

FCC Test Report

Report No.: RFBEAD-WTW-P22010204

FCC ID: M82-WIEE-2200

Test Model: WISE-2200-M

Received Date: Jan. 06, 2022

Test Date: Jan. 19, 2022 ~ Jan. 27, 2022

Issued Date: Mar. 03, 2022

Applicant: ADVANTECH CO., LTD

Address: No.1, Alley 20, Lane 26, Rueiguang Rd, Neihu District, Taipei, Taiwan 114

- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
- Test Location (2): No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan

FCC Registration / (1) 788550 / TW0003

Designation Number: (2) 281270 / TW0032

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	elease	Control Record	4
1	C	ertificate of Conformity	5
2	S	ummary of Test Results	6
	2.1	Measurement Uncertainty	6
	2.2	Modification Record	6
3	G	eneral Information	7
	3.1	General Description of EUT	7
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1 3.5	Configuration of System under Test	
		General Description of Applied Standards and references	
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	12
	4.1.1		
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.1.7	Test Results Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results	
	4.3	Number of Hopping Frequency Used	
	4.3.1	Limits of Hopping Frequency Used Measurement	
	4.3.2	Test Setup	
	4.3.3	Test Instruments	39
	4.3.4	Test Procedure	39
	4.3.5	Deviation fromTest Standard	39
		Test Results	
	4.4	Dwell Time on Each Channel	
		Limits of Dwell Time on Each Channel Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures.	
		Deviation from Test Standard	
	4.4.6 4.5	Test Results	
	-	Channel Bandwidth Limits of Channel Bandwidth Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.6	Hopping Channel Separation	

	lix – Information of the Testing Laboratories	
5 P	ictures of Test Arrangements	50
4.8.7	Test Results	48
	EUT Operating Condition	
	Deviation from Test Standard	
	Test Procedure	
4.8.3	Test Instruments	48
4.8.2	Test Setup	48
4.8.1	Limits of Conducted Out Of Band Emission Measurement	48
4.8	Conducted Out of Band Emission Measurement	48
	Test Results	
	EUT Operating Condition	
	Deviation from Test Standard	
	Test Procedure	
	Test Instruments	
	Test Setup	
	Limits of Conducted Output Power Measurement	
	Conducted Output Power Measurement	
	Test Results	
	Deviation from Test Standard	
	Test Procedure	
	Test Instruments	
	Test Setup	
161	Limits of Hopping Channel Separation Measurement	11

Release Control Record

Issue No.	Description	Date Issued
RFBEAD-WTW-P22010204	Original Release	Mar. 03, 2022

1 Certificate of Conformity

Product:	LoRaWAN Smart I/O Module
Brand:	ADVANTECH
Test Model:	WISE-2200-M
Sample Status:	Engineering Sample
Applicant:	ADVANTECH CO., LTD
Test Date:	Jan. 19, 2022 ~ Jan. 27, 2022
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Vera Huang

Vera Huang / Specialist

Date: Mar. 03, 2022

Approved by :

Jeremy Lin

Date: Mar. 03, 2022

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -18.45 dB at 0.19000 MHz.				
15.247(a)(1)(i)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.				
15.247(a)(1)(i)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.				
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.				
15.247(b)(2)	Maximum Peak Output Power	Pass	Meet the requirement of limit.				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -2.32 dB at 2726.10 MHz.				
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB
	9kHz ~ 30MHz	3.00 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.91 dB
	200MHz ~1000MHz	2.93 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	1.76 dB
	18GHz ~ 40GHz	1.77 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	LoRaWAN Smart I/O Module
Brand	ADVANTECH
Test Model	WISE-2200-M
Sample Status	Engineering Sample
Power Supply Rating	5-50Vdc from Power Supply
Modulation Type	chirp spread spectrum (CSS) technology
Transfer Rate	125 kbps, 250 kbps and 500 kbps
Operating Frequency	902.3~914.9MHz
Number of Channel	64
Channel Spacing	0.2MHz
Output Power	63.533 mW
Antenna Type	Dipole antenna with 1.06 dBi gain
Antenna Connector	R-SMA
Accessory Device	NA
Cable Supplied	NA

Note:

- 1. The EUT support 125kHz bandwidth only and without hybrid mode.
- 2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- 3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

Channel	Freq. (MHz)						
0	902.3	16	905.5	32	908.7	48	911.9
1	902.5	17	905.7	33	908.9	49	912.1
2	902.7	18	905.9	34	909.1	50	912.3
3	902.9	19	906.1	35	909.3	51	912.5
4	903.1	20	906.3	36	909.5	52	912.7
5	903.3	21	906.5	37	909.7	53	912.9
6	903.5	22	906.7	38	909.9	54	913.1
7	903.7	23	906.9	39	910.1	55	913.3
8	903.9	24	907.1	40	910.3	56	913.5
9	904.1	25	907.3	41	910.5	57	913.7
10	904.3	26	907.5	42	910.7	58	913.9
11	904.5	27	907.7	43	910.9	59	914.1
12	904.7	28	907.9	44	911.1	60	914.3
13	904.9	29	908.1	45	911.3	61	914.5
14	905.1	30	908.3	46	911.5	62	914.7
15	905.3	31	908.5	47	911.7	63	914.9

64 channels are provided for EUT (125kHz Bandwidth):

