FCC RADIO TEST REPORT

according to

47 CFR FCC Part 15 Subpart C § 15.225

Equipment : RFID HF Module

Brand Name : Advantech Model No. : \$10AR

Filing Type : New Application
Applicant : Advantech Co., Ltd.

No.1,alley 20,Lane 26,Rueiguang Road

NeiHu District, Taipei 114, R.O.C.

FCC ID : M82-S10AR

Manufacturer Advantech Co., Ltd.

No.1, alley 20, Lane 26, Rueiguang Road

NeiHu District, Taipei 114, R.O.C.

Received Date : Aug. 16, 2011 Final Test Date : Aug. 31, 2011

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.	SUN	MARY OF THE TEST RESULT	2
2.	GEN	ERAL INFORMATION	3
	2.1	Product Details	
	2.2	Accessories	
	2.3	Test Manner	3
	2.4	Table for Test Modes	3
	2.5	Table for Testing Locations	3
	2.6	Table for Supporting Units	3
	2.7	Test Configurations	4
3.	TES	T RESULT	5
	3.1	AC Power Line Conducted Emissions Measurement	
	3.2	Field Strength of Fundamental Emissions and Mask Measurement	
	3.3	20dB Spectrum Bandwidth Measurement	
	3.4	Radiated Emissions Measurement	16
	3.5	Frequency Stability Measurement	32
	3.6	Antenna Requirements	35
4.	LIST	OF MEASURING EQUIPMENTS	36
5.	TES	T LOCATION	38
6.	TAF	CERTIFICATE OF ACCREDITATION	39
ΑI	PPEN	IDIX A. TEST PHOTOS	1 ~ A8
ΔΙ	PPFN	IDIX R. PHOTOGRAPHS OF FUT	81 ~ B8

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : i of ii Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

History of This Test Report

Original Issue Date: Sep. 02, 2011

Report No.: FR141109-05

No additional attachment.

□ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

 SPORTON International Inc.
 Page No.
 : ii of ii

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

FAX: 886-2-2696-2255 FCC ID : M82-S10AR

CERTIFICATE OF COMPLIANCE

according to

47 CFR FCC Part 15 Subpart C § 15.225

Equipment : RFID HF Module

Brand Name : Advantech

: S10AR Model No.

Applicant : Advantech Co., Ltd.

No.1, alley 20, Lane 26, Rueiguang Road

NeiHu District, Taipei 114, R.O.C.

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Aug. 16, 2011 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

SPORTON International Inc. Page No. : 1 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011

FAX: 886-2-2696-2255

FCC ID : M82-S10AR

Report No.: FR141109-05

1. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C							
Part	Rule Section	Result	Under Limit					
3.1	15.207	AC Power Line Conducted Emissions	Complies	12.25 dB				
3.2	15.225(a)	15.225(a) Field Strength of Fundamental Emissions						
3.3	15.215(c)	20dB Spectrum Bandwidth	Complies	-				
3.4	15.225(d)	Radiated Emissions	Complies	3.01 dB				
3.5	15.225(e)	Complies	-					
3.6	6 15.203 Antenna Requirements Complic							

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±0.8dB	Confidence levels of 95%
20dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated / Band Edge Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

SPORTON International Inc. Page No. : 2 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011

FAX: 886-2-2696-2255 FCC ID : M82-S10AR

2. GENERAL INFORMATION

2.1 Product Details

Items	Description
Power Type	12V from Adapter; DC Power Source
Modulation	ASK
Channel Number	1
Channel Band Width (99%)	2.3 kHz
Max. Field Strength	37.15 dBuV/m at 10m (QP)
Test Freq. Range	13.553 ~ 13.567MHz
Carrier Frequencies	13.56 MHz (Ch. 1)
Antenna	Integrate Antenna (Without any antenna connector)

2.2 Accessories

Please refer to the specifications or user's manual.

2.3 Test Manner

The following test mode was for test:

Mode 1. Adapter Mode

Mode 2. Battery Mode

2.4 Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The

following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel
AC Power Line Conducted Emissions	Mode 1	-
Field Strength of Fundamental Emissions	CTX	1
20dB Spectrum Bandwidth	CTX	1
Radiated Emissions	CTX	1
Band Edge Emissions	CTX	1
Frequency Stability	Un-modulation	1

Note: CTX=continuously transmitting.

2.5 Table for Testing Locations

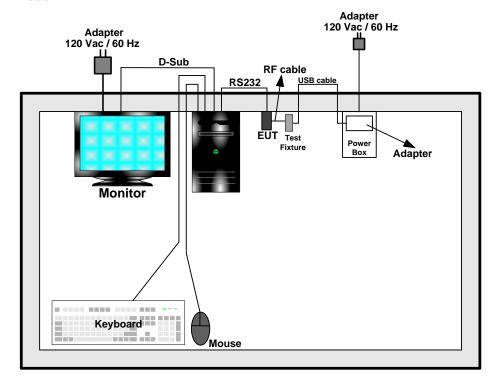
Test Site No.	Site Category	Location
CO04-HY	Conduction	Hwa Ya
TH01-HY	OVEN Room	Hwa Ya
10CH02-HY	SAC	Hwa Ya
03CH02-HY	SAC	Hwa Ya

Semi Anechoic Chamber (SAC).

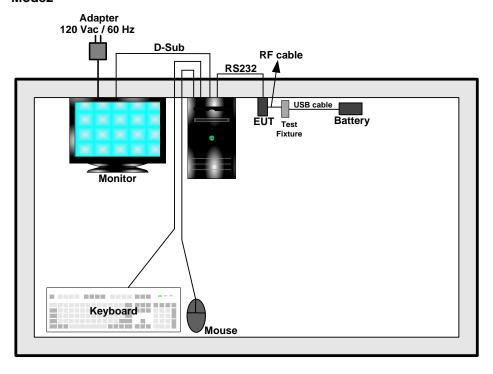
2.6 Table for Supporting Units

Support Unit	Brand	Model	FCC ID	Remark
Personal Computer	HP	DC579AV	DoC	
LCD Monitor	DELL	2408WFPb	DoC	Conducted
(PS2)Keyboard	HP	KB-0133	DoC	Radiated
(PS2)Mouse	HP	M-S69	DoC	Emissions
Test Fixture	Advantech	-	-	

Note: The Test Fixture provides is by customer.


