

Testing Laboratory 0659

FCC Radio Test Report FCC ID: M82-SCN100

Report No. : BTL-FCCP-1-2212T004

Equipment : Computer

Model Name : SCN-100-9, SCN-100-9xxxxxxxxxxxxx (where "x" may be any

alphanumeric character, "-" or blank for marketing purpose and no impact

safety related critical components and constructions)

Brand Name

(1) ADVANTECH or ADVANTECH

SCANIA

Applicant: Advantech Co., Ltd.

Address : No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491,

Taiwan.

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Measurement Procedure(s)

Date of Receipt : 2022/12/9

Date of Test : 2023/1/30 ~ 2023/10/16

Issued Date : 2023/11/7

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Jerry Chuang, Supervisor

Peter Chen, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2212T004 Page 1 of 71 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2212T004 Page 2 of 71 Report Version: R01

CONTENTS 1 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 1.2 MEASUREMENT UNCERTAINTY 7 **TEST ENVIRONMENT CONDITIONS** 1.3 7 1.4 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 2.1 **DESCRIPTION OF EUT** 9 2.2 **TEST MODES** 11 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.3 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 3.2 TEST PROCEDURE 14 **DEVIATION FROM TEST STANDARD** 3.3 14 **TEST SETUP** 3.4 15 3.5 **TEST RESULT** 15 RADIATED EMISSIONS TEST 4 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 4.5 **EUT OPERATING CONDITIONS** 19 4.6 TEST RESULT - BELOW 30 MHZ 19 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT - ABOVE 1 GHZ 19 5 NUMBER OF HOPPING CHANNEL 20 5.1 APPLIED PROCEDURES 20 5.2 **TEST PROCEDURE** 20 **DEVIATION FROM STANDARD** 5.3 20 5.4 **TEST SETUP** 20 5.5 **EUT OPERATION CONDITIONS** 20 TEST RESULTS 5.6 20 AVERAGE TIME OF OCCUPANCY 6 21 APPLIED PROCEDURES / LIMIT 6.1 21 **TEST PROCEDURE** 6.2 21 6.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 6.4 21 **EUT OPERATION CONDITIONS** 6.5 21 6.6 **TEST RESULTS** 21 7 HOPPING CHANNEL SEPARATION MEASUREMENT 22 7.1 APPLIED PROCEDURES / LIMIT 22 7.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 7.3 22 7.4 **TEST SETUP** 22 7.5 **TEST RESULTS** 22 8 **BANDWIDTH TEST** 23 **APPLIED PROCEDURES** 8.1 23

8.2	TEST	PROCEDURE	23
8.3	DEVIA	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT C	OPERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	OUTPUT	POWER TEST	24
9.1	LIMIT		24
9.2	TEST	PROCEDURE	24
9.3	DEVIA	ATION FROM STANDARD	24
9.4	TEST	SETUP	24
9.5	EUT C	OPERATION CONDITIONS	24
9.6	TEST	RESULTS	24
10	ANTENN	IA CONDUCTED SPURIOUS EMISSION	25
10.1	APPLI	IED PROCEDURES / LIMIT	25
10.2	TEST	PROCEDURE	25
10.3	DEVIA	ATION FROM STANDARD	25
10.4	TEST	SETUP	25
10.5	EUT C	PERATION CONDITIONS	25
10.6	TEST	RESULTS	25
11	LIST OF	MEASURING EQUIPMENTS	26
12	EUT TES	ST PHOTO	28
13	EUT PHO	OTOS	28
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	29
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPEND	IX D	NUMBER OF HOPPING CHANNEL	54
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	56
APPEND	IX F	HOPPING CHANNEL SEPARATION MEASUREMENT	59
APPEND	IX G	BANDWIDTH	62
APPEND	IX H	OUTPUT POWER	65
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	67

Project No.: 2212T004 Page 4 of 71 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2212T004	R00	Original Report.	2023/9/4	Invalid
BTL-FCCP-1-2212T004	R01	Added conducted test items.	2023/11/7	Valid

Project No.: 2212T004 Page 5 of 71 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2212T004 Page 6 of 71 Report Version: R01

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ CB08

□ CB11

⊠ SR10

⊠ SR11

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06

□ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)			
	0.03 GHz ~ 0.2 GHz	4.17			
	0.2 GHz ~ 1 GHz	4.72			
CB21	1 GHz ~ 6 GHz	5.21			
CDZ1	6 GHz ~ 18 GHz	5.51			
	18 GHz ~ 26 GHz	3.69			
	26 GHz ~ 40 GHz	4.23			

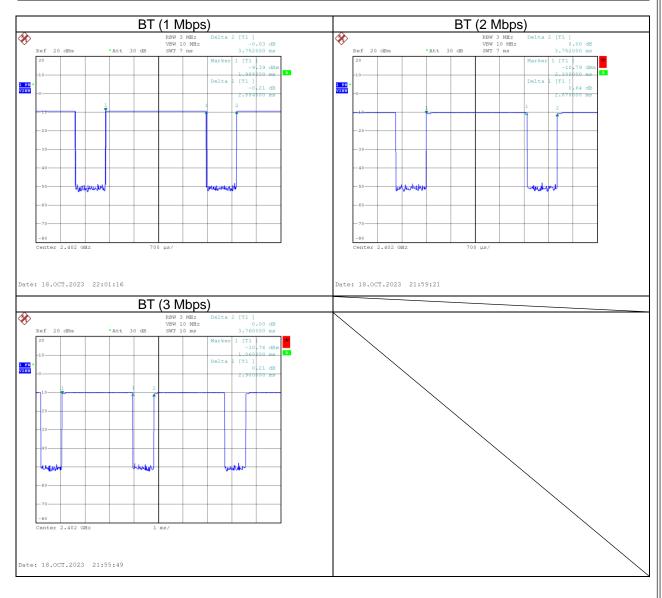
C. Conducted test:

Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	16 °C, 63 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	Refer to data	AC 120V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Mark Wang
Number of Hopping Frequency	25.8 °C, 56 %	AC 120V	Jerry Chuang
Average Time of Occupancy	25.8 °C, 56 %	AC 120V	Jerry Chuang
Hopping Channel Separation	25.8 °C, 56 %	AC 120V	Jerry Chuang
Bandwidth	25.8 °C, 56 %	AC 120V	Jerry Chuang
Output Power	22.1 °C, 49 %	AC 120V	Jay Tien
Antenna conducted Spurious Emission	25.8 °C, 56 %	AC 120V	Jerry Chuang

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.884	1	2.884	3.752	76.87%	1.14
BT (2 Mbps)	2.870	1	2.870	3.752	76.49%	1.16
BT (3 Mbps)	2.900	1	2.900	3.760	77.13%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Computer				
Model Name	SCN-100-9, SCN-100-9xxxxxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)				
Brand Name	(1) ADVANTECH or ADVANTECH (2) SCANIA				
Model Difference	Different model distribute to different area.				
Power Source	DC voltage supplied from AC/DC Adapter.				
Power Rating	EUT: 12-32Vdc, 10-3.75A For Adapter: I/P: 100-240V~2.3A, 50-60Hz O/P: 24.0V—7.5A 180.0W				
Products Covered	1 * Adapter: FSP / FSP180-AAAN3				
WIFI+BT Module	Intel® Wi-Fi 6E AX210 / AX210NGW				
Operation Band	2400 MHz ~ 2483.5 MHz				
Operation Frequency	2402 MHz ~ 2480 MHz				
Maximum Output Power	1 Mbps: 11.40 dBm (0.0138 W) 2 Mbps: 10.77 dBm (0.0119 W) 3 Mbps: 10.82 dBm (0.0121 W)				
Test Software Version	DRTU V03227.22.190.0				
Test Model	SCN-100-9				
Sample Status	Engineering Sample				
EUT Modification(s)	N/A				

