APPLICATION FOR CERTIFICATION On Behalf of FEGO Precision Industrial Co., Ltd. FEGO BLE GlucoPedo Pedometer and Blood Glucose Monitoring System Model No.: FPG2003B FCC ID: M8CFPG2003B

Prepared for : FEGO Precision Industrial Co., Ltd. 947 Lin-Sen Rd. Wu-Fong Tai-Chung 413 Taiwan R.O.C.

Prepared by : AUDIX Technology Corporation EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

> Tel : (02) 2609-9301, 2609-2133 Fax: (02) 2609-9303

File Number	:	C1M1412287
Report Number	:	EM-F150005
Date of Test	:	2014. 12. 30 ~ 2015. 01. 22
Date of Report	:	2015. 01. 22

TABLE OF CONTENTS

4. RADIATED EMISSION MEASUREMENT 9 4.1. Test Equipment 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup. 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results. 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limi	D	escri	ption	Page
1. DESCRIPTION OF REVISION HISTORY	ΤŦ	EST I	REPORT CERTIFICATION	4
2. GENERAL INFORMATION 6 2.1. Description of Device (FUT). 6 2.2. Description of Test Facility 7 2.3. Measurement Uncertainty. 7 3. CONDUCTED EMISSION MEASUREMENT 8 4. RADIATED EMISSION MEASUREMENT 9 4.1. Test Equipment 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 12 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. GdB BANDWDTH MEASUREMENT 27 6. GdB BANDWDTH MEASUREMENT 27 6.1. Test Equipment 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 32 <th></th> <th></th> <th></th> <th></th>				
2.1. Description of Test Facility 7 3.2. Description of Test Facility 7 3.3. CONDUCTED EMISSION MEASUREMENT 7 3. CONDUCTED EMISSION MEASUREMENT 9 4.1. Test Equipment. 9 4.1. Test Equipment. 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.3. Test Results 25 6.6 dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 32				
2.2. Description of Test Facility 7 2.3. Measurement Uncertainty 7 2. CONDUCTED EMISSION MEASUREMENT 8 4. RADIA TED EMISSION MEASUREMENT 9 4.1. Test Equipment 9 4.2. Test Stup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31				
2.3. Measurement Uncertainty. 7 3. CONDUCTED EMISSION MEASUREMENT 8 4. RADIA TED EMISSION MEASUREMENT 9 4.1. Test Equipment 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 5.4. Test Results 25 6.6 dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [\$15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 32 7.6. Test Results 32				
3. CONDUCTED EMISSION MEASUREMENT				
4. RADIATED EMISSION MEASUREMENT 9 4.1. Test Equipment. 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6.6 dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)(-3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 7.7. Test Equipment 31 <td>3</td> <td></td> <td></td> <td></td>	3			
4.1. Test Equipment 9 4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXINUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. 2014. 06. 16 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 7.6. Test Results 32 7.6. Test Results 32 7.6. Test Re				
4.2. Test Setup 9 4.3. Radiated Emission Limits (§15.209) 11 14.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7.1. Test Equipment 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 7.6. Test Results 32 7.6. Test Results	т.			
4.3. Radiated Émission Limits (§15.209) 11 4.4. Operating Condition of EUT 11 4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6.6 dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Bock Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3]] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8.1. Test Equipment 31 7.3. Specification Limits [§15.247(c)-(3]] 32 7.6. Test Results 32<				
4.4. Operating Condition of EUT. 11 4.5. Test Procedure 12 4.6. Test Results. 13 5. DUTY CYCLE CORRECTION FACTOR		43	Radiated Emission Limits (815 209)	
4.5. Test Procedure 12 4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [\$15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [\$15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8. Jock Diagram of Test Setup 36				
4.6. Test Results 13 5. DUTY CYCLE CORRECTION FACTOR 25 5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6.6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7 6.6. Test Results 28 7.1. Test Equipment 31 7.1. 2014.06.16 31 7.1. 2014.06.16 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 32 7.6. Test Results 32 7.6. Test Requipment 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3.				
5.1. Test Equipment 25 5.2. Test Setup 25 5.3. Test Results 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits [§15.247(c)] 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37				
5.2. Test Setup 25 5.3. Test Results 25 6.6 dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36	5.	DU	TY CYCLE CORRECTION FACTOR	
5.3. Test Results. 25 6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results. 28 7 MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment. 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 32 7.5. Test Procedure 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.		5.1.	Test Equipment	
6. 6dB BANDWIDTH MEASUREMENT 27 6.1. Test Equipment 27 6.2. Block Diagram of Test Setup 27 6.3. Specification Limits [§ 15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§ 15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 4				
6.1. Test Equipment 27 6.2. Block Diagram of Test Setup. 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results. 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 </td <td></td> <td></td> <td></td> <td></td>				
6.2. Block Diagram of Test Setup. 27 6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results. 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment. 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3 Specification Limits [§15.247(c)] 46	6.			
6.3. Specification Limits [§15.247(a)(2)] 27 6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 7.6. Test Results 32 7.6. Test Results 32 7.6. Test Results 32 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46				
6.4. Operating Condition of EUT 27 6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT				
6.5. Test Procedure 27 6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.4. Operating Condition of EUT				
6.6. Test Results 28 7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. Test Equipment 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47				
7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT 31 7.1. Test Equipment 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47				
7.1. Test Equipment. 31 7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [§15.247(b)-(3)] 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment. 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment. 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.4. Operating Condition of EUT 46 <td< td=""><td>_</td><td></td><td></td><td></td></td<>	_			
7.1. 2014. 06. 16 31 7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [§15.247(b)-(3)]. 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)). 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)]. 46 9.4. Operating Condition of EUT 46 9.3. Specification Limits [§15.247(c)]. 46 9.4. Operating Condition of EUT 46 9.3. Specification Limits [§15.247(c)]. 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47	7.			
7.2. Block Diagram of Test Setup. 31 7.3. Specification Limits [\$15.247(b)-(3)]. 32 7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (\$15.247(c)). 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT. 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [\$15.247(c)] 46 9.4. Operating Condition of EUT 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT. 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [\$15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47				
7.3. Specification Limits [§15.247(b)-(3)]				
7.4. Operating Condition of EUT 32 7.5. Test Procedure 32 7.6. Test Results 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47				
7.5. Test Procedure 32 7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment. 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)). 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47				
7.6. Test Results. 32 8. EMISSION LIMITATIONS MEASUREMENT 36 8.1. Test Equipment 36 8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47		7.5.	Test Procedure	
8.1. Test Equipment 36 8.2. Block Diagram of Test Setup 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47				
8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47	8.	EM	ISSION LIMITATIONS MEASUREMENT	
8.2. Block Diagram of Test Setup. 36 8.3. Specification Limits (§15.247(c)) 36 8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results. 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47		8.1.	Test Equipment	
8.4. Operating Condition of EUT 36 8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47		8.2.	Block Diagram of Test Setup	
8.5. Test Procedure 36 8.6. Test Results 37 9. BAND EDGES MEASUREMENT 46 9.1. Test Equipment 46 9.2. Block Diagram of Test Setup 46 9.3. Specification Limits [§15.247(c)] 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results 47				
8.6. Test Results. 37 9. BAND EDGES MEASUREMENT. 46 9.1. Test Equipment. 46 9.2. Block Diagram of Test Setup. 46 9.3. Specification Limits [§15.247(c)]. 46 9.4. Operating Condition of EUT 46 9.5. Test Procedure 46 9.6. Test Results. 47				
9. BAND EDGES MEASUREMENT469.1. Test Equipment469.2. Block Diagram of Test Setup469.3. Specification Limits [§15.247(c)]469.4. Operating Condition of EUT469.5. Test Procedure469.6. Test Results47				
9.1. Test Equipment469.2. Block Diagram of Test Setup469.3. Specification Limits [§15.247(c)]469.4. Operating Condition of EUT469.5. Test Procedure469.6. Test Results47	0			
9.2. Block Diagram of Test Setup	9.			
9.3. Specification Limits [§15.247(c)]469.4. Operating Condition of EUT469.5. Test Procedure469.6. Test Results47				
9.4. Operating Condition of EUT469.5. Test Procedure469.6. Test Results47			v 1	
9.5. Test Procedure 46 9.6. Test Results 47				
9.6. Test Results				
	10			

FCC ID: M8CFPG2003B Page 3 of 55

10.1. Test Equipment	
10.2. Block Diagram of Test Setup	
10.3. Specification Limits [§15.247(d)]	
10.4. Operating Condition of EUT	
10.5. Test Procedure	
10.6. Test Results	
11. DEVIATION TO TEST SPECIFICATIONS	
12. PHOTOGRAPHS	
12.1. Photos of Radiated Measurement at Semi-Anechoic Chamber	
12.2. Photo of Section RF Conducted Measurement	

TEST REPORT CERTIFICATION

Applicant	:	FEGO Precision Industrial Co., Ltd.				
Manufacturer	:	OK Biotech Co., Ltd	d .			
EUT Description	:	FEGO BLE GlucoPedo Pedometer and Blood Glucose				
		Monitoring System				
FCC ID	:	M8CFPG2003B				
		(A) Model No.	:	FPG2003B		
		(B) Serial No.	:	N/A		
		(C) Power Supply	:	DC 3.7V		
		(D) Test Voltage	:	DC 3.7V (Via Battery)		

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C, Oct. 2013 (FCC CFR 47 Part 15C, §15.205, §15.207, §15.209 and §15.247) AND ANSI C63.4:2003

The device described above was tested by AUDIX Technology Corporation to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 subpart C limits.

