FCC SAR Test Report **FCC ID: M82-PWS872** Project No. : 1706122 Equipment : Computer Model Name : PWS-872 **Applicant**: Advantech Co., Ltd. Address: No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan, R.O.C. Date of Receipt: Jul, 19. 2017 **Date of Test** : Aug, 16. 2017 ~ Aug, 24. 2017 Issued Date : Aug, 31. 2017 Tested by : BTL Inc. Jerome Chang PREPARED BY (Jerome Chang/ Technical Engineer) Harbort Lin **APPROVED BY**: (Herbort Liu/ Technical Manager) BTL INC. No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan TEL:+886-2-2657-3299 FAX: +886-2-2657-3331 Report No.: BTL-FCC-SAR-1-1706122 Page 1 of 57 #### **Declaration** **BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**), or National Institute of Standards and Technology (**NIST**). **BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports. **BTL**'s reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government. This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval. **BTL**'s laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report. #### Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Report No.: BTL-FCC-SAR-1-1706122 Page 2 of 57 | Table of Contents | Page | |--|------| | 1. GENERAL SUMMARY | 6 | | 2. RF EMISSIONS MEASUREMENT | 7 | | 2.1. TEST FACILITY | 7 | | 2.1. TEST FACILITY 2.2. MEASUREMENT UNCERTAINTY | 8 | | | | | 3. GENERAL INFORMATION | 9 | | 3.1. STATEMENT OF COMPLIANCE | 9 | | 3.1.1. GENERAL DESCRIPTION OF EUT | 10 | | LABORATORY ENVIRONMENT | 10 | | 3.2. MAIN TEST INSTRUMENTS | 11 | | 4. SAR MEASUREMENTS SYSTEM CONFIGURATION | 12 | | 4.1. SAR MEASUREMENT SET-UP | 12 | | 4.2. DASY5E-FIELDPROBESYSTEM | 13 | | 5. SYSTEM VERIFICATION PROCEDURE | 21 | | 5.1. TISSUE VERIFICATION | 21 | | 5.2. SYSTEM CHECK | 23 | | 5.3. SYSTEM CHECK PROCEDURE | 24 | | 6. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY | 25 | | 6.1. SAR MEASUREMENT VARIABILITY | 25 | | 6.2. SAR MEASUREMENT UNCERTAINTY | 25 | | 7. OPERATIONAL CONDITIONS DURING TEST | 26 | | 7.1 WIFI TEST CONFIGURATION | 26 | | 7.2 TEST POSITION OF PORTABLE DEVICES | 27 | | 7.2.1 TEST POSITION REQUIREMENTS | 27 | | 7.2.2 SAR TEST REDUCTION AND EXCLUSION GUIDANCE | 27 | | 8. POWER TEST RESULT | 33 | | 8.1 CONDUCTED POWER MEASUREMENTS OF BT | 33 | | 8.2 CONDUCTED POWER MEASUREMENTS OF WIFI 2.4G | 34 | | 8.3 CONDUCTED POWER MEASUREMENTS OF WIFI 5AND I | 36 | | 8.4 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND II | 39 | | 8.5 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND III | 42 | Report No.: BTL-FCC-SAR-1-1706122 Page 3 of 57 | Table of Contents | Page | |--|------| | 8.6 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND IV | 45 | | 9. SAR TEST RESULTS | 48 | | 9.1 SAR MEASUREMENT RESULT OF BODY | 49 | | 10. MULTIPLE TRANSMITTER INFORMATION | 53 | | 11. SIMULTANEOUS TRANSMISSION CONDITIONS | 54 | | APPENDIX | 56 | | 1. TEST LAYOUT Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of the Test Set-Up | 56 | Report No.: BTL-FCC-SAR-1-1706122 Page 4 of 57 # **REPORT ISSUED HISTORY** | Issued No. | Description | Issued Date | |-----------------------|-----------------|---------------| | BTL-FCC-SAR-1-1706122 | Original Issue. | Aug, 31. 2017 | Report No.: BTL-FCC-SAR-1-1706122 Page 5 of 57 # 1. GENERAL SUMMARY | Equipment | Computer | |--------------|--| | Model Name | PWS-872 | | Brand Name | ADVANTECH | | Manufacturer | Advantech Co., Ltd. | | Address | No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan, R.O.C. | | Standard(s) | FCC 47CFR §2.1093 Radio frequency Radiation Exposure Evaluation: Portable Devices ANSI Std C95.1-1992 Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991) IEEE Std 1528-2013 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques KDB447498 D01 General RF Exposure Guidance v06 KDB616217 D04 SAR for laptop and tablets v01r02 KDB248227 D01 802. 11 Wi-Fi SAR v02r02 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 | | | KDB865664 D02 RF Exposure Reporting v01r02