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2212T004 Page 9 of 71 Report Version: R01

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

(3) Table	(b) Table 1011 fled Africania.					
Antenna	Manufacture	Part Number	Type	Connector	Frequency Range (MHz)	Gain (dBi)
	_				2400-2500	5.34
1	TAOGLAS.	PC165.54.0076A	PCB	I-PEX MFH4L	5150-5725	4.95
	IAOGLAS.				5725-5850	5.33
	_				2400-2500	4.14
2	TAOGLAS.	PC166.54.0061A	PCB	I-PEX MFH4L	5150-5725	6.76
	IAUGLAS.				5725-5850	6.52

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

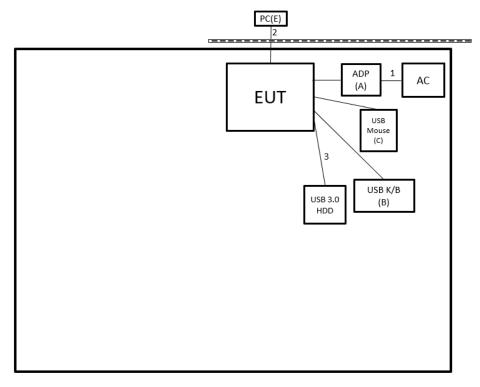
Project No.: 2212T004 Page 10 of 71 Report Version: R01

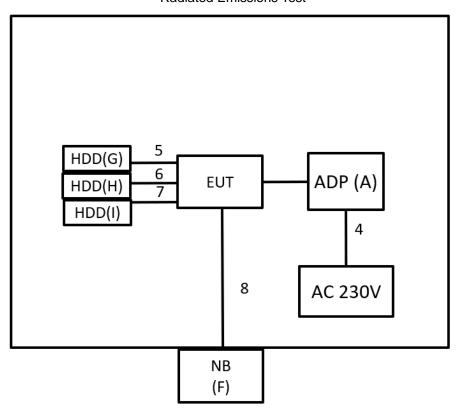
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2212T004 Page 11 of 71 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

Project No.: 2212T004 Page 12 of 71 Report Version: R01

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	FSP GROUP	FSP180-AAAN3	N/A	Supplied by test requester.
В	USB K/B	DELL	KB216t	CN-0W33XP-L0 300-797-05TY-A 03	Furnished by test lab.
С	USB Mouse	DELL	MOCZUL	CN-049TWY-PR C00-79E-01HA	Furnished by test lab.
D	USB 3.0 HDD	WD	WDBC3C0010BS L-0B	WX81A88ALJU C	Furnished by test lab.
Е	PC	DELL	OptiPlex 790 MT	64NJVBX	Furnished by test lab.
F	NB	HP	TPN-C125	N/A	Furnished by test lab.
G	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D00 3F	Furnished by test lab.
Н	USB 2.5" HDD	AKITIO	Neutrino U3.1	SK21D1621D00 3F	Furnished by test lab.
I	USB 3.0 HDD	WD	WDBC3C0010BS L-0B	WX81A88ALJU C	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.8m	Power Cable	Furnished by test lab.
2	N/A	N/A	6m	RJ-45 Cable	Furnished by test lab.
3	N/A	N/A	1.5m	USB to TypeC Cale	Furnished by test lab.
4	N/A	N/A	1m	Power Cable	Furnished by test lab.
5	N/A	N/A	0.6m	TypeC to TypeC Cable	Furnished by test lab.
6	N/A	N/A	1m	TypeC to TypeC Cable	Furnished by test lab.
7	N/A	N/A	0.3m	TypeC to TypeC Cable	Furnished by test lab.
8	N/A	N/A	12m	RJ45 Cable	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBuV)		Correct Factor (dB)		Measurement Value (dBuV)
38.22	+	3.45	=	41.67

Measurement Value (dBuV)		Limit Value (dBuV)		Margin Level (dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

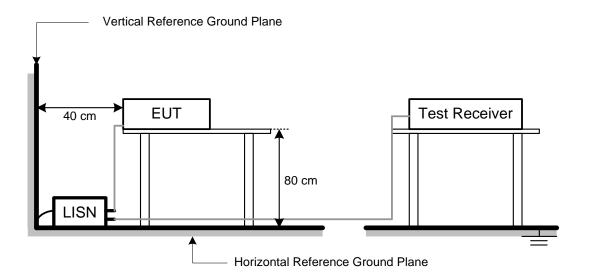
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2212T004 Page 14 of 71 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

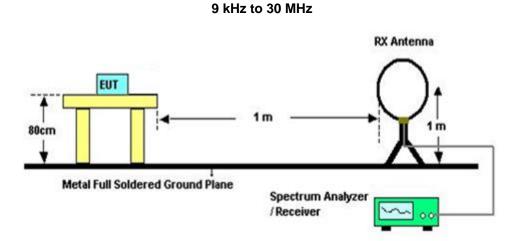
Reading Level (dBuV)		Correct Factor (dB)		Measurement Value (dBuV/m)
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
(dBuV/m)		(dBuV/m)		(dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

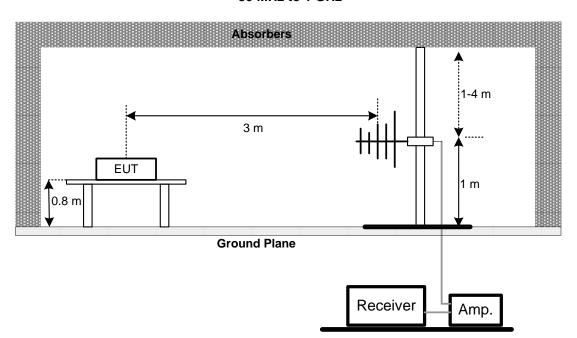
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2212T004 Page 16 of 71 Report Version: R01

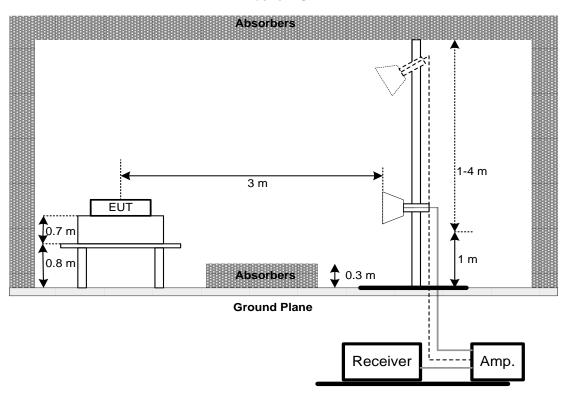

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2212T004 Page 19 of 71 Report Version: R01

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section Test Item		Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2212T004 Page 20 of 71 Report Version: R01

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number)*0.4

For Normal Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH3 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (1600/2)*8/(channel number)

DH3 Time Solt: Reading * (1600/4)*8/(channel number)

DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

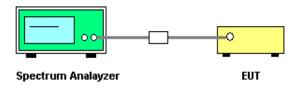
Project No.: 2212T004 Page 21 of 71 Report Version: R01

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 **TEST RESULTS**

Please refer to the APPENDIX F.