 SPORTON International Inc.
 Page No. : 3 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011


 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

2.7 Test Configurations

For radiated emissions Mode1

Mode2

 SPORTON International Inc.
 Page No.
 : 4 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

FCC TEST REPORT Report No.: FR141109-05

3. TEST RESULT

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit

For a Low-power Radio-frequency device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

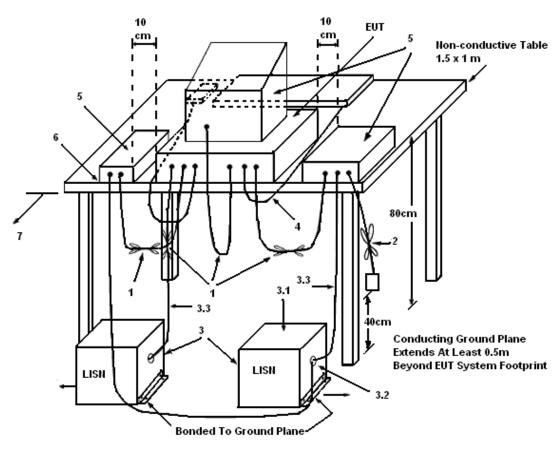
Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.1.3 Test Procedures


- 1. The EUT warm up about 15 minutes then start test.
- 2. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. The measurement has to be done between each power line and ground at the power terminal.

 SPORTON International Inc.
 Page No. : 5 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

3.1.4 Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

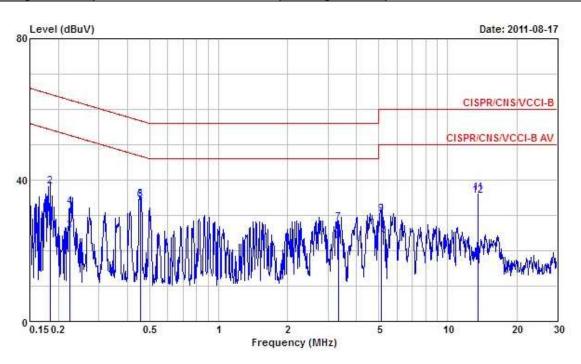
3.1.5 Test Deviation

There is no deviation with the original standard.

3.1.6 EUT Operation during Test

The EUT was placed on the test table and programmed in transmitting function.

 SPORTON International Inc.
 Page No. : 6 of 39

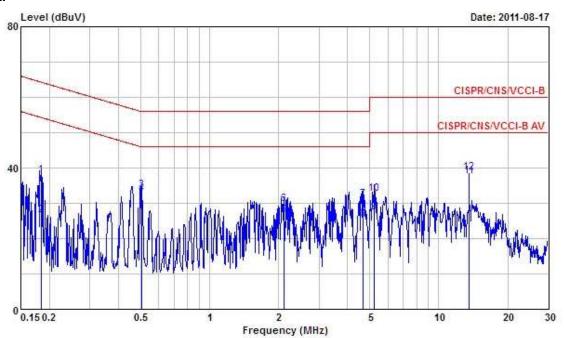

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

3.1.7 Results of AC Power Line Conducted Emissions Measurement

Final Test Date	Aug. 17, 2011	Test Site No.	CO04-HY
Temperature	25.6℃	Humidity	54.8%
Test Engineer	Charles	Configuration	Mode 1

Line


	Freq	Level	Over Limit	Limit Line	Read Level	LISN	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	8
1	00.1834550	29.07	-25.26	54.33	28.68	0.30	0.09	Average
2	80.1834550	38.03	-26.30	64.33	37.64	0.30	0.09	QP
3	@0.2245630	25.50	-27.15	52.65	25.07	0.30	0.13	Average
4	80.2245630	32.26	-30.39	62.65	31.83	0.30	0.13	QP
5	80.4563600	34.56	-22.20	56.76	33.94	0.29	0.33	QP
6	80.4563600	34.21	-12.55	46.76	33.59	0.29	0.33	Average
7	8 3.350	27.77	-28.23	56.00	26.94	0.33	0.50	QP
8	8 3.350	22.52	-23.48	46.00	21.69	0.33	0.50	Average
9	8 5.140	30.13	-29.87	60.00	29.26	0.37	0.50	QP
10	8 5.140	24.15	-25.85	50.00	23.28	0.37	0.50	Average
11	8 13.560	36.28	-23.72	60.00	35.20	0.51	0.57	QP
12	@ 13.560	35.66	-14.34	50.00	34.58	0.51	0.57	Average

 SPORTON International Inc.
 Page No.
 : 7 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

Neutral

	Freq	Level	Over	Limit Line	Read Level	LISN	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	8
1	@0.1834550	37.90	-26.43	64.33	37.55	0.26	0.09	QP
2	80.1834550	26.48	-27.85	54.33	26.13	0.26	0.09	Average
3	80.5034010	33.63	-22.37	56.00	33.04	0.24	0.35	QP
4	@0.5034010	32.63	-13.37	46.00	32.04	0.24	0.35	Average
5	@ 2.105	26.56	-19.44	46.00	25.79	0.27	0.50	Average
6	8 2.105	29.82	-26.18	56.00	29.05	0.27	0.50	QP
7	8 4.670	31.00	-25.00	56.00	30.19	0.31	0.50	QP
8	8 4.670	25.44	-20.56	46.00	24.63	0.31	0.50	Average
9	8 5.230	27.25	-22.75	50.00	26.43	0.32	0.50	Average
10	8 5.230	32.68	-27.32	60.00	31.86	0.32	0.50	QP
11	8 13.560	37.75	-12.25	50.00	36.75	0.43	0.57	Average
12	@ 13.560	38.65	-21.35	60.00	37.65	0.43	0.57	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

 SPORTON International Inc.
 Page No.
 : 8 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

FCC TEST REPORT

3.2 Field Strength of Fundamental Emissions and Mask Measurement

3.2.1 Limit

Field strength of fundamental emissions limit:

The field strength of fundamental emissions shall not exceed 15848 micorvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Field Strength (dBµV/m) at 10m	Field Strength (dBµV/m) at 3m
13.553 ~ 13.567MHz	15848 at 30m	103.08 (QP)	124 (QP)

Report No.: FR141109-05

Mask limit:

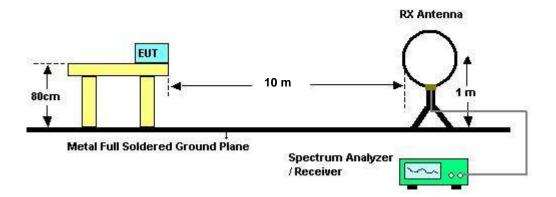
Rules and specifications	CFR 47 Part 15 section 15.225(a)-(d)						
Description	Compliance with the spectrum mask is tested using a spectrum analyzer with						
Description	RB set to a 1kHz for the band 13.553~13.567MHz						
	Freq. of	Field Strength	Field Strength	Field Strength	Field Strength		
	Emission	(uV/m) at 30m	(dBuV/m) at	(dBuV/m) at	(dBuV/m) at		
	(MHz)	(uv/iii) at 50iii	30m	10m	3m		
	1.705~13.110	30	29.5	48.58	69.5		
Limit	13.110~13.410	106	40.5	59.58	80.5		
Limit	13.410~13.553	334	50.5	69.58	90.5		
	13.553~13.567	15848	84.0	103.08	124.0		
	13.567~13.710	334	50.5	69.58	90.5		
	13.710~14.010	106	40.5	59.58	80.5		
	14.010~30.000	30	29.5	48.58	69.5		

3.2.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting	
Attenuation	Auto	
Center Frequency	Fundamental Frequency	
RB	9 kHz	
Detector	QP	

3.2.3 Test Procedures


- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested using a spectrum analyzer with RB set to a 1kHz for the band 13.553~13.567MHz.

 SPORTON International Inc.
 Page No. : 9 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

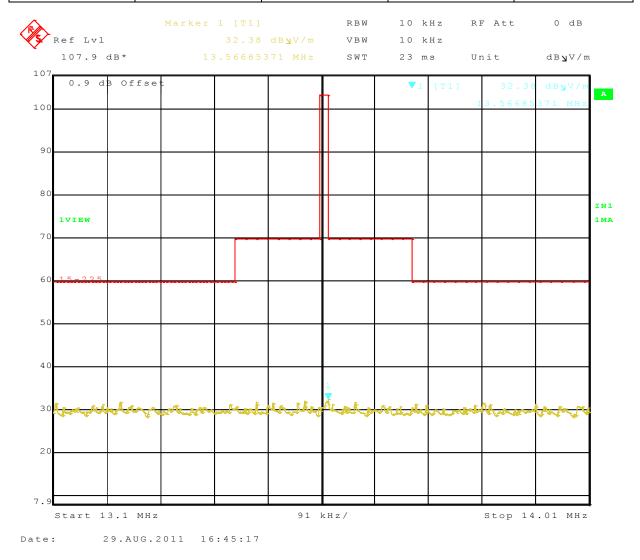
3.2.4 Test Setup Layout

3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


SPORTON International Inc. Page No. : 10 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

FAX: 886-2-2696-2255

3.2.7 Test Result of Field Strength of Fundamental Emissions

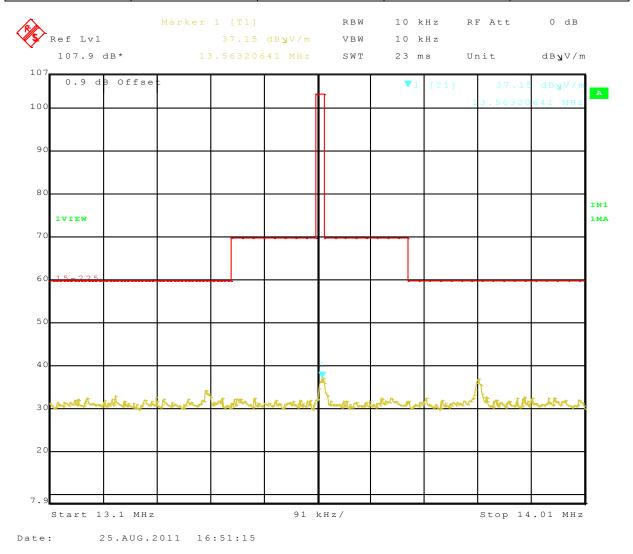
Final Test Date	Aug. 29, 2011	Test Site No.	10CH02-HY
Temperature	25 ℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 1 Ch. 1

Freq. (MHz)	Level (dBuV/m)	Over Limit (dB)	Limit Line (dBuV/m) at 10m	Remark
13.56 MHz	32.38	-70.7	103.08	QP

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m). Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


 SPORTON International Inc.
 Page No. : 11 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

Final Test Date	Aug. 29, 2011	Test Site No.	10CH02-HY
Temperature	25 ℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 2 Ch. 1

Freq. (MHz)	Level (dBuV/m)	Over Limit (dB)	Limit Line (dBuV/m) at 10m	Remark
13.56 MHz	37.15	-65.93	103.08	QP

Emission level (dBuV/m) = 20 log Emission level (uV/m). Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No.
 : 12 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

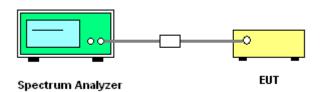
3.3 20dB Spectrum Bandwidth Measurement

3.3.1 Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 ~ 13.567MHz).

Report No.: FR141109-05

3.3.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	1 kHz
VB	1 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

3.3.3 Test Procedures

- The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

3.3.4 Test Setup Layout

3.3.5 Test Deviation

There is no deviation with the original standard.

