

User Manual

WISE-2834

Intelligent RFID Gateway

Copyright

The documentation and the software included with this product are copyrighted 2020 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgements

IBM, PC/AT, PS/2 and VGA are trademarks of International Business Machines Corporation.

Intel®, Core™ and Atom™ are the trademarks of Intel Corporation

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corp.

All other product names or trademarks are properties of their respective owners.

Support

For more information on this and other Advantech products, please visit our websites at: http://www.advantech.com

For technical support and service, please visit our support website at: http://support.advantech.com/

> Part No. 2003283400 Printed in Taiwan

Edition 1 March 2020

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For outof-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- 1. Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandize authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Declaration of Conformity

CE

This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. This kind of cable is available from Advantech. Please contact your local supplier for ordering information.

FCC Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

FOR MOBILE DEVICE USAGE (>20cm/low power eg. AP routers)

Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 23cm between the radiator & your body.

Technical Support and Assistance

- 1. Visit the Advantech web site at www.advantech.com/support where you can find the latest information about the product.
- 2. Contact your distributor, sales representative, or Advantech's customer service center for technical support if you need additional assistance. Please have the following information ready before you call:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Safety Precaution - Static Electricity

Follow these simple precautions to protect yourself from harm and the products from damage.

- To avoid electrical shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other cards while the PC is on.
- Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a card may damage sensitive electronic components.

NCC 警语

第十二條 經型式認證合格之低功率射頻電機,非經許可,公司、商號或使用者均不得 擅自變更頻率、加大功率或變更原設計之特性及功能。

第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信; 經發現有干擾 現象時,應立即停用,並改善至無干擾時方得繼續使用。前項合法通信,指依電信法 規定作業之無線電通信。低功率射頻電機須忍受合法通信或工業、科學及醫療用電波 輻射性電機設備之干擾。

Safety Instructions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 7. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 9. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 10. All cautions and warnings on the equipment should be noted.
- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 14. If one of the following situations arises, get the equipment checked by service personnel:
- The power cord or plug is damaged.
- Liquid has penetrated into the equipment.
- The equipment has been exposed to moisture.
- The equipment does not work well, or you cannot get it to work according to the user's manual.
- The equipment has been dropped and damaged.
- The equipment has obvious signs of breakage.
- 15. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT WHERE THE STORAGE TEMPERATURE MAY GO BELOW -10° C (14° F) OR ABOVE 60° C (140° F). THIS COULD DAMAGE THE EQUIPMENT. THE EQUIPMENT SHOULD BE IN A CONTROLLED ENVIRONMENT.
- 16. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER, DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.
- 17. ATTENTION: Danger d'explosion si la batterie est mal REMPLACE. REM-PLACER UNIQUEMENT PAR LE MEME TYPE OU EQUIVALENT RECOM-MANDÉ PAR LE FABRICANT, jeter les piles usagées SELON LES INSTRUCTIONS DU FABRICANT.
- 18. The sound pressure level at the operator's position according to IEC 704-1:1982 is no more than 70 dB (A).

DISCLAIMER: This set of instructions is given according to IEC 704-1. Advantech disclaims all responsibility for the accuracy of any statements contained herein.

Contents

Chapter	1	Product Overview	1
	1.1 1.2 1.3 1.4 1.5 1.6	Introduction Series Family and Specifications Feature Highlight. Mechanical Design and Dimensions Figure 1.1 WISE-2834 Dimension Front and Side. LED Definition Figure 1.2 WISE-2834 LED Indicator Package Information	2 2 2 2 3 3 3
Chapter	2	Product Specification	5
	2.1	 General Specifications	6 6 7 7 7 8 8 8 8 gram8 agram8 agram 9 10
Chapter	3	Mechanical and Hardware Installati	on
	3.1	Interface Introduction	12
	3.2	Figure 3.1 WISE-2834 Interface Introduction Mounting	12 12 12 12 13 13 13 13 14 14 14 14 14

3.3

	2.4	Figure 3.14mPCle Card Location	17
	3.4	Power Supply Wiring	17
Chapter	4	System Configuration	19
	4.1	Connection	20
		Figure 4.1 WISE-2834 Connection_WISE Studio 1	20
		Figure 4.2 WISE-2834 Connection_WISE Studio 2	20
		Figure 4.3 WISE-2834 Connection_WISE Studio 3	21
		Figure 4.4 WISE-2834 Web Portal	21
	4.2	Web utility	22
		4.2.1 Configuration module name	22
		4.2.2 Network setting	
		4.2.3 Date/time, time zone settings	
		4.2.4 System restart	23
		4.2.5 Watch dog enable/disable	
		4.2.6 I/O firmware download	
		4.2.7 Configuration file upload/export	
		4.2.8 Change password	
	4.3	RFID Antenna setting	
		4.3.1 RFID region setting	
		4.3.2 RFID Antenna Configuration	
		4.3.3 RFID tag filter settings	
		4.3.4 RFID advanced setting and troubleshooting	
	4.4	Image update	
Chapter	5	Software Programming (Node-REI	J) 29
	5.1	Terminology Definition	30
		Figure 5.1 ISO 18000-6C Tag Memory Map	
	5.2	System Architecture	
		5.2.1 System Architecture	
		Figure 5.2 System Architecture	
	5.3	Graphic programming with Node-RED	
		5.3.1 Node-RED page	
		Figure 5.3 Node-RED Page	
		Figure 5.4 Node-RED sample	32 20
		5.3.2 Tag Inventory	32 24
		5.3.4 Tog Write	
		5.3.4 Tag Wille	
		5.3.6 Tag Kill	00 ۸۵
		5.3.0 Tay Access Results	/11
		5.3.8 Cet DIO value	۱ ۲ ۱۵
		5.3.0 Get counter value	43 11
		5.3.10 Get counter status	45
		5.3.11 Get DO pulse count and continue mode	40 45
		5.3.12 Get latch status	0+ ۱۵
		5.3.13 Set DO value	40
			40 46
		5.3.14 Set counter value	40 46 47
		5.3.14 Set counter value 5.3.15 Set DO pulse.	40 46 47 48
		5.3.14 Set counter value 5.3.15 Set DO pulse 5.3.16 Clear latch	
	5.4	 5.3.14 Set counter value 5.3.15 Set DO pulse 5.3.16 Clear latch API for Development 	
	5.4	 5.3.14 Set counter value	40 46 47 47 48 49 50 50

Appendix A	RFID node output	55
	Table A.1: Inventory report Table A.2: Tag access report	56 59
Appendix B	RFID module error code	63
	Table B.1: Error Code Ranges/Module Table Table B.2: Error Code Details	64 64
Appendix C	RFID Frequency Channel Tables	81
C.1	United States/Canada/Mexico Region Frequency Channel Table.	
C.2	Europe Region Frequency Channel Table (ETSI EN 302 208)	
C.3	Europe2 Region Frequency Channel Table of EU Band Europe2 Region Frequency Channel Table (ETSI EN 300 220)	
C.4	Taiwan Region Frequency Channel Table	
C.5	China Region Frequency Channel Table of CN Band	
C.6	South Korea Region Frequency Channel Table of KR Band	
C.7	Australia/New Zealand Region Frequency Channel Table of ALI/NZ Band	
C.8	Brazil Region Frequency Channel Table	
C.9	Israel Region Frequency Channel Table of BR Band	
C.10	India Region Frequency Channel Table	
C.11	Japan Region Frequency Channel Table	
C.12	Japan2 Region Frequency Channel Table (with LBT)	85

WISE-2834 User Manual

Product Overview

1.1 Introduction

WISE-2834 is a RFID Gateway IoT device, which integrated with IoT data acquisition, processing, and publishing functions via Node-RED. Data can be accessed via Ethernet and published to the cloud from anywhere.

1.2 Series Family and Specifications

Region	Term Name	WISE-2834-CA	WISE-2834-EA
United States / Canada / Mexico	US / CA / MX	V	V
Europe	EU/ETSI EN 302 208	-	V
Europe 2	EU2 / ETSI EN 300 220	-	V
Taiwan	TW	V	V
China	CN	V	-
South Korea	KR	V	V
Australia / New Zealand	AU / NZ	V	V
Brazil	BR	V	V
Israel	IL	V	V
India	IN	-	V
Japan	JP	V	-

WISE-2834 series support frequency band as below.

1.3 Feature Highlight

- 4-ports UHF RFID Antenna
- 4-ch Digital Input and 4-ch Digital Output
- Ethernet and Wi-Fi interface for up-link
- Graphic program tool by Node-RED for data read/write, filtering and transfer

1.4 Mechanical Design and Dimensions

Figure 1.1 WISE-2834 Dimension Front and Side

1.5 LED Definition

ADANTECH WISE-2834	Status Error	I/O # TYPE
	REID Ant.1	DO 4 Sink Type
	RFID Ani.2	COM 1 RS-485
MAC	RFID Ant.3	
	RFID Ant.4 🚺 🚺 🖡	
ID		

Figure 1.2 WISE-2834 LED Indicator

	LED	Colour	Behaviour	Description
	Status	Green	On/Blink	Light is on when power is on, while the system is starting up the light blinks.
	Error	Red	On	System Error
		Yellow	Blink	TX data in transmission
	K3-400	Green	Blink	RX data in receive
LED	СОМ	Green	On	When enable mPCIe module
Indication			off	When disable mPCIe module
	RFID1#4	Green	On	RFID channel enable
	Signal		On*1~4	Poor to full signal respectively
	Strength (when using mPCle module)	Yellow	Off	No Signal/Limited AP Mode

	RJ45	Color	Behavior	Description
	LoftLight	Green	On	1Gbps connection
	Leit Light	Orange	On	10/100Mbps connection
87634321	Right Light	Green	Blink	Communication active

1.6 Package Information

- 1 x WISE-2834 module
- 1 x Quick startup manual

WISE-2834 User Manual

Product Specification

2.1 General Specifications

2.1.1 RFID Communication

RFID Standard	EPC Global Class 1 Gen. 2 (ISO18000-6C)
Frequency Band	US: 902.75MHz~927.25MHz EU: 865.7MHz~867.5MHz CN: 920.625MHz~924.375MHz JP: 916.8MHz~920.4MHz
RFID Power Output	75kbps: 619.441mW 400kbps: 584.790mW
Max Receive Sensitivity	-74dBm
Antenna Number	4 port antennas
Antenna Connector	4 RP-TNC

2.1.2 System Hardware

Certification	CE, FCC, NCC
Power	10~50VDC Power consumption:3W (TYP.), 15W (Max.)
Dimension	190x120x30.2 mm
CPU	ARM Cortex-A8, 300MHz ARM Cortex-M0 32-Bit 32MHz
Storage	NAND Flash 512MB for system
Memory	DDR3L 512MB
LED Indicator	Status, Error, Serial (Tx, Rx),Wi-Fi communication, RFID Channel on/off, Wi-Fi Signal Strength
SD Slot	1 x Micro SD card
USB Port	1 x USB2.0 High Speed (Up to 480Mbps)
Mounting	DIN 35 rail, Wall, and Pole
Watch Dog Timer	System & Power Monitor
Real Time Clock	Time Accuracy to Second (RTC accuracy 2sec/day)
Operating Temperature	-25°C~ 50°C
Operating Humidity	20~95% RH
Storage Temperature	-40°C~ 85°C
Storage Humidity	0~95% RH

2.1.3 Communication

Ethernet	1 x 10/100 Based-T RJ-45
Serial Port Isolation	1 x RS-485: 300 ~ 115.2k bps 3KV rms
Wireless (Optional)	Interface: 1x Mini-PCIe (Half-size) Type: WiFi

2.1.4 I/O

	Channel	4	
	Max. Input current	40mA	
	Isolated voltage	2kV	
	Counter input	3kHz	
Disital Input	Dry Contact		
Digital input	Logic 0	Close to GND	
	Logic 1	Open	
	Wet Contact		
	Logic 0	0~3VDC	
	Logic 1	10~30VDC	
	Channel	4	
	Isolated voltage	2kV	
	Connection type	Sink	
	Supply voltage	0~30 VDC	
Digital Output	Max. output current	0.4A / channel	
	Pulse output	Up to 5KHz	
	On-state resistance (Tj=25°C)	550mΩ	
	Protection	Over load, over temperature & short circuit.	

2.1.5 Software

Configuration Tool	WISE Studio
Programming	Node-RED, Linux OS

Note!

WISE-2834 modules can operate below 30% humidity. However, environments with low relative humidity are prone to problems with electrostatic discharge. Therefore, you should ensure that you take adequate precautions by using ground straps, anti-static floor coverings, or similar equipment whenever you handle this equipment, especially in lowhumidity environments.

2.1.6 Configuration Interface

- Interface: LAN port
- Connector: RJ45

2.1.7 Pin Assignment

Figure 2.1 WISE-2834 Pin Assignment

2.1.8 Application Wiring

DI Application Wiring

Figure 2.2 WISE-2834 Digital Input Dry Contact Wiring Diagram

Figure 2.3 WISE-2834 Digital Input Wet Contact Wiring Diagram

DO Application Wiring

2.1.9 Block Diagram

Figure 2.5 WISE-2834 Block Diagram

Mechanical and Hardware Installation

3.1 Interface Introduction

Figure 3.1 WISE-2834 Interface Introduction

3.2 Mounting

Applicable installation methods are briefly described in the following sections.