Project No.: 2212T004 Page 22 of 71 Report Version: R01

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)
15.247(a)(1)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)			
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

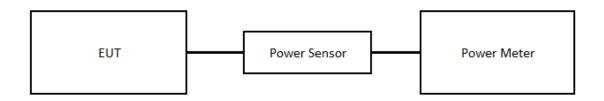
Please refer to the APPENDIX G.

Project No.: 2212T004 Page 23 of 71 Report Version: R01

9 OUTPUT POWER TEST

9.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 1/3MHz, VBW= 1/3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2212T004 Page 24 of 71 Report Version: R01

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2212T004 Page 25 of 71 Report Version: R01

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2022/3/31	2023/3/30	
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18	
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6	
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27	
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29	
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2023/3/14	2024/3/13	
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13	
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13	
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23	
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18	
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17	
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17	
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19	
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2022/5/20	2023/5/19	
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13	
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13	
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Number of Hopping Frequency						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2023/3/27	2024/3/26	

	Average Time of Occupancy										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2023/3/27	2024/3/26					

	Hopping Channel Separation										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2023/3/27	2024/3/26					

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2023/3/27	2024/3/26

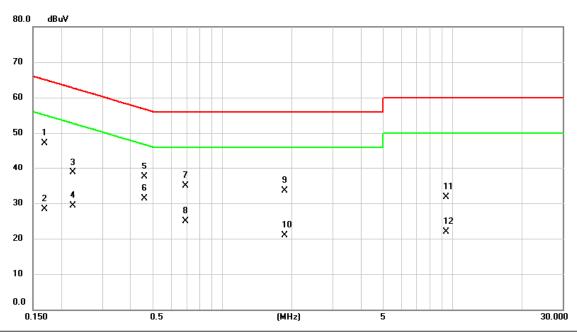
Output Power										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31				
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31				

	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2023/3/27	2024/3/26					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

40 FUT TEOT BUOTO										
12 EUT TEST PHOTO										
Please refer to document Appendix No.: TP-2212T004-FCCP-1 (APPENDIX-TEST PHOTOS).										
13 EUT PHOTOS										
Please refer to document Appendix No.: EP-2212T004-1 (APPENDIX-EUT PHOTOS).										

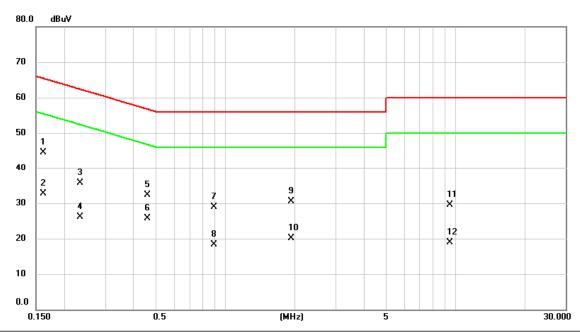
Project No.: 2212T004 Page 28 of 71 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2212T004 Page 29 of 71 Report Version: R01

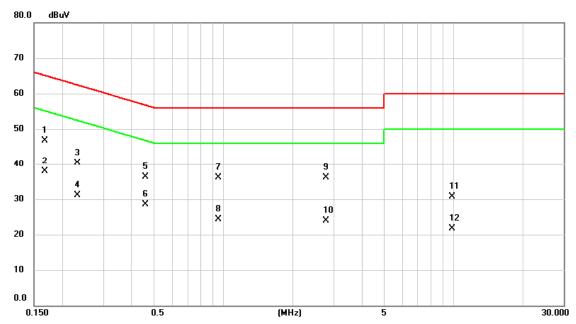
I	Test Mode	Normal	Tested Date	2023/2/1
ı	Test Frequency	-	Phase	Line



No. M	lk. Fre		Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MH	IZ	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.16	80	37.37	9.64	47.01	65.06	-18.05	QP	
2	0.16	80	18.67	9.64	28.31	55.06	-26.75	AVG	
3	0.22	42	29.01	9.63	38.64	62.66	-24.02	QP	
4	0.22	42	19.75	9.63	29.38	52.66	-23.28	AVG	
5	0.45	82	27.91	9.63	37.54	56.73	-19.19	QP	
6 *	0.45	82	21.67	9.63	31.30	46.73	-15.43	AVG	
7	0.69	00	25.27	9.64	34.91	56.00	-21.09	QP	
8	0.69	00	15.24	9.64	24.88	46.00	-21.12	AVG	
9	1.86	22	23.84	9.70	33.54	56.00	-22.46	QP	
10	1.86	22	11.21	9.70	20.91	46.00	-25.09	AVG	
11	9.39	30	21.92	9.86	31.78	60.00	-28.22	QP	
12	9.39	30	11.97	9.86	21.83	50.00	-28.17	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

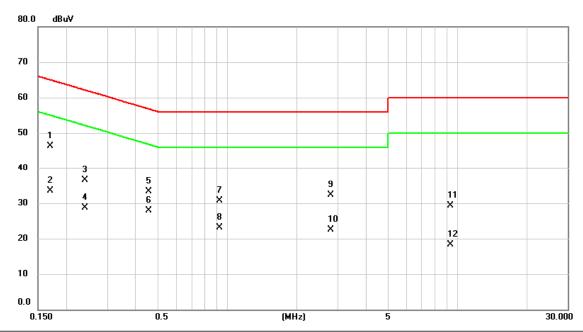
	Test Mode	Normal	Tested Date	2023/2/1
-	Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1613	34.78	9.65	44.43	65.40	-20.97	QР	
2		0.1613	22.97	9.65	32.62	55.40	-22.78	AVG	
3		0.2333	26.13	9.64	35.77	62.33	-26.56	QP	
4		0.2333	16.45	9.64	26.09	52.33	-26.24	AVG	
5		0.4582	22.57	9.64	32.21	56.73	-24.52	QP	
6	*	0.4582	16.12	9.64	25.76	46.73	-20.97	AVG	
7		0.8902	19.23	9.67	28.90	56.00	-27.10	QP	
8		0.8902	8.70	9.67	18.37	46.00	-27.63	AVG	
9		1.9343	20.84	9.71	30.55	56.00	-25.45	QP	
10		1.9343	10.33	9.71	20.04	46.00	-25.96	AVG	
11		9.4290	19.67	9.89	29.56	60.00	-30.44	QP	
12		9.4290	8.94	9.89	18.83	50.00	-31.17	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/2/1
Test Frequency	-	Phase	Line