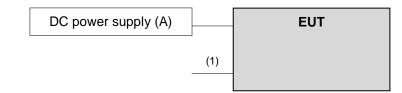
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	•	Applic	able to		-	Description
Mode	RE≥1G	RE<1G	PLC	APCM	L	Description
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
PL Note: The EUT	C: Power Line Co	onducted Emiss sted on the pos	sion sitioned of eac	-	ement RE<1G: Radiated APCM: Antenna F rorst case was found when	Port Conducted Measurement
	•		-			
betwee archited	n available me sture).	odulations, o	data rates a	nd antenna	ase mode from all po ports (if EUT with an st as listed below.	
EUT Cor	figure Mode	Avail	able Channel		Tested Channel	Modulation Type
	-		0 to 63		0, 32, 63	CSS
betwee archited	n available me cture).	odulations, o	data rates a	nd antenna	ase mode from all po ports (if EUT with an st as listed below.	
	figure Mode		able Channel		Tested Channel	Modulation Type
	-		0 to 63		0, 32, 63	CSS
🛛 Pre-Sca		onducted to	determine		ase mode from all po	
Pre-Sca betwee archited	an has been c n available me cture).	onducted to	determine data rates a	nd antenna	ase mode from all po ports (if EUT with an st as listed below.	
 Pre-Sca betwee archited Following 	an has been c n available me cture).	conducted to odulations, o was (were)	determine data rates a	nd antenna	ports (if EUT with an	
 Pre-Sca betweet archited Following 	an has been c n available mo ture). ng channel(s)	conducted to odulations, o was (were)	determine data rates a selected for	nd antenna	ports (if EUT with an st as listed below.	tenna diversity
 ✓ Pre-Sca betwee architec ✓ Followin EUT Cor Antenna Por ✓ This ite mode. ✓ Pre-Sca betwee architec 	an has been o n available mo ture). ng channel(s) <u>figure Mode</u> - <u>t Conducted I</u> m includes all an has been o n available mo ture).	was (were) Avail Measureme test value of conducted to odulations, of	determine data rates a <u>selected for</u> <u>able Channel</u> 0 to 63 <u>nt:</u> of each mod determine data rates a	nd antenna r the final te le, but only i the worst-ca nd antenna	ports (if EUT with an st as listed below. <u>Tested Channel</u> 32 ncludes spectrum ple ase mode from all po ports (if EUT with an	Modulation Type CSS ot of worst value of each ssible combinations
 Pre-Sca betwee archited Followin EUT Cor Antenna Por This ite mode. Pre-Sca betwee archited Followin 	an has been o n available mo sture). <u>ng channel(s)</u> <u>figure Mode</u> - <u>-</u> <u>t Conducted I</u> m includes all an has been o n available mo sture). <u>ng channel(s)</u>	was (were) Avail Measureme test value of conducted to odulations, of was (were)	determine data rates a <u>selected for able Channel 0 to 63</u> <u>nt:</u> of each mod determine data rates a <u>selected for</u>	nd antenna r the final te le, but only i the worst-ca nd antenna	ports (if EUT with an st as listed below. <u>Tested Channel</u> <u>32</u> ncludes spectrum ple ase mode from all po ports (if EUT with an st as listed below.	tenna diversity <u>Modulation Type</u> <u>CSS</u> ot of worst value of each ssible combinations tenna diversity
 Pre-Sca betwee archited Followin EUT Cor Antenna Por This ite mode. Pre-Sca betwee archited Followin 	an has been o n available mo ture). ng channel(s) <u>figure Mode</u> - <u>t Conducted I</u> m includes all an has been o n available mo ture).	was (were) Avail Measureme test value of conducted to odulations, of was (were)	determine data rates a <u>selected for</u> <u>able Channel</u> 0 to 63 <u>nt:</u> of each mod determine data rates a <u>selected for</u> <u>able Channel</u>	nd antenna r the final te le, but only i the worst-ca nd antenna	ports (if EUT with an st as listed below. <u>Tested Channel</u> <u>32</u> ncludes spectrum ple ase mode from all po ports (if EUT with an st as listed below. <u>Tested Channel</u>	Modulation Type CSS ot of worst value of each ssible combinations tenna diversity Modulation Type
 Pre-Sca betwee archited Followin EUT Cor Antenna Por This ite mode. Pre-Sca betwee archited Followin EUT Cor 	an has been o n available mo ture). ng channel(s) figure Mode - t Conducted I m includes all an has been o n available mo ture). ng channel(s) figure Mode -	was (were) Avail Measureme test value of conducted to odulations, of was (were)	determine data rates a <u>selected for able Channel 0 to 63</u> <u>nt:</u> of each mod determine data rates a <u>selected for</u>	nd antenna r the final te le, but only i the worst-ca nd antenna	ports (if EUT with an st as listed below. <u>Tested Channel</u> <u>32</u> ncludes spectrum ple ase mode from all po ports (if EUT with an st as listed below.	tenna diversity <u>Modulation Type</u> <u>CSS</u> ot of worst value of each ssible combinations tenna diversity