3.2.1 Wall Mounting

The four screws are installed on wall, panel, or cabinet with WISE-2834.

Figure 3.2 Wall Mounting Install

Chapter 3 Mechanical and Hardware Installation

3.2.2 DIN-Rail Mounting

WISE-2834 can be fixed to a cabinet with mounting rails. Use a screwdriver to fasten the DIN rail adapter to your module. You can then use the end brackets included in the package in order to keep it from sliding.

Figure 3.3 DIN Mounting Install

Figure 3.4 DIN Mounting_Front

Figure 3.5 DIN Mounting_Back

3.2.3 Extrusion mount - Vertical

Use a screwdriver to fasten the Extrusion-mount kit to your module.

Figure 3.6 Extrusion Mount_Vertical_Back

Insert the metal slip of extrusion-mount kit to the seal of extrusion frame, and fasten the screws in left and right side.

Figure 3.7 Extrusion mount_Vertical_Upper

Figure 3.8 Extrusion Mount_Vertical_Back

Figure 3.9 Extrusion Mount_Vertical_Front

3.2.4 Extrusion mount - Horizontal

Use a screwdriver to fasten the Extrusion-mount kit to your module.

Figure 3.10 Extrusion Mount_Horizontal_Back

Insert the metal slip of the extrusion-mount kit to the seal of extrusion frame, and fasten the screws on the left and right side.

Figure 3.11 Extrusion Mount_Horizontal_Upper

Figure 3.12 Extrusion Mount_Horizontal_Back

Figure 3.13 Extrusion mount_ Horizontal_Front

3.3 mPCle Card

Figure 3.14 mPCIe Card Location

3.4 Power Supply Wiring

The WISE-2834 is designed for a rated voltage 12 VDC adapter. The power consumption is 3W (TYP.), 15W (Max.)

The sizing of power connector is that inner diameter(2.5mm) and outer diameter(5.7mm).

WISE-2834 User Manual

System Configuration

4.1 Connection

- 1. Plug in a rated voltage 10~50 VDC adapter
- 2. Connect the module to your computer via the Ethernet port The Status light of nameplate LED is on when it's power on. After system start up, the light turns to blink
- 3. Open WISE Studio and press Go To Configuration

Figure 4.1 WISE-2834 Connection_WISE Studio 1

4. Click Connect to link the WISE-2834 and the web configuration page will appear

Device Informat	ion					
Device Name	IP Address	Default Gateway	Subnet Mask	MAC Address	Firmware Version	
WISE-2834	172.16.12.180	172.16.13.254	255.255.254.0	F4-E1-1E-A2-80-86	A2.03 B02	

Figure 4.2 WISE-2834 Connection_WISE Studio 2

- 5. Use web configuration in WISE Studio or click Open In Browser to open the web configuration in any browser (Google Chrome is recommended)
- Default account
 - user name: root
 - password: 0000000
- Network: Static/DHCP mode If the module cannot receive assigned IP in DHCP mode, the default IP would be 10.0.0.1

on					1999
1 Inform	nation				
c					
U	Model M	lame WISE-283			
	Customized F	lame WISE-203			
					Go to Configuration ¢
(A) have been determined of	starmation				
C Hothom I	normation				
	Interface eth0				
	Mac F4:E1:1E	A2:80:86			
	IP 172.16.12	.160		Subnet 255.255.254.0	
	Gateway 172.16.13	254		IP Mode O Static DHCP	
					Go to Comparation e
III Module II	tormation				
Module Nam	e Module Description		Firmware Description		
WISE-7834	4-ch DI and 4-ch DO RFID	module	Fw.A1.02 8099. OS:3.12.10-tt15-tt2013.12.01 #5	1.4.4 rev 9324 PREEMPT RT Thu Feb 21 17:38:12 CST 2019	

Figure 4.3 WISE-2834 Connection_WISE Studio 3

- 6. If use http://IP , the following figure would be result. Click on "Link", it will redirect to the correct web page
- Configuration page: https://IP:1880/config
- Node-RED programming page: https://IP:1880

Web Portal

You should click the following path to further set it up.

Web utility configuration page: Link
Graphic programming tool by Node-RED: Link

Figure 4.4 WISE-2834 Web Portal

- First time log-in after open a browser, it will show "insecure connection"
 Because this certification is not authenticated by a CA authority
- Click on "advance" and go to the IP link

4.2 Web utility

URL: https://IP:1880/config/ Default account

- user name: root
 - password: 0000000

4.2.1 Configuration module name

Modify Customized Name and click Submit

Module Information			
Model Name	WISE-2834	Customized Name	WISE-2834

4.2.2 Network setting

If you want to change IP, choose Network and then click IP mode

- Static: Please fill in the IP address, subnet mask and gateway IP
- DHCP: No need to modify, as all information will be obtained from the DHCP server

If you choose static mode, we recommend filling in DNS settings Everything is decided, please press submit button

Information R	RFID Netv	ork Time & Date	Control	General	Firmware	Account	
Network							
Ir	nterface	eth0					
	Mac	F4:E1:1E:A2:80:86					
	IP	172.16.12.171				Subnet	255.255.254.0
G	Gateway	172.16.13.254				IP Mode	Static DHCP
DNS settings							
	Primary	172.20.1.100				Secondary	172.20.1.99
							✓ Submit

4.2.3 Date/time, time zone settings

Configuration → Time & Date

- Current Time
- Time Zone
- Time Calibration

Information	RFID	Network	Time & Date	Control	General	Firmware	Account	
Local Ti	me							
	C	urrent Time	2018-03-12	18:29:32 +0	800			C
		Time Zone	(GMT+08:0	0) Taipei			Ŧ	
	Time	Calibration	🖌 Click I	Me				

4.2.4 System restart

Configuration → Control

Click button to soft-restart system

Control	Information	RFID	Network	Time & Date	Control	General	Firmware	Account		
	Control									
System Restart & Restart (1)			Syste	m Restart	& Resta	rt			¢	

4.2.5 Watch dog enable/disable

Configuration → General

Configuration

Information	RFID	Network	Time & I	Date	Control	General	Firmware	Account	
General	Confi	guration							
		Scan In	iterval	1000)			ms	8
			WDT		0			*10s	B

Scan Interval: Frequency update of I/O status

WDT: Enable/disable watch dog function

0: Turn off WDT function

> 0: Turn on WDT function. E.g. inpt 10, 10*10s=100sec \rightarrow WISE-2834 system don't operate about 100 seconds, and system will restart automatically. WDT function will start in 5 minutes after WISE-2834 power on

4.2.6 I/O firmware download

Configuration \rightarrow Firmware Choose the I/O firmware binary and click upload firmware button

4.2.7 Configuration file upload/export

Configuration → Firmware

Upload: Choose the configuration file and click upload file button

Export: Click the Export I/O Configuration File or Export RFID Configuration File button

I/O configuration file name should be "io.cfg"

RFID configuration file name should be "rfid.cfg"

Information	RFID	Network	Time & Date	Control	General	Firmware	Account	
Files								
	Fir	rmware Uploa	ad					E
(Configurati	ion File Uploa	ad					
	Configurat	tion File Expo	Export I	/O Configurati	on File	Export RFID Co	onfiguration File	

4.2.8 Change password

Configuration → Account

Click change password link to set a new password

Inform	nation	RFID	Network	Time & Date	Control	General	Firmware	Account
Acc	count							
Тур	Ð		Pa	ssword				
Roo	t			Change Passw	ord			

4.3 **RFID Antenna setting**

4.3.1 **RFID region setting**

The region can be set according to the country of the end user

WISE-2834			
 Information Configuration 	Mask Data (Hex)	494141350000000000000000000000000000000000	0000
Lul I/O Status	RFID Region Setting		
	Region	US/CA/MX	٣
		US/CA/MX EU (ETSI EN 302 208) EU2 (ETSI EN 300 220) TW KR AU/NZ BR IL IN	

4.3.2 **RFID Antenna Configuration**

- The channel needs to enable according to the antenna installation
- The power level range is related to the country setting
 - For example: country region is set as US/CA/MX, the range of power lever is between 10~31.5 dBm
- Maximum Dwell Time: Specifies the max amount of time in ms that may be spent on the logical antenna port during a tag-protocol-operation cycle before switching to the next enabled antenna port
- Maximum Inventory Cycles: Specifies the max number of inventory cycles to attempt on the antenna port during a tag-protocol-operation cycle before switching to the next enabled antenna port
- Stop reading condition: The condition when the antenna should stop reading tags
 - Maximum dwell time (ms)
 - Maximum inventory cycles
 - Reader will stop reading tag value if meet 1 of above 2 stop conditions

	2000 FR11 FR12			
	🔎 Configu	iration		
	Inform 2 PEIL	Network Time & I	Date Control General	Firmware Account
				r mining Precount
	RFID			
	3 RFID Antenna C	configuration		
	3 RFID Antenna C	configuration		
•	3 RFID Antenna C Enable/Disable	Configuration Power Level (0.1 dBm)	Maximum Dwell Time (ms)	Maximum Inventory Cycles
•	3 RFID Antenna C Enable/Disable	Power Level (0.1 dBm)	Maximum Dwell Time (ms)	Maximum Inventory Cycles
•	3 RFID Antenna C Enable/Disable	Power Level (0.1 dBm)	Maximum Dwell Time (ms)	Maximum Inventory Cycles
•	3 RFID Antenna C Enable/Disable	Power Level (0.1 dBm) 315 315	Maximum Dwell Time (ms) 500 250	Maximum Inventory Cycles 100 100
•	3 RFID Antenna C Enable/Disable 1 0 2 3	Power Level (0.1 dBm) 315 315 185	Maximum Dwell Time (ms) 500 250 250	Maximum Inventory Cycles 100 100 100

User can see the LED light in the nameplate, e.g. "RFID1"

4.3.3 RFID tag filter settings

- Filter target: Bank 1, EPC
 - Without CRC and PC.
- Mask match: Determines if the related tag-protocol operation will be applied to tags that match the mask or not
 - 0, Inverse: exclusive the condition
 - 1, Regular: match the condition
- Memory bank offset: the offset in bits, from the start of the EPC of the first bit that will be matched against the mask
- Mask bit count: The number of bits in the mask
- Mask data (Hex): The mapping mask data

Bank 11	USER	
Bank 10	TID	
Bank 01	EPC	[
Bank 00	RESERVED	
		ſ.,

WISE-2834			
Information	RFID Tag Filter settings		
F Configuration	Mask Match	Regular •	
Luu I/O Status	Memory Bank Offset	0	bits
	Mask Bit Count	32	bits
	Mask Data (Hex)	494141350000000000000000000000000000000000	

4.3.4 RFID advanced setting and troubleshooting

- Link profile: the modulation type and data rate
 - DSB-ASK 40kbps
 - PR-ASK 62.5kbps
 - PR-ASK75kbps
 - DSB-ASK 400kbps
- Channel flag: Single channel or hopping
 - Hopping: Frequency output uses "hopping" method in the local frequency band
 - Single: Only choose "single" frequency in the local frequency band
- Frequency: the frequency that reader search tags The frequency need to be set up if a user select "single" for channel flag

WISE-2834			🚢 Root
Information	RFID Advanced Settings		
✗ Configuration	Link Profile	DSB-ASK 40kbps •	
네 I/O Status	Channel flag	DSB-ASK 40kbps PR-ASK 62.5kbps PR-ASK 75kbps	
🗲 NodeRED	Frequency	DSB-ASK 400kbps	
			Submit
			Subinit

If error code is not 0x0, then it indicates there are an error occurred during setting or installation

WISE-2834			
 Information Configuration 	Troubleshooting		1 2
Lul I/O Status	Current Error Code	0x0	e x
	Last Error Code	0x11e	C

- 1: Refresh current error code
- 2: Clear current error code

4.4 Image update

- Upload the image files into a micro SD card, image file in https://support.advantech.com/support/new_default.aspx
- Insert the micro SD card into WISE-2834
 - The chip should be face down
 - The words should be face up
- Power-on the module and wait for 10 minutes

Figure 4.5 Image Update_SD card

Software Programming (Node-RED)

5.1 Terminology Definition

- Tag memory: Tag memory includes Reserved Memory, EPC Memory, Tag Identification (TID) Memory and User Memory.
 - EPC (Electronic Product Code): one common type of data stored in a tag)
 - TID (Tag Identification): TID Memory is the unique tag identifier that cannot be changed or erased. This ID identifies the tag itself, rather than the item it is applied to.
- Reserved Bank: Store Kill Password and Access Password.
- EPC Bank: Store EPC number.
- TID Bank: Tag identifier, each TID number is unique.
- User Bank: Stored data defined by the user.
- Node-RED: A flow-based development tool for visual programming developed originally by IBM for wiring together hardware devices, APIs, and online services as part of the Internet of Things.