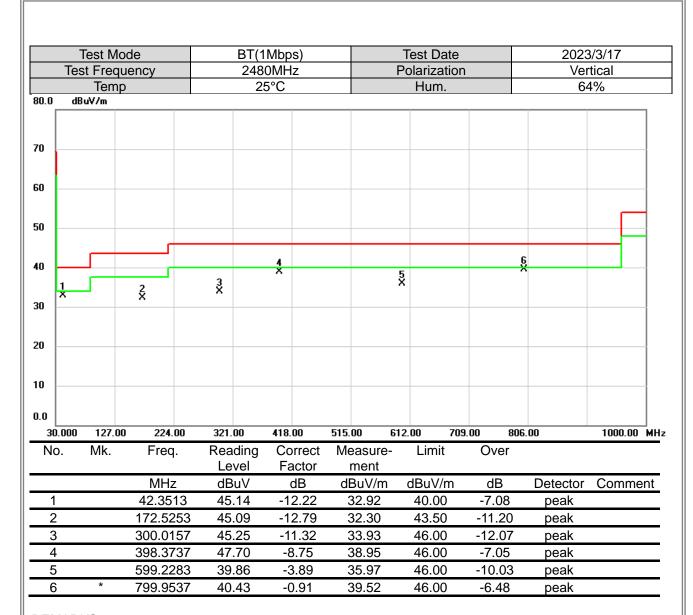


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1668	37.13	9.64	46.77	65.12	-18.35	QP	
2 *	0.1668	28.26	9.64	37.90	55.12	-17.22	AVG	
3	0.2310	30.65	9.63	40.28	62.41	-22.13	QP	
4	0.2310	21.54	9.63	31.17	52.41	-21.24	AVG	
5	0.4605	26.70	9.63	36.33	56.68	-20.35	QP	
6	0.4605	18.95	9.63	28.58	46.68	-18.10	AVG	
7	0.9510	26.49	9.67	36.16	56.00	-19.84	QP	
8	0.9510	14.73	9.67	24.40	46.00	-21.60	AVG	
9	2.7938	26.36	9.72	36.08	56.00	-19.92	QP	
10	2.7938	14.19	9.72	23.91	46.00	-22.09	AVG	
11	9.8903	20.86	9.88	30.74	60.00	-29.26	QP	
12	9.8903	11.77	9.88	21.65	50.00	-28.35	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/2/1
Test Frequency	-	Phase	Neutral

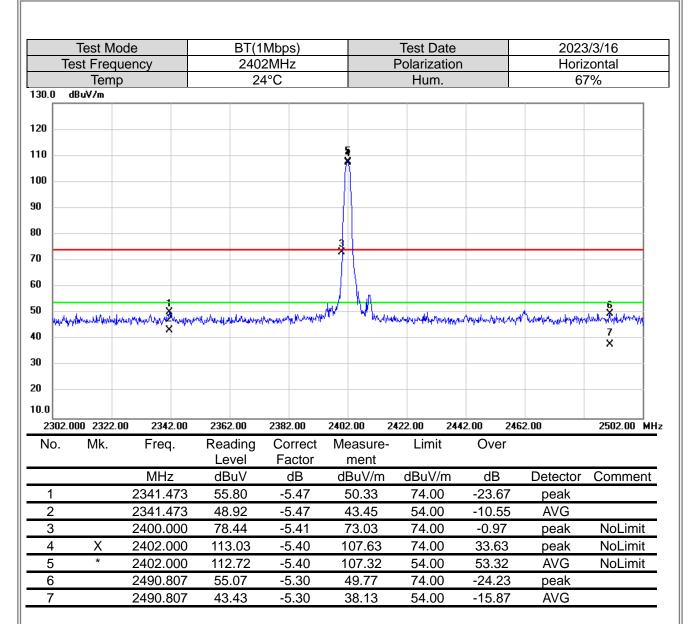
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1703	36.66	9.65	46.31	64.95	-18.64	QР	
2		0.1703	23.81	9.65	33.46	54.95	-21.49	AVG	
3		0.2400	26.92	9.64	36.56	62.10	-25.54	QP	
4		0.2400	19.07	9.64	28.71	52.10	-23.39	AVG	
5		0.4560	23.70	9.64	33.34	56.77	-23.43	QP	
6		0.4560	18.21	9.64	27.85	46.77	-18.92	AVG	
7		0.9262	21.08	9.68	30.76	56.00	-25.24	QP	
8		0.9262	13.40	9.68	23.08	46.00	-22.92	AVG	
9		2.8028	22.59	9.73	32.32	56.00	-23.68	QP	
10		2.8028	12.77	9.73	22.50	46.00	-23.50	AVG	
11		9.3390	19.45	9.89	29.34	60.00	-30.66	QP	
12		9.3390	8.50	9.89	18.39	50.00	-31.61	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2212T004 Page 34 of 71 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2212T004 Page 37 of 71 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

•	Test Mo	de		BT(1	(Mbps			Test Dat	е	2023	3/3/16	
Tes	st Frequ	iency			0MHz			Polarizati	on		zontal	
	Temp			2	4°C			Hum.		67	7%	
130.0 dE	BuV/m						1					_
120												
120												1
110							9					-
100							1					
100												
90							1					+
30												
												4
70							1					1
60							5					
						<u></u>	\					
	na Mandayon	anamananan (m.	Marker Wares Arthur	Photography and production in the contraction of th	est from a series of the first of the	March	5 X X X	**/**	New with a week process that the	Marapanontan	hand Maritan	- -
50 1 40 2	non Marchalton	innermonal ve	parangadosa	North of the state	ikyronogan bekerketel	April 18	5 X X X	earaph de banglan art dr. a	and the second s	Norman Maria Maria	however hyppothering	*
50 1 40 2 X	na Maraka fee	nnakansaksan N	panyangan	Mary depthrough the be	iki kanan da karak Sa	. Alexandre	5 X X X	earafti felfallerantifira	- geraperander and second state	American Maria	hanse of the statement	*
50 1 40 2 X	was the whater	rvananan v	Personalita	in and the self-states	ingress, solderfeat Di	Awalth	** **	449/4th Arabadda work Liv. A	No and and an adjust and an incident	Transportation days	property Phares June 1	
50 1 40 2	ne de la constanta de la const	Manhaman V.	Marker systems	or the original production of the original produ	istopenen ned April 1848 (A	And the	5 X X	our of heavy decembers	rygergenske grandfar van frank	Two-appensibles	yyana Maryan v	
1 2 40 2 X	remediately (M)	normanian M.	Paulurupahahan	or a property the	ingress, and shortest the	dunte	**************************************	part of herebedded works.	hall and the second of the sec	Two appendiction	gegering Hillians of	•
50 1 2 2 X 80 00 20 2380.00	00 2400.0		10 24	40.00	2460.00	248	× × 0.00	2500.00 2	2520.00 254	Annappenintal	2580.00	
1 2 X X 30 2 X 10.0			00 24 R€	40.00 eading	2460.00 Correc	248 t Mo	x 0.00 :	2500.00 2				
50 1 2 2 X 80 00 20 2380.00	00 2400.0	0 2420.0 Freq.	10 24 Re L	40.00 eading evel	2460.00 Correct Factor	248 t Mo	D.00 :	2500.00 2 Limit	2520.00 254 Over	40.00	2580.00	МН
20 20 2380.00 No.	00 2400.0	0 2420.0 Freq. MHz	00 24 Re L	40.00 eading evel	2460.00 Correc Factor dB	248 t Ma	2.00 2 easure- ment BuV/m	2500.00 2 Limit dBuV/m	2520.00 254 Over	40.00 Detector		МН
2 x 80 20 2380.00 No.	00 2400.0	0 2420.0 Freq. MHz 2382.60	00 24 Re L d	40.00 eading .evel IBuV 4.14	2460.00 Correct Factor dB -5.42	248 t Mo	a.oo :easure-ment BuV/m	2500.00 2 Limit dBuV/m 74.00	2520.00 254 Over 0 dB -25.28	Detector peak	2580.00	МН
2 x 80 00 2380.00 No.	00 2400.0 Mk.	0 2420.0 Freq. MHz 2382.60 2382.60	00 24 Re L dd 0 55	40.00 eading .evel BuV 4.14 3.38	2460.00 Correct Factor dB -5.42	248t Me	2.00 2 easure- ment BuV/m 48.72	2500.00 2 Limit dBuV/m 74.00 54.00	2520.00 254 Over 0 dB -25.28 -16.04	Detector peak AVG	2580.00 Comme	MH ent
2 X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00 2400.0	0 2420.0 Freq. MHz 2382.60 2382.60 2480.00	00 24 Re L d 0 5 0 4 0 11	40.00 eading evel BuV 4.14 3.38 14.78	2460.00 Correct Factor dB -5.42 -5.42 -5.31	248 t Mo	2.00 ; easure- ment BuV/m 48.72 37.96 09.47	2500.00 2 Limit dBuV/m 74.00 54.00 74.00	Over dB -25.28 -16.04 35.47	Detector peak AVG peak	2580.00 Comme	MH
10.0 2380.00 No.	00 2400.0 Mk.	0 2420.0 Freq. MHz 2382.60 2382.60	00 24 Re L d d d d d d d d d d d d d d d d d d	40.00 eading .evel BuV 4.14 3.38	2460.00 Correct Factor dB -5.42	2488 t Me d d	2.00 2 easure- ment BuV/m 48.72	2500.00 2 Limit dBuV/m 74.00 54.00	2520.00 254 Over 0 dB -25.28 -16.04	Detector peak AVG	2580.00 Comme	MH ent