The measurement results are contained in this test report and AUDIX Technology Corporation is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliant with the requirements of FCC standards.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX Technology Corporation.

Date of Test: _____2014. 12. 30 ~ 2015. 01. 22

Producer:

(Annie Yu/Administrator)

Signatory:

Date of Report:

2015.01.22

1. DESCRIPTION OF REVISION HISTORY

Edition No.	Date of Rev.	Revision Summary	Report No.
0	2015. 01. 22	Original Report	EM-F150005

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Product	FEGO BLE GlucoPedo Pedometer and Blood Glucose Monitoring System
Model Number	FPG2003B
Serial Number	N/A
Applicant	FEGO Precision Industrial Co., Ltd. 947 Lin-Sen Rd. Wu-Fong Tai-Chung 413 Taiwan R.O.C.
Manufacturer	OK Biotech Co., Ltd. No 91, Sec. 2, Gongdao 5th Rd., Hsinchu City 30070, Taiwan.
FCC ID	M8CFPG2003B
Fundamental Range	Bluetooth Low Energy: 2402MHz ~ 2480MHz
Frequency Channel	40 channels
Radio Technology	GFSK
Data Transfer Rate	1 Mbps
Antenna Type	PCB Antenna, -2.44177dBi(Peak)
Date of Receipt of Sample	2014. 12. 25
Date of Test	2014. 12. 30 ~ 2015. 01. 22

2.2. Description of Test Facility

Name of Firm	:	AUDIX Technology Corporation EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan
Test Site (Semi-AC)	:	Semi-Anechoic Chamber No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan May 11, 2012 Renewal on Federal Communication Commission Registration Number: 90993
NVLAP Lab. Code	:	200077-0
TAF Accreditation No	:	1724

2.3. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
	30MHz~300MHz	± 2.91dB
Radiation Test (Distance: 3m)	300MHz~1000MHz	± 2.74dB
	Above 1GHz	± 5.02dB

Test Item	Uncertainty
6dB Bandwidth	± 0.05kHz
Maximum peak output power	± 0.33dB
Emission Limitations	± 0.13dB
Band edges	± 0.13dB
Power spectral density	± 0.13dB

3. CONDUCTED EMISSION MEASUREMENT

【The EUT only employs battery power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207】

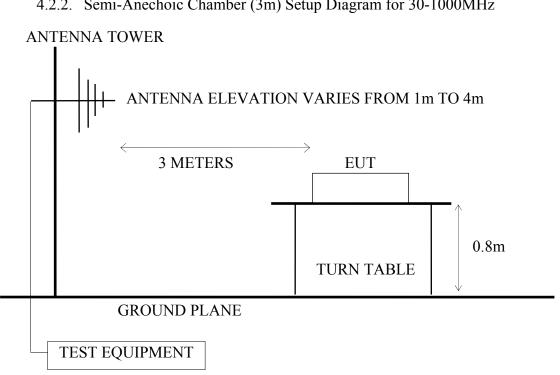
4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment

The following test equipment was used during the radiated emission measurement:

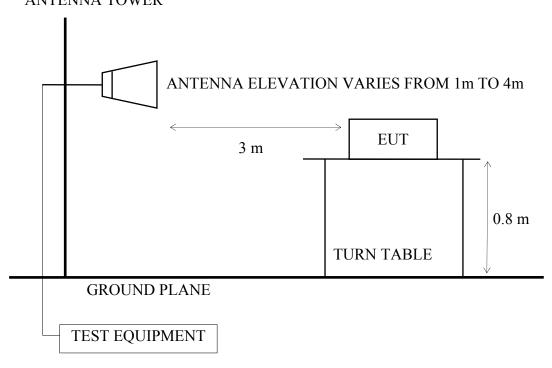
4.1.1. For Frequency Range 30MHz~1000MHz (at Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2014. 09. 15	1 Year
2	Test Receiver	R & S	ESCS30	100338	2014. 06. 24	1 Year
3	Amplifier	HP	8447D	2944A06305	2014. 02. 19	1 Year
4	Bilog Antenna	TESEQ	CBL6112D	33821	2014. 08. 02	1 Year


4.1.2. For Frequency Above 1GHz (at Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2014. 09. 15	1 Year
2	Test Receiver	R & S	ESCS30	100338	2014. 06. 24	1 Year
3	Amplifier	Agilent	8449B	3008A02676	2014. 02. 21	1 Year
4	2.4GHz Notch Filter	K&L	7NSL10-2441 .5E130.5-00	1	2014. 06. 12	1 Year
5	3G High Pass Filter	Microware Circuits	H3G018G1	484796	2014. 06. 12	1 Year
6	Horn Antenna	EMCO	3115	9609-4927	2014. 06. 17	1 Year
7	Horn Antenna	EMCO	3116	2653	2014. 10. 10	1 Year

4.2. Test Setup


4.2.1. Block Diagram of connection between EUT and simulators

FEGO BLE GLUCOPEDO PEDOMETER AND BLOOD GLUCOSE MONITORING SYSTEM (EUT)

4.2.2. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000MHz

4.2.3. Semi-Anechoic Chamber (3m) Setup Diagram for above 1GHz ANTENNA TOWER

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMITS	
MHz	Meters	μV/m	dBµV/m
30 ~ 88	3	100	40.0
88~216	3	150	43.5
216~960	3	200	46.0
Above 960	3	500	54.0
Above 1000	3	74.0 dBµV/	m (Peak)
		54.0 dBµV/m (Average)	

4.3. Radiated Emission Limits (§15.209)

Remark : (1) Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$

- (2) The tighter limit applies at the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) The limits in this table are based on CFR 47 Part 15.205(a)(b) and Part 15.209 (a).
- (5) The over 1GHz limit, FCC limit is used based on CFR 47 Part 15.35(b) and Part 15.205(b) & Part 15.209(e) and Part 15.207(c).

4.4. Operating Condition of EUT

- 4.4.1. Set up the EUT and simulator as shown on 4.2.
- 4.4.2. The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

4.5. Test Procedure

The EUT and its simulators were placed on a turn table which was 0.8 meter above the ground. The turn table rotated 360 degrees to determine the position of the maximum emission level. EUT was set 3 meters away from the receiving antenna which was mounted on an antenna tower. The antenna moved up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna such as bilog antenna or horn antenna were used as a receiving antenna. Both horizontal and vertical polarization of the antenna were set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4-2003 regulation.

The bandwidth of the R&S Test Receiver ESCS30 was set at 120kHz. (For 30MHz to 1000MHz)

The resolution bandwidth and video bandwidth of test spectrum analyzer is 1MHz for peak detection (PK) at frequency above 1GHz.

The resolution bandwidth of test spectrum analyzer is 1MHz and the video bandwidth is 10Hz for average detection (AV) at frequency above 1GHz.

The frequency range from 30MHz to 25GHz (Up to 10th harmonics from fundamental frequency) was checked. 30MHz to 1000MHz was measured with Quasi-Peak detector.

Pursuant to ANSI C63.4 8.3.1.2, when peak value complies with the average limit, we didn't perform measurement in average detector.

4.6. Test Results

PASSED.

(All emissions not reported for there is no emission be found.)

EUT: FEGO BLE GlucoPedo Pedometer and Blood Glucose Monitoring System

M/N: FPG2003B

Test Date: 2015. 01. 19 Temperature: 23 Humidity: 41%

For Frequency Range 30MHz~1000MHz:

The EUT emitted the fundamental frequency with data code at the stand, side and lying conditions.

The EUT select **worst position "lying"** and power by battery and with following test modes was performed during this section testing and all the test results are listed in section 4.6.1.

Mada	Channel	Fraguanay	Tost Moda	Reference Test Data		
Mode	Channel	Frequency	Test Mode	Horizontal	Vertical	
1.	CH 0	2402MHz		# 2	# 1	
2.	CH 19	2440MHz	Transmit	# 4	# 3	
3.	CH 39	2480MHz		# 6	# 5	

* Above all final readings were measured with Quasi-Peak detector.

