6 314.0 2.2 3.0 0.0 0.0 37.5 43.0 -5.5 V-Bilog 108 524 318 0 1.0 3.0 0.0 PK 43.0 -6.0 56.3 -19.30.0 37.0 556.173 47.9 -8.1 297.0 1.6 3.0 0.0 H-Bilog PK 0.0 39.8 46.0 -6.2488.346 48.2 -9.4 304.0 1.8 3.0 0.0 H-Bilog PΚ 0.0 38.8 46.0 -7.2 542.608 47.1 -8.4 314.0 1.6 3.0 0.0 H-Bilog PΚ 0.0 38.7 46.0 -7.3 298.814 -13.8 266.0 1.6 V-Bilog 37.8 46.0 -8.2 51.6 3.0 0.0 0.0

488.346

122.087

46.9

53.7

-9.4

-19.7

309.0

149.0

1.0

1.9

3.0

3.0

0.0

0.0

V-Bilog

H-Bilog

PK

0.0

0.0

37.5

34.0

46.0

43.0

-8.5

-9.0

EUT: MA220E Serial Number: SMU-0004 Customer: Plexus Ferengerature: 75 Attendees: Cust. Ref. No.: Tested by: Dan Haas Power: [120VAC, 60Hz Jobs tie; EV01 TSPECIFICATIONS Specification: FCC Part 15:225 Method: ANSI C63.4 Tested demissions: Field Strength = Measured Level + Antenna Factor + Cable Attenuation Factor + External Attenuator Induced Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Induced Emissions: FROM TEST STANDARD Wildians OPERATING MODES ready mode IATIONS FROM TEST STANDARD Wildians Tested By: 120.0
EUT: MA220E Serial Number: SMU-0004 Date: 07725/03 Customer: Plexus Temperature: 75 Attendees: Humidity: 39% Cust. Ref. No.: Tested By: Dan Haas Power: 120VAC, 60Hz T
Serial Number: SMU-0004 Customer: Plexus Attendees: Cust. Ref. No.: Tested by: Dan Haas Power: 120VAC, 60Hz Job Site: EV01 TSPECIFICATIONS Specification: FCC Part 15.225 Method: ANSI C63.4 PLE CALCULATIONS Radiaded Emissions: Adjusted Level = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation moduced Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator MIENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. OPERATING MODES ready mode MIATIONS FROM TEST STANDARD Evaluations. Tested By: Tested By:
Cust merical Plexus Attendees: Attendees: Cust. Ref. No: Tested by: Dan Haas Tested by: Specification: Specification: FCC Part 15.225 Method: ANSI C63.4 Tyear: Tyear: Tyear: ANSI C63.4 Tyear: Tyear
Cust. Ref. No.: Tested by: Dan Haas Tested by: Dan Haas Power: 120VAC, 60Hz Job Site: EV01 TSPECIFICATIONS Specification: FCC Part 15.225 Method: ANSI C63.4 PELE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation inducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator MINENTS II, Wiegand, Ethernet run to remote PC. Ferrite on all cables. **OPERATING MODES** ready mode **IATIONS FROM TEST STANDARD** Part # Sults* Run # Sults* Tested By: Tested By:
Tested by: Dan Haas Power: 120VAC, 60Hz Job Site: EV01 TSPECIFICATIONS Specification: FCC Part 15,225 Method: ANSI C63.4 PLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Inducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator MIENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. TOPERATING MODES ready mode I/ATIONS FROM TEST STANDARD Personal Cable Attenuation State Cable Attenuation State Cable Attenuation State Cable Attenuation Factor + External Attenuator Multiple Cable Attenuator Multiple Cable Attenuation Factor + External Attenuator Multiple Cable Attenuation Factor + External Attenuator Multiple Cable Attenuator Multiple Cable Attenuation Factor + External Attenuator Multiple Cable Attenuator Multiple Cable Attenuator Multiple Cable Attenuator Multiple Cable Attenuator Attenuator Multiple Cable Attenuator Attenuator Multiple Cable Attenuator Attenuator Multiple Cable Attenuator At
T SPECIFICATIONS Specification: FCC Part 15.225 Method: ANSI C63.4 PLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation inducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator MINENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. OPERATING MODES ready mode VIATIONS FROM TEST STANDARD Eviations. BULTS Substantial Standard S