3.3.6 EUT Operation during Test

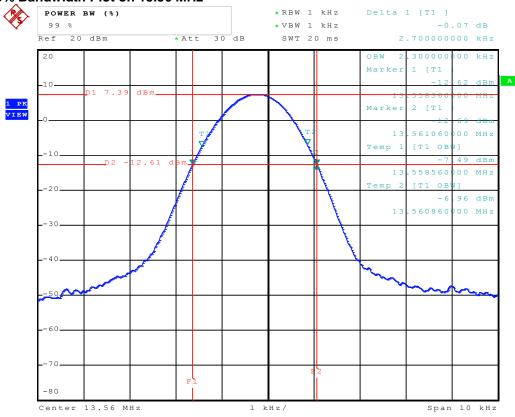
The EUT was programmed to be in continuously transmitting mode.

 SPORTON International Inc.
 Page No. : 13 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

FCC TEST REPORT


3.3.7 Test Result of 20dB Spectrum Bandwidth

Final Test Date	Aug. 31, 2011	Test Site No.	TH01-HY
Temperature	28.4℃	Humidity	53%
Test Engineer	lan	Configuration	Mode 1 Ch. 1

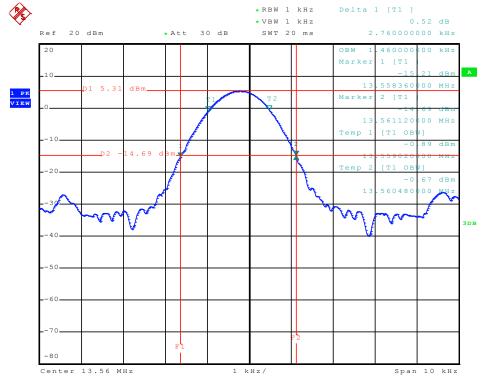
Report No. : FR141109-05

Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) f _L > 13.553MHz	Frequency range (MHz) f _H < 13.567MHz	Test Result
13.56 MHz	2.7	2.3	13.5584	13.5611	Complies

20 dB/99% Bandwidth Plot on 13.56 MHz

Date: 31.AUG.2011 16:55:11

 SPORTON International Inc.
 Page No.
 : 14 of 39


 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

Final Test Date	Aug. 16, 2011	Test Site No.	TH01-HY
Temperature	28.4℃	Humidity	53%
Test Engineer	lan	Configuration	Mode 2 Ch. 1

Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) f _L > 13.553MHz	Frequency range (MHz) f _H < 13.567MHz	Test Result	
13.56 MHz	2.76	1.46	13.5584	13.5611	Complies	

20 dB/99% Bandwidth Plot on 13.56 MHz

Date: 16.AUG.2011 13:46:18

 SPORTON International Inc.
 Page No. : 15 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

FCC TEST REPORT Report No.: FR141109-05

3.4 Radiated Emissions Measurement

3.4.1 Limit

The field strength of any emissions which appear outside of 13.553 ~ 13.567MHz band shall not

exceed the general radiated emissions limits in Section 15.209(a)

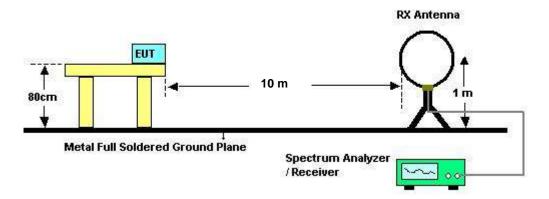
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Measuring Instruments and Setting

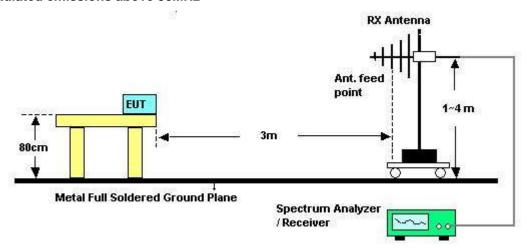
Please refer to section 4 of equipments list in this report. The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.4.3 Test Procedures


- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

SPORTON International Inc. Page No. : 16 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FAX: 886-2-2696-2255 FCC ID : M82-S10AR


FCC TEST REPORT

3.4.4 Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.4.5 Test Deviation

There is no deviation with the original standard.

3.4.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

SPORTON International Inc. Page No. : 17 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

FAX: 886-2-2696-2255

3.4.7 Results of Radiated Emissions (9kHz~30MHz)

Final Test Date	Aug. 29, 2011	Test Site No.	10CH02-HY
Temperature	25 ℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 1 Ch. 1

st Engineer	Sileak		Connigu	nation	IVIOU	e i Cii. i	
lz~150KHz							
	Marker 1 [T1]		RBW	200	Ηz	RF Att	0 dB
Ref Lvl	53.89	dB y V/m	VBW	200	Нz		
107.9 dB*	12.673346	69 kHz	SWT	18	s	Unit	dB y V/m
107						1	
0.9 dB Of 15-209	fset			▼ 1	[T1]	53.8	
100						12.6733	4669 kHz
		/		∇ 2	[T1]	48.3	4 dB y V/m
						15.7815	313 kHz
90				7	[T1]	46.8	/ dByV/m
						25,6713	1269 kHz
80				V 4	[T1]	36.9	1 dByV/m
80						61.2745	910 kHz
1VIEW							
70							
60							
1							
50 2 3							
Y							
40							
TO THE OWNER OF THE PARTY OF TH	Continue Minderella						
	Wall Million Time or 1					Į.	
30	A ARKAHENIA	UNITY AND A	A. I. Atlant	1 			
		a. an Cit.	May Hypry	Minitali,	Abolished	of the last the last	dita
				•		Tradien 6	Al/Interpolit
20							
7.9							
Start 9 kHz		14.1	kHz/			Stop	150 kHz

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Measured distance is 1.5m and 3m extrapolation factor is $40 \log (1.5/3) = -12dB$

All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

 SPORTON International Inc.
 Page No.
 : 18 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

150KHz~2MHz RBW 10 kHz RF Att 0 dB 44.60 dB**y**V/m VBW 10 kHz 107.9 dB* SWT dB**y**V/m 47 ms Unit Offse 100 9(80 IN1 50 30 2 (Start 150 kHz 185 kHz/ Stop 2 MHz

Note:

Date:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

29.AUG.2011 16:54:52

Measured distance is 1.5m and 3m extrapolation factor is 40 log (1.5/3) = - 12dB

All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

SPORTON International Inc. Page No. : 19 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

FAX: 886-2-2696-2255

2MHz~8MHz RBW 10 kHz RF Att 0 dB 35.14 dB**y**V/m VBW 10 kHz 107.9 dB* SWT 150 ms Unit dB**y**V/m Offse 100 9(80 IN1 1VIEW 70 50 40 30 2 (600 kHz/ Stop 8 MHz

Note:

Date:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

29.AUG.2011 16:57:04

Measured distance is 1.5m and 3m extrapolation factor is $40 \log (1.5/3) = -12dB$

All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

 SPORTON International Inc.
 Page No. : 20 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

8MHz~25MHz RBW 10 kHz RF Att 0 dB 31.09 dB**y**V/m VBW 10 kHz 107.9 dB* SWT 430 ms dB**y**V/m Unit Offse 100 9(80 IN1 1VIEW 70 5 (40 30 2 (Start 8 MHz 1.7 MHz/ Stop 25 MHz

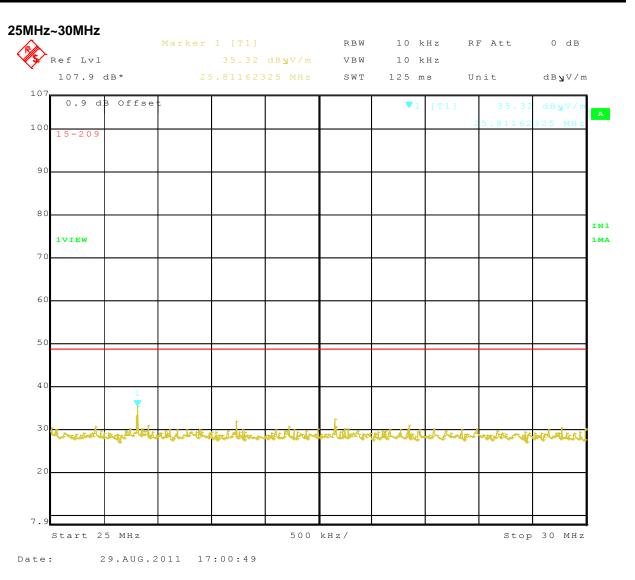
Note:

Date:

Marker 1 is the fundamental emission.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

29.AUG.2011 16:59:18


Measured distance is 1.5m and 3m extrapolation factor is $40 \log (1.5/3) = -12dB$

All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

 SPORTON International Inc.
 Page No. : 21 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

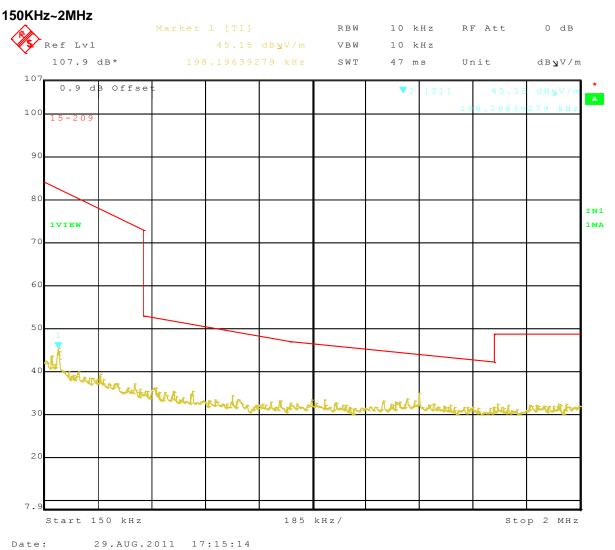
 SPORTON International Inc.
 Page No. : 22 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

Final Test Date	Aug. 29, 2011	Test Site No.	10CH02-HY
Temperature	25 ℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 2 Ch. 1
KHz~150KHz	Marker 1 [T1]	RBW 200	Hz RF Att 0 dB
Ref Lvl	53.76 dB		Hz
107.9 dB	* 12.67334669	kHz SWT 18	s Unit dByV/m
107 0.9 dB	Offset	▼1	[T1] 53.76 dByV/m
15-209		V 1	[T1] 53.76 dByV/m 12.67334669 kHz
100		∇2	
			9.00000000 kHz
90		-	[TI] 47.97 dByV/m
			-5 78156313 kHz
80		▼ 4	[T1] 46.29 dByV/m
1VIEW			25.67134269 kHz IN:
70			
60			
1			
5 ov 3			
50 7 2			
Wide I			
40	AL 1		
	the following the first of the state of the		[
30	A Amelian Lafer III	MARINA PARA PARA PARA PARA PARA PARA PARA PA	
		consequent reconstruction of the	things residentially regulations again
20			At and
7.9 Start 9 k	H 7	14.1 kHz/	Stop 150 kHz
JCGIC J K			200p 100 KHZ

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

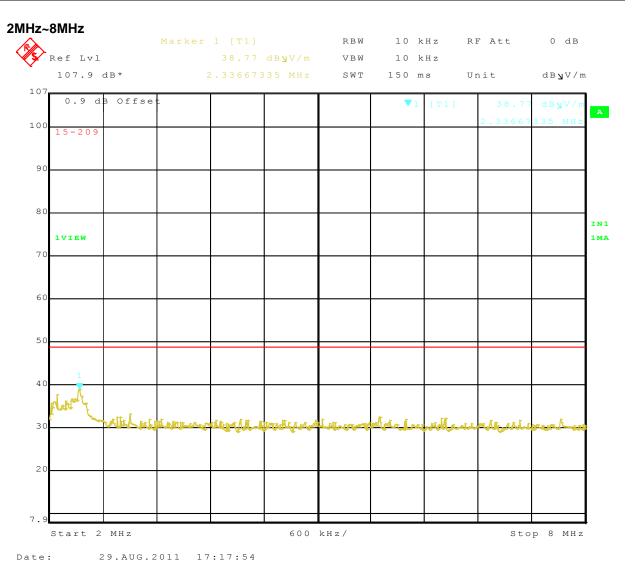
Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No.
 : 23 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