KDB690783 D01 SAR Listings on Grants v01r03 | The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCC-SAR-1-1706122) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s). Report No.: BTL-FCC-SAR-1-1706122 Page 6 of 57 # 2. RF EMISSIONS MEASUREMENT # 2.1. TEST FACILITY The test facilities used to collect the test data in this report is **SAR room** at the location of No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan. Report No.: BTL-FCC-SAR-1-1706122 Page 7 of 57 ## 2.2. MEASUREMENT UNCERTAINTY Note: Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04,when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions. Report No.: BTL-FCC-SAR-1-1706122 Page 8 of 57 ## 3. GENERAL INFORMATION ## **3.1.STATEMENT OF COMPLIANCE** The maximum results of Specific Absorption Rate (SAR). | Equipment
Class | Mode | Highest
Body (0mm)
SAR-1g(W/kg) | | |--|-----------|---------------------------------------|--| | DTS | 2.4G WLAN | 0.761 | | | U-NII | 5G WLAN | 1.181 | | | Highest Simultaneous
Transmission SAR | | Highest Body (0mm) SAR-1g(W/kg) | | | DTS+DSS | | 0.824 | | | U-NII+DSS | | 1.244 | | | DTS+DTS | | 0.803 | | | U-NII+U-NII | | U-NII+U-NII 1.306 | | #### Note: The device is in compliance with Specific Absorption Rate(SAR)for general population/ uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI/IEEE C95.1:1992, the NCRP Report Number 86 for uncontrolled environment, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013. Report No.: BTL-FCC-SAR-1-1706122 Page 9 of 57 ## 3.1.1. GENERAL DESCRIPTION OF EUT | Equipment | Computer | | | | | | |------------------------|---|----------------------|------------------------------|--|--|--| | Model Name | PWS-872 | | | | | | | HW Version | V1.0.1 | | | | | | | SW Version | V1.0.1 | | | | | | | Modulation | WiFi(DSSS/OFDM),BT(GFSK/ π /4-DQPSK/8-DPSK) | | | | | | | | Band | | | | | | | | Bluetooth | 2400~ | 2483.5 | | | | | 0 " - | WIFI 2.4G | 2412 ⁻ | -2462 | | | | | Operation Frequency | WIFI 5.2G | 5150 ⁻ | -5250 | | | | | Range(s) | WIFI 5.3G | 5250 ⁻ | -5350 | | | | | | WIFI 5.5G | 5475 | -5725 | | | | | | WIFI 5.8G | 5725 | -5850 | | | | | | Band | Modulation | Channel list | | | | | | WIFI 2.4G | 802.11b/g/n HT20 | 1-6-11 | | | | | | VVII 1 2.4G | 802.11n HT40 | 3-6-9 | | | | | | | 802.11a/n HT20/ac VH | | | | | | | WIFI 5.2G | 802.11n HT40/ac VHT | | | | | | | | 802.11ac VHT80 | 42 | | | | | | WIFI 5.3G | 802.11a/n HT20/ac VH | | | | | | | | 802.11n HT40/ac VHT | | | | | | Operation Channel List | | 802.11ac VHT80 | 58 | | | | | | | 802.11a/n HT20/ac VH | 20 100-104-108-112 | | | | | | WIFI 5.5G | | -116-132-136-140 | | | | | | | 802.11n HT40/ac VHT | | | | | | | | 802.11ac VHT80 | 106-138 | | | | | | | 802.11a/n HT20/ac VH | -20 149-153-157-161
-165 | | | | | | WIFI 5.8G | 802.11n HT40/ac VHT | | | | | | | | 802.11ac VHT80 | 155 | | | | | | Band/Ant | | ain | | | | | Antenna Gain | 2.4G Ant | 3.56 | | | | | | , and ma dam | 5G Ant | 3.44 | | | | | | | | Information | | | | | | | Brand | Advantech | | | | | | | Model | | 1760001918-01 (Advan4S1P027) | | | | | Battery |