Specification: FCC Part 15.225 Method: ANSI C63.4 Method: ANSI C63.4 Tested By: Year: 2000 Method: ANSI C63.4 Year: 1992 Method: ANSI C63.4 Year: 2000 Year: 1992 Method: ANSI C63.4 Year: 1992 Method: ANSI C63.4 Year: 2000 Year: 1992 Method: ANSI C63.4 Year: 2000 Year: 1992 Method: ANSI C63.4 Year: 2000 Year: 2000 Year: 1992 Method: ANSI C63.4 Year: 2000 Year:
IPLE CALCULATIONS Radialed Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Inducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator IMMENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. OPERATING MODES ready mode I/IATIONS FROM TEST STANDARD Eviations. SULTS Run # 13 Tested By:
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation inducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator AMMENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. OPERATING MODES ready mode IMATIONS FROM TEST STANDARD Eviations. BULTS Run # 13 Tested By:
AMENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. OPERATING MODES ready mode VIATIONS FROM TEST STANDARD Eviations. ULTS Run # S Tested By:
MENTS I, Wiegand, Ethernet run to remote PC. Ferrite on all cables. FOPERATING MODES ready mode VIATIONS FROM TEST STANDARD Eviations. Standard
TATIONS FROM TEST STANDARD Eviations. ULTS Run # 13 Print Instead By:
ready mode VIATIONS FROM TEST STANDARD Eviations. SULTS S S Tested By:
ready mode VIATIONS FROM TEST STANDARD Eviations. SULTS S S Tested By:
TATIONS FROM TEST STANDARD eviations. SULTS S 13 Pr Tested By:
Period By: Part Pa
Period By: Part Pa
Run # 13 er Tested By:
Tested By:
Tested By:
Tested By:
Tested By:
Tested By:
· · · · · · · · · · · · · · · · · · ·
120.0
100.0
80.0
e
60.0 60.0
병
40.0
20.0
0.0
10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000
MHz
External Distance Compared to
Fred Amplitude Factor Azimuth Height Distance Attenuation Polarity Detector Adjustment Ad
Freq Amplitude Factor Azimuth Height Distance Attenuation Polarity Detector Adjustment Adjusted Spec. Limit Spec. (MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) (dB) (dB) (dB) (dB)
(MHz) (dBuV) (dB) (degrees) (meters) (dB) (dB) (dB) dBuV/m dBuV/m dBuV/m (dB) 27.129 14.1 9.6 238.0 4.0 3.0 0.0 oop/Active QP 4.5 19.2 29.5 -10.
(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m dBuV/m (dB) 27.129 14.1 9.6 238.0 4.0 3.0 0.0 oop/Active QP 4.5 19.2 29.5 -10. 27.133 19.4 9.6 257.0 1.5 3.0 0.0 oop/Active QP 12.2 16.8 29.5 -12.
(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m dBuV/m (dB) 27.129 14.1 9.6 238.0 4.0 3.0 0.0 oop/Active QP 4.5 19.2 29.5 -10. 27.133 19.4 9.6 257.0 1.5 3.0 0.0 oop/Active QP 12.2 16.8 29.5 -12. 27.133 18.7 9.6 207.0 4.0 3.0 0.0 oop/Active QP 10.8 17.5 29.5 -12.
(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m dBuV/m (dB) 27.129 14.1 9.6 238.0 4.0 3.0 0.0 oop/Active QP 4.5 19.2 29.5 -10. 27.133 19.4 9.6 257.0 1.5 3.0 0.0 oop/Active QP 12.2 16.8 29.5 -12.

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon a the measured fall-off (at each frequency / polarity).

EUT: MA220E

S/N:

Date: 7/18/2003 **Job Number:** PLEX0348

	Loop Antenna Polarity	Test Distance	2010.	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Factor
(MHz)		(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)
27.130	Par/Gnd, Perp/EUT	3	28.3	2.4	10.8	30.0	10.8
27.130	Par/Gnd, Perp/EUT	5	25.9	2.4	10.0	30.0	8.4
27.130	Perp/Gnd, Perp/EUT	3	29.0	2.7	12.2	30.0	12.2
27.130	Perp/Gnd, Perp/EUT	5	26.3	2.1	12.2	30.0	9.5
27.130	Perp/Gnd, Par/EUT	3	23.7	1.0	4.5	30.0	4.5
27.130	Perp/Gnd, Par/EUT	5	22.7	1.0	4.0	30.0	3.5

