RF Exposure Report

Report No.: SA170605E06A
FCC ID: M82-WISE3610
Model: WISE-3610XXXXXXXXXXXXXXXX
("x"=0-9, A-Z, a-z, dot, diagonal, hyphen or blank.)
Received Date: June 22, 2017
Test Date: July 27, 2017
Issued Date: Sep. 14, 2017

Applicant: ADVANTECH CO., LTD
Address: No.1, Alley 20, Lane 26, Rueiguang Rd, Neihu District, Taipei, Taiwan 114

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits For Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
2.4 Antenna Gain 6
2.5 Calculation Result Of Maximum Conducted Power 7

Release Control Record

Issue No.	Description	Date Issued
SA170605E06A	Original release.	Sep. 14, 2017

1 Certificate of Conformity

Product: IoT Gateway
Brand: ADVANTECH
Model: WISE-3610XXXXXXXXXXXXXXX ("x"=0-9, A-Z, a-z, dot, diagonal, hyphen or blank.)
Sample Status: ENGINEERING SAMPLE
Applicant: ADVANTECH CO., LTD
Test Date: July 27, 2017
Standards: FCC Part 2 (Section 2.1091)
KDB 447498 D01 General RF Exposure Guidance v06
IEEE C95.1-1992

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad , Date:
Claire Kuan / Specialist

Approved by :
 , Date: \qquad Sep. 14, 2017

2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time $($ minutes $)$
Limits For General Population / Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$(100)^{\star}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{f}=$ Frequency in MHz ; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

Pd $=\left(\right.$ Pout $\left.^{*} G\right) /\left(4^{*}\right.$ pi $\left.^{*} r^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 35 cm away from the body of the user. So, this device is classified as Mobile Device.

2.4 Antenna Gain

The antennas provided to the EUT, please refer to the following table:

For LoRa													
Antenna No	Brand	Model		Antenna Gain(dBi) without cable loss		Frequency		Antenna Type	Antenna Connector		Cable Loss(dB)		Cable Length (mm)
1	Cortec	AN0915-9207BSM		0.96		$\begin{gathered} 902 ~ 928 \\ \mathrm{MHz} \\ \hline \end{gathered}$		Dipole	Reverse SMA		0.5		160
2	Cortec	AN0915-9207BSM		0.96		$\begin{gathered} \hline 902 \sim 928 \\ \mathrm{MHz} \\ \hline \end{gathered}$		Dipole	Reverse SMA		0.5		160
For WLAN													
Antenna No	Brand				na dBi) cable s	Freq		Antenna Type				ble (dB)	Cable Length (mm)
3	Cortec	AN2450-92K01BRS		5.03		$\begin{gathered} 2400 \sim 2483.5 \\ \mathrm{MHz} \\ \hline \end{gathered}$		Dipole	Reverse SMA		0.5		180
				5.01		$\begin{gathered} 5150 \sim 5850 \\ \mathrm{MHz} \\ \hline \end{gathered}$		Dipole	Reverse SMA		0.8		180
For WWAN													
Antenna No		Brand	Model		Gain (dBi) <excluding cable loss>		Frequency			Antenna Type		Antenna Connector	
4		SINBON.	1750008424-01		-0.		824~896 MHz			Dipo		SMA	
					-0.2								
					1.5		1427~1880 MHz						
					1.95		1850~1990 MHz						

2.5 Calculation Result of Maximum Conducted Power

For WLAN

Frequency Band (MHz)	Max Power (mW)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$2412-2462$	825.237	29.17	7.54	35	0.30425	1
$5180-5240$	632.462	28.01	7.22	35	0.21661	1
$5745-5825$	934.079	29.70	7.22	35	0.31992	1

Note:
2.4GHz: Directional gain $=4.53 \mathrm{dBi}+10 \log (2)=7.54 \mathrm{dBi}$

5 GHz : Directional gain $=4.21 \mathrm{dBi}+10 \log (2)=7.22 \mathrm{dBi}$
For LoRa

Frequency Band (MHz)	Max Power (mW)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
927.5	95.94	19.82	0.46	35	0.00693	0.6183

For WWAN

Frequency Band (MHz)	Max Power (mW)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
824.2	1995	33.00	-0.50	35	0.11550	0.5495

Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD = Limit of power density

WLAN 2.4GHz + WLAN $5 \mathrm{GHz}+$ Lora $+W W A N=0.30425 / 1+0.31992 / 1+0.00693 / 0.6183+0.11550 /$
$0.5495=-0.84558$
Therefore the maximum calculations of above situations are less than the " 1 " limit.