Capacitance | 2730 mA | , | | | | | | Rated Voltage | 28.8 V | | | | | | | Manufacturer | Joules Miles | Joules Miles Co., LTD. | | | | | | | | , | | | | # LABORATORY ENVIRONMENT | Temperature | Min. = 18°C, Max. = 25°C | | | | | |--|--------------------------|--|--|--|--| | Relative humidity | Min. = 30%, Max. = 70% | | | | | | Ground system resistance | < 0.5Ω | | | | | | Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards. | | | | | | Report No.: BTL-FCC-SAR-1-1706122 Page 10 of 57 ## 3.2. MAIN TEST INSTRUMENTS | Item | Equipment | Manufactur
er | Model | Serial No. | Cal. Date | Cal. Interval | |------|--------------------------------|---------------------------|------------------------------|----------------|------------------|---------------| | 1 | E-field Probe | Speag | EX3DV4 | 3753 | May. 05,
2017 | 1 Year | | 2 | Data Acquisition Electronics | Speag | DAE4 | 1305 | Apr. 25,
2017 | 1 Year | | 3 | System Validation Dipole | Speag | D2450V2 | 973 | Aug. 14,
2015 | 3 Year | | 4 | System Validation Dipole | Speag | D5GHzV2 | 1221 | Aug. 11,
2015 | 3 Year | | 5 | Oval Flat Phantom | Speag | Oval Flat
Phantom ELI 5.0 | 1240 | N/A | N/A | | 6 | Power Amplifier | Mini-Circuits | ZVE-2W-272+ | N650001538 | N/A | N/A | | 7 | Power Amplifier | Mini-Circuits | ZVE-8G+ | N628801631 | N/A | N/A | | 8 | ENA Network Analyzer | Keysight | E5071C | MY46524658 | Dec. 06,
2016 | 1 Year | | 9 | EXG Vector Signal
Generator | Keysight | N5172B | MY53051229 | Dec. 16,
2016 | 1 Year | | 10 | Power Meter | Anritsu | ML2495A | 1128008 | Aug. 18,
2016 | 1 Year | | 11 | Power Sensor | Anritsu | MA2411B | 1126001 | Aug. 18,
2016 | 1 Year | | 12 | Power Meter | Anritsu | 4232A | 10179 | Nov. 25,
2016 | 1 Year | | 13 | Power Sensor | Anritsu | 51011 | 34150 | Nov. 25,
2016 | 1 Year | | 14 | Spectrum Analyzer | Keysight | N9010A | MY54200483 | Oct. 04,
2016 | 1 Year | | 15 | Dielectric Assessment Kit | Speag | DAK-3.5 | 1226 | Dec. 09,
2015 | N/A | | 16 | Low pass filter | Mini-Circuits | SLP-2950+ | M108294 | N/A | N/A | | 17 | Attenuator | Worken | WFA0602-10 | SA10-01 | N/A | Note 2 | | 18 | Attenuator | Worken | WFA0602-10 | SA10-02 | N/A | Note 2 | | 19 | Attenuator | Worken | WFA0602-3 | SA3-01 | N/A | Note 2 | | 20 | Dual directional coupler | Woken | 0110A05601O-10 | DOM5CIW3E
2 | N/A | Note 2 | | 21 | Digital Thermometer | LKM
electronic
GmbH | DTM3000 | 1341359457 | Jul. 20,
2016 | 1 Year | | 22 | Thermo-hygrometer | Testo | 608-H1 | N/A | Oct. 19,
2016 | 1 Year | Note: 1." N/A" denotes no model name, serial No. or calibration specified. Report No.: BTL-FCC-SAR-1-1706122 Page 11 of 57 ^{2.} Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. #### 4. SAR MEASUREMENTS SYSTEM CONFIGURATION #### **4.1.SAR MEASUREMENT SET-UP** The DASY5 system for performing compliance tests consists of the following items: - 1. □A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE). - 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - 3. A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - 4. A unit to operate the optical surface detector which is connected to the EOC. - 5. □The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server. - 6. TheDASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7 - 7. DASY5 software and SEMCAD data evaluation software. - 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc. - 9. The generic twin phantom enabling the testing of left-hand and right-hand usage. - 10. □The device holder for handheld mobile phones. - 11. □Tissue simulating liquid mixed according to the given recipes. - 12. □System validation dipoles allowing to validate the proper functioning of the system. # 4.1.1.Test Setup Layout Report No.: BTL-FCC-SAR-1-1706122 Page 12 of 57 # 4.2.DASY5E-FIELDPROBESYSTEM The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. # 4.2.1.EX3DV4 PROBE SPECIFICATION | Construction | Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Calibration | ISO/IEC 17025 calibration service available | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | Dynamic Range | 10 μW/g to > 100 mW/g