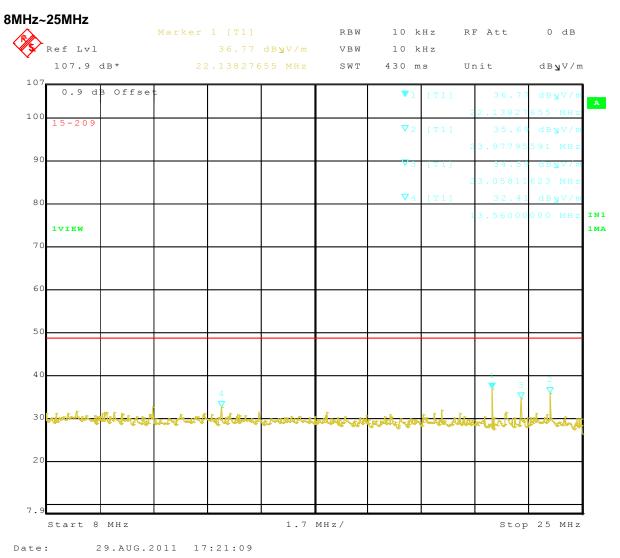
Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No. : 24 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

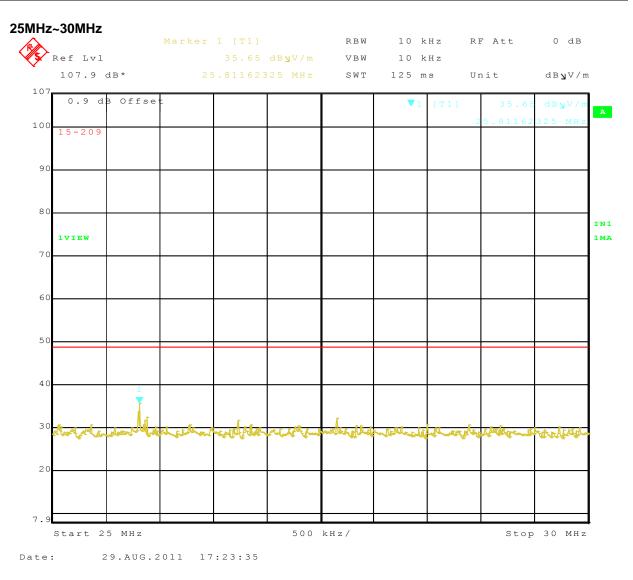
 SPORTON International Inc.
 Page No. : 25 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

Marker 1 is the fundamental emission.

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No. : 26 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

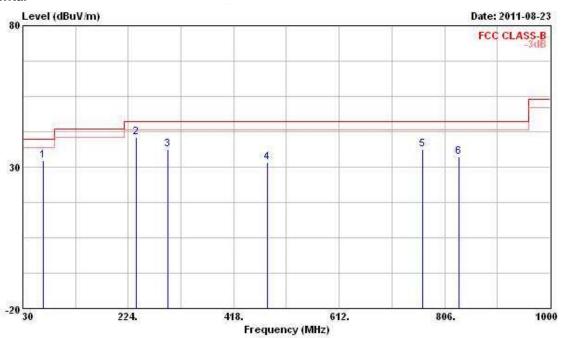
 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 SPORTON International Inc.
 Page No. : 27 of 39

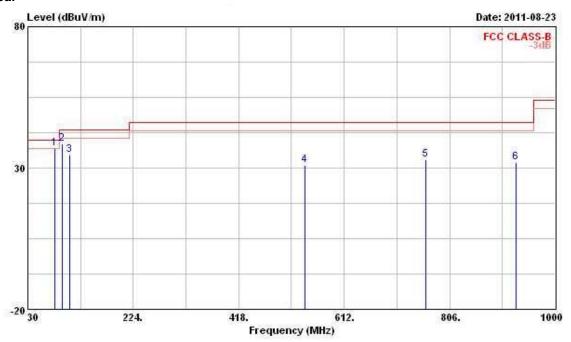

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

3.4.8 Results for Radiated Emissions (30MHz~1GHz)

Final Test Date	Aug. 23, 2011	Test Site No.	03CH02-HY
Temperature	25 ℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 1 Ch.1

Horizontal


	Freq	v. 230000002	Over	Limit		Antenna		Preamp	2010000000000	Ant -	Table
		Level	Limit	Line	reaer	Factor	Loss	Factor	Remark	Pos	Pos
		dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	. !	cm	deg
1	66.860	32.44	-7.56	40.00	52.01	6.85	1.30	27.72	Peak	244	
2	238.550	40.59	-5.41	46.00	52.24	12.62	2.60	26.87	Peak		
3	296.750	36.15	-9.85	46.00	46.38	13.66	2.90	26.79	Peak	2000	1707073
4	479.110	31.66	-14.34	46.00	39.21	16.87	3.66	28.08	Peak		
5	765.260	36.29	-9.71	46.00	39.72	19.77	4.63	27.83	Peak		
6	832.190	33.53	-12.47	46.00	36.09	20.19	4.84	27.59	Peak	+++	

 SPORTON International Inc.
 Page No.
 : 28 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

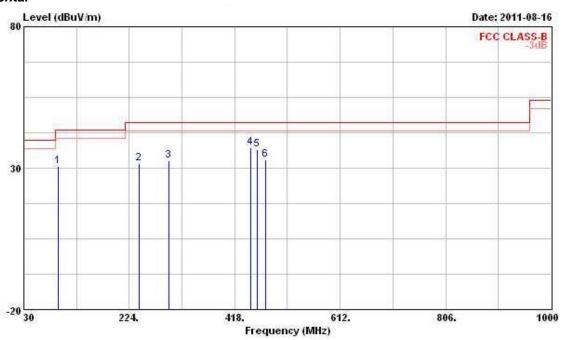
Vertical

	Freq		0ver	Limit	Read	Antenna	Cable	Preamp		Ant	Table
		Level	Limit	Line	Level	Factor	Loss	27772223333 2 	dB Emark	Pos ————————————————————————————————————	Pos
i		dBuV/m	dB	dBuV/m	dBuV	dB/m					
10	79.470	36.99	-3.01	40.00	55.92	7.37	1.41	27.71	Peak	202	(1000)
2	94.020	38.47	-5.03	43.50	54.41	10.17	1.53	27.64	Peak		3
3	106.630	34.48	-9.02	43.50	48.40	11.99	1.67	27.58	Peak	20000	3 1,03,0
4	540.220	31.15	-14.85	46.00	37.11	18.43	3.78	28.17	Peak	-	
5	762.350	32.87	-13.13	46.00	36.36	19.73	4.62	27.84	Peak		
6	928 220	31 99	-14 01	46 00	33 40	20 73	5 13	27 27	Peak		