Figure 5.1 ISO 18000-6C Tag Memory Map

5.2 System Architecture

5.2.1 System Architecture

1. System Architecture

Figure 5.2 System Architecture

5.3 Graphic programming with Node-RED

5.3.1 Node-RED page

- URL: https://IP:1880/
- Default account
 - user name: root
 - password: 0000000

Figure 5.3 Node-RED Page

There are four distinct areas to the Node-RED graphic programming UI

- 1. Left panel: Function nodes (called Nodes).
- 2. Middle area: Graphic programming area where users can drag Nodes to. Each Node has a unique ID and users can graphically program Nodes by linking them.
- 3. Right panel: Node information and functions.
- 4. Top toolbar: **Deploy** menu stores and deploys Node flows on local device.

Built in examples

Users can import the built-in example from the internal library.

Node-RED							🛫 Deploy 👻 🚨	≡
Q filter nodes Flow 1	[RFID] Basic exa	mple	[RFID] Inventory continu	uously	+	inf	✓ View	
e twitter				Clipboard			Import	
✓ storage	Local IO RFID	 Advante 	ech	 Library 		Stat	Export Search flows	
tal c	adam_modbus_rtu adam_modbus_tcp datalog error_led					Info	Configuration nodes Flows Subflows	
MSSQL	mplus system				4		Manage palette	
✓ analysis	un_mount_device						Settings	
♦ sentiment ♦ ✓ advanced							Keyboard shortcuts Node-RED website v0.17.5	

Figure 5.4 Node-RED sample

5.3.2 Tag Inventory

Inventory function allows the host to gather EPCs for all tags of interest 1. Add the **rfid-tag-inventory** node in Node-RED.

2. Fill-in the settings.

Edit rfid-tag-in	ventory nod	e	
Delete		Cancel	Done
 node prope 	erties		
Name	Name		
Tag Access	s Rules	Activate Post-Singulation Rules	

Activate the Post-Singulation Rules: Enable/disable the filter function.

3. Node output.

The EPC value is included in **msg.Inv.acc_data**.

For other information please reference the appendix for detailed information.

 Tag mask setting. Enable Activate Post-Singulation Rules to filter the tags.

There are two way to the set filter rule:

- 1. Set Tag Filter Setting in the web utility.
- 2. Send msg.mask to this node.

Example: msg.mask = { "MaskMatch": "1", "MaskOffset": "0", "MaskCount": "32", "MaskData": "12345678" };

3. Node-RED built in examples.

Import \rightarrow Library \rightarrow Advantech \rightarrow RFID \rightarrow Basic Example.

5.3.3 Tag Read

Read tag data according to the memory bank and offset

1. Add the **rfid tag read** node in Node-RED.

2. Fill-in the settings.

Edit rfid-tag-read node	
Delete	Cancel Done
 node properties 	
Name Name	
I Memory Bank	USER •
i≣ Word Offset	0
I≣ Word Count	8
Tag Access Rules	Activate Post-Singulation Rules
Access Password	0

- Memory Bank: EPC/TID/USER/Reserved.
- Word Offset: The offset of the first 16-bit word, zero is the first 16-bit word.
- Word Count: The number of 16-bit words to be read.
- Activate Post-Singulation Rules: Enable/disable the filter function.
- Access Password: Saves the access password for the tags. Zero value indicates no access password.
- 3. Node output.

The EPC value is included in msg.Inv.acc_data.

The tag access data is included in msg.Acc.acc_data.

Other information please reference the appendix for detail information.

4. Tag mask setting.

Enable Activate Post-Singulation Rules to filter the tags to be inventory

There are two way to set filter rule

- 1. Set Tag Filter Setting at web utility.
- 2. Sends msg.mask to this node.
 - Example: msg.mask = { "MaskMatch": "1", "MaskOffset": "0", "MaskCount": "32", "MaskData": "12345678" };
- 3. Node-RED built in examples.

Import \rightarrow Library \rightarrow Advantech \rightarrow RFID \rightarrow Basic_Example.

5.3.4 Tag Write

Write tag data according to the memory bank and offset

1. Add the **rfid tag write** node in Node-RED.

ſΑ	rfid-tag-write	2
1/-1	·····	

2. Fill in the settings.

Edit rfid-tag-write node			
Delete		Cancel	Done
✓ node properties			
Name Name			
i≣ Memory Bank	EPC		•
i≣ Word Offset	0		
I Word Count	1		
Tag Access Rules	Activate Post-Si	ngulation Rules	i
Access Password	0		

- Memory Bank: EPC/TID/USER/Reserved
- Word Offset: The offset of the first 16-bit word, zero is the first 16-bit word.
- Word Count: The number of 16-bit words to be read
- Activate Post-Singulation Rules: Enable/disable the filter function
- Access Password: Saves the access password for the tags. Zero value indicates no access password.
- 3. Node input.

Node input should be a buffer. *For example:*

Edit inject node		
Delete		Cancel Done
 node propertie 	s	
Payload		
📰 Торіс	flow.	
C Repeat	a _z string	T
	°, number	start?
Name	boolean	
V Thanks	{} JSON	
Note: "interval I	ถู buffer	nd "at a specific time" will use cron.
Cee Into Dox Tor	timestamp	

Chapter 5 Software Programming (Node-RED

4. Node output.

The EPC value is included in **msg.Inv.acc_data**. The tag access data is included in **msg.Acc.acc_data**. For other information please reference the appendix.

5. Tag mask setting. Enable Activate Post-Singulation Rules to filter the tags to be inventory.

There are two ways to set filter rule

- 1. Set Tag Filter Setting at web utility.
- Send msg.mask to this node.
 Example: msg.mask = { "MaskMatch": "1", "MaskOffset": "0", "MaskCount": "32", "MaskData": "12345678" };
- 3. Please find Node-RED built-in examples. Import→Library→Advantech→RFID→Basic Example

5.3.5 Tag Lock

Set the permissions of each bank with a set of tags of interest.

Execute a tag lock for all tags of interest. There are five access permissions that may be set: EPC, TID, user memory banks, and access permissions for the access and kill passwords.

When performing tag-lock operation, the RFID reader uses only the first enabled logical antenna. (i.e. the enabled logical antenna with the smallest logical antenna port number).

1. Add an **rfid tag lock** node in Node-RED.

. Fill in the settings.		
	Edit rfid-tag-lock node	
	Delete	Cancel Done
	 node properties 	
	Name Name	
	Permissions	
	KillPassword Permissions	NO_CHANGE •
	E AccessPassword Permissions	NO_CHANGE •
	EPC Bank	NO_CHANGE
	i≣ User Bank	NO_CHANGE
	i≣ TID Bank	NO_CHANGE
	Tag Access Rules	tivate Post-Singulation Rules
	Access Password 0	

- Kill Password Permissions: The access permissions for the tag kill password.
 - ACCESSIBLE: The password can be read and written when the tag is in either the open or secured states.
 - ALWAYS_ACCESSIBLE: The password can be read and written when the tag is in either the open or secured states, and this access permission should be set permanently.
 - SECURED_ACCESSIBLE: The password can be read and written only when the tag is in the secured states.
 - ALWAYS_NOT_ACCESSIBLE: The password cannot be read or written, and this access permission should be set permanently.
 - NO_CHANGE: The password's access permission should remain unchanged
- Access Password Permissions: The access permissions for the tag access password.
 - ACCESSIBLE: The password can be read and written when the tag is in either the open or secured states.

- ALWAYS_ACCESSIBLE: The password can be read and written when the tag is in either the open or secured states, and this access permission should be set permanently.
- SECURED_ACCESSIBLE: The password can be read and written only when the tag is in the secured states.
- ALWAYS_NOT_ACCESSIBLE: The password cannot be read or written, and this access permission should be set permanently.
- NO_CHANGE: The password's access permission should remain unchanged.
- EPC Bank: The access permissions for the tag's EPC memory bank.
 - WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states.
 - ALWAYS_WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states, and this access permission should be set permanently.
 - SECURED_WRITEABLE: The memory bank is writeable only when the tag is in the secured states.
 - ALWAYS_NOT_WRITEABLE: The memory bank is not writeable, and this access permission should be set permanently.
 - NO_CHANGE: The memory bank's access permission should remain unchanged.
- User Bank: The access permissions for the tag's User memory bank.
 - WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states.
 - ALWAYS_WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states, and this access permission should be set permanently.
 - SECURED_WRITEABLE: The memory bank is writeable only when the tag is in the secured states.
 - ALWAYS_NOT_WRITEABLE: The memory bank is not writeable, and this access permission should be set permanently.
 - NO_CHANGE: The memory bank's access permission should remain unchanged.
- TID Bank: The access permissions for the tag's TID memory bank.
 - WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states.
 - ALWAYS_WRITEABLE: The memory bank is writeable when the tag is in either the open or secured states, and this access permission should be set permanently.
 - SECURED_WRITEABLE: The memory bank is writeable only when the tag is in the secured states.
 - ALWAYS_NOT_WRITEABLE: The memory bank is not writeable, and this access permission should be set permanently.
 - NO_CHANGE: The memory bank's access permission should remain unchanged.
- Activate Post-Singulation Rules: Enable/disable the filter function.
- Access Password: Saves the access password for the tags. A value of zero indicates no access password. The range is 0x00000000~0xFFFFFFFF.

3. Node output.

The EPC value is included in **msg.lnv.acc_data**.

The tag access data is included in **msg.Acc.acc_data**. For other information please reference the appendix.

4. Tag mask setting.

Enable Activate Post-Singulation Rules to filter the tags to be inventory.

There are two way to set filter rule

- 1. Set Tag Filter Setting at web utility.
- 2. Send msg.mask to this node.

```
Example: msg.mask = { "MaskMatch": "1", "MaskOffset": "0", "MaskCount": "32", "MaskData": "12345678" };
```

5.3.6 Tag Kill

Allows a host to kill a set of tags of interest.

Note: A tag whose kill password value is zero will not execute a kill operation; if such a tag receives a tag-kill operation, it ignores this command.

The kill password value is stored at RESERVED memory bank address 0 and address 1.

When performing tag-kill operation, the RFID reader uses only the first enabled logical antenna. (i.e. the enabled logical antenna with the smallest logical antenna port number)

1. Add the rfid tag kill node in Node-RED

ÍΔ	rfid-taq-kill	-
18	Thu tug tin	7

2. Fill in the settings

Edit rfid-tag-kill node	
Delete	Cancel Done
 node properties 	
Name Name	
Kill Password	0
Tag Access Rules	Activate Post-Singulation Rules
Access Password	0

- Kill Password: The kill password for the tags, and the value is expressed in hexadecimal. The range is 0x00000000~0xFFFFFFF.
- Activate Post-Singulation Rules: Enable/disable the filter function.
- Access Password: Saves the access password for the tags. A value of zero indicates no access password.

3. Node output

The EPC value is included in **msg.Inv.acc_data**. The tag access data is included in **msg.Acc.acc_data**.

Other information please reference the appendix for detail information

4. Tag mask setting

Enable **Activate Post-Singulation Rules** to filter the tags to be inventory. There are two way to set filter rule

- Set Tag Filter Setting at web utility.
- Send msg.mask to this node.
 Example: msg.mask = { "MaskMatch": "1", "MaskOffset": "0", "MaskCount": "32", "MaskData": "12345678" };

5.3.7 Tag Access Results

Parsing tag access results

1. Add the **rfid tag access result** node in Node-RED.

2. Fill in the settings.

Edit rfid-tag-acces	s-result node		
Delete		Cancel	Done
✓ node propertie	S		
Name	Name		
Soutput Items	✓ EPC		
	Access Type		
	Access Data		
	Timestamp		
	Antenna		
	RSSI		
	Tag Error Code		
	Module Error Code		
	Write Word Count		

3. Use this node to parse the results of the access node. For example:

Tag access data are stored locally and users can get tag access information when a read Node has been added. Tag access information will be clear when a user inputs a clear node.

Action	Tag Information	
	PC+EPC+CRC	30001234666600000000000000000812
READ	Data	6161616161616161777788889999aaaa
LOCK	Timestamp	10949875
KILL	RSSI	-29
READ BUFFER ENTRY	Tag Error Code	0
CLEAR BUFFER ENTRY	Module Error Code	0
	Write Word Count	0

5.3.8 Get DIO value

Send any input to this node to get DI/DO values for all channels

1. Add the **get dio value** node in Node-RED.

4. Please find Node-RED built-in examples.

🚺 get dio value 🗆

- 2. Fill in the settings.
- Memory Bank: EPC/TID/USER/Reserved.
- Word Offset: The offset of the first 16-bit word, zero is the first 16-bit word.
- Word Count: The number of 16-bit words to be read.
- Activate Post-Singulation Rules: Enable/disable the filter function.
- Access Password: Saves the access password for the tags. Zero value indicates no access password.
- 3. Node input.

Send any input to this node to get DI/DO value of all channels.

4. Node output.

The number of output object depends on the total number of channels. It then outputs msg.payload as the DI/DO status. It then outputs msg.error as the error status.