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Dat			3/3/16	
les	t Frequ	ency			2MHz			Polarizati	ion		zontal	
30.0 dB	Temp			24	ł°C			Hum.		67	%%	
30.0 db	477111											1
120												-
10												-
00						\$						-
90						/}						
:0						X X						
, <u> </u>						\rightarrow						-
,						-/1	\					
50					1		1					
50	water beyond when the	handala madan mada	Manden Mandel March		manager language property	Mr.	Mary Mary	Miller Mary Charles Comment	the last of the works and the last of	graph way banka waka	-	d
40		logista morani			2 X						7 X	-
30											^	
20												
10.0												
2302.00	0 2322.00	0 2342.00	2362.	00	2382.00	2402.0	00 2	422.00	2442.00 2	2462.00	2502.00	MH
No.	Mk.	Freq.	Read		Correct	Mea	sure-	Limit	Over			
			Lev		Factor		ent					
		MHz	dBu		dB		uV/m	dBuV/n		Detector	Comme	nt
1		2388.793			-5.39		3.88	74.00	-20.12			
2		2388.793			-5.39		9.38	54.00	-14.62			
3	Χ	2400.000			-5.37		3.42	74.00	9.42	peak	NoLim	
4	Χ	2402.007			-5.36		3.68	74.00	29.68		NoLim	
5	*	2402.007			-5.36		9.83	54.00	45.83		NoLim	it
6		2486.907		9	-5.21	49	9.98	74.00	-24.02	? peak		
7		2486.907	42.7		-5.21	0-	7.52	54.00	-16.48	8 AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode		BT(3N	Mbps)			Test Dat	e	2023	3/3/16	
Т	est Freq	uency		2480	MHz		F	Polarizati	on	Horiz	zontal	
	Temp)		24	°C			Hum.		67	7%	
130.0	dBuV/m											_
120												
110 —						3						-
100 -						$-\parallel$						+
90 —						-						-
80 —						$+\!\!\!\!\!+\!$						1
70						\top	5 X					7
60					Me	and the second	6 May 11					-
50	4740	ulus ada rawa A	delating and an allower	The state of the state of the state of	hala sagaratal page tagara		X TY	about the part	the transfer of the second	andreas alleabhraíleann an	Name and Park Market	
40	2 X		- 4-41-						111111111111		***	
30												-
20 —												1
10.0				40.00	2460.00	2480.	00 25	500.00	2520.00 254	40.00	2580.00	
2200	000 2400	00 2420		4U.UU				יטט.טט	2320.00 234	1 U.UU	2300.00	_
	.000 2400. Mk											МН
2380. No.	.000 2400. Mk.	00 2420. Freq.	Re	eading evel	Correct Factor	Mea	asure- nent	Limit	Over			МН
			Re L	eading	Correct	Mea m	asure-		Over	Detector	Comme	
		Freq.	Re L	eading evel	Correct Factor	Mea m dB	asure- nent	Limit	Over		Comme	
No.		Freq. MHz	Re <u>L</u> d 40 5	eading evel IBuV	Correct Factor dB	Mea m dB	asure- nent uV/m	Limit dBuV/m	Over n dB	Detector	Comme	
No. 1 2 3	Mk.	MHz 2389.14 2389.14 2480.00	Re L d 40 5 40 4	eading Level IBuV 4.97 3.90	Correct Factor dB -5.42	Mea m dB 49	asure- nent uV/m 9.55	Limit dBuV/m 74.00	Over n dB -24.45	Detector peak AVG peak	Comme	ent
No.	Mk.	Freq. MHz 2389.14 2389.14	Re L d 40 5 40 4	eading evel BuV 4.97 3.90	Correct Factor dB -5.42 -5.42	Mea dB 49 38	asure- nent uV/m 9.55 8.48	Limit dBuV/m 74.00 54.00	Over dB -24.45 -15.52	Detector peak AVG		ent
No. 1 2 3	Mk.	MHz 2389.14 2389.14 2480.00	Re L dd 40 5 40 4 00 1 ¹ 00 1 ² 00 7	eading Level IBuV 4.97 3.90	Correct Factor dB -5.42 -5.42 -5.31	Mea m dB 49 38 10	asure- nent uV/m 9.55 8.48	Limit dBuV/m 74.00 54.00 74.00	Over dB -24.45 -15.52 35.71	Detector peak AVG peak	NoLim	ent