Linearity:± 0.2dB | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm | **EX3DV4 E-field Probe** Report No.: BTL-FCC-SAR-1-1706122 Page 13 of 57 ## **4.2.2.E-FIELD PROBE CALIBRATION** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$ Where: $\Delta t = \text{Exposure time (30 seconds)}$, C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or $$SAR = \frac{|E|^2 \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m3). Report No.: BTL-FCC-SAR-1-1706122 Page 14 of 57 ## **4.2.3.OTHER TEST EQUIPMENT** #### 4.2.3.1. Device Holder for Transmitters **Construction:** Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices (e.g., laptops, cameras, etc.) It is light weight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4and SAM v6.0Phantoms. Material: POM, Acrylic glass, Foam # 4.2.3.2 Phantom | Model | ELI4 Phantom | | |-----------------|---|--| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Shell Thickness | 2±0.1 mm | | | Filling Volume | Approx. 30 liters | | | Dimensions | Length: 600 mm; Width: 190mm
Height: adjustable feet | | | Aailable | Special | | Report No.: BTL-FCC-SAR-1-1706122 #### 4.2.4.SCANNING PROCEDURE The DASY5 installation
includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions. The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %. The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.) #### Area Scan The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(\leq 2GHz) , 12 mm in x- and y- dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. #### Zoom Scan A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: \triangle x_{zoom} , \triangle $y_{zoom} \le 2$ GHz - \le 8mm, 2-4GHz - \le 5 mm and 4-6 GHz- \le 4mm; \triangle $z_{zoom} \le$ 3GHz - \le 5 mm, 3-4 GHz- \le 4mm and 4-6GHz- \le 2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.)are shown in table form form in chapter 7.2. A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength — also show the liquid depth. Report No.: BTL-FCC-SAR-1-1706122 Page 16 of 57 The following table summarizes the area scan and zoom scan resolutions per FCC KDB 865664D01: | | Maximun Area | Maximun Zoom | Maximun Z | Minimum | | | |-----------|--|--|------------------------|-------------------------|----------------------------------|-------------------| | Frequency | Scan | Scan spatial | Uniform Grid | Graded Grad | | zoom scan | | Trequency | resolution
(Δx _{area} , Δy _{area}) | resolution
(Δx _{Zoom} , Δy _{Zoom}) | Δz _{Zoom} (n) | Δz _{Zoom} (1)* | Δz _{Zoom} (n>1)* | volume