For Frequency above 1GHz:

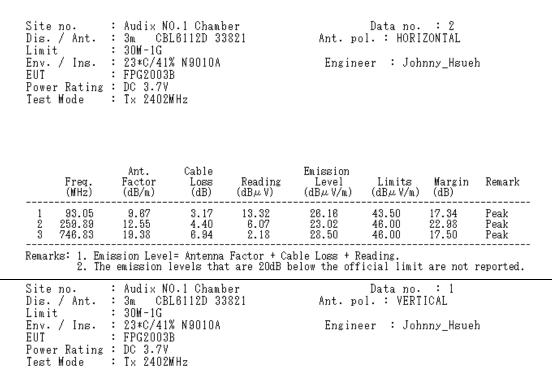
The EUT select **worst position "lying"** and power by battery and with following test modes was performed during this section testing and all the test results are listed in section 4.6.2.

Mode	Chnnel	Frequency	Test Mode	Test Frequency Range
1.				1000-2680MHz
2.				2680-4000MHz
3.	CH 0	2402MHz	Transmit	4000-5500MHz*
4.	CHU	2402MHZ	Transmit	5500-7500MHz
5.				7500-18000MHz
6.				18000-25000MHz
7.				1000-2680MHz
8.				2680-4000MHz
9.	CH 19	2440MHz	Transmit	4000-5500MHz*
10.	СП 19	2440MHZ		5500-7500MHz
11.				7500-18000MHz
12.				18000-25000MHz
13.				1000-2680MHz
14.				2680-4000MHz
15.	СН 39	2480MHz	Transmit	4000-5500MHz*
16.		2400MHZ	TTanSinit	5500-7500MHz
17.				7500-18000MHz
18.				18000-25000MHz

Note: 1. Above all final readings were measured with Peak and Average detector.

2. The emissions (up to 25GHz) not reported are too low to be measured.

3."*" means there is spurious emission falling the frequency band and be measures.


For Restricted Bands:

The EUT select **worst position "lying"** and power by battery and with following test modes was performed during this section testing and all the test results are listed in section 4.6.3. (The restricted bands defined in part 15.205(a))

Mode	Channel	Frequency Test Mod		Reference Test Data No.			
Mode	Channel	Frequency	Test Mode	Horizontal	Vertical		
1	CH 0	2402MHz	т :	# 2	# 1		
2	CH 39	2480MHz	Transmit	# 4	# 3		

4.6.1. For 30-1000MHz Frequency Range Measurement Results

Transmit, Frequency: 2402MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµV)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 2 3	249.22 472.32 580.96	12.35 16.60 18.08	4.32 6.24 6.49	6.89 5.41 9.46	23.56 28.25 34.03	46.00 46.00 46.00 46.00	22.44 17.75 11.97	Peak Peak Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

Transmit, Frequency: 2440MHz

Site no. Dis. / Ant. Limit Env. / Ins. EUT Power Rating	: 30M-1G : 23*C/412 : FPG20031 : DC 3.7V	L6112D 33 % N9010A B		-	Data no. 1. : HORI er : Joh	ZONTAL	h
Test Mode Freq.	: T× 2440) Ant. Factor	Cable Loss	Reading	Emission Level	Limits	Margin	Remark
(MHz)	(dB/m)	(dB)	(dBµV) ⊂	(dBµV/m)	(dBµV/m)	(dB)	
	9.67 12.75 19.38		$13.61 \\ 5.73 \\ 2.46$	26.45 22.97 28.78		17.05 23.03 17.22	Peak Peak Peak
Remarks: 1. Em 2. Th				ble Loss + R elow the off		are not :	reported.
Site no. Dis. / Ant. Limit Env. / Ins. EUT Power Rating Test Mode	: 30M-1G : 23*C/412 : FPG20031	L6112D 33 % N9010A B		_	Data no. 1. : VERT er : Joh	ICAL	h

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµV)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 185.20 2 401.51 3 775.93	9.16 15.58 19.75	3.87 5.67 7.07	13.57 4.17 5.52	26.60 25.42 32.34	43.50 46.00 46.00	16.90 20.58 13.66	Peak Peak Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

Transmit, Frequency: 2480MHz

Dis. / Ant.	: Audix NO.1 Chamber : 3m CBL6112D 33821 : 30M-1G	Data no. : 6 Ant. pol. : HORIZONTAL
Env. / Ins. EUT	: 23*C/41% N9010A : FPG2003B	Engineer : Johnny_Hsueh
Power Rating Test Mode		

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 101.78	11.03	3.23	8.72	22.98	43.50	20.52	Peak
2 503.36	17.00	6.44	2.53	25.97	46.00	20.03	Peak
3 746.83	19.38	6.94	3.56	29.88	46.00	16.12	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

Site no. : Audix NO.1 Chamber Dis. / Ant. : 3m CBL6112D 33821
Limit : 30M-1G Env. / Ins. : 23*C/41% N9010A EUT : FPG2003B Power Rating : DC 3.7V Test Mode : Tx 2480MHz

Data no. : 5 Ant. pol. : VERTICAL Engineer : Johnny_Hsueh

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 2 3	147.37 415.09 746.83	10.72 15.78 19.38	$3.58 \\ 5.78 \\ 6.94$	11.25 16.88 3.28	25.55 38.44 29.60	43.50 46.00 46.00	17.95 7.56 16.40	

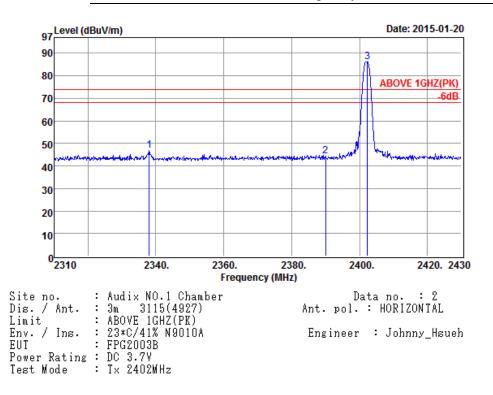
Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

4.6.2. Date of Test :	Above 1	1	ency Range N 01. 19	leasurement Re Temper		23		
EUT:			Pedo Pedomete Ionitoring Sys	Pedometer and Humidity : 41% toring System				
Test Mode :			Transmit, Fre	equency: 2402N	ИНz			
Emission Frequency	Antenna Factor	Cable Loss	Meter Reading Horizont			Margin		
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$) $(dB\mu V/m)$	(dB)		
4804.00	32.76	8.09	9 15.23	56.08	74.00	17.92		
	e emissior			Loss + Reading v the official lim		ed.		
Frequen		Value	Correction Factor	Value Horizontal	Linit	Margin		
(MHz))	(dB/m)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
4804.0	0	56.08	-14.47	41.61	54.00	12.39		
(0. "T tha	.62ms/3.28 "" means th an 100ms	ems)=-14.47 the period of	the pulse train	umulative on/T) or 100ms if the p correction Fact	oulse train lengt	h is greater		
Emission Frequency	Antenna Factor	Cable Loss	Meter Reading Vertical		Limits	Margin		
(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dB)		
4804.00	32.76	8.09	3 17.25	58.10	74.00	15.90		
				Loss + Reading the official lim		ted.		
Emission Fre	quency	Peak Value	Duty Cycle Correction V Factor	Average Value Vertical	Limit	Margin		
(MHz))	(dB/m)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
4804.0	0	58.10	-14.47	43.63	54.00	10.37		
(0. "T	.62ms/3.28	(ms)=-14.47		umulative on/T) or 100ms if the p		h is greater		

than 100ms

FCC ID: M8CFPG2003B Page 19 of 55

Date of Test :		2015. 01. 19			Temper	rature :	23	
EUT:			Pedo Pedome Ionitoring Sy		d Humidity :		41%	
Test Mode :			Transmit, Fr	requency	v: 2440N	ИНz		
Emission Frequency	Antenna Factor	Cable Loss	e Mete Readir Horizor	ng	mission Level prizontal		Margin	
(MHz)	(dB/m)	(dB)	(dBµV	/) (d	BμV/m)) $(dB\mu V/m)$	(dB)	
4880.50	32.88	8.17	7 13.81		54.86	74.00	19.14	
Emission Fre	equency	Peak Value	Duty Cycle Correction Factor	Aver Val Horizo	ue	Limit	Margin	
(MHz)		(dB/m)	(dB)	(dBµV	//m)	$(dB\mu V/m)$	(dB)	
4880.50		54.86	-14.47	40.3	39	54.00	13.61	
tha	an 100ms	ie=Peak val	ue+ Duty Cyc	le Correc r Ei	-		Margin	
			Vertic	al V	'ertical			
(MHz)	(dB/m)	(dB)	(dBµV	/) (dl	BμV/m)	$(dB\mu V/m)$	(dB)	
4879.00	32.88	8.1	7 12.77	7	53.82	74.00	20.18	
Remarks: 1. En 2. Th					•	it are not repor	ted.	
Emission Fre	equency	Peak Value	Duty Cycle Correction Factor	Aver Value V	•	Limit	Margin	
(MHz))	(dB/m)	(dB)	(dBµV	V/m)	$(dB\mu V/m)$	(dB)	
			1 4 47	20 /		54.00		
4879.0	0	53.82	-14.47	39.	35	54.00	14.65	