Revision 2/4/02

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Ba	and Investigated:		
Single			
Operating Modes Investi	gated:		
Typical			
Antennas Investigated:			
Integral			
Data Datas Investigated			
Data Rates Investigated:			
Typical			
Output Power Setting(s)	Investigated:		
Typical	iiivcotigatea.		
Тургост			
Power Input Settings Inv	estigated:		
120 VAC, 60 Hz.			
Software\Firmware A	Applied During Tes	it	
Exercise software	Morpho Access	Version	Unknown

EUT and Peripherals

Description

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220E	SMU-0004
Power Adapter 1	Elpac Power Systems	FW3012	013283
Ferrite (on all cables)	N/A	0444173551	N/A

The system was tested using standard operating modes, which do not require software.

Revision 2/4/02

Remote Equipment

Description	Manufacturer	Model/Part Number	Serial Number
Remote laptop	Dell	PPX	N/A
USB Adapter	B&B Electronics	USTL4	N/A
Wiegand to Comm Adapter	N/A	N/A	N/A
Power Adapter 2	Dell	AA20031	0009364U

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	No	0.5	Yes	EUT	Unterminated
DC Leads	PA	1.7	Yes	EUT	Power Adapter 1
AC Power	No	1.6	No	Power Adapter 1	AC Mains
AC Power	No	1.0	No	Power Adapter 2	AC Mains
DC Leads	PA	1.6	Yes	Remote laptop	Power Adapter 2
LAN	No	6.0	Yes	EUT	Remote laptop
Comm	PA	1.7	PA	Remote laptop	Wiegand to Comm Adapter
Keys/Mouse	PA	0.25	PA	Remote laptop/ Key/mouse port	Remote laptop/Comm port
Wiegand	PA	6.0	Yes	EUT	Wiegand to Comm Adapter
USB	Yes	1.3	No	USB Adapter	Remote laptop
Serial	Yes	6.0	Yes	EUT	USB Adapter

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8593E	AAP	10/23/2002	12 mo
Near field probe	EMCO	7405	IPD	No cal required	N/A
AC Power Supply	Hewlett-Packard	6843A	THB	03/06/2003	12 mo
Temperature / Humidity Chamber	Cincinnati Sub- Zero	ZH-32-2-2- H/AC	TBA	9/20/2002	12 mo

Frequency Stability

Revision 2/4/02

Test Description

Requirement: Per 47 CFR 15.255, the frequency stability shall be measured with variation of ambient temperature and primary supply voltage. A spectrum analyzer or frequency counter can be used to measure the frequency stability. If using a spectrum analyzer, it must have a precision frequency reference that exceeds the stability requirement of the transmitter. A temperature / humidity chamber is required.

Configuration:

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-20° to +50° C) and at 10°C intervals.

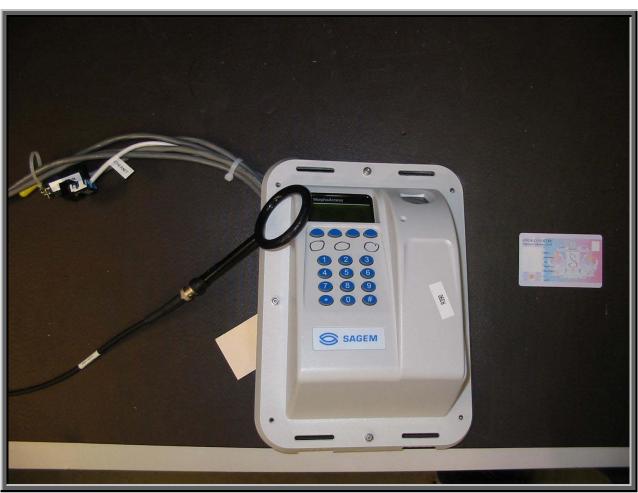
Measurements were made at the single transmit frequency. The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Completed by:

J. K. P

NORTHWEST EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01		
	MA220E			Work Order:			
Serial Number:				Date:	07/30/03		
Customer:				Temperature:			
Attendees:			Tested by: Dan Haas	Humidity:			
Customer Ref. No.:			Power: 120VAC /60 Hz	Job Site:	EV09		
TEST SPECIFICATIONS							
Specification: SAMPLE CALCULATION	47 CFR 2.1055 & 15.225	Year: 2002	Method: TIA/EIA - 603	Year:	1993		
COMMENTS EUT OPERATING MOD							
Transmitting							
DEVIATIONS FROM TE	ST STANDARD						
None							
REQUIREMENTS							
Minimum frequency st	ability of +/-0.01% for variations o	f temperature and supply voltage (A	AC power)				
RESULTS			MINIMUM FREQUENCY STABILITY				
Pass							
Tested By:							
DESCRIPTION OF TES	T						
		Frequenc	y Stability				