5. Please find Node-RED built-in examples Import→Library→Advantech→Local_IO→get_dio_values

5.3.9 Get counter value

Advantech I/O get counter value node

1. Add the get counter value node in Node-RED

2. Fill in the settings

Enter the channel number.

Channel	0	range (0:3)

3. Node input.

Send any input to this node to get counter values of a specific channel.

4. Node output.

Outputs msg.payload as the counter value.

Outputs msg.error as the error status.

5. Please find Node-RED built-in examples.

Import \rightarrow Library \rightarrow Advantech \rightarrow Local_IO \rightarrow get_counter_values

Get counter value		
timestamp	get-counter-value	msg 🗐 🔲

5.3.10 Get counter status

Advantech I/O get counter status node

1. Add the get counter status node in Node-RED.

	2. Fill in the settings. Enter the channel number.	get counter status	
	Channel	0	range (0:3)
	 3. Node input. Send any input to this node 4. Node output. Outputs msg.payload as the Outputs msg.error as the err 5. Please find Node-RED built-in Import→Library→Advantech 	to get counter status of counter status. 0 is stop for status. examples n→Local_IO→get_coun	specific channel. o, 1 is start. hter_status
5.3.11	Get DO pulse count and	continue mode	
	Advantech I/O get do pulse noo 1. Add the get do pulse node in I	le Node-RED.	
		get do pulse	
	2. Fill in the settings. Please fill the channel numb	er.	

Chapter

C

- Channel 0
- 3. Node input.

Send any input to this node to get pulse status of specific channel.

4. Node output.

Output 1

- It then outputs msg.payload as the Pulse output count.
- It then outputs msg.error as the error status.

Output 2

- It then outputs msg.payload as the continue mode.
- It then outputs msg.error as the error status.
- 5. Please find Node-RED built-in examples.

Import \rightarrow Library \rightarrow Advantech \rightarrow Local_IO \rightarrow get_do_pulse

range (0:3)

(Get DO pulse count and continue mode
	timestamp A get-do-pulse msg 🗐 🔲

5.3.12 Get latch status

Advantech I/O get latch status node

1. Add the get latch status node in Node-RED.

2. Fill in the settings. Enter the channel number.

Channel	0	range (0:3)

- 3. Node input.
 - Send any input to this node to get latch status of specific channel.
- 4. Node output.
 - It then outputs msg.payload as the latch status.
 - It then outputs msg.error as the error status.
- 5. Please find Node-RED built-in examples

Import→Library→Advantech→Local_IO→get_latch_status

Get latch status)			
timestamp	Get-latch-status	} (msg 📄	

5.3.13 Set DO value

Advantech I/O set DO value node

1. Add the set do value node in Node-RED.

ÍA	set	do	value	þ
----	-----	----	-------	---

2. Fill in the settings

Choose a write type from the drop down menu. Write type currently supported includes:

- Write DO Single Channel
- Write DO All Channels

I∎ Write Type	Write DO Single Channel	
Channel	0	range (0:3)

For Write DO Single Channel, msg.payload must be a number or string value of 0 or 1.

For Write DO All Channels, msg.payload must be an array of numbers or strings with values of 0 or 1.

Example: msg.payload = [0,0,0,0] return msg

4. Node output.

It then outputs msg.error as the error status.

5. Please find Node-RED built-in examples

Import \rightarrow Library \rightarrow Advantech \rightarrow Local_IO \rightarrow set_do_values

Write single channel	
⇒ true ⇒ false	msg 🗐 🚺
Write multiple channels	
set DO channels	🖕 msg 🗐 🚺

5.3.14 Set counter value

Advantech I/O set counter value node

1. Add the **set counter** node in Node-RED.

2. Fill in the settings. Enter the channel number.

3. Node input.

Write msg.payload to single channel. Send **start** string to this node to start counting. Send **stop** string to this node to stop counting. Send **clear** string to this node to clear counter value.

4. Node output.

It then outputs msg.error as the error status.

5. Please find Node-RED built-in examples Import→Library→Advantech→Local IO→set counter

5.3.15 Set DO pulse

Advantech I/O set DO pulse output node

- 1. Add the **set do pulse** node in Node-RED.
 - 🚺 set do pulse 🗅
- 2. Fill in the settings.

Enter the channel number.

The pulse output count range is 0~4294967295.

If the Continue mode is enabled, the node will ignore the pulse output count.

Channel	0	range (0:3)
Sount Count	10000	
Node	Continue	

3. Node input.

Write msg.payload to single channel. Send **start** string to this node to start pulse output. Send **stop** string to this node to stop pulse output.

4. Node output.

It then outputs msg.error as the error status.

5. Please find Node-RED built-in examples. Import→Library→Advantech→Local_IO→set_do_pulse

5	tart/stop	the DO pulse]					
	start						=	1
=	stop			set-do-puise	 , m	sg	≣ <u>L</u>	IJ

5.3.16 Clear latch

Advantech I/O set latch clear node

- 1. Add the clear latch node in Node-RED.
- (in the settings. Enter the channel number.
 (in the settings. Enter the channel number.
 (in the channel number.
 (in the channel number.)
 (in the channel number.)
 (in the channel number.)
 (in the channel number.)
 (in the setting the channel. Send clear string to this node to clear latch.
 (in then outputs msg.error as the error status.)
 (in then outputs msg.error as the error status.
 (in then outputs msg.error as the error status.)
 (in then outputs msg.error as the error status.)

Clear the lat	ich			
Clear	•íA	clear-latch	msg	

5.4 API for Development

5.4.1 RFID APIs

Function	Description
unsigned char OpenDevice(char *dev,unsigned long Baud_Rate,unsigned char DataBits,unsigned char Par- ity,unsigned char StopBits);	Open serial port and set the related parameter to the specified serial port
unsigned char CloseDevice();	Close serial port
unsigned long API_ConfigSetOperationMode(unsigned char r_Mode);	Set RFID antenna operation mode
unsigned long API_ConfigGetOperationMode(unsigned char *r_Mode);	Get RFID antenna operation mode
unsigned long API_AntennaPortSetState(unsigned char Port, unsigned char State);	Set RFID antenna port enable/dis- able status
unsigned long API_AntennaPortGetState(unsigned char Port, unsigned char *State, unsigned long *anten- naSenseValue);	Get RFID antenna port enable/dis- able status
unsigned long API_AntennaPortSetConfiguration(unsigned char Port, AntennaPortConfig *pAntConfig);	Set RFID antenna power level, dwell time, inventory cycles, and physical port.
unsigned long API_AntennaPortGetConfiguration(unsigned char Port, AntennaPortConfig *pAntConfig);	Get RFID antenna power level, dwell time, inventory cycles, and physical port.
unsigned long API_I8K6CSetPostMatchCriteria(SingulationCriteria *pCriteria);	Setting the tag filter rule
unsigned long API_I8K6CGetPostMatchCriteria(SingulationCriteria *pCriteria);	Getting the tag filter rule
unsigned long API_I8K6CSetPostMatchMaskData(Cri- teriaMaskData *MaskData);	Setting the tag filter mask
unsigned long API_I8K6CGetPostMatchMaskData(CriteriaMaskData *MaskData);	Getting the tag filter mask
unsigned long API_l8K6CSetQueryTagGroup(Tag- Group *pTagGroup);	Setting the tags of interest
unsigned long API_l8K6CGetQueryTagGroup(Tag- Group *r_strcGroup);	Getting the tags of interest
unsigned long API_I8K6CSetTagAccessPassword(unsigned long AccessPassword);	Setting the tag access password
unsigned long API_I8K6CTagGetAccessPassword(unsigned long *AccessPassword);	Getting the tag access password
unsigned long API_I8K6CTagWriteDataBuffer(unsigned char bIndex, unsigned short wData, unsigned char bOffsetType, unsigned short wDataOffset);	Setting tag writing data buffer
unsigned long API_I8K6CTagReadDataBuffer(unsigned char bIndex, unsigned short *wData, unsigned short *wDataOffset);	Getting tag writing data buffer
unsigned long API_I8K6CTagInventory(TagAccessFlag *pTagAccessFlag, ACCESS_CALLBACK callback);	Tag inventory operation

unsigned long API_I8K6CTagRead(ReadWriteCmd- Parms *pReadCmdParms, TagAccessFlag *pTagAc- cessFlag, unsigned long accessPassword, ACCESS_CALLBACK callback);	Tag read opeartion
unsigned long API_I8K6CTagWrite(ReadWriteCmd- Parms *pWriteCmdParms, TagAccessFlag *pTagAc- cessFlag, unsigned long accessPassword, ACCESS_CALLBACK callback);	Tag write operation
unsigned long API_I8K6CTagMultipleWrite(Read- WriteCmdParms *pWriteCmdParms, TagAccessFlag *pTagAccessFlag, unsigned long accessPassword, ACCESS_CALLBACK callback);	Tag multiple write operation
unsigned long API_I8K6CTagKill(unsigned long kill- Password, TagAccessFlag *pTagAccessFlag, unsigned long accessPassword, ACCESS_CALLBACK callback);	Tag kill operation
unsigned long API_I8K6CTagLock(TagPerm *lock- Parms, TagAccessFlag *pTagAccessFlag, unsigned long accessPassword, ACCESS_CALLBACK call- back);	Tag lock operation
unsigned long ControlCancel();	Canceling a tag-protocol operation
unsigned long ControlAbort();	Aborting a tag-protocol operation
unsigned long ControlPause();	Pausing a tag-protocol operation
unsigned long ControlResume();	Resuming a tag-protocol operation
unsigned long API_ControlSoftReset();	Performing a software reset
unsigned long API_MacGetFirmwareVersion(unsigned char *major, unsigned char *minor, unsigned char *release);	Retrieving the MAC firmware ver- sion information
unsigned long API_MacGetOEMCfgVersion(unsigned char *major, unsigned char *minor, unsigned char *release);	Retrieving the MAC-resident OEM- Cfg version information
unsigned long API_MacGetOEMCfgUpdateNumber(unsigned char *major, unsigned char *minor, unsigned char *release);	Retrieving the MAC-resident OEM- Cfg update number information
unsigned long API_MacClearError();	Clearing a MAC firmware error
unsigned long MacGetError(unsigned char ErrorType, unsigned long *Error);	Retrieving a MAC firmware error code
unsigned long API_GetTemprature(unsigned char Mode, unsigned char *Temprature);	Retrieving the module temprature
unsigned long API_MacSetRegion(unsigned char r_Region);	Setting the region of operation
unsigned long API_MacGetRegion(unsigned char *r_Region,unsigned long *r_macRegionSupport);	Getting the region of operation
unsigned long API_TestSetFrequencyConfiguration(unsigned char r_btChannelFlag,unsigned long r_uiExactFrequecny);	Setting the test frequency configura- tion
unsigned long API_TestGetFrequencyConfiguration(unsigned char *r_btChannelFlag,unsigned long *r_uiExactErequeccy);	Getting the test frequency configura- tion

Detail examples please find the WISE2800SDK'RFID

1.rfid_config.c:

This is an example to show how to control RFID antennas.

2.rfid_inventory.c:

This is an example to show how to inventory tags.

3.rfid_tag_select.c:

This is an example to show how to select the tags.

4.rfid_read_write.c:

This is an example to show how to read/write the memories of a tag.

5.rfid_lock.c:

This is an example to show how to set permissions of a tag.

6.rfid_kill.c:

This is an example to show how to kill a tag.

7.rfid_tag_algorithm.c:

This is an example to show how to set singulation algorithm and related parameter.

