Plexus MA 220

May 16, 2003

Report No. PLEX0339

Report Prepared By:

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: May 16, 2003 Plexus Model: MA 220

Emissions

Description	Pass	Fail
FCC 15.207, AC Powerline Conducted Emissions	\boxtimes	
FCC 15.225, Field Strength of Fundamental	\boxtimes	
FCC 15.225, Field Strength of Spurious Emissions	\boxtimes	
FCC 15.225, Frequency Stability	\boxtimes	

The equipment was tested in the configuration and mode(s) of operation provided by the client. The specific tests and test levels were specified by the client. Any additional tests, or product configurations that should be tested are the responsibility of the client. Product compliance is the responsibility of the client.

Modifications made to the product

• See the modifications page of the report

Deviations to the test standard

No deviations were made to the test standard

Approved By:

Dean Ghizzone, President

This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

A2LA: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025.

Certificate Number: 1936-01, Certificate Number: 1936-02, Certificate Number 1936-03

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (A2LA)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0302C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Industry Canada: Accredited by Industry Canada for performance of radiated measurements. Our open area test sites comply with RSP 100, Issue 7, section 3.3.

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-694 and R-677, Sultan: C-905, R-871 and R-1172, North Sioux City C-1246, R-1185 and R-1217)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

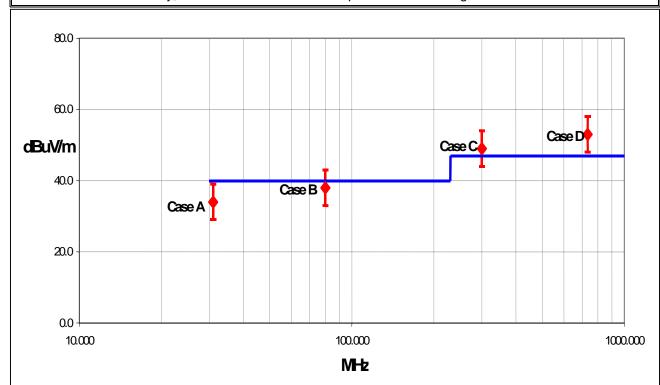
GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

Scope of Accreditations

Revision 03/05/03

	FCC	NIST	TUV PS	TUV Rheinland	Nemko	Technology International	Industry Canada	BSMI	vccı	GOST	NATA
IEC 1000-4-2			V	/	V	V					
IEC 1000-4-3			V	V	V	/					
IEC 1000-4-4			V	V	V	V					
IEC 1000-4-5			V	V	V	V					
IEC 1000-4-6			V	V	V	~					
IEC 1000-4-8			V	V	V	V					
IEC 1000-4-11			V	V	V	V					
IEC 1000-3-2			V	V	V	V					
IEC 1000-3-3			V	V	V	V					
AS/NZS 3548											V
CNS 13438								V			
ISO/IEC Guide 25			/	/	V	/		V			
ISO/IEC17025			V	V	V	V					
Radiated Emissions			V	V	V	~	/	V	V	V	
Conducted Emissions			V	V	V	V	V	V	V	V	
OATS Sites	V		V	V	V	~	/	V	~	V	
Hillsboro 5-Meter Chamber (EV01)	V		V	V	V	~	/	V	V	V	
TCB for Licensed Transmitters	V										
TCB for un-Licensed Transmitters	V										
CAB for R&TTE		V									
CAB for EMC		V									

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Biconical		Log Periodic		Dipole	
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

South Dakota

North Sioux City Facility

745 N. Derby Lane P.O. Box 217 North Sioux City, SD 57049 (605) 232-5267 FAX (605) 232-3873

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 1/28/03

Party Requesting the Test

Company Name:	Plexus
Address:	21717 30th Drive S.E.
City, State, Zip:	Bothell, WA, 98021
Test Requested By:	John Prieve
Model:	MA220
First Date of Test:	04-24-2003
Last Date of Test:	05-09-2003
Receipt Date of Samples:	04-24-2003
Equipment Design Stage:	Prototype
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	13.564MHz, 3.6864MHz, 7.159MHz, 14.318MHz, 16MHz, 20MHz
I/O Ports:	RS485/422, Ethernet, Wiegand

Functional Description of the EUT (Equipment Under Test):

Thumbprint/ Card reader identification unit.

Client Justification for EUT Selection:

The product is an engineering sample, representative of the final product.

Client Justification for Test Selection

These test satisfy the requirements for FCC verification and certification

Modifications

	Equipment modifications							
Item #	Test	Date	Modification	Note				
1	AC Powerline Conducted Emissions	04-24-2003	Added one ferrite around all I/O cables.	Modified from delivered configuration.				
2	Field Strength of Spurious Emissions	04-25-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.				
3	Field Strength of Fundamental	05-05-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.				
4	Field Strength of Spurious Emissions	05-05-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.				
5	Frequency Stability	05-09-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.				