Date of Test :		2015.	01. 19		Temper	rature :	23
EUT:			Pedo Pedome Ionitoring Sy		Hun	nidity :	41%
Test Mode :			Transmit, Fr	equency	7: 2480N	ЛНz	
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin Horizon	g	mission Level orizontal	Limits	Margin
(MHz)	(dB/m)	(dB)	(dBµV	r) (d	BµV/m)	(dBµV/m)	(dB)
4960.00	33.03	8.20	14.62		55.91	74.00	18.09
Remarks: 1. En 2. Th Emission Fre	e emission				ficial lim	it are not repor Limit	ted. Margin
(MHz)		(dB/m)	(dB)	(dB) (dBµV/n		(dBµV/m)	(dB)
4960.0	0	55.91	-14.47	41.4	44	54.00	12.56
"T tha	" means th an 100ms	e=Peak valu		e Correc	-	oulse train leng tor Limits	th is greater
Frequency	Factor	Loss	Readin Vertica	g	Level /ertical	Linnts	Iviurgin
(MHz)	(dB/m)	(dB)	(dBµV) (d	BμV/m)	$(dB\mu V/m)$	(dB)
4960.00	33.03	8.20	3 16.39		57.68	74.00	16.32
Remarks: 1. En 2. Th						it are not repor	ted.
Emission Fre	quency	Peak Value	Duty Cycle Correction Factor	Aver Value V	•	Limit	Margin
(MHz))	(dB/m)	(dB)	(dBµ'	V/m)	$(dB\mu V/m)$	(dB)
4960.0	0	57.68	-14.47	43.	21	54.00	10.79
"T	.62ms/3.28	ms)=-14.47			,	= oulse train leng	th is greater

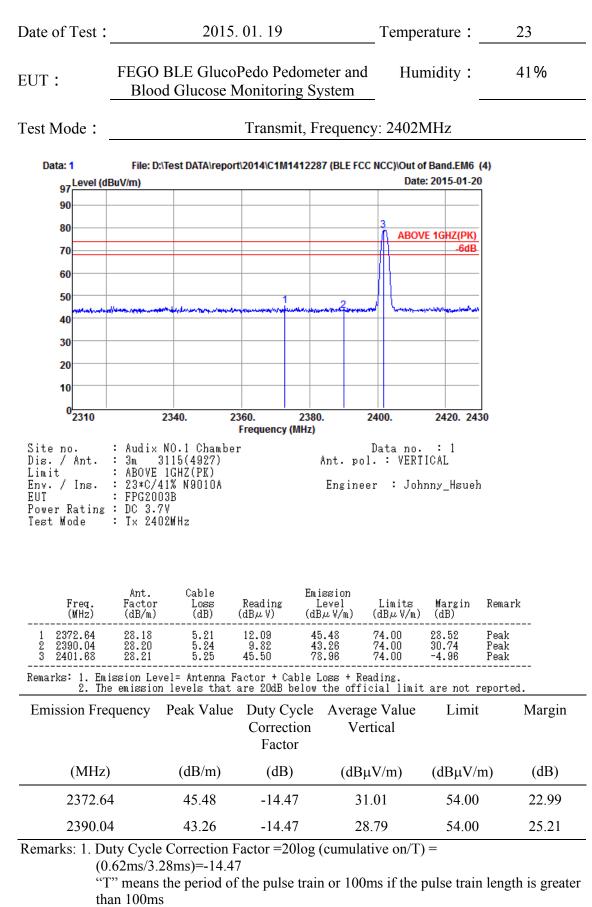
than 100ms

4.6.3.	Restricted Bands Measurement Results		
Date of Test :	2015. 01. 19	Temperature :	23
EUT:	FEGO BLE GlucoPedo Pedometer and Blood Glucose Monitoring System	Humidity :	41%

Transmit, Frequency: 2402MHz

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµV)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 2338.08 2 2390.04 3 2402.28	28.15 28.20 28.21	$5.17 \\ 5.24 \\ 5.26$	13.70 10.88 52.73	47.02 44.32 86.20	$74.00 \\ 74.00 \\ 74.00 \\ 74.00$	26.98 29.68 -12.20	Peak Peak Peak

Remarks:	1.	Emia	ssion Leve	el= Ante	enna l	Facto	or + (Cable I	loss	+ Reading	.		
	2.	The	emission	levels	that	are	20dB	below	the	official	limit	are not	reported.

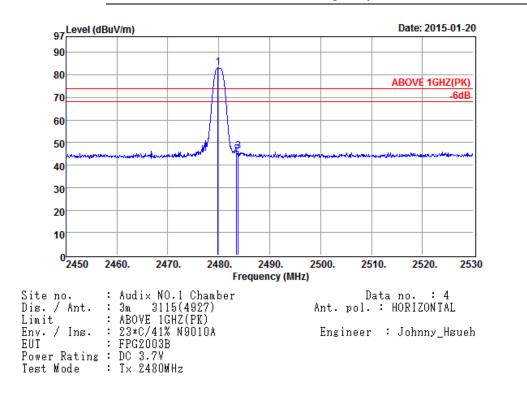

Emission Frequency	Peak Value	Duty Cycle Correction Factor	Average Value Horizontal	Limit	Margin
(MHz)	(dB/m)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
2338.08	47.02	-14.47	32.55	54.00	21.45
2390.04	44.32	-14.47	29.85	54.00	24.15

Remarks: 1. Duty Cycle Correction Factor =20log (cumulative on/T) =

(0.62ms/3.28ms)=-14.47

"T" means the period of the pulse train or 100ms if the pulse train length is greater than 100ms

2. Low frequency section (spurious in the restricted band 2310-2430MHz).


2. Low frequency section (spurious in the restricted band 2310-2430MHz).

FCC ID: M8CFPG2003B Page 23 of 55

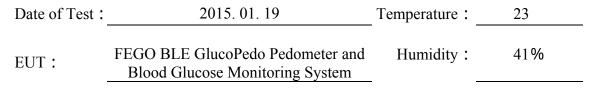
Date of Test :	2015. 01. 19	Temperature :	23
	FEGO BLE GlucoPedo Pedometer and	Humidity :	41%

EUT : Blood Glucose Monitoring System

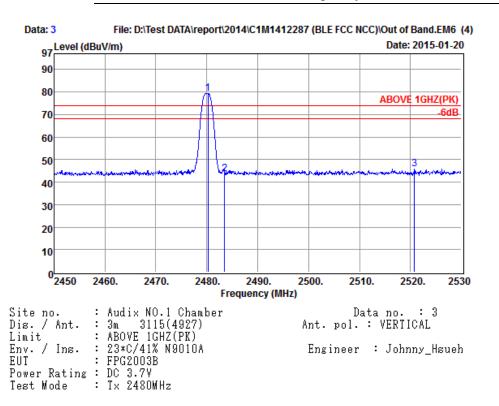
Test Mode : Transmit, Frequency: 2480MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1 2 3	2479.84 2483.52 2483.84	28.28 28.29 28.29	5.36 5.37 5.37	49.49 11.06 12.65	83.13 44.72 46.31	74.00 74.00 74.00	-9.13 29.28 27.69	Peak Peak Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.


Emission Frequency	Peak Value	Duty Cycle Correction Factor	Average Value Horizontal	Limit	Margin
(MHz)	(dB/m)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
2483.52	44.72	-14.47	30.25	54.00	23.75
2483.84	46.31	-14.47	31.84	54.00	22.16

Remarks: 1. Duty Cycle Correction Factor =20log (cumulative on/T) =


(0.62 ms/3.28 ms) = -14.47

"T" means the period of the pulse train or 100ms if the pulse train length is greater than 100ms

2. High frequency section (spurious in the restricted band 2450-2530MHz).

Test Mode : Transmit, Frequency: 2480MHz

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
$\begin{array}{cccc} 1 & 2480.24 \\ 2 & 2483.52 \\ 3 & 2520.80 \end{array}$	28.28 28.29 28.38	$5.36 \\ 5.37 \\ 5.44$	45.85 10.13 11.97	79.49 43.79 45.79	74.00 74.00 74.00	-5.49 30.21 28.21	Peak Peak Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

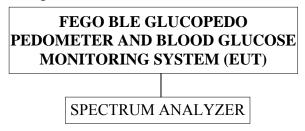
Emission Frequency	Peak Value	Duty Cycle Correction Factor	Average Value Vertical	Limit	Margin
(MHz)	(dB/m)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
2483.52	43.79	-14.47	29.32	54.00	24.68
2520.80	45.79	-14.47	31.32	54.00	22.68

Remarks: 1. Duty Cycle Correction Factor =20log (cumulative on/T) =

(0.62ms/3.28ms)=-14.47

"T" means the period of the pulse train or 100ms if the pulse train length is greater than 100ms

2. High frequency section (spurious in the restricted band 2450-2530MHz).


5. DUTY CYCLE CORRECTION FACTOR

5.1. Test Equipment

The following test equipment was used during the radiated emission measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A-526	MY53310269	2014. 11. 08	1 Year

5.2. Test Setup

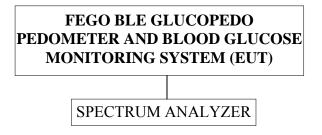
5.3. Test Results

PASSED.