 Pre-Sca betwee archited Followin EUT Cor Antenna Por This ite mode. Pre-Sca betwee archited Followin EUT Cor 	an has been o n available mo ture). ng channel(s) figure Mode - t Conducted I m includes all an has been o n available mo ture). ng channel(s) figure Mode -	eonducted to odulations, o was (were) Avail Measureme test value o conducted to odulations, o was (were) Avail	determine data rates a <u>selected for</u> <u>able Channel</u> 0 to 63 <u>nt:</u> of each mod determine data rates a <u>selected for</u> <u>able Channel</u>	nd antenna r the final te le, but only i the worst-ca nd antenna r the final te	ports (if EUT with an st as listed below. <u>Tested Channel</u> <u>32</u> ncludes spectrum ple ase mode from all po ports (if EUT with an st as listed below. <u>Tested Channel</u>	Modulation Type CSS ot of worst value of each ssible combinations tenna diversity Modulation Type
 ✓ Pre-Sca betwee architec ✓ Followin EUT Cor Antenna Por ✓ This ite mode. ✓ Pre-Sca betwee architec ✓ Followin EUT Cor 	an has been o n available me ture). ng channel(s) <u>figure Mode</u> <u>t Conducted I</u> m includes all an has been o n available me ture). ng channel(s) <u>figure Mode</u> <u>on:</u> cable to <u>E≥1G</u>	eonducted to odulations, o was (were) Avail Measureme test value o conducted to odulations, o was (were) Avail	determine data rates a <u>selected for</u> <u>able Channel</u> <u>0 to 63</u> of each mod determine data rates a <u>selected for</u> <u>able Channel</u> <u>0 to 63</u>	nd antenna r the final te le, but only i the worst-ca nd antenna r the final te	ports (if EUT with an st as listed below. Tested Channel 32 ncludes spectrum ple ase mode from all po ports (if EUT with an st as listed below. Tested Channel 0, 32, 63	Modulation Type CSS ot of worst value of each ssible combinations tenna diversity Modulation Type CSS
 ✓ Pre-Sca betweel archited ✓ Followin EUT Cor Antenna Por ✓ This ite mode. ✓ Pre-Sca betweel archited ✓ Followin ✓ Followin ✓ Followin ✓ Followin ✓ Followin ✓ Right Condition ✓ Appli ✓ Right Right 	an has been on available months been on available months been of the second se	monducted to odulations, of was (were) Avail Measureme test value of conducted to odulations, of was (were) Avail conducted to odulations, of was (were) Avail add conducted to odulations, of was (were) Avail add add 23 de 23 de	determine data rates a <u>selected for</u> <u>able Channel</u> 0 to 63 <u>nt:</u> of each mod of each mod data rates a <u>selected for</u> <u>able Channel</u> 0 to 63 <u>nental Conditio</u> <u>g. C, 67% RH</u> <u>g. C, 67% RH</u>	nd antenna r the final te le, but only i the worst-ca nd antenna r the final te	ports (if EUT with an st as listed below. Tested Channel 32 ncludes spectrum pla ase mode from all po ports (if EUT with an st as listed below. Tested Channel 0, 32, 63 Input Power 120Vac, 60Hz 120Vac, 60Hz	tenna diversity Modulation Type CSS ot of worst value of each ssible combinations tenna diversity Modulation Type CSS
 Pre-Sca betweel archited archited archited Followin EUT Cor Antenna Por This ite mode. Pre-Sca betweel archited archited Followin EUT Cor 	an has been o n available me ture). ng channel(s) <u>figure Mode</u> <u>t Conducted I</u> m includes all an has been o n available me ture). ng channel(s) <u>figure Mode</u> <u>on:</u> cable to <u>E≥1G</u>	monducted to odulations, of was (were) Avail Measureme test value of conducted to odulations, of was (were) Avail conducted to odulations, of was (were) Avail ada 23 de 23 de 23 de	determine data rates a selected for <u>able Channel</u> 0 to 63 <u>nt:</u> of each mod determine data rates a selected for <u>able Channel</u> 0 to 63	nd antenna r the final te le, but only i the worst-ca nd antenna r the final te	ports (if EUT with an st as listed below. Tested Channel 32 ncludes spectrum please mode from all po ports (if EUT with an st as listed below. Tested Channel 0, 32, 63 Input Power 120Vac, 60Hz	tenna diversity Modulation Type CSS ot of worst value of each ssible combinations tenna diversity Modulation Type CSS