Field Strength of Fundamental

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single

Operating Modes Investigated:

Typical

Antennas Investigated:

Integral

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

110 VAC, 60 Hz.

Software\Firmware Applied During Test						
Exercise software	Morpho Access	Version	4.2			
Description						
The system was tested	using standard operating	modes, which do not i	equire software.	,		

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220	307990009
Power Brick	Elpac	FW3012	008492

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	2.0	Yes	EUT	Power Brick
AC Power	No	1.8	No	Power Brick	AC Mains
Ethernet	No	15	Yes	EUT	Laptop
Serial	Yes	15	Yes	EUT	Laptop
Wiegand	Yes	15	Yes	EUT	Laptop

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Field Strength of Fundamental

Revision 3/12/03

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Antenna, Loop	EMCO	6502	AOA	01/08/2002	36 mo

Test Description

Requirement: The field strength of the fundamental emission shall comply with the limits, as defined in 47 CFR 15.225. Field strength limits are specified at a distance of 30 meters.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its only available channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992).

The emissions were measured at both 3 meters and 5 meters. Per 15.31(f)(2), the results were extrapolated to 30 meters based upon the measured extrapolation factor. This factor was determined for each emission, at each antenna polarity.

Completed by:

Rochy la Feling

ATIONS FROM TEST STANDARD viations. Run # 4	EMC				O F		ATAC	ТЭПЕ	15 U				df3 03/10/2
Cust. Ref. No.: Attendes: Drop off Burnistry 38% Cust. Ref. No.: Tested by; Rod Peloquin Power: 120VAC/60Hz Job Stee; EV01 SPECIFICATION: S										1			39
Attendes: Drop off Barometric Pressure 30 Tested by: Rod Peloquin Power: 120VAC/60Hz Job Site: EV01 SPECIFICATIONS Specification: FCC Part 15.225 Year 1900 Method: ANSI C63.4 Year 1992 PEL CALCULATIONS added Chreatons: Field Birregin. Measured Level + Antenna Facor + Cable Factor - Amplifier Gain - Distance Adjustment Factor + External Assentation con measured and two test distances (bin S Sin). Per 47 CFR 15.3(10)(2), he date was exceptioned based upon at the measured fall-off (at each frequency) polarity. IEEE CALCULATIONS added Chreatons: Field Birregin. Measured Level + Antenna Facor + Cable Factor - Amplifier Gain - Distance Adjustment Factor + External Assentation one measured and two test distances (bin S Sin). Per 47 CFR 15.3(10)(2), he date was exceptioned based upon at the measured fall-off (at each frequency) polarity. IEEE CALCULATIONS POPERATING MODES are type modes ATIONS PROM TEST STANDARD Internal Poperation According to the Cart of According to the Cart of Factor - Amplifier Gain - Distance Adjustment Factor + External Assentation on the measured fall-off (at each frequency) polarity. IEEE CALCULATIONS ATIONS PROM TEST STANDARD Internal Poperation According to the Cart of According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation According to the Cart of Factor - External Assentation Accor	Serial Number:	30799000	3										
Tested by Rod Peloquin Power: 120VAC/60Hz Barometric Pressure 30 Tested by Rod Peloquin Power: 120VAC/60Hz Job Site: EV01 SPECIFICATIONS Pedit 120TA 120T										Te			
Power 120VAC/60Hz Job Site EV01		Drop off								D	Humidity:	38%	
Specification FCC Part 15.225 Year; 2000 Method; ANSI C63.4 Year; 2000 Year; 2		Pod Poloc	uin				Power	1201/ 10/60	U-7	Barometi			
Vear 2000 Wester 15.225 Vear 2000 Vear 2000 Vear 2000 Vear 2000 Vear 1992 Vear 199	T SPECIFICATI	ONS	_{(uii}				Fower.	120 V A G/00	12		Job Site.	LVUI	
Method: INSI C63.4			15.225								Year:	2000	
addated Emissions: Field Strength - Measured Level + Antenna Factor + Cabel Factor - Amplifier Cain - Distance Adjustment Factor + Esternal Attenuation on one measured at the delivations (3m & 5m). Per 47 CFR 15.311()(2), the data was entrapolated based upon a the measured fall-off (at each frequency / polarity). MENTS **The Company of the Company	Method:	ANSI C63.											
one measured at two test distances (3m & Smi). Per 47 CFR 15.310((2), the data was extragolated based upon a the measured fail-off (at each frequency / polarity). MENTS DOVERATING MODES 2004 ATIONS FROM TEST STANDARD ATIONS FROM TEST STANDARD Tested By: Tested By: Tested By: Tested By: DIA STANDARD AND AND AND AND AND AND AND AND AND AN													
MENTS													
DEFERTING MODES ard tape mode ATIONS FROM TEST STANDARD Mattons. Tested By: 90.0 40.0 13.540 13.545 13.550 13.555 13.560 13.560 13.575 13.580 MHz Distance Distance Composer: External Distance Composer.		o test distanc	es (3m & 5m). Per 47 CFR	15.31(f)(2), the	data was extra	apolated based i	upon a the mea	sured fall-of	(at each frequen	cy / polarity).		
PERATING MODES card tape mode ATIONS FROM TEST STANDARD Additions. Tested By: 90.0 70.0 60.0 13.540 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz		errite on DC	nower lead	Ethernet Con	& Wiegand c	ables to remo	nte PC. Smartca	ard taned to fre	ont of card	eader: Pernendi	cular horizont	tal	
ATIONS FROM TEST STANDARD Authors	, ,		,		, .								
ATIONS FROM TEST STANDARD Authors													
ATIONS FROM TEST STANDARD Authors. Run # 4		ODES											
Activations Run # 4	rtcard tape mode												
Activations Run # 4													
May be Relay:		TEST ST	ANDARD										
A												Bun #	
Poly L. Reluy Tested By: 90.0 80.0 70.0 60.0 20.0 13.540 13.545 13.550 13.555 13.560 MHz External Distance Compared Comp	SULTS S											Kull #	4
Poly la Rely Tested By: 90.0 80.0 70.0 60.0 30.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
Tested By: 90.0 80.0 70.0 60.0 40.0 30.0 20.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	er												
Tested By: 90.0 80.0 70.0 60.0 40.0 30.0 20.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz									20	1 P.	l.		
Tested By: 90.0 80.0 70.0 60.0 40.0 30.0 20.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz									- Court	ou su	ang .		
90.0 80.0 70.0 60.0 40.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													_
80.0 70.0 60.0 30.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz										Teste	ed By:		
80.0 70.0 60.0 30.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	00.6												
70.0 60.0 30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	90.0												
70.0 60.0 30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
60.0 40.0 30.0 20.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	80.0												
60.0 40.0 30.0 20.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
60.0 40.0 30.0 20.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	70.0												
50.0 40.0 20.0 10.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	70.0												
50.0 40.0 20.0 10.0 10.0 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	60.0												
30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	E 50.0 ↓												
30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	≥ ````												
30.0 20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	۾ _{يو} ۾												
20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	ਰ 40.0 ┼												
20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz					•								
20.0 10.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	30.0												
10.0													
10.0	20.0												
0.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz	20.0												
0.0 13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz													
13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz External Distance Compared	10.0												
13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz External Distance Compared													
13.540 13.545 13.550 13.555 13.560 13.565 13.570 13.575 13.580 MHz External Distance Compared	0.0												
MHz External Distance Compared		10	E 1 E	12 FF0	40	555	12 560	12.5	65	12 570	12 57	75	12 500
External Distance Compared	13.540	13.	.545	13.550	13.	JJJ		13.5	υO	13.370	13.57	13	13.580
External Distance Compared							MHz						
			1	_			F.A			Dist			10-