(x,y,z) | | ≤2GHz | ≤15mm | ≤8mm | ≤5mm | ≤4mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥30mm | | 2-3GHz | ≤12mm | ≤5mm | ≤5mm | ≤4mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥30mm | | 3-4GHz | ≤12mm | ≤5mm | ≤4mm | ≤3mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥28mm | | 4-5GHz | ≤10mm | ≤4mm | ≤3mm | ≤2.5mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥25mm | | 5-6GHz | ≤10mm | ≤4mm | ≤2mm | ≤2mm | $\leq 1.5^*\Delta z_{Zoom}(n-1)$ | ≥22mm | ## **4.2.5.SPATIAL PEAK SAR EVALUATION** The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 5 x 5 x 7 points(with 8mm horizontal resolution) or 7 x 7 x 7 points(with 5mm horizontal resolution) or 8 x 8 x 7 points(with 4mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages. - The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting "Graph Evaluated". - The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube. - All neighboring volumes are evaluated until no neighboring volume with a higher average value is found. #### Extrapolation The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. ## Interpolation The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff]. # **Volume Averaging** At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average. # **Advanced Extrapolation** DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes. Report No.: BTL-FCC-SAR-1-1706122 Page 17 of 57 ## 4.2.6.DATA STORAGE AND EVALUATION ## 4.2.5.1Data Storage The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. Report No.: BTL-FCC-SAR-1-1706122 Page 18 of 57 ## 4.4.2 Data Evaluation by SEMCAD The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: Sensitivity Normi, a_{i0} , a_{i1} , a_{i2} Conversion factor ConvF_i Diode compression point Dcpi Device Frequency f parameters: Crest factor cf Media parameters: Conductivity . Density · These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot cf / dcp_i$$ With V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) **cf** = crest factor of exciting field
(DASY parameter) dcp_i = diode compression point (DASY parameter) Report No.: BTL-FCC-SAR-1-1706122 From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$ With V_i = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z) $[mV/(V/m)^2]$ for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = (E_X^2 + E_Y^2 + E_Z^2)^{1/2}$$ The primary field data are used to calculate the derived field units. SAR = $$(E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$ With SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³ Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$ With P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total field strength in V/m H_{tot} = total magnetic field strength in A/m ## 5. SYSTEM VERIFICATION PROCEDURE #### **5.1. TISSUE VERIFICATION** The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values. The following materials are used for producing the tissue-equivalent materials. | Tissue
Type | Bacterici
de | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-----------------|------|-----|------|---------|-----------------|-------|---| | Body 2450 | - | 31.4 | - | 0.1 | - | - | 68.5 | - | | Body 5G | - | - | - | - | 1 | 10.7 | 78.6 | 10.7 | Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16M + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether Report No.: BTL-FCC-SAR-1-1706122 Page 21 of 57 | | Tissue Verification | | | | | | | | | | | | |----------------|---------------------|-------------------------|------------------|-------------------|---------------------------|----------------------------|----------------------------------|---------------------------------|------------------|--|--|--| | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(°C) | Conductivity (σ) | Permittivity (εr) | Targeted Conductivity (σ) | Targeted Permittivity (εr) | Deviation Conductivity (σ) (%) | Deviation Permittivity (εr) (%) | Date | | | | | Body | 2450 | 22.0 | 1.973 | 53.183 | 1.95 | 52.7 | 1.18 | 0.92 | Aug. 21,
2017 | | | | | Body | 5300 | 22.6 | 5.495 | 47.444 | 5.42 | 48.9 | 1.38 | -2.98 | Aug. 24,