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100%, duty factor is not required.

Swept SA KEYSIGHT Input: RF L Coupling: DC Align: Auto	Input Z: 50 Q #Alter Corr CCorr RCal Freq Ref. Int (S)	: 20 dB PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Hold:>100/100 Trig. Free Run	Frequency Frequency Settings Genter Frequency B02.300000 MHz
1 Spectrum v Scale/Div 10 dB	Ref Lev	vel 116.99 dBµV	Mkr1 92 99.64	
107 1 97.0				Full Span Start Freq 902.300000 MHz
				Stop Freq 902.300000 MHz
				CF Step 6.025000000 GHz
27.0				Freq Offset 0 Hz X Avis Scale
Center 902.300000 MHz #Res BW (-6dB) 8.07 MHz	#Vide	o BW 8.0 MHz	Sp Sweep 1.00 ms (1	an 0 Hi Lon


3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	DC power supply	Jin Yih	SP3051	SP30512113422	NA	

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	1	Y	0	

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

FCC Part 15, Subpart C (15.247) ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

References Test Guidance :

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver Rohde & Schwarz	ESR3	102782	Dec. 10, 2021	Dec. 09, 2022
Spectrum Analyzer Rohde & Schwarz	FSW43	101582	Apr. 01, 2021	Mar. 31, 2022
BILOG Antenna SCHWARZBECK	VULB9168	9168-1213	Oct. 27, 2021	Oct. 26, 2022
HORN Antenna RF SPIN	DRH18-E	210103A18E	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	9170-1048	Nov. 14, 2021	Nov. 13, 2022
Loop Antenna EMCI	EM-6879	269	Sep. 16, 2021	Sep. 15, 2022
Loop Antenna TESEQ	HLA 6121	45745	Jul. 21, 2021	Jul. 20, 2022
Preamplifier EMCI	EMC330N	980782	Jan. 17, 2022	Jan. 16, 2023
Preamplifier EMCI	EMC118A45SE	980808	Dec. 30, 2021	Dec. 29, 2022
Preamplifier EMCI	EMC184045SE	980788	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC104-SM-SM- (9000+2000+1000)	201243+ 201231+ 210102	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMCCFD400-NM- NM- (9000+300+500)	201236+ 201235+ 201233	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC101G-KM-KM- (5000+3000+2000)	201260+201257+20125 4	Jan. 17, 2022	Jan. 16, 2023
Software BV ADT	ADT_Radiated_V7. 6.15.9.5	NA	NA	NA
Antenna Tower Max-Full	MFT-151SS-0.5T	NA	NA	NA
Turn Table Max-Full	MF-7802BS	NA	NA	NA
Turn Table Controller Max-Full	MF-7802BS	MF780208674	NA	NA
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	Jan. 17, 2022	Jan. 16, 2023
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 18, 2022	Jan. 17, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in WM Chamber 8.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

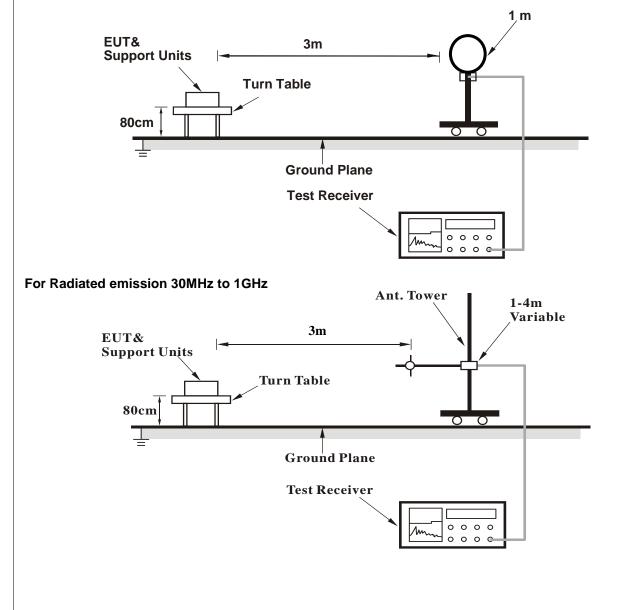
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

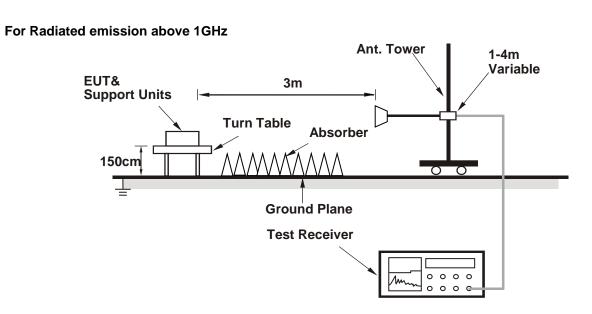
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



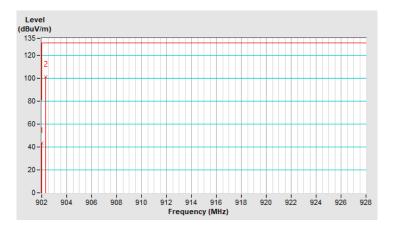
4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Set the EUT under transmission condition continuously at specific channel frequency.

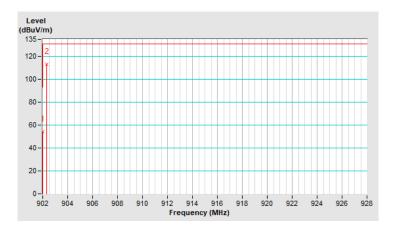


4.1.7 Test Results

Channel	TX Channel 0	Detector Function	Oursei Deelk (OD)
Frequency Range	902MHz ~ 928MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	902.00	43.28 QP	81.19	-37.91	1.07 H	181	18.70	24.58				
2	902.30	101.19 QP			1.07 H	181	76.60	24.59				

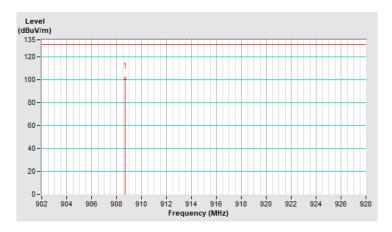
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Channel	TX Channel 0	Detector Function	Overei Deels (OD)
Frequency Range	equency Range 902MHz ~ 928MHz		Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	902.00	54.18 QP	93.49	-39.31	1.05 V	196	29.60	24.58				
2	902.30	113.49 QP			1.05 V	196	88.90	24.59				