_						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
13.554	50.2	10.4	67.0	1.5	3.0	0.0	See	QP	25.7	34.9	80.0	-45.1	Fundamental, Antenna Perp to gnd,
							Comments						Perp to EUT. 25.7 dB Extrapolation
13.554	44.5	10.4	70.0	1.3	5.0	0.0	See	QP	20.0	34.9	80.0	-45.1	Fundamental, Antenna Perp to gnd,
							Comments						Perp to EUT. 25.7 dB Extrapolation
13.554	49.0	10.4	175.0	1.3	3.0	0.0	See	QP	39.2	20.2	80.0	-59.8	Fundamental, Antenna Perp to gnd,
							Comments						Par to EUT. 39.2 dB Extrapolation
13.554	40.3	10.4	158.0	1.2	5.0	0.0	See	QP	30.5	20.2	80.0		Fundamental, Antenna Perp to gnd,
							Comments						Par to EUT. 39.2 dB Extrapolation
13.554	48.2	10.4	306.0	2.0	3.0	0.0	See	QP	34.3	24.3	80.0	-55.7	Fundamental, Antenna Par to gnd,
							Comments						Perp to EUT. 34.3 dB Extrapolation
13.554	40.6	10.4	87.0	2.6	5.0	0.0	See	QP	26.7	24.3	80.0	-55.7	Fundamental, Antenna Par to gnd,
							Comments						Perp to EUT. 34.3 dB Extrapolation
													- ,

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon a the measured fall-off (at each frequency / polari

EUT: MA 220 S/N: 307990003 Date: 5/5/2003 Job Number: PLEX0339

Frequency (MHz)	Loop Antenna Polarity	Test Distance	Adjusted Level (dBuV/m)	Fall-Off from 3 to 5 m (dB)	Extrapolation Factor for Specification Limit (dB / decade)	Test Distance of Spec. Limit (meters)	Distance Adjustment Factor (dB)
13.554	Perp/Gnd, Perp/EUT	3	60.6	5.7	25.7	30.0	25.7
13.554	Perp/Gnd, Perp/EUT	5	54.9	5.7	25.7	30.0	20.0
13.554	Perp/Gnd, Par/EUT	3	59.4	8.7	39.2	30.0	39.2
13.554	Perp/Gnd, Par/EUT	5	50.7	0.7	39.2	30.0	30.5
13.554	Par/Gnd, Perp/EUT	3	58.6	7.6	34.3	30.0	34.3
13.554	Par/Gnd, Perp/EUT	5	51.0	7.0	J4.3	30.0	26.7

Field Strength of Spurious Emissions

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Single
Operating Modes Investigated:
Typical
Antennas Investigated:
Integral
Data Rates Investigated:
Maximum
Output Power Setting(s) Investigated:
Maximum

Power Input Settings Investigated:	
110 VAC 60 Hz	

Frequency Range Inv	Frequency Range Investigated								
Start Frequency	10 kHz	Stop Frequency	1 GHz						

Software\Firmware Applied During Test								
Exercise software Morpho Access Version 4.2								
Description								
The system was tested	The system was tested using standard operating modes, which do not require software.							