Test Date: 2	015.01.20	Temperatu	re : 25	Hur	nidity : :	50%	
III Agilent Spectrum Analyzer - Swept SA N RF S0Ω At Marker 1 Δ 620.000 µs	PNO: Wi		Run	IGN AUTO Avg Type: L	.og-Pwr	TR	2 PM Jan 20, 2015 ACE 1 2 3 4 5 6 TYPE WWWWWWWWW DET P N N N N N
10 dB/div Ref 0.00 dBm						ΔMkr1	620.0 μs -1.35 dB
10.0							
20.0							
30.0							
40.0							
60.0		×2	1Δ2		[
70.0							
eso watatatata	ridewarder warder war	WWWWW	Vanappapersel	will faith Mater	hally	were with	il-hiphillistan
90.0							
Center 2.402000000 GHz Res BW 1.0 MHz		VBW 1.0 MHz			Sweep		Span 0 Hz ; (1001 pts)
45G				STATUS			

C Agilent Spec	trum Analyzer - S RF SI	wept SA Ω AC			SENSE	INT	a.	IGN AUTO		12:51:1	👝 🕼 💽
larker 1	Δ 3.2800			NO: Wide	Т	ig: Free tten: 10	Run	Avg Type:	Log-Pwr	T	ACE 1 2 3 4 5 TYPE WWWWWW DET P NNNN
0 dB/div	Ref 0.00	dBm								ΔMkr1	3.280 m 23.51 di
0.0											
0.0											
0.0											
0.0											
0.0)	K2	1		<u></u>		
0.0		-			~	~2					
0.0 0.0 WW44	the rest star	W.H	hhudrub da	uquadada	vi()		Vanappapersale	will for a line	-hahvil, 1∆	2 1440 y M	il-sipsteral
0.0	<u> </u>							-			
enter 2.4 es BW 1	402000000 .0 MHz	GHz		VBW	/ 1.0	MHz			Sweep) 10.00 ms	Span 0 H s (1001 pts
🕫 🕔 File <	<1501015_0)12.png	> saved					STATUS			

- Duty Cycle Factor=20log(cumulative on/T)=20log (0.62/3.28)= -14.47
- T: The period of the pulse train or 100ms if the pulse train length is greater than 100ms


6. 6dB BANDWIDTH MEASUREMENT

6.1. Test Equipment

The following test equipment was used during the Emission Bandwidth measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A-544	US51350140	2014. 07. 24	1 Year

6.2. Block Diagram of Test Setup

6.3. Specification Limits [§15.247(a)(2)]

The minimum 6dB bandwidth shall be at least 500kHz.

6.4. Operating Condition of EUT

The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

6.5. Test Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer with 1.5% EBW, VBW \geq 3xRBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. The measurement guideline was according to 558074 D01 v03r02.

6.6. Test Results

PASSED. All the test results are attached in next pages.

Test Date: 2014. 12. 30 Temperature: 25 Humidity: 50%

Mode	Type of Network	Channel	Frequency	6dB Bandwidth
1	Bluetooth Low Energy	CH0	2402MHz	0.680 MHz
2		CH19	2440MHz	0.690 MHz
3	Lifergy	CH39	2480MHz	0.730 MHz

[Limit: least 500kHz]

Bluetooth Low Energy, Frequency: 2402MHz

Bluetooth Low Energy, Frequency: 2440MHz

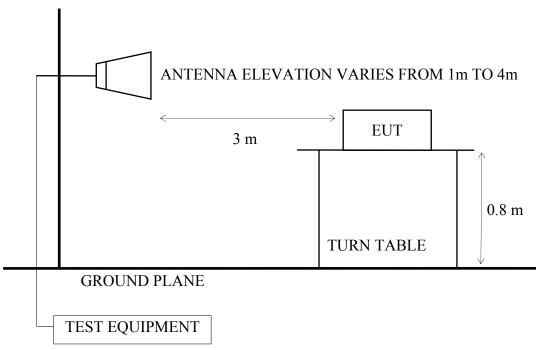
Bluetooth Low Energy, Frequency: 2480MHz

7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT

7.1. Test Equipment

The following test equipment was used during the maximum peak output power measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Due Date
1	Spectrum Analyzer	Agilent	N9030A-544	US51350140	2014. 07. 29
2	Test Receiver	R & S	ESCS30	100338	2014. 06. 30
3	Amplifier	Agilent	8449B	3008A02676	2015. 02. 20
4	Horn Antenna	EMCO	3115	9609-4927	2014. 06. 16


7.2. Block Diagram of Test Setup

7.2.1. Block Diagram of connection between EUT and simulators

FEGO BLE GLUCOPEDO PEDOMETER AND BLOOD GLUCOSE MONITORING SYSTEM (EUT)

7.2.2. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000MHz

ANTENNA TOWER

7.3. Specification Limits [§15.247(b)-(3)]

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5MHz is: 1Watt. (30dBm)

7.4. Operating Condition of EUT

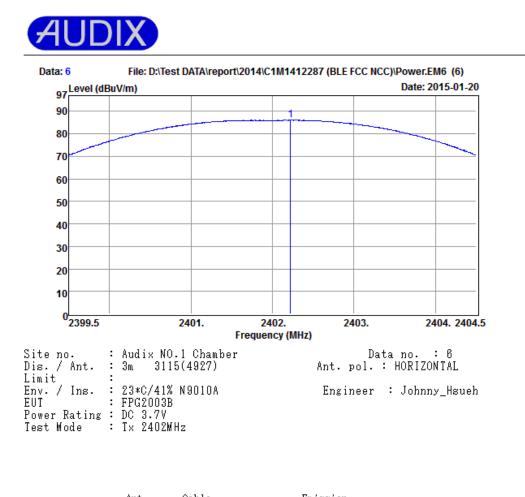
The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

7.5. Test Procedure

The transmitter output was connected to the power sensor and record the reading of power meter.

The measurement guideline was according to 558074 D01 v03r02.

7.6. Test Results


PASSED. All the test results are listed below.

Test Date: 2015. 01. 20 Temperature: 23 Humidity: 41%

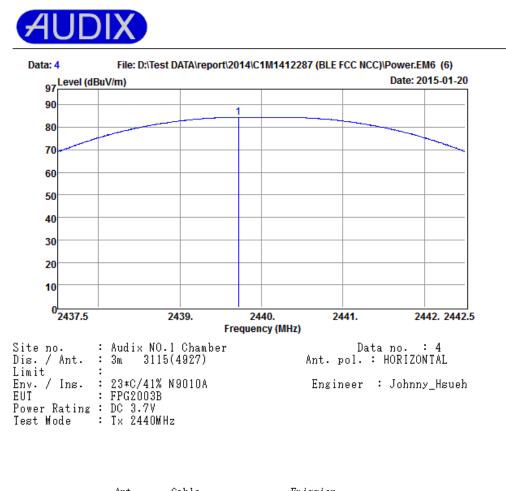
Mode	Type of Network	Channel	Test Frequency	Output Power(dBm)
1	Bluetooth Low Energy	CH0	2402MHz	-6.70
2		CH19	2440MHz	-8.24
3		CH39	2480MHz	-9.53

[Limit: 1Watt. (30dBm)]

Bluetooth Low Energy, Transmit, Channel 0, Frequency: 2402MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1	2402.22	28.21	5.26	52.59	86.06			Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.


Channel	Test Frequency	Emission Level (dBµV/m)	Factor (V/m)	Antenna Gain (dBi)	Conducted Power (dBm)	
0	2402.00MHz	86.06	95.2	-2.44	-6.70	

Pursuant to KDB558074 D01,

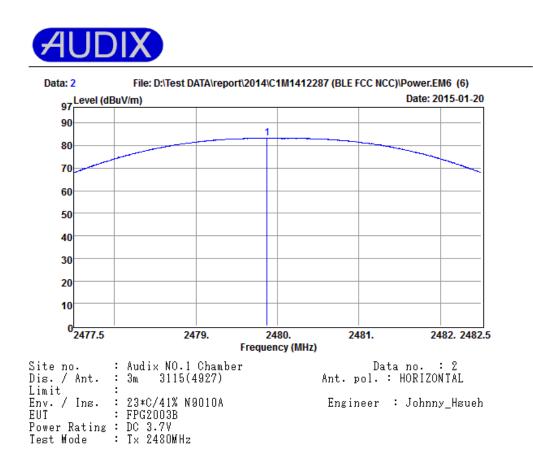
Conducted Power=E-95.2-Antenna Gain.