5.4.2 **I/O APIs**

Function	Description
int AdamComPort OpenComPort(char *Dev);	Open serial port
int AdamComPort_CloseComPort(int fd);	Close serial port
int AdamComPort_SetComPortState(int fd, unsigned long i_dwBaudRate, unsigned char i_byDataBits, unsigned char i_byParity, unsigned char i_byStopBits);	Set the related parameter to the specified serial port
unsigned long GetModuleName(int fd, char *o_szName);	Get the module name
unsigned long GetFirmwareVer(int fd, char *o_szVer);	Get the I/O firmware version
unsigned long DO_SetValue(int fd, int i_iChannel, unsigned char i_bValue);	Set the values of the speci- fied digital output channel
unsigned long DO_SetValues(int fd, int i_iDOTotal, unsigned long i_dwDO);	Set the values of the digital output channels
unsigned long DIO_GetValues(int fd, int i_iDITotal, int i_iDOTotal, unsigned long *o_dwDI, unsigned long *o_dwDO);	Get the values of the speci- fied digital I/O channel
unsigned long GetIOConfigs(int fd, int totalCh, unsigned char *o_byConfig);	Get the I/O configuration parameters
void ParseDOConfig(unsigned char i_byConfig, unsigned char *o_byMode);	Parse the DI configuration parameters
void ParseDIConfig(unsigned char i_byConfig, unsigned char *o_byMode, unsigned char *o_bRecordLastCount, unsigned char *o_bDigitalFilter, unsigned char *o_bInvert);	Parse the DO configuration parameters
unsigned long SetIOConfigs(int fd, int totalCh, unsigned char *i_byConfig);	Set the I/O configuration parameters
unsigned long GetDOConfig(int fd, int i_iChannel, unsigned char *o_byConfig);	Get the single DO configura- tion
unsigned long SetDOConfig(int fd, int i_iChannel, unsigned char i_byConfig);	Set the single DO configura- tion
unsigned long GetDIConfig(int fd, int i_iChannel, unsigned char *o_byConfig);	Get the single DI configura- tion
unsigned long SetDIConfig(int fd, int i_iChannel, unsigned char i_byConfig);	Set the single DI configura- tion
unsigned long DI_GetDiFilterMiniSignalWidth(int fd, int i_iChannel, unsigned long *o_IHigh, unsigned long *o_ILow);	Get DI filter input width
unsigned long DI_SetDiFilterMiniSignalWidth(int fd, int i_iChannel, unsigned long i_IHigh, unsigned long i_ILow);	Set DI filter input width

unsigned long DO_GetPulseOutputCount(int fd, int i_iChannel, unsigned char *o_bContinue, unsigned long *o_IPulseCount);	Get DO pulse output counts
unsigned long DO_SetPulseOutputCount(int fd, int i_iChannel, unsigned char i_bContinue, unsigned long i_IPulseCount);	Set DO pulse output counts
unsigned long CNT_GetValue(int fd, int i_iChannel, unsigned long *o_IValue);	Read counter or frequency value
unsigned long DO_GetPulseOutputWidthAndDelayTime(int fd, int i_iChannel, unsigned long *o_IPulseHighWidth, unsigned long *o_IPulseLowWidth, unsigned long *o_IHighToLowDelay, unsigned long *o_ILowToHighDelay);	Get pulse output width amd delay time
unsigned long DO_SetPulseOutputWidthAndDelayTime(int fd, int i_iChannel, unsigned long i_IPulseHighWidth, unsigned long i_IPulseLowWidth, unsigned long i_IHighToLowDelay, unsigned long i_ILowToHighDelay);	Set pulse output width amd delay time
unsigned long ALM_SetLatchClear(int fd, int i_iChannel);	Clear alarm latch
unsigned long CNT_GetStatus(int fd, int i_iChannel, unsigned char *o_bCounting);	Get counter start/stop status
unsigned long CNT_SetStatus(int fd, int i_iChannel, unsigned char i_bCounting);	Set counter start/stop status
unsigned long CNT_Clear(int fd, int i_iChannel);	Clear counter value
unsigned long DO_GetDiagnostic(int fd, int i_groupNum, unsigned char *o_sStatus);	Get DO diagnostic status
unsigned long SetWDTTimeout(int fd, int timeout);	Set watch dog status and timeout value
unsigned long GetWDTTimeout(int fd, int *timeout);	Get watch dog status and timeout value

Detail examples please find the WISE2800SDK'IO

1.dio_example.c:

This is an example to show how to control digital I/Os.

WISE-2834 User Manual

RFID node output

Table A.1:	Inventory report	
Name	Description	
pkt_header	These hex values of header information are 0x4D544949, i.e. ASCII string "MTII".	
	The fixed length of this report packet is 64 bytes.	
pkt_relnumb er	Total relation number = variable	
pkt_relseq	Relation sequence number = variable	
rpt_ver	Report version number = 0x01	
rpt_flags	Report flags:	
	Bit Value and Description	
	0 CRC invalid flag for backscattered tag data: 0 = Valid CRC 1 = Invalid CRC	
	1 Transceiver chip: 0 = Indy R1000 chip 1 = Indy R2000 chip	
	2 Serialized TID data: 0 = No serialized TID data in packet 1 = Monza TID data included (12 bytes)	
	3= Extra hardware data: 0 = No extra hardware data in the front of inv_data 1 = Extra hardware data included (8 bytes)	
	5:4 Reserved. Read as zero.	
	7:6 Tag-data padding: Number of padding bytes added to inv_data force the length of inv_data field to end on the 32-bit boundary.	
rpt_type	Report type value = 0x0005	
rpt_inflen	 Information Valid length = Variable (greater than or equal to 3) When pkt_relnumber = 1, the length of this field in words = (hardware data bytes + tag data bytes + tag-data padding bytes) / 4. The information data consists of hardware data, tag data and tag-data padding three parts. When pkt_relnumber = 1, each length of three parts is as follows: The length of hardware data in bytes is 12 from byte offset 14 to 25. The length of tag data in bytes is depending on bytes number of tag data. The length of tag-data padding in bytes is depending on bytes number of tag-data padding of rpt_flags field. For other details, see Note 1. 	
rpt_seq	Increase the report sequence number progressively.	
ms ctr	MTI MAC firmware millisecond counter when tag was inventoried.	

Table A.1:	Inventory report
nb_rssi	The narrowband receive signal strength indicator (RSSI). This is the backscattered tag signal. The narrowband RSSI indication is 8-bit value. It is useful for relative signal strength indication. It is important to note that the IF LNA gain in the receive path can vary each time carrier wave is turned on, so the IF LNA gain should be taken into account. Refer to byte off- sets 21:20 for a description of the ana_ctrl field, which includes the setting of the IF LNA at the time the RSSI measurement was taken. Value conversion to dB formula: Exponent = bits[7:3], Mantissa = bits[2:0], Mantissa_Size = 3 20 * log10 (2^Exponent * (1 + Mantissa / 2^Mantissa_Size)) Example: Value 0x48 Exponent = 9, Mantissa = 0 20 * log (2^9 * (1 + 0 / 2^3)) = 54.19
wb_rssi	The wideband receive signal strength indicator (RSSI). This is the backscattered tag signal. The wide-band RSSI indication is 8-bit value. It is useful for relative signal strength indication. It is important to note that the IF LNA gain in the receive path can vary each time carrier wave is turned on, so the IF LNA gain should be taken into account. Refer to byte off- sets 21:20 for a description of the ana_ctrl field, which includes the setting of the IF LNA at the time the RSSI measurement was taken. Value conversion to dB formula: Exponent = bits[7:4], Mantissa = bits[3:0], Mantissa_Size = 4 20 * log10 (2^Exponent * (1 + Mantissa / 2^Mantissa_Size)) Example: Value 0x48 Exponent = 4, Mantissa = 8 20 * log (2^4 * (1 + 8 / 2^4)) = 27.60
ana_ctrl	The value of the Indy R1000 or R2000 gain control register at time the RSSI measurement was taken - contains the IF LNA's gain info for RSSI. See the value of Transceiver chip bit of rpt_flags field for format. Bits[5:4]: IF LNA gain with Indy R1000 chip (0 = 24dB, 1 = 18dB, 3 = 12dB) Bits[5:3]: IF LNA gain with Indy R2000 chip (0 = 24dB, 1 = 18dB, 3 = 12dB, 7 = 6dB) Other bits are reserved for future use.
rssi	The EPC receive signal strength indicator (RSSI). The value is the narrow- band RSSI adjusted by the calibration value. The units are tenths of dBm.
logic_ant	The value is the current logical antenna port during the tag-singulation phase.

Table A.1:	Inventory repo	rt
acc_data	The data that was during tag singula mitted over the air changed to match Tag TID data, if pr TID data bits of rp These extra hard as indicated by th These information	backscattered by the tag (i.e. PC + (XPC) + EPC + CRC16) tion. The data is presented in the same format as it is trans- from the tag to the RFID module - i.e. the data has not been the endianness of the host processor. resent, will follow the CRC16, as indicated by the Serialized t_flags field. ware data, if available via command, will lead the tag data, e Extra hardware data bit of rpt_flags field. n of extra hardware data are as follows:
	Byte	Value and Description
	0	Physical antenna port: The value is the current physical antenna port during the tag-singulation phase.
	1	Phase: The phase data bits[6:0] represents two's complement value from -64 to 63 at the time the EPC is received. The bit 7 is reserved and always 0. Value conversion to degrees formula: bits[6:0] / 128 * 360 Value conversion to radian formula: bits[6:0] / 128 * 2" π " Example: Value 0x40 (= -64) -64 / 128 * 360 = -180 (deg) -64 / 128 * 2" π " = -3.142 (rad) When the value of Transceiver chip bit of rpt_flags field = 0 (Indy R1000 chip), phase is not available and read as zero.
	3:2	Temperature: The value is specified in units of degree-C and a two's complement representation.
	7:4	Frequency: The value is specified in units of kHz.
pkt_checksu m	The checksum is field. Consult Section 8	CRC-16 calculated over the pkt_header field to the padding : Calculation of CRC-16.

Table A.2: Tag	j access report		
Name	Description		
pkt_header	These hex values of header information are 0x4D544941, i.e. ASCII string "MTIA". The fixed length of this report packet is 64 bytes.		
pkt_relnumber	Total relation number = variable		
pkt_relseq	Relation sequence number = variable		
rpt_ver	Report version number = 0x01		
rpt_flags	Report flags:		
	Bit Value and Description		
	0 Module access error flag: 0 = RFID module did not detect an error. 1 = RFID module detected an error. See the module_error_code field.		
	 Tag backscatter error flag: 0 = Tag did not backscatter an error. 1 = Tag backscattered an error. See the tag_error_code field. 		
	5:2 Reserved. Read as zero.		
	7:6 Tag-data padding: Number of padding bytes added to acc_data force the length of acc_data field to end on 32-bit bound- ary.		
rpt_type	Report type value = 0x0006		
rpt_inflen	Information valid length = variable (greater than or equal to 3) When pkt_relnumber = 1, the length of this field in words = (hardware data bytes + tag data bytes + tag-data padding bytes) / 4. The information data consists of hardware data, tag data and tag-data padding three parts. When pkt_relnumber = 1, each length of three parts is as follows:		
	The length of hardware data in bytes is 12 from byte offset 14 to 25.		
	The length of tag data in bytes is depending on bytes num- ber of tag data.		
	The length of tag-data padding in bytes is depending on bytes number of tag-data padding of rpt_flags field.		
	For other details, see Note 1 of Section ISO 18000-6C Inventory- Response Packet.		
rpt_seq	Increase the report sequence number progressively.		
ms_ctr	MTI MAC firmware millisecond counter when tag-access operation occurred.		

Table A.2: Tag a	iccess report
command	ISO 18000-6C access command: 0x30 - NXP ChangeConfig 0x31 - NXP TAM1Authenticate 0x32 - NXP TAM2Authenticate 0xC2 - Read 0xC3 - Write 0xC4 - Kill 0xC5 - Lock 0xC6 - Access 0xC7 - Block Write 0xC8 - Block Erase 0xC9 - Block Permalock 0xE0 - Untraceable
tag_error_code	If the tag backscattered an error (i.e. the tag backscatter error flag of rpt_flags field is set), this value is the error code that the tag backscattered. Values are: 0x00 - general error (catch-all for errors not covered by codes) 0x01 - tag does not support the specified parameters or feature 0x02 - insufficient privileges for the tag to perform the operation 0x03 - specified memory location does not exist is too small, or the tag does not support the specified EPC length 0x04 - tag memory location is locked or permalocked and is either not writeable or not readable 0x0B - tag has insufficient power to perform the memory operation 0x0F - tag does not support error-specific codes
module_error_code	If the RFID module detects an error (i.e. the module access error flag of rpt_flags field is set), and none of the error specific bits are set in the rpt_flags field, this field contains a 16-bit error code. Values are: 0x0000 = no error 0x0001 = handle mismatch 0x0002 = CRC error on tag response 0x0003 = no tag reply 0x0004 = invalid password 0x0008 = read count invalid 0x0009 = out of retries 0x000A = length mismatch 0xFFFF = operation failed
write_word_count	The number of individual words successfully written.
reserved	Reserved. Read as zero.
acc_data	If there were no errors, this field might contain the data.
pkt_checksum	The checksum is CRC-16 calculated over the pkt_header field to the padding field. Consult Section 8: Calculation of CRC-16.

Note:

The information data consists of hardware data, tag data and tag-data padding three parts.

When pkt_relnumber > 1, each length of three parts is as follows:

The hardware data should be only appeared in the first packet with pkt_relseq = 1.

The length of hardware data in bytes is 12 from byte offset 14 to 25.

When pkt_relseq = 1, the start of tag data is byte offset 26, and the maximum length in bytes is 36 from byte offset 26 to 61.

When pkt_relseq > 1, the start of tag data is byte offset 14, and the maximum length in bytes is 48 from byte offset 14 to 61.

The tag-data padding is optional field which should be only appeared in the last packet with pkt_relseq = pkt_relnumber. The length of tag-data padding in bytes is depending on bytes number of tag-data padding of rpt_flags field.