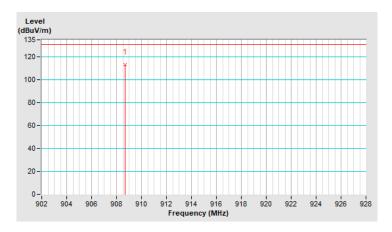
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Channel	TX Channel 32		
Frequency Range	902MHz ~ 928MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	908.70	101.10 QP			1.03 H	182	76.30	24.80			

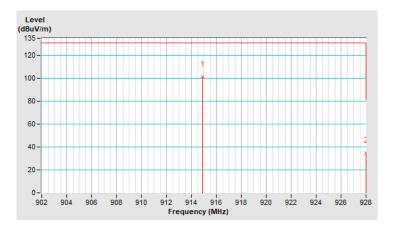
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Channel	TX Channel 32		
Frequency Range	902MHz ~ 928MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	908.70	113.20 QP			1.06 V	197	88.40	24.80			

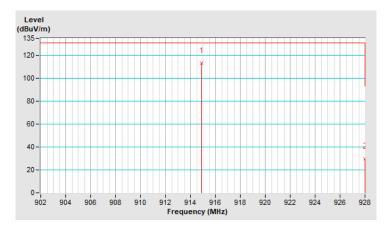
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Channel	TX Channel 63	Detector Francisco	Oversi Dask (OD)
Frequency Range	902MHz ~ 928MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	914.90	101.11 QP			1.07 H	182	76.20	24.91				
2	928.00	34.61 QP	81.11	-46.50	1.07 H	182	9.40	25.21				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



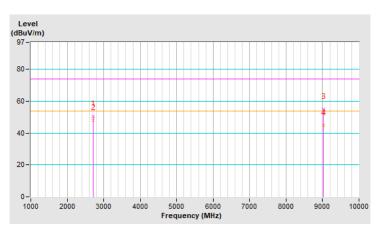
Channel	TX Channel 63	Detector Francisco	Oversi Dask (OD)
Frequency Range	902MHz ~ 928MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	914.90	113.11 QP			1.05 V	201	88.20	24.91		
2	928.00	29.91 QP	93.11	-63.20	1.05 V	201	4.70	25.21		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Above 1GHz Data:

Channel	TX Channel 0	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

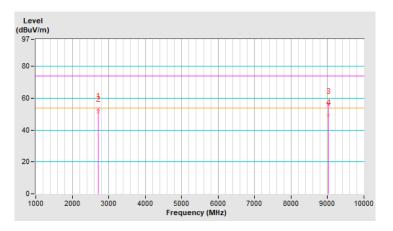

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2706.90	50.51 PK	74.00	-23.49	3.90 H	290	53.80	-3.29		
2	2706.90	47.91 AV	54.00	-6.09	3.90 H	290	51.20	-3.29		
3	9023.00	55.14 PK	74.00	-18.86	1.79 H	62	47.20	7.94		
4	9023.00	44.94 AV	54.00	-9.06	1.79 H	62	37.00	7.94		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

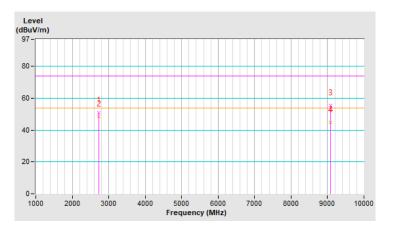

Channel	TX Channel 0	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2706.90	53.41 PK	74.00	-20.59	2.34 V	321	56.70	-3.29		
2	2706.90	51.31 AV	54.00	-2.69	2.34 V	321	54.60	-3.29		
3	9023.00	56.14 PK	74.00	-17.86	1.75 V	8	48.20	7.94		
4	9023.00	49.34 AV	54.00	-4.66	1.75 V	8	41.40	7.94		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

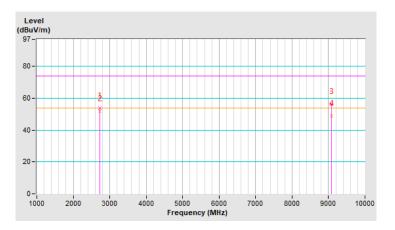

Channel	TX Channel 32	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2726.10	50.88 PK	74.00	-23.12	3.92 H	295	54.10	-3.22		
2	2726.10	48.38 AV	54.00	-5.62	3.92 H	295	51.60	-3.22		
3	9087.00	55.40 PK	74.00	-18.60	1.74 H	66	47.50	7.90		
4	9087.00	45.00 AV	54.00	-9.00	1.74 H	66	37.10	7.90		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

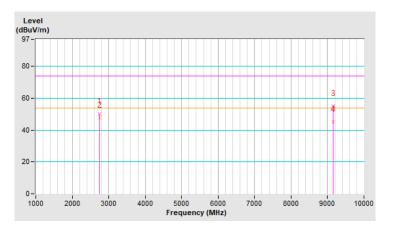

Channel	TX Channel 32	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2726.10	53.68 PK	74.00	-20.32	2.58 V	343	56.90	-3.22		
2	2726.10	51.68 AV	54.00	-2.32	2.58 V	343	54.90	-3.22		
3	9087.00	56.50 PK	74.00	-17.50	1.72 V	11	48.60	7.90		
4	9087.00	48.80 AV	54.00	-5.20	1.72 V	11	40.90	7.90		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