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

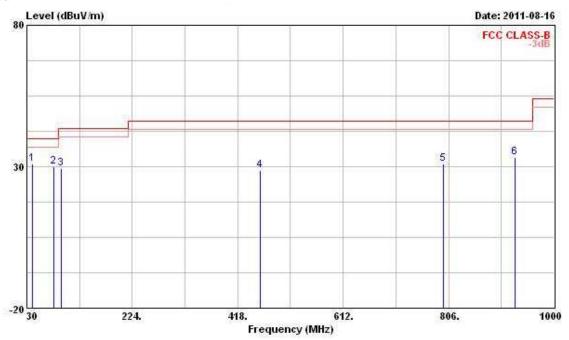

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

SPORTON International Inc. Page No. : 29 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

FAX: 886-2-2696-2255

Final Test Date	Aug. 16, 2011	Test Site No.	03CH02-HY
Temperature	25℃	Humidity	80%
Test Engineer	Streak	Configuration	Mode 2 Ch.1

Horizontal


			Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
1		dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	94.020	30.69	-12.81	43.50	46.63	10.17	1.53	27.64	Peak	242	(1000)
2	242.430	31.58	-14.42	46.00	43.05	12.75	2.63	26.85	Peak		-
3	296.750	32.78	-13.22	46.00	43.01	13.66	2.90	26.79	Peak	2000	10000
4	447.100	37.15	-8.85	46.00	45.36	16.22	3.48	27.91	Peak		
5	459.710	36.47	-9.53	46.00	44.42	16.47	3.55	27.97	Peak	244	
6	474.260	32.95	-13.05	46.00	40.60	16.77	3.63	28.05	Peak		

 SPORTON International Inc.
 Page No.
 : 30 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

Vertical

			0ver	Limit	ReadAntenna		Cable Preamp		,	Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
1		dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB		cm	deg
1	39.700	31.12	-8.88	40.00	44.69	13.25	0.98	27.80	Peak	244	(1000)
2	79.470	29.94	-10.06	40.00	48.87	7.37	1.41	27.71	Peak		
3	94.020	29.42	-14.08	43.50	45.36	10.17	1.53	27.64	Peak	20000	1,000
4	459.710	28.65	-17.35	46.00	36.60	16.47	3.55	27.97	Peak		-777
5	796.300	31.05	-14.95	46.00	33.83	20.21	4.75	27.74	Peak	244	
6	928.220	33.21	-12.79	46.00	34.62	20.73	5.13	27.27	Peak	+++	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

SPORTON International Inc. Page No. : 31 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FCC ID : M82-S10AR

FAX: 886-2-2696-2255

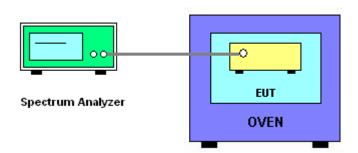
3.5 Frequency Stability Measurement

3.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Report No.: FR141109-05

3.5.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	1 kHz
VB	1 kHz
Sweep Time	Auto

3.5.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 1 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10⁶ ppm and the limit is less than ±100ppm.
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -20°C~50°C.

3.5.4 Test Setup Layout

3.5.5 Test Deviation

There is no deviation with the original standard.

3.5.6 EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

 SPORTON International Inc.
 Page No. : 32 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

FCC TEST REPORT Report No. : FR141109-05

3.5.7 Test Result of Frequency Stability

Final Test Date	Aug. 31, 2011	Test Site No.	TH01-HY
Temperature	28.4℃	Humidity	53%
Test Engineer	lan	Configuration	Mode 1 Ch. 1

Voltage vs. Frequency Stability

tonage to troquency etailmit	
Voltage	Measurement Frequency (MHz)
(V)	13.56 MHz
126.5	13.559780
110	13.559760
93.5	13.559820
Max. Deviation (MHz)	0.000240
Max. Deviation (ppm)	17.6991

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	13.56 MHz
-30	13.559760
-20	13.559740
-10	13.559780
0	13.559780
10	13.559780
20	13.559780
30	13.558740
40	13.559782
50	13.559760
Max. Deviation (MHz)	0.001260
Max. Deviation (ppm)	92.9204

 SPORTON International Inc.
 Page No. : 33 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

Final Test Date	Aug. 31, 2011	Test Site No.	TH01-HY
Temperature	28.4℃	Humidity	46%
Test Engineer	lan	Configuration	Mode 2 Ch. 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	13.56 MHz
126.5	13.559760
110	13.559780
93.5	13.559740
Max. Deviation (MHz)	0.000260
Max. Deviation (ppm)	19.1740

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	13.56 MHz
-30	13.559760
-20	13.559780
-10	13.559820
0	13.559800
10	13.559800
20	13.559800
30	13.559760
40	13.559780
50	13.559760
Max. Deviation (MHz)	0.000240
Max. Deviation (ppm)	17.6991

 SPORTON International Inc.
 Page No. : 34 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

FCC TEST REPORT Report No.: FR141109-05

3.6 Antenna Requirements

3.6.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connector Construction

Please refer to section 2.1 in this test report; antenna connector complied with the requirements.