Where E=electric field strength in $dB\mu V/m$

Bluetooth Low Energy, Transmit, Channel 19, Frequency: 2440MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµ∀)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark	
1	2439.72	28.25	5.31	50.96	84.52			Peak	
_									

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.


Channel	Test Frequency	Emission Level (dBµV/m)	Factor (V/m)	Antenna Gain (dBi)	Conducted Power (dBm)
19	2440.00MHz	84.52	95.2	-2.44	-8.24

Pursuant to KDB558074 D01,

Conducted Power =E-95.2-Antenna Gain.

Where E=electric field strength in $dB\mu V/m$

Bluetooth Low Energy, Transmit, Channel 39, Frequency: 2480MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBµV)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1	2479.88	28.28	5.36	49.59	83.23			Peak
	1 . 1 E	/ / T 1		E	11. I D			

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading. 2. The emission levels that are 20dB below the official limit are not reported.

Channel	Test Frequency	Emission Level (dBµV/m)	Factor (V/m)	Antenna Gain (dBi)	Conducted Power (dBm)	
39	2480.00MHz	83.23	95.2	-2.44	-9.53	

Pursuant to KDB558074 D01,

Conducted Power =E-95.2-Antenna Gain.

Where E=electric field strength in $dB\mu V/m$

8. EMISSION LIMITATIONS MEASUREMENT

8.1. Test Equipment

The following test equipment was used during the emission limitations test:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A-544	US51350140	2014. 07. 24	1 Year

8.2. Block Diagram of Test Setup

The same as section.6.2

8.3. Specification Limits (§15.247(c))

- 8.3.1. In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).(This test result attaching to §4.6.3)
- 8.3.2. The reference level for determining limit of emission limitations is according to the value measured indicated in plots at section 8.6.

8.4. Operating Condition of EUT

The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

8.5. Test Procedure

The RF output of EUT was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer with 100kHz RBW and 300kHz VBW.

The measurement guideline was according to 558074 D01 v03r02.

8.6. Test Results

PASSED. The testing data was attached in the next pages.

Test Date: 2015. 01. 22 Temperature: 24 Humidity: 45%

Test Free	quency: CH 0	, 2402MHz
-----------	--------------	-----------

Agilent Spectrum Analyzer - Swept SA			
	NO: Fast Trig: Free F Gain:Low Atten: 10 d	ALIGNAUTO Avg Type: I Run Avg Hold>1 B	
Ref Offset 0.3 dB 10 dB/div Ref 0.30 dBm			Mkr5 303.54 MHz -50.970 dBm
-9.70			
-19.7			-30.27 dBr
-39.7 -49.7 01 02 3 04 5			
.69.7	1.		
1997 1997 1997	Wirkhardsmather	ลงสารเสียงให้เราสารเสียงระส	a de la company de la comp
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kHz		Stop 1.0000 GHz Sweep 92.73 ms (1001 pts
	Y FUNC	TION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 63.95 MHz 2 N 1 f 191.99 MHz 3 N 1 f 224.00 MHz 4 N 1 f 2271.53 MHz 5 N 1 f 303.54 MHz	-57.561 dBm -56.157 dBm -49.044 dBm -46.610 dBm -50.970 dBm		
6 7 7 8 9			
10 11 <			>
MSG		STATUS	

Agilent Spectrum Analyzer - Swept SA					
Marker 4 4.8040000000	00 GHz	Frig: Free Run Atten: 10 dB	ALIGNAUTO Avg Type Avg Hold:	: Log-Pwr >100/100	12:39:09 PM Jan 22, 2015 TRACE 1 2 3 4 5 6 TVPE MWWWWW DET P S N N N
Ref Offset 0.3 dB 10 dB/div Ref 0.30 dBm					Mkr4 4.804 GHz -50.779 dBm
-9.70					
-29.7					-30.27 dBn
-49.7					∳⁴
-59.7					
-79.7 -89.7	the state of the s	Call Contractor of the Contractor	Address of the second designed and the second designed and the second designed and the second designed and the		and all a state of the second s
Start 1.000 GHz #Res BW 100 kHz	#1	/BW 300 kHz		Sweep	Stop 5.000 GHz 382.3 ms (1001 pts)
MXB MODE TRE SC	2.128 GHz -50.7	FUNCTION 106 dBm 135 dBm 125 dBm	FUNCTION WIDTH	FUR	ACTION WALVE
4 N 1 F 5 6 7 7		79 dBm			
/ 8 9 10					
					×
r5G			STATUS		

ilent Spectr	um Analyzer -								
arker 2		0000000 GHz	PNO: Fast IFGain:Low	SENSE:INT Trig: Free Atten: 10 (Run	Avg Type Avg Hold	e:Log-Pwr >100/100	T	7 PM Jan 22, 203 RACE 1 2 3 4 5 TYPE MWWWW DET P S N N 1
dB/div	Ref Offset Ref 0.30							Mkr2 9 -60.	610 GH 842 dB
70									
7									-30.27 (
7									▲ ²
7 7				≬¹					
7	an punda the the the test		Minan ann an	and the second	*******	*******	1		uul-when
art 5.00 es BW	00 GHz 100 kHz		#VE	3W 300 kHz			Swee	Stop 1 p 477.9 ms	0.000 G (1001 p
R MODE TR	f	× 7.205 G	Hz -71.628	3 dBm	CTION FUNC	TION WIDTH		UNCTION VALUE	
	1	9.610 G	Hz -60.842			_			
+									>

Agilent	Spectrum Analyzer								
Mark	er 1 12.0100	50 A DC) GHz		SENSE:INT	IGNAUTO Avg Type: I	Log-Pwr	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6
			PN	10: Fast 😱	Trig: Free I Atten: 10 d	Avg Hold>1	100/100	1	DET P S N N N N
	Ref Offse	t0.3 dB						Mkr1 12.	010 GHz
10 dB/						 		-70.	210 dBm
-9.70 -									
-19.7									
-19.7									
-29.7 =									-30.27 dBm
-39.7									
-49.7									
-59.7									
-69.7					1				
0.0.1									
-79.7	-unstructures	We bysteries	ه بنارا بو (پاری	wheeler and the	e-mildered states	 want with starting of	and the second	1869), KALING BALANDA	MARLEN - 444 14 - 1444 14
-89.7									
L	40.000 CH-							010	5 000 OU-
	10.000 GHz BW 100 kHz			#VB	W 300 kHz		Sweep	Stop 1 477.9 ms	5.000 GHz (1001 pts)
MSG						STATUS			, , ,

Agilen	it Spectrum		zer - Swept S	A.							
()		RF	50 g DC			SENSE:INT	AL	Avg Type:	Log-Pwr	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6
				1	PNO: Fast Gain:Low	Atten: 10		Avg Hold>	100/100		DET P S N N N N
10 de Log			fset 0.3 dB .30 dBm								
-9.70											
-19.7	<u> </u>	\rightarrow									
-29.7		_									-30.27 dBm
-39.7											
-49.7											
-59.7											
-69.7	allow	يلعلهما	an Maria	an had the section	LULL LOAN		*.*Lala-Mark-18	andrater	af light the state of the state	er-e-suggeren	ulyer-lananin
-79.7					in the first						
-89.7		\rightarrow									
	t 15.00 s BW 1				#\/B	W 300 kHz			Swaar	Stop 2	0.000 GHz (1001 pts)
MSG	SDW1	00 KP	12		#VD	300 KHZ		STATUS	oweep	/ 4//.9 MS	(1001 pts)

MSG						STATUS			
Start 20.0 #Res BW			#VB	W 300 kHz			Sweep	Stop 2 477.9 ms	25.000 GHz (1001 pts)
-89.7									
.79.7	مهمرا للرمية معمر معاموها مع	nterstation in the second	n ale a shore his	anger and and the	⋏ _{⋽⋭⋪⋪} ⋕⋪⋭∊⋏⋌₿⋳	Marnuslannar		******	ietal an
-69.7									
-59.7									
-49.7									
-39.7									
-29.7									-30.27 dBm
-19.7									
.9.70									
10 dB/div	Ref Offset 0.3 dB Ref 0.30 dBm								
Stop Fre	q 25.0000000	I	PNO: Fast Gain:Low	Trig: Free Atten: 10 c		Avg Hold>1	100/100		DET P S N N N N
Stop Fre	RF 50 9 DC cq 25.00000000			SENSE:INT	AL	IGNAUTO Avg Type: I	og-Pwr		PM Jan 22, 2015 ACE 1 2 3 4 5 6
gilent Spect	rum Analyzer - Swept SJ								