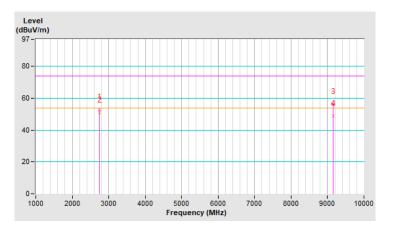

Channel	TX Channel 63	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2744.00	50.24 PK	74.00	-23.76	3.87 H	284	53.40	-3.16		
2	2744.00	47.64 AV	54.00	-6.36	3.87 H	284	50.80	-3.16		
3	9149.00	55.15 PK	74.00	-18.85	1.71 H	72	47.20	7.95		
4	9149.00	45.15 AV	54.00	-8.85	1.71 H	72	37.20	7.95		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value


Channel	TX Channel 63	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 10GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2744.70	53.04 PK	74.00	-20.96	2.78 V	349	56.20	-3.16		
2	2744.70	50.94 AV	54.00	-3.06	2.78 V	349	54.10	-3.16		
3	9149.00	56.35 PK	74.00	-17.65	1.00 V	9	48.40	7.95		
4	9149.00	48.95 AV	54.00	-5.05	1.00 V	9	41.00	7.95		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

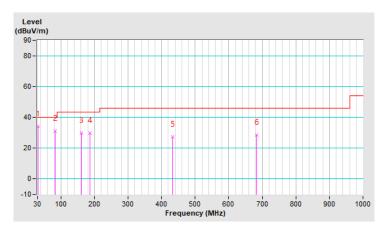
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

Below 1GHz Data:

Channel	TX Channel 0	Detector Function	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	31.41	34.09 QP	40.00	-5.91	2.00 H	282	53.58	-19.49		
2	83.42	31.15 QP	40.00	-8.85	2.00 H	133	54.77	-23.62		
3	160.74	29.88 QP	43.50	-13.62	1.51 H	256	47.93	-18.05		
4	186.04	29.63 QP	43.50	-13.87	1.51 H	98	49.98	-20.35		
5	432.06	27.23 QP	46.00	-18.77	1.51 H	142	41.43	-14.20		
6	682.29	28.45 QP	46.00	-17.55	1.51 H	38	38.03	-9.58		


Remarks:

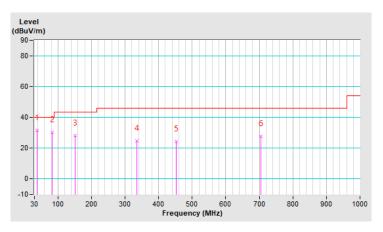
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Channel	TX Channel 0	Detector Function	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	37.03	31.33 QP	40.00	-8.67	1.49 V	16	50.10	-18.77		
2	83.42	30.31 QP	40.00	-9.69	1.49 V	279	53.93	-23.62		
3	150.90	28.02 QP	43.50	-15.48	1.49 V	2	46.08	-18.06		
4	335.06	24.64 QP	46.00	-21.36	1.49 V	150	41.19	-16.55		
5	453.14	24.45 QP	46.00	-21.55	1.99 V	177	37.91	-13.46		
6	704.78	27.90 QP	46.00	-18.10	1.99 V	18	37.00	-9.10		

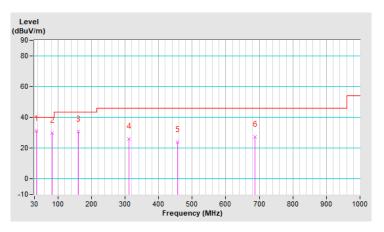
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 32	Detector Function	
Frequency Range	9kHz ~ 1GHz		Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	35.62	31.23 QP	40.00	-8.77	1.99 H	260	50.26	-19.03		
2	83.42	29.84 QP	40.00	-10.16	1.49 H	108	53.46	-23.62		
3	160.74	30.54 QP	43.50	-12.96	1.49 H	273	48.59	-18.05		
4	311.16	26.04 QP	46.00	-19.96	1.00 H	275	43.39	-17.35		
5	455.96	23.70 QP	46.00	-22.30	1.49 H	156	37.10	-13.40		
6	687.91	27.30 QP	46.00	-18.70	1.49 H	40	36.75	-9.45		

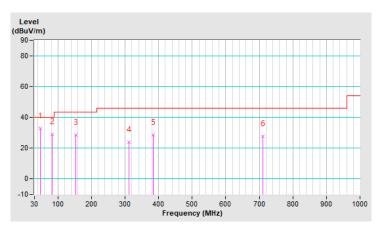
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 32	Detector Franctica	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	46.87	32.68 QP	40.00	-7.32	1.50 V	60	50.76	-18.08		
2	82.01	29.19 QP	40.00	-10.81	1.50 V	308	52.62	-23.43		
3	152.30	28.38 QP	43.50	-15.12	1.50 V	352	46.39	-18.01		
4	312.57	23.96 QP	46.00	-22.04	1.00 V	142	41.24	-17.28		
5	384.26	28.39 QP	46.00	-17.61	1.50 V	7	43.93	-15.54		
6	710.41	27.62 QP	46.00	-18.38	2.00 V	18	36.59	-8.97		