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120V, 60Hz)


Temp (°C)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
-20	13.565212	13.565262	0.0003686	+/-0.01
-10	13.565212	13.565249	0.0002728	+/-0.01
0	13.565212	13.565249	0.0002728	+/-0.01
10	13.565212	13.565224	0.0000885	+/-0.01
20	13.565212	13.565212	0.0000000	+/-0.01
30	13.565212	13.565212	0.0000000	+/-0.01
40	13.565212	13.565212	0.0000000	+/-0.01
50	13.565212	13.565225	0.0000958	+/-0.01

Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 25C)

Voltage (VAC, 60Hz)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
138 (115%)	13.565212	13.565200	-0.0000885	+/-0.01
132 (110%)	13.565212	13.565200	-0.0000885	+/-0.01
126 (105%)	13.565212	13.565212	0.0000000	+/-0.01
120 (100%)	13.565212	13.565212	0.0000000	+/-0.01
114 (95%)	13.565212	13.565212	0.0000000	+/-0.01
108 (90%)	13.565212	13.565212	0.0000000	+/-0.01
102 (85%)	13.565212	13.565212	0.0000000	+/-0.01

Conducted Emissions

Revision 3/25/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Operating Modes Investigated:	
Typical operating mode	

Power Input Settings Investigated:	
120 VAC, 60 Hz	

Software\Firmware Applied During Test							
Operating system	Operating system Morpho Access Version Unknown						
Description							
The system was tested using standard operating modes, which do not require software.							

EUT and Peripherals in Test Setup Boundary

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220E	SMU-0004
Power Adapter 1	Elpac Power Systems	FW3012	013283

Remote Equipment Outside of Test Setup Boundary

Description	Manufacturer	Model/Part Number	Serial Number
Remote laptop	Dell	PPX	N/A
USB Adapter	B&B Electronics	USTL4	N/A
Wiegand to Comm Adapter	N/A	N/A	N/A
Power Adapter 2	Dell	AA20031	0009364U

^{*}Note: Equipment isolated from the EUT so as not to contribute to the measurement results are considered to be outside the test setup boundary.

Conducted Emissions

Revision 3/25/03

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	No	0.5	Yes	EUT	Unterminated
DC Leads	PA	1.7	No	EUT	Power Adapter 1
AC Power	No	1.6	No	Power Adapter 1	AC Mains
AC Power	No	1.0	No	Power Adapter 2	AC Mains
DC Leads	PA	1.6	Yes	Remote laptop	Power Adapter 2
LAN	No	6	No	EUT	Remote laptop
Comm	PA	1.7	PA	Remote laptop	Wiegand to Comm Adapter
Keys/Mouse	PA	0.25	PA	Remote laptop - Key/mouse port	Remote laptop - Comm port
Wiegand	PA	6	No	EUT	Wiegand to Comm Adapter
USB	Yes	1.3	No	USB Adapter	Remote laptop
Serial	Yes	6	No	EUT	USB Adapter

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
LISN	Solar	9252-50-R-24-BNC	LIN	12/12/2002	12 mo
LISN	Solar	9252-50-R-24-BNC	LIP	12/12/2002	12 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	01/02/2003	12 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo

Conducted Emissions

Revision 3/25/03

Test Description

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)	
0.01 – 0.15	1.0	0.2	0.2	
0.15 – 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	
Measurements were made using the bandwidths and detectors specified. No video filter was used.				