Agilent Spectrum Analyzer - Swept SA			-
Marker 5 515.970000000 MHz	PNO: Fast Trig: Free Run IFGain:Low Atten: 10 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	12:47:38 PM Jan 22, 2015 TRACE [1 2 3 4 5 6 TYPE MWWWWW DET P S N N N N
Ref Offset 0.3 dB 10 dB/div Ref 0.30 dBm			Mkr5 515.97 MHz -64.907 dBm
.9.70			
-19.7			.31.35.dBn
-39.7 -49.7 1 2 ²	24		
69.7	5		
1937 1937 and hand a children and a	March March and March 194	in the hadren and the second	www.wateret.watered
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kHz	Swee	Stop 1.0000 GHz 92.73 ms (1001 pts)
MRE MODE TEC SOL X 1 N 1 f 63.95 M	Hz -57.618 dBm	FUNCTION WIDTH	UNCTION VALUE
2 N 1 f 191.99 M 3 N 1 f 224.00 M 4 N 1 f 303.54 M	Hz _48.927 dBm		
5 N 1 F 515.97 M			
8 9 10			
11			×
MSG		STATUS	

Test Frequency: CH 19, 2440MHz

gilent Spect	rum Analyzer							
larker 5				rig: Free Run Atten: 10 dB		pe: Log-Pwr d>100/100	TR/	PM Jan 22, 201 405 1 2 3 4 5 YPE MWWWWW DET P S N N N
0 dB/div	Ref Offse Ref 0.30						Mkr5 4. -49.3	880 GH 377 dBr
og 9.70								
9.7								
9.7								-31.35.4
97								
~ I			2 .3					
9.7			in Y 64					
9.7								
9.7						-		
	للقيمهدوليل	and the states	a market tetrihoorente	Heren and all states	man and a start of the start of	Contraction of the local division of the loc	nleven weren a	381-9-9 ⁻⁹ -9-
9.7								
tart 1.00 Res BW	00 GHz 100 kHz		#VBW 3	00 kHz		Swee	Stop p 382.3 ms	5.000 GH (1001 pt
KR MODE T		×	Y		FUNCTION WIDTH		FUNCTION VALUE	
1 N 2 N	f	1.928 GHz 2.168 GHz	-65.876 dBn -53.644 dBn					
3 N	f	2.376 GHz	-55.434 dBn	n				
4 N 5 N	f f	2.632 GHz 4.880 GHz						
6								
8								
9								
1								
								>
3					STATUS			

			yzer - Swept SJ								
Mar	ker 1	^{RF} 9.76(50 9 DC	00 GHz		SENSE:INT		Avg Type:		TR	PM Jan 22, 2015 ACE 1 2 3 4 5
					PNO: Fast Gain:Low) Trig: Free Atten: 10 e		Avg Hold>	100/100	1	DET P S N N N
10 di Log	B/div		offset 0.3 dB 0.30 dBm							Mkr1 9. -63.	760 GH: 335 dBm
-9.70											
-19.7											
-29.7											
-39.7											
-49.7											
-59.7											1
-69.7											Ī
-79.7	more	طيس	het an	webler ^{eger} en	AND LLOWARTING	and the second states	ورمانية المراجع	minter Big springers	to be able to be	Hungspectrikes, Mary	addenter and the
-89.7											
-09.7											
Star #Re	t 5.000 s BW 1) GHz 100 k	r Hz		#VB	W 300 kHz			Sweep	Stop 1 477.9 ms	0.000 GHz (1001 pts
MSG								STATUS			

Agilent Spe	ectrum Analyzer - Swept SA								
Marker	1 12.20000000000000000000000000000000000	000 GHz	PNO: Fast G	SENSE:INT Trig: Free Atten: 10 d	Run	Avg Type: Avg Hold>	100/100	TT	PM Jan 22, 2015 ACE 1 2 3 4 5 6 TYPE MWWWWW DET P S N N N N
10 dB/div Log	Ref Offset 0.3 dB Ref 0.30 dBm							Mkr1 12 -64.	.200 GHz 761 dBm
-9.70									
-19.7									
-29.7									-01:05 dBm
-39.7									
-49.7									
-59.7				•1					
.79.7	ange an a branch	aterialistation	horan		of the state of th	mandelinates	and the second second	mpureparation	e-tutte-venerational
-89.7									
	0.000 GHz W 100 kHz		#VB	W 300 kHz			Sweep	Stop 1 477.9 ms	5.000 GHz : (1001 pts)
MSG						STATUS			

Agilen	it Spectru		lyzer - Swept S	А							
0		RF	50 R D	C		SENSE:INT	AL	Avg Type:	Log-Pwr	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6
				1	PNO: Fast Gain:Low	Atten: 10		Avg Hold>	100/100		DET P S N N N N
10 de Log	B/div		offset 0.3 dB 0.30 dBm								
-9.70											
-19.7											
-29.7											-01:35:dDm
-39.7											
-49.7											
-59.7											
-69.7	<u> </u>										
-79.7	an an an	-	وسربيهم للدلله	an manual sheep	-	here and the second		alad of the program of the	an a	an al her and the second	whohere algorithmate
-89.7											
Star	t 15.00)0 GI	łz							Stop 2	0.000 GHz
	s BW 1				#VB	W 300 kHz			Sweep	477.9 ms	; (1001 pts)
MSG								STATUS			

Agilent Spectrum Analyz							
Stop Freq 25.00	50 A DC 00000000 GHz	PNO: Fast	Trig: Free Ru Atten: 10 dB	in Avg Ho	pe:Log-Pwr Id>100/100	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6 VPE MWWWWWW DET P S N N N N
	set 0.3 dB 30 dBm						
-9.70							
-19.7							
-29.7							-01:05 dBm
-39.7							
-49.7							
-59.7							
-69.7							
.79.7	entransature material arman	and an a standard and	**********	ward ward and		hopp as provide the second	harinshannishink
-89.7							
Start 20.000 GHz #Res BW 100 kH		#VB	W 300 kHz		Sweep	Stop 2 0 477.9 ms	5.000 GHz (1001 pts)
MSG				STATUS			

glent Spectrum Analyzer - Swept S RF 50 Ω D		SENSE:INT	ALIGNAUTO		01:06:04 PM Jan 22, 2015
larker 5 515.9700000		Tria Court Down	Avg Type: Avg Hold>	100/100	TRACE 12345 TYPE MWWWWW DET PSNNN
Ref Offset 0.3 dl 0 dB/div Ref 0.30 dBm				Mk	r5 515.97 MH: -69.831 dBm
9.70					
29.7					.31.46.dB
19.7 Al	2 34				
59.7		5			
99.7 79.7 99.7	WMMMM philipping	1)	uhad de santani		han Araanta mahara
tart 30.0 MHz Res BW 100 kHz	#\	/BW 300 kHz		Sweep 92	Stop 1.0000 GH .73 ms (1001 pt
758 M009 TRO SCL 1 N 1 f 2 N 1 f 3 N 1 f	224.00 MHz -49.1	48 dBm 80 dBm	FUNCTION WIDTH	FUNCTIO	N VALUE
4 N 1 F 5 N 1 F	303.54 MHz -48.5	91 dBm 92 dBm 31 dBm			
6 7 8					
9 0 1					
					>

Test Frequency: CH 39, 2480MHz

Agilent Spect	trum Analyzer - Swept S							
Marker (≌ <u>छ २</u> 5 4.960000000	000 GHz		g: Free Run ten: 10 dB		e: Log-Pwr d>100/100	TF	PM Jan 22, 2015 ACE 1 2 3 4 5 (TYPE MWWWWW DET P S N N N 1
10 dB/div	Ref Offset 0.3 dl Ref 0.30 dBm							960 GHz 189 dBm
-9.70								
-19.7								-31.46.dBr
-39.7			2					
-49.7								
-69.7						at marken and	- under and	
-79.7 -89.7		الانتبعوبا الإلاميهوا	- WARDER IT TRANSPORT	diture the second	Man			T BOOM ST T
Start 1.0 #Res BW	00 GHz V 100 kHz		#VBW 30	0 kHz		Swee	Stop p 382.3 ms	5.000 GH: (1001 pts
MKR MODE	TRC SCL	× 1.948 GHz	7 -58,226 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	_
2 N 3 N	1 1 1 1	2.192 GHz 2.416 GHz	-51.441 dBm -55.763 dBm					
4 N 5 N	1 f	2.544 GHz 4.960 GHz	-59.194 dBm -49.189 dBm					
6 7	· · · ·	4.500 0112	45.105 0.511					
8								
10								
11		I		- 67	L			
ISG					STATUS			

ilent Spectr	um Analyzer - Swi							
arker 2	85 50 g 9.9200000	Р		rig: Free Run tten: 10 dB		pe: Log-Pwr d⇒100/100	T	DPM Jan 22, 203 RACE 1 2 3 4 5 TYPE MWWWW DET P S N N P
) dB/div	Ref Offset 0.3 Ref 0.30 di						Mkr2 9 -69.	.920 GH 039 dBr
.70						_		
9.7								-31.45.4
7								
7								
7				-Y				
7 Lorentes		Wrather contraction		*****	energe and a second surface		and a state of the second	- reasonable
art 5.00 tes BW	0 GHz 100 kHz		#VBW 3	00 kHz		Swee	Stop 1 p 477.9 ms	10.000 GI s (1001 pi
R MODE TR	ic sou f	7.440 GHz 9.920 GHz	-65,762 dBm -69,039 dBm	1	FUNCTION WIDTH		UNCTION VALUE	
3								
								>
					STATUS			