WISE-2834 User Manual

RFID module error code

Table B.1: Error Code Ranges/Module Table

Error Code Number Range	Subsystem Name
0x0000	Command successful with no errors.
0x0001 - 0x0100	Core State Machine
0x0101 - 0x0200	Host Interface Module
0x0201 - 0x0300	RFID Protocol Modules
0x0301 - 0x0400	RFID Transceiver Control Module
0x0401 - 0x0500	GPIO, MCU support modules, OEM Config. Module
0x0501 - 0x0600	RESERVED
0x0601 - 0x0700	RFID HP-SiP Module low level interface module
0x0701 - 0x0800	BIST Module (built-in Self Test)

Table B.2: Error Code Details				
Code	Sub-System	Description		
	Core State Machine			
0x0000	MACERR_SUCCESS	Command successful with no errors.		
0x0001	CSM_ERR_UNKNOWNCMD	This error is set when an invalid com- mand has been issued to the MAC firmware. The MAC firmware performs basic bounds checking on command values.		
0x0002	CSM_ERR_PREEXECPROC	An error occurred during pre-com- mand execution processing. This may happen if the MAC firmware is unable to transmit a Command-Begin packet to the host.		
0x0003	CSM_ERR_POSTEXECPROC	An error occurred during post-com- mand execution processing. This may happen if the MAC firmware is unable to flush the host TX buffers after the main processing of a given command is complete.		
0x0004	CSM_ERR_BADENGTESTSUBCMD	This is set when an unsupported ENGTEST sub-command has been indicated via the HST_ENGTST_ARG0 register, bits 7:0. FYI - BUG - currently only set if partic- ular engineering test sub-commands have not been compiled into the MAC firmware image. Eventually this will be reported for all invalid sub-command values in HST_ENGTEST_ARG0.		
0x0005	CSM_ERR_MBPRDADDR	Set if an invalid / unsupported UHF RFID transceiver register is detected in the HST_MBP_ADDR after an MBPRDREG command is issued to the MAC firmware.		

Error Code Details	
CSM_ERR_MBPWRADDR	Set if an invalid / unsupported UHF RFID transceiver register is detected in the HST_MBP_ADDR after an MBPWRREG command is issued to the MAC firmware.
CSM_ERR_SUBSYSINIT_CPU	Set if the CPU module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_DBG	Set if the Debug module fails to initial- ize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_CSM	Set if the Core State Machine fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_OEMCFG	Set if the OEM configuration module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_HOSTIF	Set of the HOST interface module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_TILIF	Set if the UHF RFID transceiver low level interface module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_BIST	Set if the BIST module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_GPIO	Set if the GPIO module fails to initial- ize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_RFTC	Set of the RF Transceiver Control module fails to initialize on MAC firmware boot.
CSM_ERR_SUBSYSINIT_PROT	Set if the RFID Protocol module(s) fail to initialize on MAC firmware boot.
CSM_ERR_PROTSCHED_UNKST	Set if the RFID protocol scheduler module detects an unknown state - likely indicates firmware corruption or runtime SRAM corruption by errant code.
CSM_ERR_PROTSCHED_AMBANT	Set if the Antenna configuration dwell time and inventory round count are both zero - which is illegal and ambig- uous.
CSM_ERR_PROTSCHED_NODESC	Set if the protocol scheduler detects that no logical antennas have been enabled using the HST_ANT_DESC_CFG register bank.
CSM_ERR_PROTSCHED_PORTDE F	Set when a bogus physical antenna port definition value is used - this likely means that the TX and RX port values are not the same - which is required for MTI RFID Development Platform.
CSM_ERR_PROTSCHED_NOFRQC H	Set by the protocol scheduler when no frequency channels have been enabled.
CSM_ERR_PROTSCHED_BADREGI ON	Set by the protocol scheduler when a bogus regulatory region has been

detected in

HST_REGULATORY_REGION.

Table B.2: Err

0x0006

0x0007

0x0008

0x0009

0x000A

0x000B

0x000C

0x000D

0x000F

0x0010

0x0011

0x0012

0x0013

0x0014

0x0015

0x0016

0x0017

Table B.2:	Error Code Details	
0x0018	CSM_ERR_PROTSCHED_BADFTIM E	Set by the protocol schedulers FCC state machine when a bogus FCC fre- quency hop value has been written to HST_PROTSCH_FTIME, Bank 0 - only 100, 200, 400 milliseconds are valid values.
0x0019	CSM_ERR_PROTSCHED_FTUNET O	Not currently set by firmware.
0x001A	CSM_ERR_SUBSYSINIT_OEMHWO PTS	Set if the OEM hardware-option con- figuration module fails to initialize on MAC firmware boot.
0x001B	CSM_ERR_SUBSYSINIT_NVMEMU PD	Set if the firmware failed to initialize the NV Memory Update module at boot time.
0x001C	CSM_ERR_BAD_RESET_KEY	Set if the firmware CPU module's reset device logic is called with a bogus key. This will generally only happen if the system has experienced a crash and this logic is being called through an invalid call chain - likely due to some sort of corruption.
0x001D	CSM_ERR_DEV_RESET_FAILED	Set if the device reset logic fails to actually reset the device - likely due to a MCU related hardware failure or system corruption.
0x001E	CSM_ERR_NVMEMUPD_ABORT_M ACERRNO	Set *prior* to entering non-volatile memory update mode if the current global MAC firmware error status is indicating an error. The MAC will not enter non-volatile memory update mode if there is currently an error. The host should use the CLRERR com- mand to clear any errors; if this doesn't work, the device may need to be manually updated using the recov- ery method indicated in the MAC firm- ware datasheet.
0x001F	CSM_ERR_NVMEMUPD_INT_MEM BNDS	Set if an internal memory bounds check fails while in non-volatile mem- ory update mode. If these errors occurred the MAC firmware tries very hard not to update non-volatile mem- ory with bogus data. This error occurs likely due to a system corruption.
0x0020	CSM_ERR_NVMEMUPD_ENTRYKE Y	Set if the non-volatile memory mode entry logic detects an invalid key. This would occur if the calling logic errone- ously called the non-volatile memory logic due to system corruption / firm- ware error.
0x0021	CSM_ERR_NVMEMUPD_NVFLUSH	Set if, during non-volatile memory update mode, the firmware fails to write flash at the lowest level. This is likely due to flash lock bits being set (i.e. via tools like SAM-BA) or a sys- tem corruption.

Table B.2:	Error Code Details	
0x0022	CSM_ERR_NVMEMUPD_WRVERFA IL	Set if write verification logic fails after writing data at the lowest level to flash. This may indicate problems with the MCU device flash hardware. This can occur if the MCU device flash has been updated too many times.
0x0023	CSM_ERR_INVAL_START_CHAN	Set by the protocol scheduler if the HST_RFTC_FRQCH_CMDSTART register has been set to an invalid channel.
0x0024	CSM_ERR_PROTSCHED_UNK_AL GO	Set by the protocol scheduler if an invalid protocol algorithm has been selected via the HST_INV_CFG register.
0x0025	CSM_ERR_INVAL_PWRMODE	Set by the core state machine if an invalid power management mode has been specified in the HST_PWRMGMT register.
0x0026	CSM_ERR_PWRMODE_CORRUPT	This is set if a system corruption has occurred and the logic is unable to determine the desired power manage- ment mode.
0x0027	CSM_ERR_NVMEMUPD_TXFAIL	Set if the non-volatile memory mode logic fails to transmit a packet to the host during non-volatile memory update.
0x0028	CSM_ERR_NVMEMUPD_UPD_BOU NDS	Set during non-volatile memory update if the range indicated for updates falls outside the valid non-vol- atile memory ranges available on the device.
0x0029	CSM_ERR_NVMEMUPD_UNKNOW N	An unknown error has occurred during nonvolatile memory updates - likely a system corruption.
0x002A	CSM_ERR_NVMEMUPD_RXTO	Set during non-volatile memory mode if the firmware does not receive a packet from the host within 60 sec- onds. This may occur if the host has crashed or the physical interface has been removed or corrupted.
0x002B	CSM_ERR_GPIO_NOTAVAIL	This error code is generated when the host / user attempts to use a GPIO pin that has previously been configured as unavailable in the OEM configura- tion area entry GPIO_AVAIL.
0x002C	CSM_ERR_ANT_NOTAVAIL	This error code is generated when the host / user attempts to use an antenna pin that has previously been config- ured as unavailable in the OEM con- figuration area entry ANT_AVAIL.

Table B.2:	Error Code Details			
0x002D	CSM_ERR_CMDNOTAVAILABLE	Set by the command processor when a command is invoked from the host, which has been defined, but is not available in the MAC firmware code- base. This situation can occur if, for instance, a command is disabled by means of a compile-time switch.		
0x002E	CSM_ERR_NOCORDICDEF	Set by the protocol scheduler when no CORDIC values are found in the OEM configuration area. CORDIC values are part of the LBT configuration. See the OEM configuration section of the firmware datasheet for more details on these settings. Cordic configuration values are only required when LBT is enabled.		
0x002F	CSM_ERR_SUBSYSINIT_DEBUG	Set if the firmware failed to initialize the Debug subsystem at boot time.		
0x0030	CSM_ERR_SUBSYSINIT_TRACE	Set if the firmware failed to initialize the Trace subsystem at boot time.		
0x0031	CSM_ERR_BUILD_TARGET_DEVIC E_MISMATCH	Set if the firmware failed the Target Build and Physical Device Check at boot time.		
0x0032	CSM_ERR_DIAGNOSTICS	Set if the firmware failed to properly set MAC Error diagnostic codes. Actual MAC Error may not correctly be reflected by the MAC Error register.		
0x0033	CSM_ERR_SUBSYSINIT_HOSTIFR EGS_INIT	Set if the MAC register default value initialization module fails to initialize on MAC firmware boot.		
0x0034	CSM_ERR_SUBSYSINIT_HANDSHA KE	Set if the firmware failed to initialize the Handshake interface subsystem at boot time.		
0x0035	CSM_ERR_NVMEMUPD_INVALID_ MODE	Set if the HST_NV_UPDATE_CONTROL MAC register had an invalid update_mode set.		
0x0036	CSM_ERR_INVALID_CMD_WHILE_I N_CRIT_ERROR	Set if a Gen2 command is attempted following a critical error during system initialization. Typically caused by a failed OEM read attempt and can usu- ally be resolved by formatting OEM.		
0x0037	CSM_ERR_CRITICAL_ERROR_UNK NOWN	Set if an unknown critical error is detected at the end of system initial- ization. Typically caused by a failed OEM read attempt and can usually be resolved by formatting OEM.		
	Host Interface Module			
0x0101	RESERVED	RESERVED		

Table B.2:	Error Code Details	
0x0102	HOSTIF_ERR_USBDESC	Set by the USB interface module when an unsupported descriptor TYPE has been requested by the host (i.e. not a device, string, configuration descriptor type. This may be due to compatibility problems with the USB host.
0x0103	HOSTIF_ERR_USBDESCIDX	Set by the USB interface module when an unsupported device descrip- tor index has been requested by the Host.
0x0104	HOSTIF_ERR_USBTXEP0	Set by the USB interface module when it is unable to transmit the response to a request on USB end- point 0 (aka control endpoint). This may be due to compatibility or syn- chronization problems with the USB host.
0x0105	RESERVED	RESERVED
0x0106	HOSTIF_ERR_USBRXBUFFSZ	Set by the USB interface module when higher level firmware requests an unsupported buffer length. This may be due to a firmware build error or corrupted firmware in flash.
0x0107	HOSTIF_ERR_RXUNKNOWN	This is set by the Host interface mod- ule when the underlying physical inter- face module returns an unknown error code on receive from the host. This may be due to a firmware build issue, corrupted firmware image or corrupted SRAM due to errant MAC firmware code.
0x0108	HOSTIF_ERR_TXUNKNOWN	This is set by the Host interface mod- ule when the underlying physical inter- face module returns an unknown error code on transmit to the Host. This may be due to a firmware build issue, cor- rupted firmware image or corrupted SRAM due to errant code.
0x0109	HOSTIF_ERR_BADIFSTATE	This is set when the Host interface code detects that its internal state machine out of sync. This could be due to a corrupted firmware image or corrupted SRAM due to errant MAC firmware code.
0x010A	RESERVED	RESERVED
0x010B	HOSTIF_ERR_REGADDR	Set by the host interface module when an invalid MAC firmware register read or write is attempted (either by the host or internally by the MAC firm- ware).
0x010C	RESERVED	RESERVED

Table B.2:	Error Code Details	
0x010D	HOSTIF_ERR_USBDESCINIT	This is set by the host interface mod- ule during initialization if it is unable to retrieve USB string descriptors from non-volatile memory (i.e. flash) OEM configuration area. This may be due to a corrupt or unformatted OEM config- uration area. It may also be due to a firmware build issue if the OEM con- figuration definition is out of sync with the MAC firmware code.
0x010E	HOSTIF_ERR_SELECTORBNDS	This is set when the host attempts to *write* a value to a selector type regis- ter that is out of range for that selector.
0x010F	RESERVED	RESERVED.
0x0110	HOSTIF_ERR_PKTALIGN	Not currently set by MAC firmware.
0x0111	HOSTIF_ERR_BADRAWMODE	Set by the low level host interface logic if an upper level requests an unsupported raw mode. This may occur if the system is corrupted.
0x0112	HOSTIF_ERR_UNKLNKSTATE	Set by the low level host interface logic if a system corrupt occurs and the link manager cannot determine the current link state.
0x0113	HOSTIF_ERR_UNKUSBSETUP	Set by the low level host interface logic if an unknown / unsupported control command is received from the host. This may occur if the host logic and the MAC firmware logic are out of sync, in terms of the lowest level host interface (UART, USB).
0x0114	HOSTIF_ERR_UARTRXBUFFSZ	This is set if the upper layer host logic attempts to receive data and the lower layer cannot support the buffer size requested. This will happen if the sys- tem is corrupted.
0x0115	HOSTIF_ERR_RAWMODECTL	Set by the low level host interface logic if a control command is received from the host while in raw mode - which is not allowed. This would hap- pen if the host caused the MAC firm- ware to enter non-volatile memory update mode, which uses the raw mode, and then the host proceeded to issue control commands.
0x0116	HOSTIF_ERR_UNKHOSTIF	Set by the host interface module at boot time if the OEM configuration area is specifying an unsupported host interface.
0x0117	HOSTIF_ERR_UNKREGSTD	Set by the host interface module at boot time if the OEM configuration area is specifying an unsupported reg- ulatory standard.
0x0118	HOSTIF_ERR_DEBUGID	Set by host interface module if Debug Id is invalid.
0x0119	HOSTIF_ERR_DEBUGOVERFLOW	Set by host interface module if Debug Buffer overflows.