Completed by:

Holy Arling

CONDUCTED EMISSIONS DATA SHEET EMC EUT: MA220E Work Order: PLEX0348 Serial Number: SMU-0004 Date: 07/25/03 Customer: Plexus Temperature: 75 Attendees: John Prieve Humidity: 37% Cust. Ref. No. Barometric Pressure 29.99 Power: 120VAC, 60Hz Tested by: Dan Haas Job Site: EV01 SPECIFICATIONS Specification: FCC 15.207 Year: 1997 Method: CISPR 22 Year: 1997 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Serial, Wiegand, Ethernet run to PC. Single turn ferrite on all cables. **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD No deviations RESULTS L1 Pass Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Freq Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector (dB) (blank equal pe [PK] from sca (dB) (dBuV) (dB) (dB) dBuV dBuV (MHz) 13 564 26.6 0.0 1.1 20.0 ΑV 47 7 50.0 -23 2.599 15.3 0.0 0.5 20.0 ΑV 35.8 46.0 -10.2 0.150 8.9 0.0 20.0 ΑV -27.1 0.0 28.9 56.0 2.599 22.8 0.0 0.5 20.0 QP 43.3 56.0 -12.7 13.567 26.0 0.0 20.0 QP 47.1 60.0 -12.9 1.1 QP -23.5 0.150 0.0 20.0 66.0 22.5 0.0 42.5 13 596 20.0 48.0 -2.0 26.9 0.0 1 1 50.0 2.796 22.3 0.0 0.5 20.0 42.8 46.0 -3.2 2.326 21.8 0.0 0.5 20.0 42.3 46.0 -3.7 2.676 21.7 0.5 20.0 42.2 46.0 -3.8 3.196 42.1 46.0 -3.9 21.6 0.0 0.5 20.0 -5.3 2.766 0.0 0.5 20.0 40.7 46.0 20.2 20.0 -6.2 0.221 26.4 0.0 0.2 46.6 52.8 2.816 0.5 20.0 39.6 46.0 -6.4 19.1 0.0 46.0 -6.8 0.581 18.9 0.0 0.3 20.0 39.2 1.455 18.7 0.0 0.4 20.0 39.1 46.0 -6.9 2.906 18.5 0.0 0.5 20.0 39.0 46.0 -7.0 2.476 17.9 0.0 0.5 20.0 38.4 46.0 -7.6

0.170

0.364

27.0

20.6

0.0

0.0

0.1

0.2

20.0

20.0

47.1

40.8

55.0

48.6

-7.8

CONDUCTED EMISSIONS DATA SHEET EMC EUT: MA220E Work Order: PLEX0348 Serial Number: SMU-0004 Date: 07/25/03 Customer: Plexus Temperature: 75 Attendees: John Prieve Humidity: 37% Cust. Ref. No. Barometric Pressure 29.99 Power: 120VAC, 60Hz Tested by: Dan Haas Job Site: EV01 SPECIFICATIONS Specification: CISPR22 Class B Year: 1997 Method: CISPR 22 Year: 1997 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Serial, Wiegand, Ethernet run to PC. Single turn ferrite on all cables. **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD No deviations RESULTS Pass N Other Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.100 1.000 10.000 100.000 MHz External Compared to Freq Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector (dB) (blank equal pe [PK] from sca (dB) (dBuV) (dB) (dB) dBuV dBuV (MHz) 13.564 26.1 0.0 1.1 20.0 ΑV 47 2 50.0 -2.8 2.310 13.9 0.0 0.5 20.0 ΑV 34.4 46.0 -11.6 0.153 9.3 0.0 20.0 ΑV -26.6 0.0 29.3 55.9 13.564 25.7 0.0 1.1 20.0 QP 46.8 60.0 -13.2 2.310 19.5 0.0 20.0 QP 56.0 -16.0 0.5 40.0 QP -24.9 0.0 20.0 65.9 0.153 21.0 0.0 41.0 24.5 0.0 20.0 45.0 -1.0 2 3 3 6 0.5 46.0 13.608 27.2 0.0 1.1 20.0 48.3 50.0 -1.7 0.152 33.4 0.0 0.1 20.0 53.5 55.9 -2.4 2.676 22.3 20.0 42.8 46.0 -3.2 2.796 20.0 42.7 46.0 -3.3 22.2 0.0 0.5 0.224 28.5 0.0 0.2 20.0 48.7 52.7 -4.0 -5.1 -5.1 0.296 0.2 20.0 25.1 0.0 45.3 50.4 0.583 20.6 0.0 0.3 20.0 40.9 46.0 46.0 -5.8 2.496 19.7 0.0 0.5 20.0 40.2 3.206 19.6 0.0 0.5 20.0 40.1 46.0 -5.9 1.455 19.3 0.0 0.4 20.0 39.7 46.0 -6.3

0.288

2.916

0.183

24.1

18.9

27.1

0.0

0.0

0.0

0.2

0.5

0.2

20.0

20.0

20.0

44.3

39.4

47.3

50.6

46.0

54.3

-6.3

-6.6