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				st Dat				3/3/17
Te	est Freq					2MHz				arizati	on			tical
	Temp)			2	5°C			ŀ	Hum.			64	4%
130.0 c	dBuV/m													
120														
110														
100														
30														
30														
70														
50														
50		1 X												
ю 📙		1 2 X												
80														
20														
0.0														
	000 3550.	00 6100).00	8650	.00	11200.00	137	50.00	16300	.00 1	18850.00	2140	00.00	26500.00 MF
No.	Mk.	Freq		Read Lev		Correct Factor		easure ment	-	Limit	Ov	er		
		MHz	<u>. </u>	dB		dB		BuV/m	dE	3uV/m	n dE	3	Detector	Comment
1		4804.0		47.		0.75		48.62		4.00	-25.		peak	
2	*	4804.0	000	41.	39	0.75		42.14	5	54.00	-11.	86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test	Mod	de			BT(1	Mbps	s)				Test Da	ate			2023	3/3/17	
Т	est Fr	eque	ency				2MHz	<u>-</u>			Р	olariza	tion			Horiz	zontal	
		emp				2	5°C					Hum.				64	1%	
30.0	dBuV/n	1																_
20																		\parallel
10																		-
00																		\parallel
0																		\parallel
D -																		\parallel
																		1
0																		\parallel
0			1 X															
0			2 X															\parallel
0 -																		\parallel
0																		\parallel
0.0																		
	000 35				8650		1120		1375			00.00		50.00	2140	0.00	26500.0	0 M
No.	Mł	(.	Freq	- 		ding vel		rect ctor		easure ment	·-	Limit	t 	Ove	er			
			MHz	7	dB	uV	d	В	dE	3uV/m		dBuV/	m	dB		Detector	Comme	ent
1			4804.0	000	47	.41	0.	75		18.16		74.00)	-25.8	34	peak		
2	*		4804.0	000	39	.05	0.	75	3	39.80		54.00)	-14.2	20	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			3/3/17
Т	est Frequ				1MHz		Polarizatio	on		tical
130.0	Temp)		2	5°C		Hum.		64	1%
130.0	abuv/m									
120										
110										
100										
90										
80										
70										
60										
50		1								
40		Š								
30										
20										
10.0										
	.000 3550.0			8650.00	11200.00	13750.00			100.00	26500.00 MHz
No.	Mk.	Freq.	F	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	44.23	1.01	45.24	74.00	-28.76	peak	
2	*	4882.00	00	41.45	1.01	42.46	54.00	-11.54	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1Mbps)		Test Date			3/3/17
T	est Frequ			1MHz		Polarization	า		zontal
	Temp		2	:5°C		Hum.		64	4%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		X 2							
40		X							
30									
20									
10.0									
1000.	000 3550.0	0 6100.00	8650.00	11200.00			850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		_
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	48.37	1.01	49.38	74.00	-24.62	peak	
2	*	4882.000	40.93	1.01	41.94	54.00	-12.06	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				st Dat				3/3/17
Te	est Frequ					0MHz				arizati	on			tical
	Temp)			2	5°C			}	Hum.			64	1%
30.0 d	BuV/m							1						
20														
10														
10														
00														
10														
10														
<u> </u>														
0														
0														
0		ķ												
o 🗀		X												
0														
:0														
0.0														
	000 3550.0			8650		11200.00			16300		18850.00		0.00	26500.00 MF
No.	Mk.	Freq	•	Read Lev		Correct Factor		easure- ment	-	Limit	Ove	er		
		MHz		dBı		dB		BuV/m	dE	3uV/m	n dE	3	Detector	Comment
1		4960.0	00	48.	18	1.28	4	49.46	7	74.00	-24.	54	peak	
2	*	4960.0	00	42.	74	1.28		44.02	5	54.00	-9.9	98	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbps)			T	est Da	ate		2	2023	3/3/17	
Te	est Frequ					0MHz				olarizat					zontal	
	Temp				2	5°C				Hum.				64	1%	
130.0 c	BuV/m															1
120																ļ
110																ĺ
100 -																
90																
30																
'0 <u> </u>																1
SO																-
50		1 X X														1
ю 🗀		^														
30																1
20																l
10.0																
	000 3550.0			8650		11200.00	13750.			00.00	18850		1400.00		26500.00	MH
No.	Mk.	Freq	•	Read		Corre Facto		sure- ent		Limit		Over				
		MHz		dBı		dB		ıV/m	(dBuV/r	m	dB	Detec	ctor	Comme	nt
1		4960.0	00	50.	68	1.28	51	.96		74.00)	-22.04				
2	*	4960.0	00	46.	73	1.28	48	.01		54.00)	-5.99	AV(3		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps					est Da					3/3/17	
le	est Freq					2MHz	<u> </u>			Р	<u>olariza</u>					tical	
130.0 d	Tem dBuV/m	р			2	5°C					Hum.				64	1%	
130.0	JBUY/III																\neg
120																	
110																	
00																	
90																	-
:0																	-
o 🗀																	_
o																	
io 📙																	\exists
		1 2 X															
		×															
io																	+
20																	+
10.0																	
	000 3550.			8650		1120			50.00		00.00	1885		2140	0.00	26500.0	10 MF
No.	Mk.	Freq	.	Rea Le	ding vel		rect ctor		easure ment	<u>-</u>	Limit	•	Ove	r			
		MHz	7	dB	uV		ΙB		3uV/m	1	dBuV/ı	m	dB		Detector	Comm	ent
1		4804.0	000	44.	13	0.	75	4	14.88		74.00)	-29.1	2	peak		
2	*	4804.0	000	37.	93	0.	75	- (38.68		54.00)	-15.3	32	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Frequency 2402	(lbps)	Test Date	2023/3/17
		Polarization	Horizontal
Temp 25°	C	Hum.	64%
155.5 UDAYYIII			
120			
110			
110			
100			
90			
80			
70			
60			
50			
1 X 40			
40 2 X			
30			
20			
10.0			
1000.000 3550.00 6100.00 8650.00 1	11200.00 13750.00	16300.00 18850.00 21	400.00 26500.00 MHz
	Correct Measure	- Limit Over	
Level	Factor ment	alDa V//m	Datastan Camaria
MHz dBuV	dB dBuV/m		Detector Comment
1 4804.000 44.35 2 * 4804.000 35.56	0.75 45.10 0.75 36.31	74.00 -28.90 54.00 -17.69	peak AVG

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				t Date				3/3/17
Te	est Frequ					1MHz				rizatio	on			tical
	Temp)			2	5°C			F	lum.			64	1%
130.0 c	dBuV/m													
120														
110														
100														
30														
30														
70														
50														
50		1 X												
10														
30		2 X												
20														
10.0	200 2550	00 0100		0050		11200 00	107	F0 00	10000	00 1	0050 00	21.40	200	20500 00 111
No.	000 3550.0 Mk.			8650		11200.00 Correc		50.00 easure:	16300.	imit	8850.00 Ove	21400	J.UU	26500.00 MI
INU.	IVIK.	Freq	•	Rea Le		Factor		easure. ment		-111111	Ove	5 1		
		MHz	<u>'</u>	dB		dB		BuV/m	dB	uV/m	dB	3	Detector	Comment
1		4882.0	000	45.		1.01		46.24		4.00	-27.		peak	
2	*	4882.0	000	33.	84	1.01		34.85	5	4.00	-19. ⁻	15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BMbps)		Test Date			3/3/17
- 1	est Frequ			2441MHz		Polarization	1	Horizontal	
130.0	Temp		2	5°C		Hum.		64	4%
130.0	UDUY/III								
120									
110									
100									
90									
80									
70									
60									
50		ı							
40		1 X 2 X							
30									
20									
10.0									
	.000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000		1.01	46.24	74.00	-27.76	peak	
2	*	4882.000	37.57	1.01	38.58	54.00	-15.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

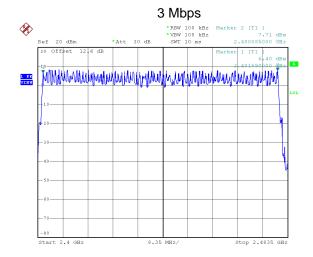
	Test Mo			3Mbps)		Test Date			3/3/17
Te	est Frequ			2480MHz		Polarization		Vertical	
	Temp)	2	25°C		Hum.		64	1%
130.0	dBuV/m								
120									
110 -									
100									
90									
80									
70									
60									
50		1 X							
40		2							
30		×							
20									
10.0									
1000.	000 3550.0	00 6100.00	8650.00	11200.00			850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	44.99	1.28	46.27	74.00	-27.73	peak	
2	*	4960.000	34.68	1.28	35.96	54.00	-18.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Da			3/3/17
Te	est Frequ			2480MHz			Polarization			Horizontal	
	Temp)		2	5°C			Hum.	•	6	4%
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50		1 X									
40		2 X									
30											
20											
10.0											
	000 3550.0				11200.00	13750.0		6300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.		ding vel	Correct Factor	Meas me		Limit	Ove	er	
		MHz	dB	ωV	dB	dBu	V/m	dBuV/ı	m dB	Detector	Comment
1		4960.00	0 47	.13	1.28	48.	41	74.00	-25.	59 peak	
2	*	4960.00	0 39	.51	1.28	40.	79	54.00	-13.2	21 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