2017 | | | | | Body | 5600 | 22.0 | 5.900 | 46.819 | 5.77 | 48.5 | 2.25 | -3.47 | Aug. 16,
2017 | | | | | Body | 5800 | 22.0 | 6.240 | 46.303 | 6.00 | 48.2 | 4.00 | -3.94 | Aug. 21,
2017 | | | | #### Note - 1)The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements. - 2)KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies. - 3)The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits. Report No.: BTL-FCC-SAR-1-1706122 Page 22 of 57 # **5.2. SYSTEM CHECK** The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests. | System
Check | Date | Frequency
(MHz) | Targeted SAR
(W/kg) | Measured SAR
(W/kg) | normalized SAR
(W/kg) | Deviation (%) | Dipole
S/N | |-----------------|---------------|--------------------|------------------------|------------------------|--------------------------|---------------|---------------| | Body | Aug. 21, 2017 | 2450 | 51.70 | 13.50 | 54.00 | 4.45 | 973 | | Body | Aug. 24, 2017 | 5300 | 75.80 | 7.35 | 73.50 | -3.03 | 1221 | | Body | Aug. 24, 2017 | 5600 | 80.60 | 8.33 | 83.30 | 3.35 | 1221 | | Body | Aug. 16, 2017 | 5800 | 77.70 | 8.32 | 83.20 | 7.08 | 1221 | Report No.: BTL-FCC-SAR-1-1706122 Page 23 of 57 #### 5.3. SYSTEM CHECK PROCEDURE The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW(below 5GHz) or 100mW(above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test. System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system. Report No.: BTL-FCC-SAR-1-1706122 Page 24 of 57 ## 6. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY #### **6.1.SAR MEASUREMENT VARIABILITY** Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1- α SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. ## **6.2.SAR MEASUREMENT UNCERTAINTY** Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required. Report No.: BTL-FCC-SAR-1-1706122 Page 25 of 57 #### 7. OPERATIONAL CONDITIONS DURING TEST #### 7.1 WIFI TEST CONFIGURATION For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. | Mode | 802.11b | 802.11g | 802.11n
(HT20/
HT40) | 802.11a | 802.11n
(HT20
/HT40 | 802.11ac
(VHT80) | | | | | |---------------|---------|---------|----------------------------|---------|---------------------------|---------------------|--|--|--|--| | Duty
cycle | | 100% | | | | | | | | | | Crest | | 1 | | | | | | | | | | factor | | | | 1 | | | | | | | ## **♦ 802.11b DSSS SAR Test Requirements** SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. # ♦ 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction
procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions. - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. ## ♦ U-NII-1 and U-NII-2A Band For devices that operate in both U-NII-1 and U-NII-2A bands, When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR. Report No.: BTL-FCC-SAR-1-1706122 Page 26 of 57 #### 7.2 TEST POSITION OF PORTABLE DEVICES ## 7.2.1 Test Position Requirements The SAR Exclusion Threshold in KDB 447498 D01can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned adjacent the phantom and the edge containing the antenna positioned perpendicular to the phantom. Fig 7.2.1: Test setup for PAD mode #### 7.2.2 SAR test reduction and exclusion guidance (1)The SAR exclusion threshold for distances<50mm is defined by the following equation: The test exclusions are applicable only when the minimum test separation distance is ≤50mm and for transmission frequencies between 100MHz and 6GHz. When the minimum test separation distance is<5mm, a distance of 5mm according to 5) in section 4.1 is