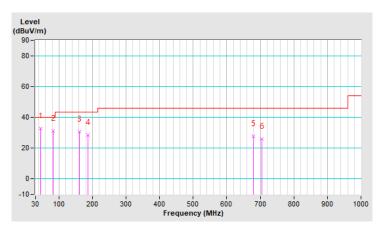
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 63	Detector Function	
Frequency Range	9kHz ~ 1GHz		Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	45.46	32.90 QP	40.00	-7.10	1.51 H	142	50.93	-18.03		
2	82.01	31.09 QP	40.00	-8.91	2.00 H	123	54.52	-23.43		
3	160.74	30.67 QP	43.50	-12.83	1.51 H	232	48.72	-18.05		
4	186.04	28.49 QP	43.50	-15.01	2.00 H	138	48.84	-20.35		
5	679.48	27.85 QP	46.00	-18.15	1.51 H	45	37.47	-9.62		
6	704.78	25.99 QP	46.00	-20.01	1.01 H	221	35.09	-9.10		

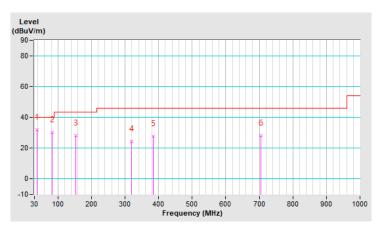
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 63	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		


	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	37.03	31.96 QP	40.00	-8.04	1.49 V	56	50.73	-18.77
2	82.01	30.27 QP	40.00	-9.73	1.00 V	310	53.70	-23.43
3	153.71	28.17 QP	43.50	-15.33	1.49 V	349	46.13	-17.96
4	319.59	24.18 QP	46.00	-21.82	1.00 V	281	41.23	-17.05
5	384.26	27.79 QP	46.00	-18.21	1.00 V	2	43.33	-15.54
6	704.78	28.13 QP	46.00	-17.87	1.00 V	24	37.23	-9.10

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

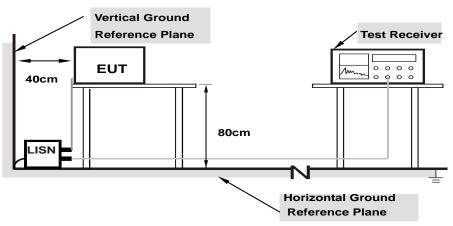
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 03, 2021	Dec. 02, 2022
RF signal cable Woken	5D-FB	Cable-cond1-01	Jan. 15, 2022	Jan. 14, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 25, 2021	Feb. 24, 2022
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 07, 2021	Sep. 06, 2022
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

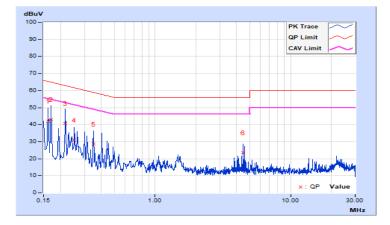
4.2.5 Test Setup

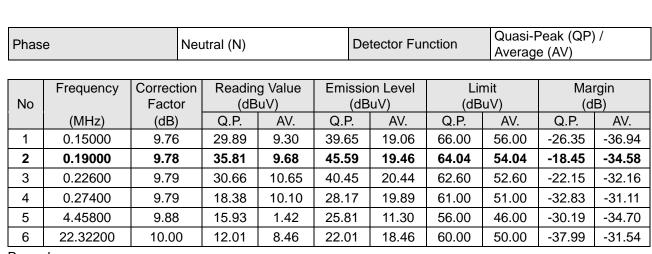
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results

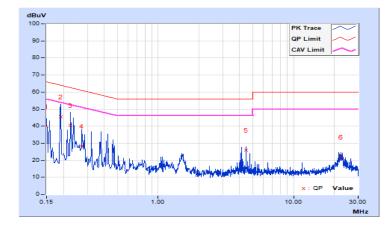

Worst-case data:

Phase			Line (L)			Detector Function		Quasi-Peak (QP) / Average (AV)		
	F		Decla		F ''.			. •		
No	Frequency	Correction Factor		g Value uV)		on Level suV)	Lin (dB			rgin B)
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.
1	0.16200	9.71	32.32	6.06	42.03	15.77	65.36	55.36	-23.33	-39.59
2	0.17000	9.71	33.27	6.34	42.98	16.05	64.96	54.96	-21.98	-38.91
3	0.21800	9.72	31.04	8.70	40.76	18.42	62.89	52.89	-22.13	-34.47
4	0.25400	9.73	21.13	9.17	30.86	18.90	61.63	51.63	-30.77	-32.73
5	0.35000	9.75	18.75	1.39	28.50	11.14	58.96	48.96	-30.46	-37.82
6	4.46200	9.81	13.63	1.08	23.44	10.89	56.00	46.00	-32.56	-35.11

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Remarks:

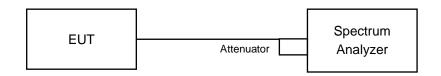

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

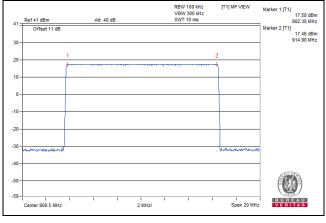
The 20 dB bandwidth of the hopping channel is less than 250 kHz, at least 50 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 Test Results

There are 64 hopping frequencies in the hopping mode.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. (If the 20 dB bandwidth of the hopping channel is less than 250 kHz)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

Number of transmission in 20 sec	Length of transmission time (msec)	Result (msec)	Limit (msec)	
1 time	318.8	318.8	400	

Note: Test plots of the transmitting time slot are shown on following.