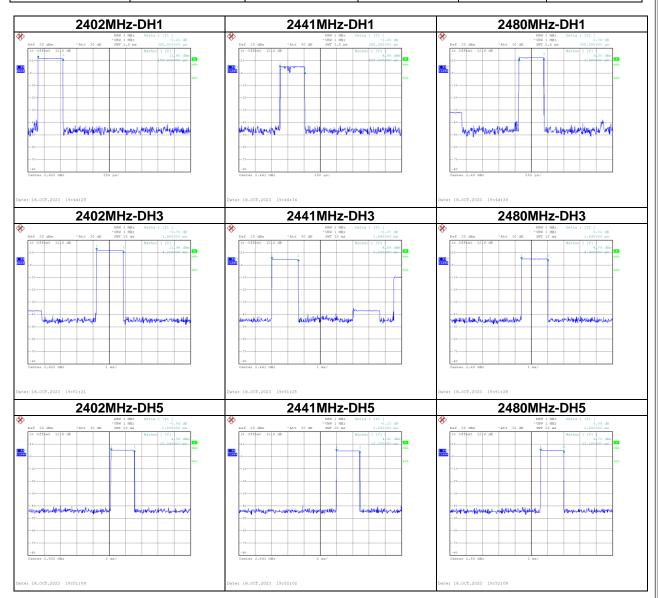

	Report No.: BTL-FCCF-1-22121004
APPENDIX D	NUMBER OF HOPPING CHANNEL


Project No.: 2212T004 Page 54 of 71 Report Version: R01

Test Mode 1	1/3Mbps
-------------	---------

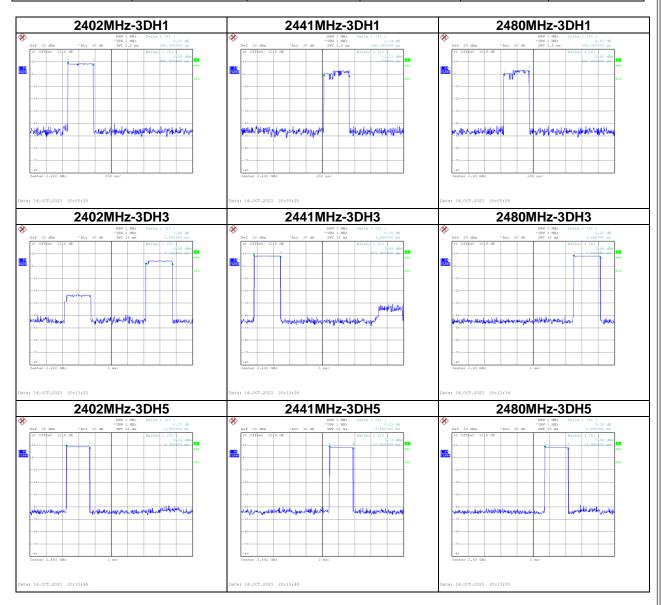
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

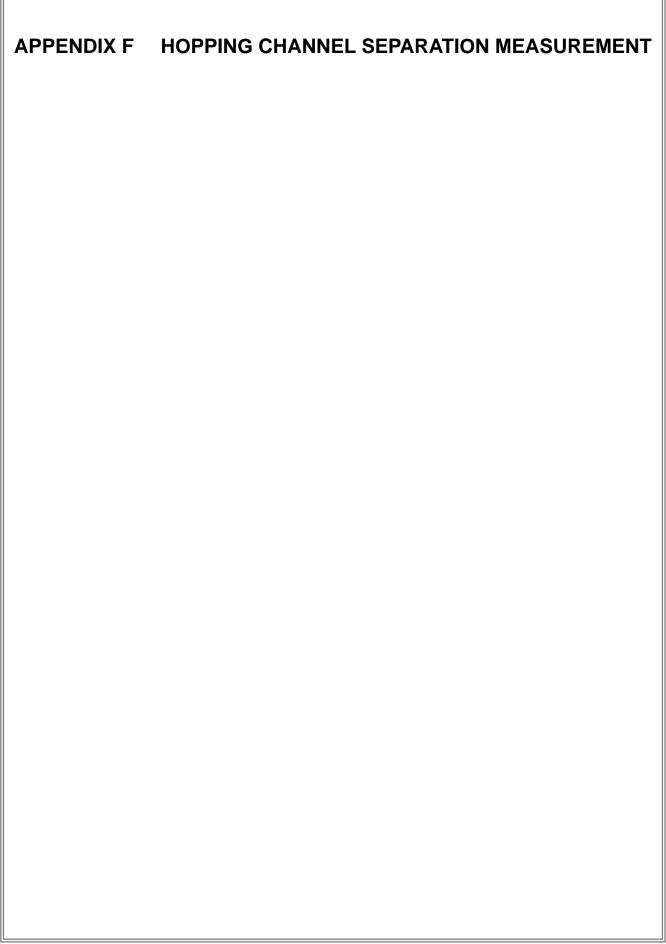
Date: 16.0CT.2023 19:49:44 Date: 16.0CT.2023 20:10:41


APPENDIX E AVERAGE TIME OF OCCUPANCY

Project No.: 2212T004 Page 56 of 71 Report Version: R01

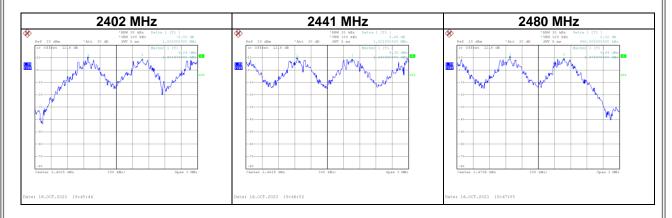
Test Mode : 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.8800	0.3072	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass



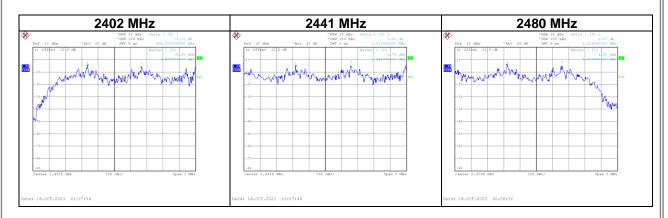
Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.3900	0.1248	0.4000	Pass
3DH5	2480	2.8800	0.3072	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3850	0.1232	0.4000	Pass



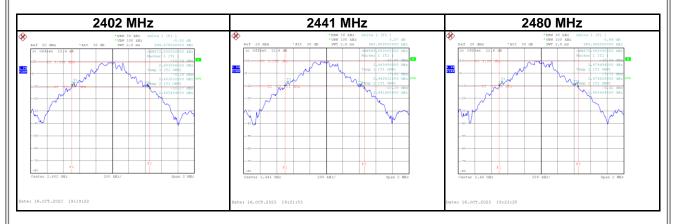
Project No.: 2212T004 Page 59 of 71 Report Version: R01

Test Mode :	Hopping on _	1Mbps
TOOL WIGGO .		_ 11111000


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	0.633	Pass
2441	1.022	0.641	Pass
2480	0.996	0.637	Pass

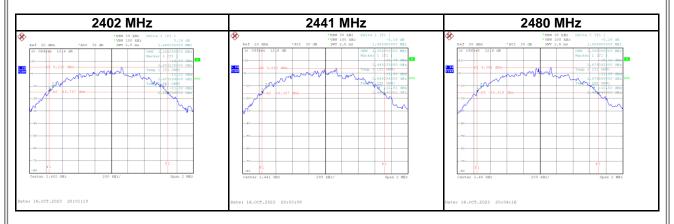
Test Mode: Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.996	0.965	Pass
2441	1.022	0.987	Pass
2480	1.014	0.973	Pass