applied to determine SAR test exclusion. (2)The SAR exclusion threshold for distances>50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B: a) at 100 MHz to 1500 MHz [Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f $_{(MHz)}/150$)] mW b) at >1500MHz and ≤6GHz [Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW Report No.: BTL-FCC-SAR-1-1706122 Page 27 of 57 The location of the antenna inside EUT is as below. Fig 7.2.3: Antenna to the edge Table 1 Antenna to edge distance (mm) | Tx Ant | Rear Face | Front Face | Right Side | Left Side | Top Side | Bottom Side | |----------|-----------|------------|------------|-----------|----------|-------------| | Main Ant | 13.49 | 14.14 | 156.9 | 117.9 | 2 | 174.5 | | Aux Ant | 13.49 | 14.14 | 5.24 | 292.1 | 36.5 | 142.5 | Note: Body positions of the wireless device please refer to Appendix D. Report No.: BTL-FCC-SAR-1-1706122 Page 28 of 57 # The distance <50mm of the Main Ant | | The distance <50mm of the Main Ant | | | | | | | | | |------|------------------------------------|---------|---------|--------------------------------|-----------|----------|--|--|--| | Band | Frequency | Turn-UP | Turn-UP | Position | Rear Face | Top Side | | | | | Bana | rioquoney | (dBm) | (mW) | Antenna -to -edge distance(mm) | 13.49 | 5 | | | | | | | | | Calculated Threshold | 26 | 10 | | | | | 2.4G | 2462 | 18 | 63.10 | Test requirements(Yes/No) | Yes | Yes | | | | | | | | | Calculated Threshold | 10 | 10 | | | | | ВТ | 2441 | 2 | 1.58 | Test requirements(Yes/No) | No | No | | | | | | | | | Calculated Threshold | 18 | 7 | | | | | 5.2G | 5240 | 15 | 31.62 | Test requirements(Yes/No) | Yes | Yes | | | | | | | | | Calculated Threshold | 18 | 7 | | | | | 5.3G | 5320 | 15 | 31.62 | Test requirements(Yes/No) | Yes | Yes | | | | | | | | | Calculated Threshold | 17 | 6 | | | | | 5.5G | 5700 | 15 | 31.62 | Test requirements(Yes/No) | Yes | Yes | | | | | | | | | Calculated Threshold | 17 | 6 | | | | | 5.8G | 5825 | 17 | 50.12 | Test requirements(Yes/No) | Yes | Yes | | | | Report No.: BTL-FCC-SAR-1-1706122 Page 29 of 57 The distance >50mm for Main Ant | | | | 1110 41 | Stance >50mm for wa | T | | | |------|--------------|---------|---------|-----------------------------------|------------|-----------|-------------| | Dand | F | Turn-UP | Turn-UP | Position | Right Side | Left Side | Bottom Side | | Band | Frequency | (dBm) | (mW) | Antenna -to -edge
distance(mm) | 156.9 | 117.9 | 174.5 | | | 0.100 | | | Exclusion considerations(mW) | 1165 | 775 | 1341 | | 2.4G | 2462 | 18 | 63.10 | Test requirements(Yes/No) | No | No | No | | | | | | Exclusion considerations(mW) | 1165 | 775 | 1341 | | ВТ | 2441 | 2 | 1.58 | Test requirements(Yes/No) | No | No | No | | | | | | Exclusion considerations(mW) | 1135 | 745 | 1311 | | 5.2G | 5240 | 15 | 31.62 | Test requirements(Yes/No) | No | No | No | | | | | | Exclusion considerations(mW) | 1134 | 744 | 1311 | | 5.3G | 5320 | 15 | 31.62 | Test requirements(Yes/No) | No | No | No | | | | | | Exclusion considerations(mW) | 1132 | 742 | 1308 | | 5.5G | 5.5G 5700 15 | | 31.62 | Test requirements(Yes/No) | No | No | No | | | | | | Exclusion considerations(mW) | 1131 | 741 | 1307 | | 5.8G | 5825 | 17 | 50.12 | Test requirements(Yes/No) | No | No | No | Report No.: BTL-FCC-SAR-1-1706122 The distance <50mm of the Aux Ant | | The distance <50mm of the Aux Ant | | | | | | | | | |-------|-----------------------------------|---------------|---------|-----------------------------------|-----------|------------|----------|--|--| | Devel | | Turn-UP | Turn-UP | Position | Rear Face | Right Side | Top Side | | | | Band | Frequency | (dBm) | (mW) | Antenna -to -edge