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220	307990009
Power Brick	Elpac	FW3012	008492

Field Strength of Spurious Emissions

Revision 3/12/03

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	2.0	Yes	EUT	Power Brick
AC Power	No	1.8	No	Power Brick	AC Mains
Ethernet	No	15	Yes	EUT	Laptop
Serial	Yes	15	Yes	EUT	Laptop
Wiegand	Yes	15	Yes	EUT	Laptop

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Antenna, Loop	EMCO	6502	AOA	01/08/2002	36 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQA	11/14/2002	12 mo
Spectrum Analyzer	Hewlett-Packard	8567A	AAB	11/14/2002	12 mo
Antenna, Bicon	EMCO	3104C	ABA	11/07/2002	12 mo
Antenna, Log Periodic	EMCO	3146	ALA	11/08/2002	12 mo
Pre-Amplifier	Miteq	AM-1402	AOQ	11/13/2002	12 mo

Test Description

Requirement: Per 47 CFR 15.225, the field strength of any emissions outside the band of 13.553 – 13.567 MHz shall comply with the limits as defined in 47 CFR 15.209.

Configuration: The only antenna to be used with the EUT was tested. The EUT was transmitting at its only available channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992).

Below 30 MHz, the emissions were measured at both 3 meters and 5 meters. Per 15.31(f)(2), the results were extrapolated to the specification test distance (either 30 or 300 meters) based upon the measured extrapolation factor. This factor was determined for each emission, at each antenna polarity.

Above 30 MHz, the emissions were measured at 3 meters and compared to the 3 meter limit. No extrapolation factor was required.

Completed by:

Rochy la Reling

OATS DATA SHEET EMC EUT: MA 220 Work Order: PLEX0339 Serial Number: N/A Date: 04/25/03 Customer: Plexus Temperature: 67 Attendees: Fritz Rivera Humidity: 33% Cust. Ref. No.: Barometric Pressure 29.97 Tested by: Ethan Schoonover Power: 110V/60Hz Job Site: SU04 TEST SPECIFICATIONS Specification: FCC Part 15 Class B Year: 2003 Method: ANSI C63.4 Year: 1992 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator All cables connected to remote labtop. One ferrite on all cables. Shielded cables not grounded. **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD Tested By: 80.0 70.0 60.0 50.0 dBuV/m 40.0 44 30.0 • 20.0 • 10.0 0.0 10.000 100.000 1000.000 MHz External Attenuation Distance Adjustment Compared to Spec. Freq Amplitude Factor Height Distance Polarity Adjusted Spec. Limit Detector (dBuV) (dB) (meters) dBuV/m dBuV/m (dB) (MHz) 108.546 45.5 -3.3 32.0 1.0 3.0 0.0 V-Bicon QF 42.2 43.0 -0.8 0.0 122.116 44.2 -2.5 172.0 0.0 V-Bicon QP 43.0 1.0 3.0 0.0 41.7 -1.3 135.676 43.6 V-Bicon QP 40.1 43.0 -2.9 -3.5341.0 1.1 3.0 0.0 0.0 QΡ 135.677 43.1 -3.5 2.6 3.0 0.0 H-Bicon 0.0 39.6 43.0 -3.4 111.0 40.3 -3.3 0.0 H-Bicon QP 43.0 -6.0 108.545 101.0 1.4 3.0 0.0 37.0 447.679 5.4 1.0 0.0 H-LPA QP 33.5 0.0 3.0 38.9 46.0 -7.1 0.0 420.553 34.0 4.5 0.0 1.0 3.0 0.0 H-LPA QP 0.0 38.5 46.0 -7.5 QΡ 81.422 41.5 -9.6 0.0 1.0 3.0 0.0 V-Bicon 0.0 31.9 40.0 -8.1 149.242 343.0 V-Bicon QP 43.0 -10.2 36.5 -3.7 1.0 3.0 0.0 0.0 32.8 122.112 34.7 -2.5 256.0 0.0 H-Bicon QP 32.2 43.0 -10.8 1.6 3.0 0.0 QP 54.263 34.6 252.0 V-Bicon 40.0 -12.2-6.8 1.0 3.0 0.0 0.0 27.8 QP 434 112 28 6 0.0 H-I PA 33.5 46.0 -125 49 0.0 1.0 3.0 0.0 3.0 447.675 5.4 68.0 1.0 0.0 V-LPA QP 46.0 -12.528.1 0.0 33.5 V-LPA QP 420 551 28.6 4.5 75.0 3.0 0.0 0.0 33.1 46.0 -12.9 1.3 40.696 32.0 -62 0.0 1.0 3.0 0.0 V-Bicon ΩP 0.0 25.8 40.0 -14.2QΡ 81.410 34.9 -9.6 124.0 2.2 3.0 0.0 H-Bicon 0.0 25.3 40.0 -14.7 32 0 ΩP 43.0 -14.7 149 244 -37 117 0 1.0 3.0 0.0 H-Bicon 0.0 28.3 434.115 QP 0.0 V-LPA 23.1 4.9 350.0 1.3 3.0 0.0 28.0 46.0 -18.0 162.811 25.9 -1.9 284.0 2.0 3.0 0.0 H-Bicon QP 0.0 24.0 43.0 -19.0 ΩP 68 359 28.7 -92 231.0 1.0 3.0 0.0 V-Bicon 0.0 195 40.0 -20.5OP 68,359 28.3 -9.2 0.0 2.6 3.0 0.0 H-Bicon 0.0 19.1 40.0 -20.9 155.0 ΩP 54.245 23.4 -6.8 23 3.0 0.0 H-Bicon 0.0 16.6 40.0 -23.440.718 22.0 -6.2 198.0 1.9 3.0 0.0 H-Bicon QP 0.0 15.8 40.0 -24.2