Table B.2:	Error Code Details	
0x011A	HOSTIF_ERR_REGREADONLY	Set by the host interface module when a Read-Only MAC firmware register write is attempted by the host.
0x011B	HOSTIF_ERR_REGWRITEONLY	Set by the host interface module when a Write-Only MAC firmware register read is attempted by host.
0x011C	HOSTIF_ERR_BADREGIONINITVAL UES	Set by the host interface module if the default region dependent parameters are invalid.
0x011D	HOSTIF_ERR_INVALIDENGTESTAR G	Set by an ENGTEST sub-command with an invalid argument.
0x011E	HOSTIF_ERR_INVALIDSETFREQAR G	Set by Set Frequency command with an invalid argument. When this error is set, the result registers will be set to 0xFFFFFFF.
0x011F	HOSTIF_ERR_INVALID_RSSI_FILTE RING	Set when an invalid Inventory RSSI Filtering configuration has been con- figured.
0x0120	HOSTIF_ERR_INVALID_TAGACC_C NT	Set when an invalid HST_TAGACC_CNT value is speci- fied.
0x0121	HOSTIF_ERR_INVALID_BW_MODE	Set when an invalid BlockWrite mode is specified in HST_IMPINJ_EXTENSIONS.
0x0122	HOSTIF_ERR_OEM_MAC_REG_INI T_CTRL_ERROR	Set when an invalid MAC Register Ini- tialization pair (Control/Data) is found during the MAC Register initialization.
0x0123	HOSTIF_ERR_OEM_MAC_REG_INI T_WRITE_ERROR	Set when an invalid MAC Register Ini- tialization write occurs found during the MAC Register initialization.
	RFID Protocol Mo	dules
0x0200	PROTOCOL_ERR_TRUNCATION_U NSUPPORTED	Set by protocol if truncation is set in the Select configuration register, since truncation is unsupported.
	RF Transceiver Contro	ol Module
0x0300	RFTC_ERR_BADFRQCHAN	This is set during the PLL lock logic when a bounds check fails while checking the frequency channel con- figuration registers.
0x0301	RFTC_ERR_BADHOPMODE	This is set if an unsupported fre- quency hopping mode is detected - during the PLL lock logic.
0x0302	RFTC_ERR_PLLFAILEDTOLOCK	This is set if the PLL fails to lock.
0x0303	RFTC_ERR_XCVRADC_TIMEDOUT	This is set when the RFTC module's AUX ADC function times out waiting for an ADC conversion.
0x0304	RFTC_ERR_FILTTUNE_TIMEOUT	This is set when the RFTC module times out waiting for UHF RFID trans- ceiver to indicate RX or TX filter tuning is complete.
0x0305	RFTC_ERR_AMBIENTTEMPTOOHO T	This is set when the RFTC module detects that the ambient temperature sensor indicates too hot.

Table B.2:	Error Code Details	
0x0306	RFTC_ERR_XCVRTEMPTOOHOT	This is set when the RFTC module detects that the transceiver tempera- ture sensor indicates too hot.
0x0307	RFTC_ERR_PATEMPTOOHOT	This is set when the RFTC module detects that the PA temperature sensor indicates too hot.
0x0308	RFTC_ERR_PADELTATEMPTOOBIG	This is set when the RFTC module detects that the delta between the PA temperature and the ambient temper- ature is too great.
0x0309	RFTC_ERR_REVPWRLEVTOOHIGH	This is set when the reverse power level is too high as measured by the configured reverse power level thresh- old in the register set.
0x030A	RFTC_ERR_BADIFLNAGAIN	This is set when an incorrect current gain setting is passed into the IFLNA gain adjustment logic. May indicate corrupted code.
0x030B	RFTC_ERR_TXRF_BIT_FAILED	Returned by RFTC code when errors occur in transmitting a bit over the RF interface.
0x030C	RFTC_ERR_TXRF_BYTE_FAILED	Returned by RFTC code when errors occur in transmitting a buffer of bytes over the RF interface.
0x030D	RFTC_ERR_TXRF_EOT_FAILED	Returned by RFTC code when errors occur in transmitting an "end of trans- fer" command over the RF interface.
0x030E	RFTC_ERR_TXRF_PREAM_FAILED	Returned by RFTC code when errors occur in transmitting a "preamble" command over the RF interface.
0x030F	RFTC_ERR_TXRF_FSYNC_FAILED	Returned by RFTC code when errors occur in transmitting a "frame-sync" command over the RF interface.
0x0310	RFTC_ERR_RXRF_ISR_TIMEOUT	Indicates that the RF transceiver failed to set expected ISR bits in a timely fashion. Indicates a failure in either the RFTC state machine logic or in the RF transceiver state machine logic.
0x0311	RFTC_ERR_INVALIDLINKPARMS	This is set when invalid link parame- ters are detected when the filter tuning logic is run.
0x0312	RFTC_ERR_RXRF_INTERPKTTIME OUT	This indicates a failure in either the RFTC state machine logic or in the RF transceiver state machine logic. This error can only occur if the RF trans- ceiver starts filling its RX FIFO with received data, but fails to return the requested number of bits in a timely fashion.
0x0313	RFTC_ERR_NO_LINKPROFHDR	Not currently in use. May occur in the future when switching between link profiles if some of the required information is not properly coded in the MAC firmware.

Table B.2:	Error Code Details	
0x0314	RFTC_ERR_PROFILE_INVALID	This error occurs if the RF transceiver is being loaded with an invalid profile.
0x0315	RFTC_ERR_DBMVALOUTOFRANG E	Internal error. The error is the direct result of the MAC firmware having to do a "dBm to linear" conversion on a dBm measurement that is outside the range of -99dBm through +45dBm. It the unlikely event that this error is encountered, it is probably the result of a faulty RF Peak Detector, a bug in the code that computes the dBm value from the RF Peak Detector ADC read- ing, or a faulty external PA circuit.
0x0316	RFTC_ERR_FWDPWRLEVTOOHIG H	If, during RF power-ramping, it is determined that the RF power at the antenna port has momentarily exceeded 35dBm, or has exceeded 33dBm steady-state, this error will be thrown. Encountering this error is often the result attempting to transmit on an open antenna port or in other cases an incorrect calibration of the gross gains. Make sure an antenna is connected on the physical port in use or see MAC firmware command 0x1B for more information on how to cali- brate the system.
0x0317	RFTC_ERR_NO_GROSSPWRENTR Y	Internal error that may occur if mem- ory is corrupted.
0x0318	RFTC_ERR_TARGETPWRTOOHIGH	Indicates that the target power (in MAC firmware Virtual Register 0x706) is higher than the maximum allowed output power, which is +33dBm.
0x0319	RESERVED	RESERVED.
0x031A	RFTC_ERR_ANTENNADISCONNEC TED	Indicates that the measured value of the antenna-sense resistor (reported in the MAC firmware Virtual Register 0x703) exceeds the threshold speci- fied (specified in the MAC firmware Virtual register 0xB12). To determine which antenna was disconnected, the list of enabled antennas will need to be scanned for the one exceeding the threshold (this is done by iterating through all valid selectors in register 0x701 and examining the MAC_ANT_DESC_STAT register at address 0x703.
0x031B	RFTC_ERR_UNREC_HWOPTFORM AT	Indicates that the OEMCFG's HW_OPTIONS_FORMAT value is not recognized by the RFTC subsystem.
0x031C	RFTC_ERR_HWOPT_BADFWDPWR OPT	Indicates that the forward power detection option found in OEMCFG's HW_OPTIONS0 field is not recog- nized by the RFTC subsystem.

Table B.2:	Error Code Details	
0x031D	RFTC_ERR_HWOPT_BADREVPWR OPT	Indicates that the reverse power detection option found in OEMCFG's HW_OPTIONS0 field is not recog- nized by the RFTC subsystem.
0x031E	RFTC_ERR_HWOPT_BADDRMFILT OPT	Indicates that the DRM Filter option found in OEMCFG's HW_OPTIONS0 field is not recognized by the RFTC subsystem.
0x031F	RFTC_ERR_HWOPT_BADAMBTEM POPT	Indicates that ambient temperature sensor option found in OEMCFG's HW_OPTIONS0 field is not recog- nized by the RFTC subsystem.
0x0320	RFTC_ERR_HWOPT_BADPATEMP OPT	Indicates that PA temperature sensor option found in OEMCFG's HW_OPTIONS0 field is not recog- nized by the RFTC subsystem.
0x0321	RFTC_ERR_HWOPT_BADXCVRTE MPOPT	Indicates that transceiver tempera- ture sensor option found in OEM- CFG's HW_OPTIONS0 field is not recognized by the RFTC subsystem.
0x0322	RFTC_ERR_HWOPT_BADANTSEN SOPT	Indicates that antenna-sense resistor sensor option found in OEMCFG's HW_OPTIONS0 field is not recog- nized by the RFTC subsystem.
0x0323	RFTC_ERR_BADIFLNAAGCRANGE	The range specified for the IF LNA AGC gain limits is bad. Either the "min" is higher than the "max", or the min or max setting is incorrect.
0x0324	RFTC_ERR_LPROFBADSELECTOR	When invoking the CMD_LPROF_RDXCVRREG or CMD_LPROF_WRXCVRREG com- mands, one of the arguments is the selector of a valid link profile. New link profile selectors cannot be created through these commands, so if a selector outside this range is passed, the RFTC_ERR_LPROFBADSELECTOR error will be generated.
0x0325	RFTC_ERR_BADXCVRADDR	One of the arguments to the CMD_LPROF_RDXCVRREG or CMD_LPROF_WRXCVRREG com- mands is the RF transceiver register address to configure. If the address passed is not a valid transceiver address, this error will be thrown. This error is also generated if an invalid transceiver address is detected in an OEM custom profile.
0x0326	RFTC_ERR_XCVRADDRNOTINLIST	Not all valid transceiver addresses may be configured through the link profiles. The excluded addresses include those registers which are read-only (refer to the transceiver reg- ister map) and the indirect address for the R2T command register: 0x0105.

Table B.2:	Error Code Details	
0x0327	RFTC_ERR_BAD_RFLNA_GAIN_RE Q	Set by the RFTC module if an unsupported RFLNA gain level is requested.
0x0328	RFTC_ERR_BAD_IFLNA_GAIN_RE Q	Set by the RFTC module if an unsupported IFLNA gain level is requested.
0x0329	RFTC_ERR_BAD_AGCMIX_GAIN_R EQ	Set by the RFTC module if an unsup- ported AGC/MIXER gain level is requested.
0x032A	RFTC_ERR_HWOPT_BADFWDPWR COMPOPT	Set by the RFTC module if an unsup- ported compensation option is detected at OEMCFG address 0xA1.
0x032B	RFTC_ERR_INVALID_PLL_DIVIDER _VALUE	This error is generated if the PLL Divider Value is zero.
0x032C	RFTC_ERR_SJC_EXTERNALLOTO OLOW	This error is generated if the external LO signal level is below the threshold specified in register HST_RFTC_SJC_EXTERNALLOTHR SH.
0x032D	RFTC_ERR_SJC_EXTERNALLONO TSELECTED	This error is generated if SJC is enabled, and the LO source is not external.
0x032E	RFTC_ERR_BADLOSOURCE	This error is generated if the LO source is incorrectly defined in the OEM Config registers.
0x032F	RFTC_ERR_GENERALRANDOMDA TA	This error is generated if there is a general error in the Random Data Transmit function.
0x0330	RFTC_ERR_XVCR_HEALTH_CHEC K_FAIL	This error is generated if there is transceiver health check failure and the handler is set to enable Mac Error. See OEM Config XCVR_HEALTH_CHECK_CFG.
0x0331	RFTC_ERR_INVALID_OEM_PROFIL E_HEADER	This error is generated if the OEM custom profile header is invalid.
0x0332	RFTC_ERR_AUTO_READ_RX_FIFO	This error is generated if an error dur- ing the Auto Read of the Rx FIFO Read is detected.
0x0333	RFTC_ERR_DC_OFFSET_CALIBRA TION	This error is general error generated if an error occurs during the DC Offset Calibration.
0x0334	RFTC_ERR_LBT_RSSI_CALIBRATI ON	This error is general error generated if an error occurs during the LBT RSSI Calibration. If noise floor versus cali- bration value do not have a significant difference this error will occur. User should check the injected reference signal for level and frequency.
0x0335	RFTC_ERR_PA_BIAS_CAL_CONFI G	This error is related to a PA Bias Cali- bration Configuration error.