1Pk View									
					м	1[1]			6.88 dBn 2.2029 9
10 dBm	41 D2 4				D	2[1]			-0.02 di 318.8 m
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm			_						
50,d8mm	e hours	www.weite	addrawaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	-	alayara towato		www.	Joshow town	Julianum
-60 dBm		_							
-70 dBm									

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

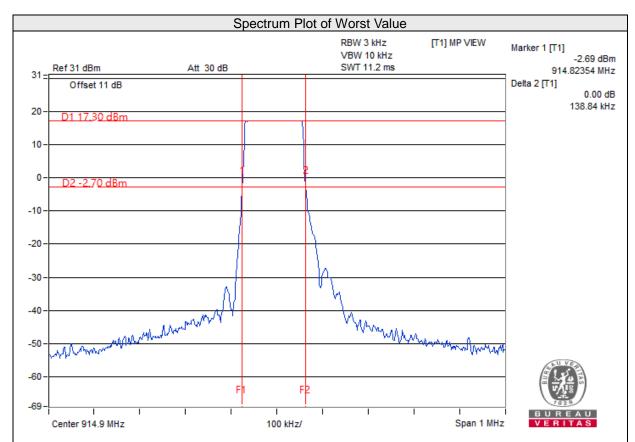
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	
0	902.3	0.138	
32	908.7	0.137	
63	914.9	0.139	

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

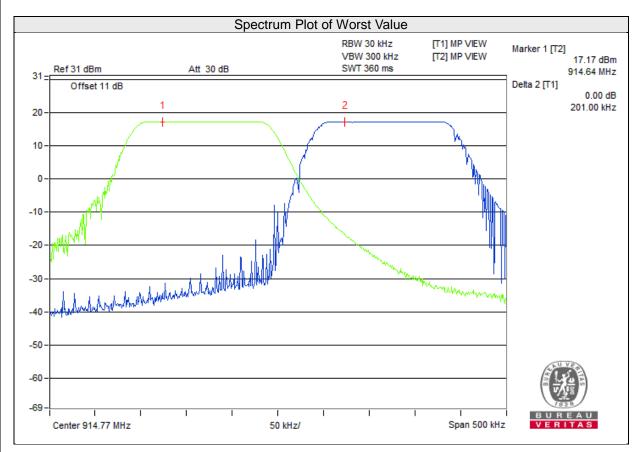
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

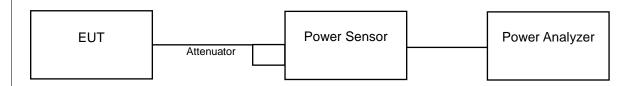
4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	Pass / Fail
0	902.3	0.206	0.138	Pass
32	908.7	0.203	0.137	Pass
63	914.9	0.201	0.139	Pass

NOTE: The minimum limit is 20dB bandwidth.



4.7 Conducted Output Power Measurement

4.7.1 Limits of Conducted Output Power Measurement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

For Peak Power

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

For Average Power

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Pass / Fail
0	902.3	62.373	17.95	30	Pass
32	908.7	63.533	18.03	30	Pass
63	914.9	63.241	18.01	30	Pass

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	902.3	61.802	17.91
32	908.7	63.241	18.01
63	914.9	62.806	17.98

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out Of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.8.2 Test Setup

4.8.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.4 Test Procedure

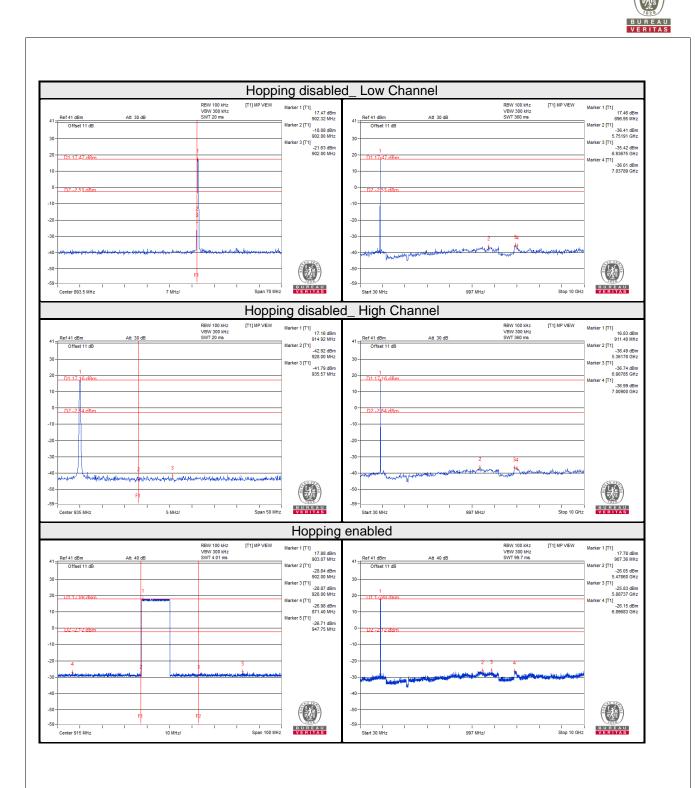
Measurement Procedure REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW \geq 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

Measurement Procedure OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW \geq 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

4.8.5 Deviation from Test Standard


No deviation.

4.8.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---