Contract Part April Contract Part	NORTHWEST					OA	TS C	ATA	SHE	ET				REV df3.10 03/10/2003	
Contention Property Propert		EUT:	MA 220								W	ork Order	PLEX0339	03/10/2003	1
Contention Propose P															1
Amongs Corp Corp 1 Supplement Property 1 1 1 1 1 1 1 1 1	Custo	mer:	Plexus								Te				1
Presence Province	Attend	lees:										Humidity:	38%]
Part			D- 15 :						4001115		Barometri			·	į.
				ın				Power:	120VAC/60F	iz		Job Site:	EV01		
				.225								Year	2000		1
Part American Part American Institute Color Formary American Institute Color															1
Name	PLE CALC	ULA	TIONS												
No.	sions measured	d at tw	o test distances	(3m & 5m).	Per 47 CFR 15	.31(f)(2), the	data was extra	polated based	d upon a the mea	sured fall-off (at each frequen	cy / polarity).	ntal		
No.000			ODES												
Register Polarity	viations.	ROM	TEST STAN	IDARD									D #		
Record Part															
Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By: Tested By:	r									Rocky	le Rel	leng			
Frag Amelitude Factor Gels Comments Factor Gels															
Freq	80.0														
Freq	70.0														
Amplitude Factor Azimuth Height Delatance Polarity Detector Adjustment Adjustm	60.0														
10,000 10,000 100,00															
10,000	40.0														
The composition of the composi															
Tree Amplitude Factor Azimuth Height Distance MHz	20.0							*							
10,000 10,000 10,000 10,000 10,000 10,000 MHz	10.0							•							
Freq	0.0								*						
Polarity	1.00	00											1	00.000	
9.080 22.9 10.6 134.0 1.2 3.0 0.0 See QP 13.1 20.4 29.5 -9.1 Antenna Par to gnd, Perp 13.1 dB Extrapolation Fa 9.080 20.0 10.6 170.0 1.2 5.0 0.0 See QP 10.2 20.4 29.5 -9.1 Antenna Par to gnd, Perp 13.1 dB Extrapolation Fa 14.0 dB Extrapolation Fa	Freq				Azimuth	Height	Distance		Polarity	Detector	Adjustment			Spec.	
9.080 20.0 10.6 170.0 1.2 5.0 0.0 See QP 10.2 20.4 29.5 -9.1 Antenna Part ognd, Perp 13.1 dB Extrapolation Fa 9.084 22.0 10.6 190.0 1.4 3.0 0.0 See QP 10.8 21.8 29.5 -7.7 Antenna Perp tognd, Perp 10.8 dB Extrapolation Fa 9.084 19.6 10.6 138.0 1.2 5.0 0.0 See QP 8.4 21.8 29.5 -7.7 Antenna Perp tognd, Perp 10.8 dB Extrapolation Fa 9.076 18.0 10.6 175.0 1.2 3.0 0.0 See QP 15.3 13.3 29.5 -16.2 Antenna Perp tognd, Perp 10.8 dB Extrapolation Fa 9.076 14.6 10.6 210.0 1.2 5.0 0.0 See QP 11.9 13.3 29.5 -16.2 Antenna Perp tognd, Part 15.3 dB Extrapolation Fa 16.461 15.8 10.4 217.0 1.4 3.0 0.0 See QP 20.7 5.5 29.5 -24.0 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 11.2 10.4 136.0 1.3 5.0 0.0 See QP 16.1 5.5 29.5 -24.0 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 11.2 10.4 126.0 1.4 3.0 0.0 See QP 16.1 5.5 29.5 -24.0 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 11.2 10.4 126.0 1.4 3.0 0.0 See QP 16.1 5.5 29.5 -24.0 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 11.2 10.4 126.0 1.4 3.0 0.0 See QP 16.1 5.5 29.5 -24.0 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 8.1 10.4 15.0 1.2 5.0 0.0 See QP 10.9 7.6 29.5 -21.9 Antenna Perp tognd, Perp 15.3 dB Extrapolation Fa 16.461 8.1 10.4 15.0 1.2 5.0 0.0 See QP 10.9 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.461 8.1 10.4 13.0 1.2 5.0 0.0 See QP 10.9 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp tognd, Perp 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP		.080								QP					Antenna Par to gnd, Perp to EUT
Second S	9.	.080	20.0	10.6	170.0	1.2	5.0	0.0	See	QP	10.2	20.4	29.5	-9.1	13.1 dB Extrapolation Factor Antenna Par to gnd, Perp to EUT 13.1 dB Extrapolation Factor
Second S	9.	.084	22.0	10.6	190.0	1.4	3.0	0.0		QP	10.8	21.8	29.5	-7.7	Antenna Perp to gnd, Perp to EU 10.8 dB Extrapolation Factor
Second S									Comments						Antenna Perp to gnd, Perp to EU 10.8 dB Extrapolation Factor
16.461 15.8 10.4 217.0 1.4 3.0 0.0 See QP 20.7 5.5 29.5 -24.0 Antenna Par to gnd, Perp 20.7 dB Extrapolation Fa									Comments						Antenna Perp to gnd, Par to EUT 15.3 dB Extrapolation Factor
16.461 11.2 10.4 136.0 1.3 5.0 0.0 See QP 16.1 5.5 29.5 -24.0 Antenna Par to gnd, Perposition Fail Relation Fail R									Comments						15.3 dB Extrapolation Factor
Comments Comments 20.7 dB Extrapolation Fa									Comments						20.7 dB Extrapolation Factor
Comments 14.0 dB Extrapolation Fa 16.461 8.1 10.4 15.0 1.2 5.0 0.0 See QP 10.9 7.6 29.5 -21.9 Antenna Perp to gnd, Per 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp to gnd, Per									Comments						20.7 dB Extrapolation Factor Antenna Perp to gnd, Perp to EU
Comments 14.0 dB Extrapolation Fa 16.459 10.3 10.4 131.0 1.2 3.0 0.0 See QP 13.1 7.6 29.5 -21.9 Antenna Perp to gnd, Par									Comments						14.0 dB Extrapolation Factor Antenna Perp to gnd, Perp to EU
Comments 13 1 dB Extranolation Fa									Comments						14.0 dB Extrapolation Factor Antenna Perp to gnd, Par to EUT
16.459 7.4 10.4 267.0 1.5 5.0 0.0 See QP 10.2 7.6 29.5 -21.9 Antenna Perp to gnd, Pal								0.0	Comments See						13.1 dB Extrapolation Factor Antenna Perp to gnd, Par to EUT 13.1 dB Extrapolation Factor