Table B.2:	Error Code Details	
0x0336	RFTC_ERR_FWDPWRLEVERROR	This error is generated when the requested forward power level is not achieved during power ramp. See HST_ANT_DESC_RFPOWER for the power level requested, MAC_RFTC_PAPWRLEV for the power level achieved, and HST_RFTC_FWDPWRTHRSH for the error threshold.
0x0337	RFTC_ERR_HWOPT_BADPABIASD ACCTL	Indicates that PA Bias DAC Control option found in OEMCFG's HW_OPTIONS2 field is not recog- nized by the RFTC subsystem.
0x0338	RFTC_ERR_PA_BIAS_CAL_MEASU REMENT	This error is related to a PA Bias Cali- bration measurement variation error.
0x0339	RFTC_ERR_PA_BIAS_CAL_NOT_F OUND	This error is related to a PA Bias Cali- bration when the target current is not found.
0x033A	RFTC_ERR_GROSSGAIN_CONFIG _INVALID	This error is generated when the Gross Gain Config Value in the OEM is invalid. Min index must be less than Max, and Max must be less than the absolute max of 32.
0x033B	RFTC_ERR_SJC_NOT_AVAILABLE_ R500	This error is generated if SJC is enabled with an R500 device.
_	GPIO, MCU IO, NV Memory, O	EM Configuration
0x0400	IO_PERIPHERAL_PROG_ERR	This is set by the CPU module when programing IO wrong. This is likely due to errant MAC firmware code.
0x0401	IO_INVAL_RDMASK	This is set by the CPU support module when an attempt is made to read IO lines not configured for input. This may be due to internal firmware errors or the host having incorrectly config- ured the MTI RFID Development Plat- form GPIO lines.
0x0402	IO_INVAL_WRMASK	This is set by the CPU support module when an attempt is made to write IO lines not configured for output. This may be due to internal firmware errors or the host having incorrectly config- ured the MTI RFID Development Plat- form GPIO lines.
0x0403	IO_INVAL_PTR_RAM	This is set by the CPU module when a bounds check fails when accessing non-volatile memory - the caller has passed an incorrect RAM address. This is likely due to errant MAC firm- ware code.
0x0404	IO_INVAL_PTR_NV	This is set by the CPU module when a bounds check fails when attempting to read or write to non-volatile memory. This is likely due to errant MAC firmware code.

Table B.2:	Error Code Details	
0x0405	IO_INVAL_PTR_NV_ALIGN	This is set by the CPU module when a bounds check fails when attempting to read or write to non-volatile memory. This is likely due to errant MAC firm- ware code.
0x0406	IO_NV_LOCK_ERR	This is set by the CPU module while attempting to write to non-volatile memory (i.e. flash). This is a flash lock error and may be due to corrupted image or misconfigured firmware or hardware problems. If this error is detected by the host, it may which to attempt to read the devices OEM con- figuration area and save it on the host in order to preserve device specific settings.
0x0407	IO_NV_PROG_ERR	This is set by the CPU module while attempting to write to non-volatile memory (i.e. flash). This is a low-level flash write error and may be due to a misconfigured firmware image, timing problems stemming from board hard- ware failures, or because the flash has exceeded is limitations for writes. If this error is detected by the host, it may which to attempt to read the devices OEM configuration area and save it on the host in order to preserve device specific settings.
0x0408	IO_OEMCFG_ADDR_BOUNDS	This is set by the OEM Configuration module when an OEM configuration Address bounds check fails when accessing the OEM configuration space. This may be due to errant MAC firmware code or errant Host code.
0x0409	IO_OEMCFG_NV_BOUNDS	This is set by the OEM Configuration module when a non-volatile memory bounds check fails when accessing the OEM configuration space. This may be due to errant MAC firmware code or errant Host code.
0x040A	IO_OEMCFG_FMT_KEY	This is set by the OEM Configuration module's format facility used as the code calling it fails to pass in the cor- rect "format key" argument. This is a failsafe to prevent errant code from inadvertently reformatting flash - due to an invalid branch instruction, etc. This will occur when errant code jumps to the format facility incorrectly.

Table B.2:	Error Code Details	
0x040B	IO_OEMCFG_FLUSH	This is set by the OEM Configuration module when it fails to flush in mem- ory buffers to non-volatile memory. This may be due to a misconfigured firmware image, timing problems stemming from board hardware fail- ures, or because the flash has exceeded its limitations for writes. If this error is detected by the host, it may switch to attempt to read the device's OEM configuration area and save it on the host in order to preserve device specific settings.
0x040C	IO_OEMCFG_FORMAT	This is set by the OEM Configuration module when it fails to detect the cor- rect low level file system headers for the OEM configuration area. This means that the OEM configuration area has not been formatted - due to a misconfigured board or that the OEM Configuration area has become cor- rupt and should not be trusted without attempting recovery or reconfigura- tion.
0x040D	IO_INVAL_IORSVD	This is set by the CPU module when an attempt is made to configure reserved IO pins. This is likely due to a misconfigured firmware build or errant MAC firmware code.
0x040E	IO_OEMCFG_STRING_TYPE	This is set by the OEM Configuration module when an invalid string type is selected.
0x040F	IO_OEMCFG_STRING_LENGTH	This is set by the OEM Configuration module when an invalid string length is entered.
0x0410	IO_OEMCFG_STRING_CHARACTE R	This is set by the OEM Configuration module when an invalid character is entered.
0x0411	IO_OEMCFG_STRING_CURRENT_I NVALID	This is set by the OEM Configuration module when a string read cannot be read correctly since the current string has an invalid header.
0x0412	IO_OEMCFG_FORMAT_KEY_INVALI D	This is set by the OEM Configuration module when the generated key does not match the check key when attempting to format the OEM Config- uration space.
0x0413	IO_OEMCFG_FORMAT_CONFIGUR ATION_INVALID	This is set by the OEM Configuration module when an invalid format config- uration is specified.
0x0414	IO_INVAL_NV_SECTOR	This is set by the CPU module while attempting to lock or unlock a flash sector and the specified sector is invalid.
	LOW LEVEL KEID HP-SIP MO	aule interface

Table B.2:	Error Code Details	
0x0601	TILDENIF_ERR_ADDRMISMAT	This is set by the UHF RFID trans- ceiver interface module when an UHF RFID transceiver register read, when configured for Serial port mode, returns the incorrect register address in the serial response frame. This could be due to board or UHF RFID transceiver hardware problems or errant MAC firmware code.
0x0602	TILDENIF_ERR_RDFAILSAFE	This is set by the UHF RFID trans- ceiver interface module when failsafe logic is activated due to no response from the UHF RFID transceiver. This happens on UHF RFID transceiver register reads. This could be due to board or UHF RFID transceiver hard- ware problems.
0x0603	TILDENIF_ERR_INVALPWRST	Set by the low level interface logic if, during power management, an invalid power state is requested. This will likely only occur if the system is cor- rupt.
0x0604	TILDENIF_ERR_INVALID_SETTING _R500	Set by the low level interface logic if, during a write, an invalid setting is selected.
	Built-In Self Te	st
0x0701	BIST_ERR_RF_IO_REG_CHK	This error code is set during firmware boot when the Built-In Self Test code is executed. This error indicates that certain register power up defaults on UHF RFID transceiver were not detected - possibly indicating a hard- ware problem.
0x0702	BIST_ERR_RF_REG_BITS	This error code is set during firmware boot when the Built In Self Test code is executed. This error indicates that a walking 1's or walking 0's bus test failed - possibly indicating a hardware problem.

WISE-2834 User Manual

RFID Frequency Channel Tables

C.1 United States/Canada/Mexico Region Frequency Channel Table

The frequency range of those regions, which are United States, Canada and Mexico regions, is from 902 to 928 MHz. A table of all 50 channels is shown in Table C.1.

Table	Table C.1: Frequency Channel Table of US Band												
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)				
1	902.75	2	903.25	3	903.75	4	904.25	5	904.75				
6	905.25	7	905.75	8	906.25	9	906.75	10	907.25				
11	907.75	12	908.25	13	908.75	14	909.25	15	909.75				
16	910.25	17	910.75	18	911.25	19	911.75	20	912.25				
21	912.75	22	913.25	23	913.75	24	914.25	25	914.75				
26	915.25	27	915.75	28	916.25	29	916.75	30	917.25				
31	917.75	32	918.25	33	918.75	34	919.25	35	919.75				
36	920.25	37	920.75	38	921.25	39	921.75	40	922.25				
41	922.75	42	923.25	43	923.75	44	924.25	45	924.75				
46	925.25	47	925.75	48	926.25	49	926.75	50	927.25				

C.2 Europe Region Frequency Channel Table (ETSI EN 302 208)

The frequency range of Europe region is from 865.6 to 867.6 MHz. A table of all 4 channels is shown in Table C.2.

Table C.2: Frequency Channel Table of EU Band									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	865.7	2	866.3	3	866.9	4	867.5		

C.3 Europe2 Region Frequency Channel Table(ETSI EN 300 220)

The frequency of Europe2 region is only 869.85 MHz. A table of 1 channel is shown in Table C.3.

Table C.3: Frequency Channel Table of EU2 Band						
Channel	Frequency (MHz)					
1	869.85					

C.4 Taiwan Region Frequency Channel Table

The frequency range of Taiwan region is from 922 to 928 MHz. A table of all 12 channels is shown in Table C.4.

Table C.4: Frequency Channel Table of TW Band												
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	922.25	2	922.75	3	923.25	4	923.75	5	924.25			
6	924.75	7	925.25	8	925.75	9	926.25	10	926.75			
11	927.25	12	927.75									

C.5 China Region Frequency Channel Table

The frequency range of China region is from 920.5 to 924.5 MHz. A table of all 16 channels is shown in Table C.5.

Table C.5: Frequency Channel Table of CN Band													
Channel	Fre- quency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)				
1	920. 625	2	920.875	3	921.125	4	921.375	5	921.625				
6	921. 875	7	922.125	8	922.375	9	922.625	10	922.875				
11	923. 125	12	923.375	13	923.625	14	923.875	15	924.125				
16	924. 375												

C.6 South Korea Region Frequency Channel Table

The frequency range of South Korea is from 917 to 920.8 MHz. A table of all 6 channels is shown in Table C.6.

Table	Table C.6: Frequency Channel Table of KR Band											
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	917.3	2	917.9	3	918.5	4	919.1	5	919.7			
6	920.3											

C.7 Australia/New Zealand Region Frequency Channel Table

The frequency range of both Australia and New Zealand regions is from 920 to 926 MHz. A table of all 7 channels is shown in Table C.7.

Table	Table C.7: Frequency Channel Table of AU/NZ Band										
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	922.25	2	922.75	3	923.25	4	923.75	5	924.25		
6	924.75	7	925.25								

C.8 Brazil Region Frequency Channel Table

The frequency range of Brazil region is from 902 to 907.5 MHz and from 915 to 928 MHz. A table of all 35 channels is shown in Table C.8.

Table C.8: Frequency Channel Table of BR Band									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.75	2	903.25	3	903.75	4	904.25	5	904.75
6	905.25	7	905.75	8	906.25	9	906.75	10	907.25
11	915.25	12	915.75	13	916.25	14	916.75	15	917.25
16	917.75	17	918.25	18	918.75	19	919.25	20	919.75
21	920.25	22	920.75	23	921.25	24	921.75	25	922.25
26	922.75	27	923.25	28	923.75	29	924.25	30	924.75
31	925.25	32	925.75	33	926.25	34	926.75	35	927.25

C.9 Israel Region Frequency Channel Table

The frequency range of Israel region is from 915 to 917 MHz. A table of all 2 channels is shown in Table C.9.

Table C.9: Frequency Channel Table of IL Band							
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
1	915.75	2	916.25				

C.10 India Region Frequency Channel Table

The frequency range of India region is from 865 to 867 MHz. A table of all 2 channels is shown in Table C.10.

Table C.10: Frequency Channel Table of IN Band							
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
1	865.7	2	866.3				

C.11 Japan Region Frequency Channel Table

The frequency range of Japan region is from 916.7 to 920.9 MHz. A table of all 4 channels is shown in Table C.11.

Table C.11: Frequency Channel Table of JP Band									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	916.8	2	918.0	3	919.2	4	920.4		

C.12 Japan2 Region Frequency Channel Table (with LBT)

The frequency range of Japan2 region is from 916.7 to 920.9 MHz. A table of all 6 channels is shown in Table C.12.

Table C.12: Frequency Channel Table of JP2 Band									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	916.8	2	918.0	3	919.2	4	920.4	5	920.6
6	920.8								

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission of the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Advantech Co., Ltd. 2020