<u> </u>		Report No.: BTL-FCCP-1-2212T004
	APPENDIX G	BANDWIDTH

Project No.: 2212T004 Page 62 of 71 Report Version: R01

Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.950	0.872	Pass
2441	0.961	0.868	Pass
2480	0.956	0.876	Pass

Test Mode :	3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.448	1.352	Pass
2441	1.481	1.364	Pass
2480	1.459	1.360	Pass

APPENDIX H OUTPUT POWER

Project No.: 2212T004 Page 65 of 71 Report Version: R01

Report No.: BTL-FCCP-1-2212T004

Test Mode :	BT(1 Mbps)	Tested Date	2023/3/19
-------------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.97	0.0099	20.97	0.1250	Pass
2441	11.11	0.0129	20.97	0.1250	Pass
2480	11.40	0.0138	20.97	0.1250	Pass

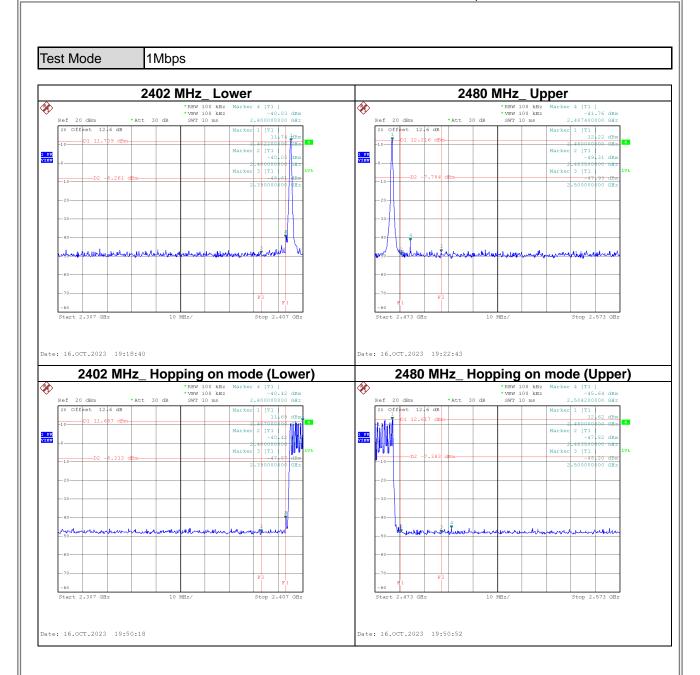
Test Mode :	BT(2 Mbps)	Tested Date	2023/3/19

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.54	0.0113	20.97	0.1250	Pass
2441	10.77	0.0119	20.97	0.1250	Pass
2480	10.17	0.0104	20.97	0.1250	Pass

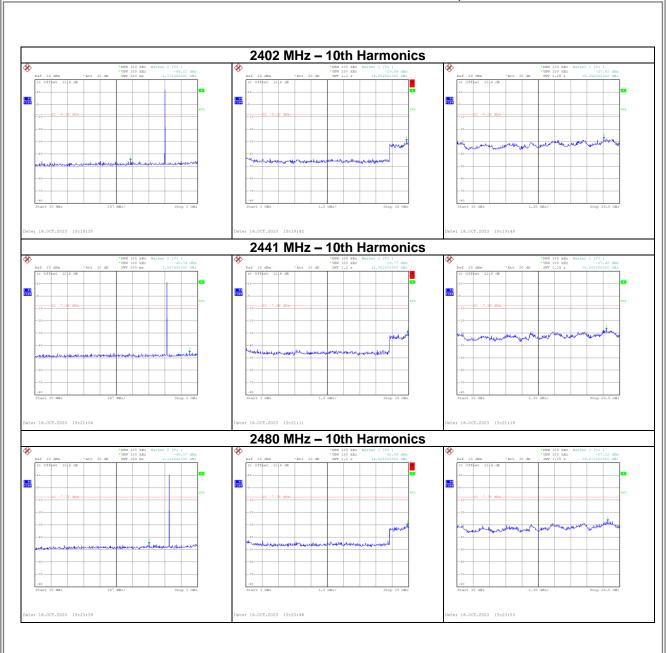
Test Mode :	BT(3 Mbps)	Tested Date	2023/3/19
-------------	------------	-------------	-----------

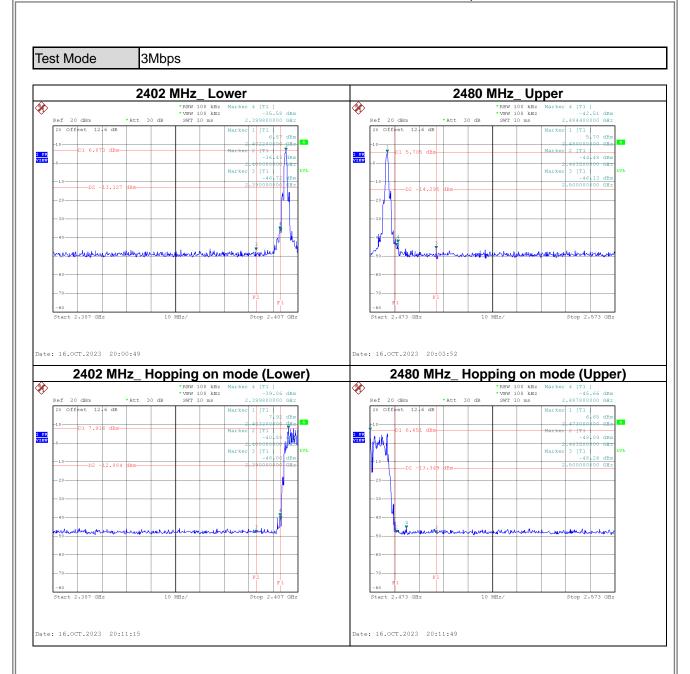
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.58	0.0114	20.97	0.1250	Pass
2441	10.82	0.0121	20.97	0.1250	Pass
2480	10.28	0.0107	20.97	0.1250	Pass

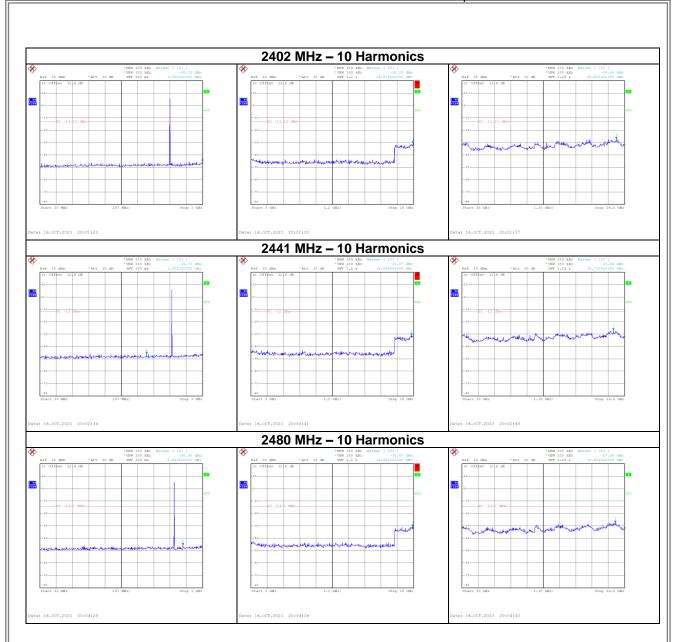
Project No.: 2212T004 Page 66 of 71 Report Version: R01



APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2212T004 Page 67 of 71 Report Version: R01





End of Test Report