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon a the measured fall-off (at each frequency / polari

EUT: MA 220 S/N: 307990003 Date: 5/5/2003 Job Number: PLEX0339

Frequency	Loop Antenna Polarity	Test Distance	Adjusted Level	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Distance Adjustment Factor
(MHz)		(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)
9.080	Par/Gnd, Perp/EUT	3	33.5	2.9	13.1	30.0	13.1
9.080	Par/Gnd, Perp/EUT	5	30.6	2.9	13.1	30.0	10.2
9.084	Perp/Gnd, Perp/EUT	3	32.6	2.4	10.8	30.0	10.8
9.084	Perp/Gnd, Perp/EUT	5	30.2	2.4	10.0	30.0	8.4
9.076	Perp/Gnd, Par/EUT	3	28.6	3.4	15.3	30.0	15.3
9.076	Perp/Gnd, Par/EUT	5	25.2	3.4	15.5	30.0	11.9
16.461	Par/Gnd, Perp/EUT	3	26.2	4.6	20.7	30.0	20.7
16.461	Par/Gnd, Perp/EUT	5	21.6	4.0	20.7	30.0	16.1
16.461	Perp/Gnd, Perp/EUT	3	21.6	3.1	14.0	20.0	14.0
16.461	Perp/Gnd, Perp/EUT	5	18.5	3.1	14.0	30.0	10.9
16.459	Perp/Gnd, Par/EUT	3	20.7	2.9	13.1	30.0	13.1
16.459	Perp/Gnd, Par/EUT	5	17.8	2.9	13.1	30.0	10.2

Frequency Stability

Revision 2/4/02

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

110 VAC, 60 Hz

Software\Firmware A	Applied During Test		
Exercise software	Morpho Access	Version	4.2
Description			
			4.

The system was tested using standard operating modes, which do not require software.

Equipment Modifications

No EMI suppression devices were added or modified. The EUT was tested as delivered.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220	307990009
Power Brick	Elpac	FW3012	008492

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	2.0	Yes	EUT	Power Brick
AC Power	No	1.8	No	Power Brick	AC Mains
Ethernet	No	15	Yes	EUT	Laptop
Serial	Yes	15	Yes	EUT	Laptop
Wiegand	Yes	15	Yes	EUT	Laptop

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Frequency Stability

Revision 2/4/02

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo
Near field probe	EMCO	7405	IPD	No cal required	N/A
AC Power Supply	Hewlett-Packard	6843A	THB	03/06/2003	12 mo
Temperature / Humidity Chamber	Cincinnati Sub- Zero	ZH-32-2-2- H/AC	TBA	9/20/2002	12 mo

Test Description

Requirement: Per 47 CFR 15.255, the frequency stability shall be measured with variation of ambient temperature and primary supply voltage. A spectrum analyzer or frequency counter can be used to measure the frequency stability. If using a spectrum analyzer, it must have a precision frequency reference that exceeds the stability requirement of the transmitter. A temperature / humidity chamber is required.