Agilent Spect	rum Analyzer - Swept SA								
Marker 1	RF 50 Ω DC			SENSE:INT	AL	Avg Type:	Log-Pwr	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6
marker	12.400000000		PNO: Fast G	Atten: 10 o		Avg Hold>	100/100	1	DET P S N N N N
10 dB/div	Ref Offset 0.3 dB Ref 0.30 dBm							Mkr1 12. -71.	400 GHz 043 dBm
	Rei 0.50 dBill								
-9.70									
-19.7									
-29.7									-31.45 dBm
									-01.767.000
-39.7									
-49.7									
-69.7									
-69.7				∮ 1					
				Ī					
-79.7	astherway to the the second	مدينينين ويليا ميريني مدينين ميريان ويليا ميرينين	anter and the second	ali a na sila Prada a si	light-garden	warmelychipson	NAM	an Calman and	an a
-89.7									
Start 10.0	000 GHz							Stop 1	5.000 GHz
#Res BW			#VB	W 300 kHz			Sweep		(1001 pts)
MSG						STATUS			

Agilen	it Spectrum		zer - Swept SA								
()		RF	50 R DC			SENSE:INT	AI,	Avg Type:	Log-Pwr		PM Jan 22, 2015 ACE 1 2 3 4 5 6
					PNO: Fast Gain:Low) Trig: Free Atten: 10 (Avg Hold>	100/100		DET P S N N N N
10 di Log			fset 0.3 dB .30 dBm								
-9.70											
-19.7	<u> </u>	+									
-29.7		4									-31,46 vBm
-39.7		_									
-49.7											
-59.7											
-69.7										methodological	an in the second se
-79.7	248-5-6-140	-41.45	ardinaryan dan P	non-monente	mound	4 ₀₀ 00558669449744	************	**************************************			
-89.7	<u> </u>	+									
	t 15.000 s BW 10				#VB	W 300 kHz			Sweep	Stop 2 477.9 ms	20.000 GHz (1001 pts)
MSG								STATUS			

	Analyzer - Swept SA								
	25.000000000	0 GHz	PNO: Fast Gain:Low	SENSE:INT Trig: Free Atten: 10 d	Run	Avg Type: Avg Type: Avg Hold>*		TF	PM Jan 22, 2015 ACE 1 2 3 4 5 6 TYPE MWWWWW DET P S N N N N
	tef Offset 0.3 dB tef 0.30 dBm								
.9.70									
-19.7									
29.7									-31.48 dBi
-39.7									
49.7									
59.7									
69.7									
	mantener	Langenter and stars of the last	p/tapilyawglasteries	for the policy of the second	مىرىدارىيەلچەرىيىرىيەتلىپ.	nen skækskippoper	eliteres-an-re	harmanapara	restlanderstar
-89.7									
Start 20.000 #Res BW 10			#VB	W 300 kHz			Sweep	Stop 2 477.9 ms	25.000 GHz (1001 pts)
ısa 🔱 Alignme	nt Completed					STATUS			

9. BAND EDGES MEASUREMENT

9.1. Test Equipment

The following test equipment was used during the band edges measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A-544	US51350140	2014. 07. 24	1 Year

9.2. Block Diagram of Test Setup

The same as section.6.2.

9.3. Specification Limits [§15.247(c)]

- 9.3.1. In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).(This test result attaching to §4.6.3)
- 9.3.2. The reference level for determining limit of emission limitations is according to the value measured indicated in plots at section 9.6.

9.4. Operating Condition of EUT

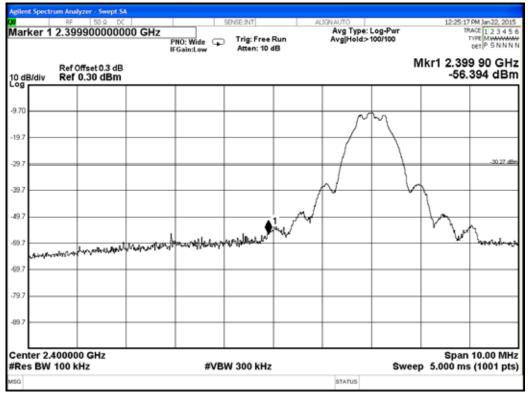
The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

9.5. Test Procedure

The transmitter output was connected to the spectrum analyzer. Set both RBW=100 kHz and VBW to 300kHz with suitable frequency span including 100kHz bandwidth from band edge.

The measurement guideline was according to 558074 D01 v03r02.

9.6. Test Results


PASSED. All the test results are attached in next pages.

Test Date: 2015. 01. 22 Temperature: 24 Humidity: 45%

Bluetooth Low Energy, Upper Band edge

Below Band edge

10. POWER SPECTRAL DENSITY MEASUREMENT

10.1. Test Equipment

The following test equipment was used during the power spectral density measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Spectrum Analyzer	Agilent	N9030A-544	US51350140	2014. 07. 24	1 Year

10.2. Block Diagram of Test Setup

The same as section.6.2.

10.3. Specification Limits [§15.247(d)]

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

10.4. Operating Condition of EUT

The EUT was set to continuously transmit signals at 2402MHz, 2440MHz and 2480MHz during all test time.

10.5. Test Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using 100kHz RBW and \geq 300kHz VBW, set sweep time = Auto.

The measurement guideline was according to 558074 D01 v03r02.

10.6. Test Results

PASSED. All the test results are attached in next pages.

Test Date: 2015. 01. 22 Temperature: 24 Humidity: 45%

Mode	Type of Network	Channel	Frequency	Power Spectral Density
1		CH0	2402MHz	-10.274 dBm
2	Bluetooth Low	CH19	2440MHz	-11.347 dBm
3	Energy	СН39	2480MHz	-11.456 dBm

[Limit: 8dBm]

Agilent	t Spectri		er - Swept SA								
(20		RF	50 g DC			SENSE:INT	AL	JGN AUTO	-		PM Jan 22, 2015
Mari	ker 1	2.4020	0081600	F	PNO: Wide Gain:Low	Trig: Free Atten: 10 e		Avg Type: Avg Hold>	100/100		ACE 123456 TYPE MWWWWWW DET PSNNNN
10 dE	3/div		set 0.3 dB 30 dBm			_		_	Mkr1	2.402 00 -10.	8 16 GHz 274 dBm
-9.70							♦ ¹				
				-	~		·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-19.7											- Carlor - Carlor
-29.7		+									
-39.7		+									
-49.7		-									
-59.7		_									
-69.7		_									
-79.7		_									
-89.7											
		02000	0.011-							0	4 020 MU-
		02000 100 kH			#VB	W 300 kHz			Sweep		1.020 MHz (1001 pts)
MSG								STATUS			

Bluetooth Low Energy, Frequency: 2402MHz

Bluetooth Low Energy, Frequency: 2440MHz

Agilent Spectr	um Analyzer - Swept SA								
Markor 1	2.4400165600			SENSE:INT	AL	IGNAUTO Avg Type: I	og-Pwr	TR	PM Jan 22, 2015 ACE 1 2 3 4 5 6
marker	2.4400105000	F	NO: Wide Gain:Low	Trig: Free I Atten: 10 d		Avg Hold>1	100/100	1	DET P S N N N N
10 dB/div	Ref Offset 0.3 dB Ref 0.30 dBm						Mkr	2.440 0 -11.	16 6 GHz 347 dBm
.9.70					≜ ¹				
-19.7			m		×			~~~~~	
-29.7									
-39.7									
-49.7									
-59.7									
-69.7									
-79.7									
-89.7									
Contor 2 4	400000 CH-								1 025 MU-
#Res BW	1400000 GHz 100 kHz		#VB	W 300 kHz			Sweep	span 1.000 ms	1.035 MHz (1001 pts)
MSG						STATUS			

Agilent Spectrum Analyzer - Swept SA							
RF 50Ω DC		SENSE:INT	ALIGNAUTO	Low Down		PM Jan 22, 2015	
Marker 1 2.480013002000 GH		PNO: Wide Trig: Free Run IFGain:Low Atten: 10 dB		Avg Type: Log-Pwr Avg Hold>100/100		TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P S N N N N	
Ref Offset 0.3 dB				Mkr1	2.480 0 -11.	13 0 GH: 456 dBm	
970		_1					
- market	m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www			
19.7							
29.7							
39.7							
49.7							
59.7							
59.7							
79.7							
89.7							
Center 2.4800000 GHz Res BW 100 kHz	#VE	W 300 kHz	1	Sweep	Span 1.000 ms	1.182 MH 6 (1001 pts	
sg			STATUS				

Bluetooth Low Energy, Frequency: 2480MHz

11.DEVIATION TO TEST SPECIFICATIONS [NONE]