 SPORTON International Inc.
 Page No.
 : 35 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

FAX: 886-2-2696-2255 FCC ID : M82-S10AR

4. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMO Describer	D 0 0	E000 00	400474	0111- 0.75011-	A 00 0044	Conduction
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Apr. 20, 2011	(CO04-HY)
LICAL	MessTec	NNB-2/16Z	00044	9kHz – 30MHz	Mar. 10, 2011	Conduction
LISN	Messiec	ININB-2/16Z	99041	9KHZ – 3UIVIHZ		(CO04-HY)
LISN	FM00	0040/000	0700 4000	0111- 00111-	May 04, 2011	Conduction
(Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz		(CO04-HY)
DE Cabla CON	LILIDED CLILINED	DC040/LI	CD040	01.11- 201411-	A== 04 0044	Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9kHz – 30MHz	Apr. 21, 2011	(CO04-HY)
EMI Elter	LINDODENI	LDE 2020		450 11-	N1/A	Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	(CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 30	100023	9 KHz ~ 30 GHz	Mar. 15, 2011	Conducted
Spectrum Analyzer	Ras	F3F 30	100023	9 KHZ ~ 30 GHZ	Mai. 15, 2011	(TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 03, 2011	Conducted
DC Power Source	G. vv.	GPC-0030D	C67 1645	DC 1V ~ 60V	Juli. 03, 2011	(TH01-HY)
Temp. and Humidity	Giant Force	GTH-225-20-S	MAB0103-001	N/A	Oct. 22, 2010	Conducted
Chamber	Giant Force	G1H-225-20-5	IVIABU103-001	IN/A	OCt. 22, 2010	(TH01-HY)
RF Cable-1m	Jye Bao	DC142	CB034-1m	20 MHz ~ 7 GHz	Dec. 02, 2010	Conducted
KF Cable-1111	Јуе Бао	RG142	CD034-1111	20 MINZ ~ 7 GNZ	Dec. 02, 2010	(TH01-HY)
DE Cable 2m	luo Doo	RG142	CD025 2m	20 MHz ~ 1 GHz	D 00 0040	Conducted
RF Cable-2m	Jye Bao	RG142	CB035-2m	20 MHZ ~ 1 GHZ	Dec. 02, 2010	(TH01-HY)
Cianal Canaratar	Doc	CMD40	100116	10 MHz ~ 40 GHz	lun 07 2011	Conducted
Signal Generator	R&S	SMR40	100116	10 MHZ ~ 40 GHZ	Jun. 07, 2011	(TH01-HY)
Power Sensor	Annitor	MA2411B	0017017	300 MHz ~ 40 GHz	lon 06 2011	Conducted
Power Sensor	Anritsu	IVIAZ411D	0917017	300 MHZ ~ 40 GHZ	Jan. 06, 2011	(TH01-HY)
Dawes Mates	A	MI 0405A	0040000	200 MH - 40 CH-	I== 00 0044	Conducted
Power Meter	Anritsu	ML2495A	0949003	300 MHz ~ 40 GHz	Jan. 06, 2011	(TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Dower Course	LIDC	HPA-500W	LIDA 0400024	AC 0 200V	lum 00 2011*	Conducted
AC Power Source	HPC	HPA-500VV	HPA-9100024	AC 0 ~ 300V	Jun. 09, 2011*	(TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

 SPORTON International Inc.
 Page No.
 : 36 of 39

 TEL: 886-2-2696-2468
 Issued Date
 : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID
 : M82-S10AR

Report No. : FR141109-05

For Radiated emissions 9kHz~30MHz

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
10m Semi Anechoic Chamber	TDK	SAC-10M	10CH02-HY	30MHz~1GHz 10m,3m	Nov. 28, 2010	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10827	100KHz – 1.3GHz	May 20, 2011	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10828	100KHz – 1.3GHz	May 16, 2011	Radiation (10CH02-HY)
Receiver	R&S	ESI	838496/008	20Hz - 7GHz	Apr. 24, 2011	Radiation (10CH02-HY)
Spectrum Analyzer	R&S	FSP7	100645	9KHz – 7GHz	Jun. 01.2011	Radiation (10CH02-HY)
Biconical Antenna	Schwarzbeck	VHBB 9124	287	30MHz –200MHz	Dec. 20, 2010	Radiation (10CH02-HY)
Log Antenna	Schwarzbeck	VUSLP 9111	207	200MHz -1GHz	Dec. 20, 2010	Radiation (10CH02-HY)
Turn Table	HD	DS 430	430/360	0 ~ 360 degree	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/664	1 m - 4 m	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/667	1 m - 4 m	N/A	Radiation (10CH02-HY)
RF Cable-R10m	Jye Bao	RG142	CB027-INSIDE	30MHz~1GHz	Feb. 12, 2011	Radiation (10CH02-HY)
RF Cable-R10m	Suhner Switzerland + BELDEN	RG223/U + RG8/U	CB026-DOOR	30MHz~1GHz	Feb. 12, 2011	Radiation (10CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

For Radiated emissions 30MHz~1GHz

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100305/040	9 kHz ~ 40 GHz	Feb. 11, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz ~ 1 GHz 3m	May 11, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100 kHz ~ 1.3 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Mar. 07, 2011	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 16, 2010	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark	
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz		Radiation (10CH02-HY) (03CH02-HY)	

Note: Calibration Interval of instruments listed above is two year.

SPORTON International Inc. Page No. : 37 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FAX: 886-2-2696-2255 FCC ID : M82-S10AR

5. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	NKOU ADD: No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C		No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

Report No. : FR141109-05

 SPORTON International Inc.
 Page No. : 38 of 39

 TEL: 886-2-2696-2468
 Issued Date : Sep. 02, 2011

 FAX: 886-2-2696-2255
 FCC ID : M82-S10AR

FCC TEST REPORT Report No.: FR141109-05

6. TAF CERTIFICATE OF ACCREDITATION

Certificate No. : L1190-110111

Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

: 1190 Accreditation Number

Originally Accredited : December 15, 2003

Effective Period : January 10, 2010 to January 09, 2013

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

for Commodities Inspection Program Accreditation Program for Telecommunication Equipment

Testing Laboratory Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: January 11, 2011

P1, total 24 pages

SPORTON International Inc. Page No. : 39 of 39 TEL: 886-2-2696-2468 Issued Date : Sep. 02, 2011 FAX: 886-2-2696-2255 FCC ID : M82-S10AR