Configuration:

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be operated from the public AC mains, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-20° to +50° C) and at 10°C intervals.

Measurements were made at the single transmit frequency. The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Completed by:

NORTHWEST	EMISSIONS		CCT		Rev BETA		
EMC		DATA SITI			01/30/01		
EUT: MA 220				Work Order:	PLEX0339		
Serial Number: 307990003				Date:	05/09/03		
Customer: Plexus				Temperature:	24C		
Attendees: none		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.: N/A		Power:	120VAC /60 Hz\	Job Site:	EV09		
TEST SPECIFICATIONS							
Specification: 47 CFR 2.1055 & 15.225	Year: 2002	Method:	TIA/EIA - 603	Year:	1993		
SAMPLE CALCULATIONS							
COMMENTS							
EUT OPERATING MODES							
Transmitting							
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Minimum frequency stability of +/-0.01% for variations of	temperature and supply voltage	ge (AC power)			•		
RESULTS		MINIMUM FREQUENCY	Y STABILITY				
Pass 0.000339%							
GIGNATURE							
AMU.K.P							
Tested By:							
DESCRIPTION OF TEST	DESCRIPTION OF TEST						
	Frequenc						

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120V, 60Hz)

Temp (°C)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
-20	13.565174	13.565196	0.000162	+/-0.01
-10	13.565174	13.565197	0.000170	+/-0.01
0	13.565174	13.565188	0.000103	+/-0.01
10	13.565174	13.565186	0.000088	+/-0.01
20	13.565174	13.565191	0.000125	+/-0.01
30	13.565174	13.565204	0.000221	+/-0.01
40	13.565174	13.565218	0.000324	+/-0.01
50	13.565174	13.565220	0.000339	+/-0.01

Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 25C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VAC, 60Hz)	(MHz)	(MHz)	(%)	(%)
138 (115%)	13.565174	13.565174	0.000000	+/-0.01
132 (110%)	13.565174	13.565174	0.000000	+/-0.01
126 (105%)	13.565174	13.565174	0.000000	+/-0.01
120 (100%)	13.565174	13.565174	0.000000	+/-0.01
114 (95%)	13.565174	13.565174	0.000000	+/-0.01
108 (90%)	13.565174	13.565174	0.000000	+/-0.01
102 (85%)	13.565174	13.565174	0.000000	+/-0.01

AC Powerline Conducted Emissions

Revision 3/25/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

Operating Modes Investigated:	
Transmitting	

Power Input Settings Investigated:	
110 VAC, 60 Hz	

Software\Firmware Applied During Test				
Operating system	Morpho Access OS	Version	4.2	
Exercise software	Morpho Access	Version	4.2	
Description				
The system was tested using standard operating modes, which do not require software.				

Equipment Modifications

No modifications were added.

EUT and Peripherals in Test Setup Boundary

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Sagem	MA220	307990009
Power Brick	Elpac	FW3012	008492

Remote Equipment Outside of Test Setup Boundary

Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Dell	PPX	000237

^{*}Note: Equipment isolated from the EUT so as not to contribute to the measurement results are considered to be outside the test setup boundary.

AC Powerline Conducted Emissions

Revision 3/25/03

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	2.0	Yes	EUT	Power Brick
AC Power	No	1.8	No	Power Brick	AC Mains
Ethernet	No	15	Yes	EUT	Laptop
Serial	Yes	15	Yes	EUT	Laptop
Wiegand	Yes	15	Yes	EUT	Laptop

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
LISN	Solar	9252-50-R	LID	11/13/2002	12 mo
Spectrum Analyzer	Hewlett-Packard	8593EM	AAM	11/19/2002	12 mo
High Pass Filter	TTE	H647-100k-50	HFA	11/12/2002	12 mo

Test Description

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made using the bandwidths and detectors specified. No video filter was used.			

Completed by:

C

CONDUCTED EMISSIONS DATA SHEET EMC EUT: MA220 Work Order: PLEX0339 Serial Number: N/A Date: 04/24/03 Customer: Plexus Temperature: 70 Attendees: Fritz Rivera Humidity: 37% Barometric Pressure 30.01 Cust. Ref. No.: Tested by: Ethan Schoonover Power: 110VAC/60Hz. Job Site: SU07 TEST SPECIFICATIONS Specification: CISPR22 Class B Year: 1992 Method: ANSI C63.4 Year: 1992 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator All cables connected to laptop outside of chamber. One ferrite on all cables. Shielded cables not grounded. **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD RESULTS Run# Pass L1 Other Tested By 80 70 60 50 dBuV 40 30 20 10 0 0.1 1 10 100 MHz External Compared to Amplitude Transducer Detector (dBuV) (dB) (dB) (dB) dBuV dBuV(dB) (MHz) blank equal peak [PK] from scan) 13.590 0.0 0.6 20.0 49.8 50.0 -0.2 0.150 31.2 0.0 0.1 20.0 51.3 56.0 -4.7 0.370 20.2 0.0 0.1 20.0 40.3 48.5 -8.2 0.224 23.6 0.0 0.1 20.0 43.7 52.7 -9.0 1.495 16.1 0.0 20.0 36.3 46.0 -9.7 0.2 1.770 14.6 0.0 0.2 20.0 34.8 46.0 -11.2 20.0 17.370 17.1 0.0 0.6 37.7 50.0 -12.3 18.030 16.9 0.0 0.6 20.0 37.5 50.0 -12.5 2.346 12.8 0.0 0.2 20.0 33.0 46.0 -13.0 18.270 16.0 0.0 20.0 36.6 50.0 -13.4 0.6 0.449 0.0 20.0 46.9 -13.4 13.4 0.1 33.5 17.910 15.5 0.0 0.6 20.0 50.0 -13.9 36 1 1.345 11.9 0.0 0.1 20.0 32.0 46.0 -14.0 2.271 11.8 0.0 0.2 20.0 32.0 46.0 -14.0 1.245 46.0 -14.1 11.8 0.0 0.1 20.0 31.9 18.120 0.0 35.9 15.3 0.6 20.0 50.0 -14.1

0.6

0.0

20.0

35.8

50.0

-14.2

18.330

15.2

CONDUCTED EMISSIONS DATA SHEET EMC EUT: MA220 Work Order: PLEX0339 Serial Number: N/A Date: 04/24/03 Customer: Plexus Temperature: 70 Attendees: Fritz Rivera Humidity: 37% Cust. Ref. No.: Barometric Pressure 30.01 Power: 110VAC/60Hz. Tested by: Ethan Schoonover Job Site: SU07 SPECIFICATIONS Specification: CISPR22 Class B Year: 1992 Method: ANSI C63.4 Year: 1992 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation All cables connected to laptop outside of chamber. One ferrite on all cables. Shielded cables not grounded. **EUT OPERATING MODES** DEVIATIONS FROM TEST STANDARD **RESULTS** Pass Ν Other Tested By: 80 70 60 50 dBuV 40 30 20 10 0 1 10 100 0.1 MHz External Compared to Freq Amplitude Transducer Cable Adjusted Spec. Limit Attenuation Detector (dB) (dB) (dBuV) (dB) (dB) blank equal peak [PK] from scan) dBuV dBuV (MHz) 13.620 28.9 0.0 0.6 20.0 49.5 50.0 -0.5 0.150 30.4 0.0 0.1 20.0 50.5 56.0 -5.5 0.370 42.5 48.5 -6.0 0.222 24.1 0.0 0.1 20.0 44.2 52.7 -8.5 1.470 0.0 0.2 20.0 36.6 46.0 -9.4 16.4 -9.8 1.770 16.0 0.0 0.2 20.0 36.2 46.0 3 446 0.0 0.2 20.0 33.6 46.0 -12.4 134 3.871 13.1 0.0 0.3 20.0 33.4 46.0 -12.6 13.710 16.7 0.0 0.6 20.0 37.3 50.0 -12.7 0.517 12.9 20.0 46.0 -13.0 0.1 2.346 46.0 -13.0 12.8 0.0 0.2 20.0 33.0 3.221 0.0 0.2 20.0 32.8 46.0 -13.2 12.6 20.0 1.245 12.6 0.0 0.1 32.7 46.0 -13.3 0.298 0.1 20.0 36.6 50.3 -13.7 16.5 0.0 3.496 11.5 0.0 0.2 20.0 31.7 46.0 -14.3 1.345 11.4 0.0 0.1 20.0 31.5 46.0 -14.5 2.646 11.3 0.0 0.2 20.0 31.5 46.0 -14.5 1.895 11.1 0.0 0.2 20.0 31.3 46.0 -14.7

2.471

2.771

10.8

10.6

0.0

0.0

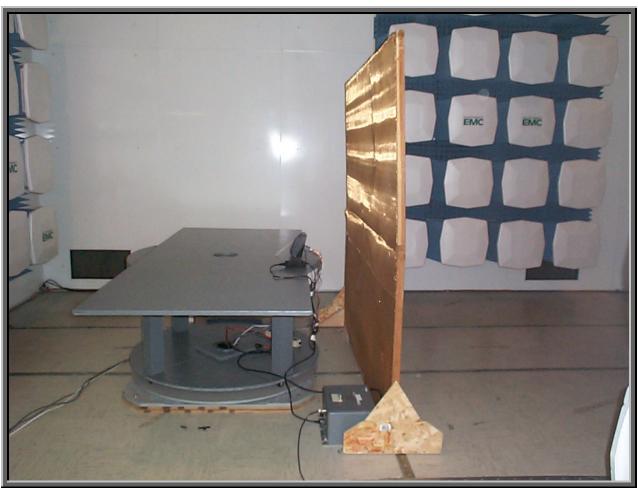
0.2

0.2

20.0

20.0

31.0


30.8

46.0

46.0

-15.0

-15.2