distance(mm) | 13.49 | 5.24 | 36.5 | | | | 0.40 | 0.400 | 40 | 00.40 | Exclusion considerations | 26 | 10 | 70 | | | | 2.4G | 2462 | 18 | 63.10 | Test requirements(Yes/No) | Yes | Yes | No | | | | 5.00 | 5040 | 45 | 24.00 | Exclusion considerations | 18 | 7 | 48 | | | | 5.2G | 5240 | 5240 15 31.62 | 31.62 | Test requirements(Yes/No) | Yes | Yes | No | | | | | | | | Exclusion considerations | 18 | 7 | 47 | | | | 5.3G | 5320 | 15 | 31.62 | Test requirements(Yes/No) | Yes | Yes | No | | | | 5.50 | 5700 | 45 | 04.00 | Exclusion considerations | 17 | 7 | 46 | | | | 5.5G | 5700 | 15 | 31.62 | Test requirements(Yes/No) | Yes | Yes | No | | | | | | | | Exclusion considerations | 17 | 7 | 45 | | | | 5.8G | 5825 | 17 | 50.12 | Test requirements(Yes/No) | Yes | Yes | Yes | | | Report No.: BTL-FCC-SAR-1-1706122 # The distance >50mm for Aux Ant | | _ | | | istance >30mm for Au | - | | |------|--------------|---------|---------|-----------------------------------|-----------|-------------| | Dand | | Turn-UP | Turn-UP | Position | Left Side | Bottom Side | | Band | Frequency | (dBm) | (mW) | Antenna -to -edge
distance(mm) | 292.1 | 142.5 | | 0.10 | 0.400 | 40 | 20.40 | Exclusion considerations(mW) | 2517 | 1021 | | 2.4G | 2462 | 18 | 63.10 | Test requirements(Yes/No) | No | No | | | | | | Exclusion considerations(mW) | 2487 | 991 | | 5.2G | 5.2G 5240 15 | 15 | 31.62 | Test requirements(Yes/No) | No | No | | | | | | Exclusion considerations(mW) | 2486 | 990 | | 5.3G | 5320 | 15 | 31.62 | Test requirements(Yes/No) | No | No | | | | | | Exclusion considerations(mW) | 2484 | 988 | | 5.5G | 5.5G 5700 | | 31.62 | Test requirements(Yes/No) | No | No | | | | | | Exclusion considerations(mW) | 2483 | 987 | | 5.8G | 5825 | 17 | 50.12 | Test requirements(Yes/No) | No | No | Report No.: BTL-FCC-SAR-1-1706122 Page 32 of 57 # 8. POWER TEST RESULT # **8.1 CONDUCTED POWER MEASUREMENTS OF BT** | ВТ | T | Average | SAR Test | | | |-----|---------|---------|----------|------|----------| | | Tune Up | CH0 | CH39 | CH78 | (Yes/No) | | DH5 | 2 | 1.61 | 1.87 | 1.56 | No | | ВТ | T | Average | SAR Test | | | |-----|---------|---------|----------|------|----------| | | Tune Up | CH0 | CH19 | CH39 | (Yes/No) | | BLE | 2 | 1.23 | 1.65 | 1.55 | No | # Note: Report No.: BTL-FCC-SAR-1-1706122 Page 33 of 57 ¹⁾ The conducted power of BT is measured with RMS detector. # 8.2 CONDUCTED POWER MEASUREMENTS OF WIFI 2.4G SISO_Ant 0 | Mode | Channel | Frequency(MHz) | Data Rate
(Mbps) | Tune up | Average
Power
(dBm) | SAR Test
(Yes/No) | |--------------|---------|----------------|---------------------|---------|---------------------------|----------------------| | | 1 | 2412 | | 17 | 16.39 | | | 802.11b | 6 | 2437 | 1 | 17 | 15.18 | Yes | | | 11 | 2462 | | 14 | 13.49 | | | | 1 | 2412 | | 18 | 17.71 | | | 802.11g | 6 | 2437 | 6 | 18 | 17.83 | No | | | 11 | 2462 | | 18 | 17.9 | | | | 1 | 2412 | | 18 | 17.81 | | | 802.11n HT20 | 6 | 2437 | 6.5 | 18 | 17.82 | No | | | 11 | 2462 | | 18 | 16.33 | | | 802.11n HT40 | 3 | 2422 | | 16 | 15.79 | | | | 6 | 2437 | 13.5 | 16 | 15.78 | No | | | 9 | 2452 | | 16 | 15.74 | | SISO Ant 1 | Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune up | Average
Power(dBm) | SAR Test
(Yes/No) | | |--------------|---------|----------------|--------------------|---------|-----------------------|----------------------|--| | | 1 | 2412 | | 17 | 16.02 | | | | 802.11b | 6 | 2437 | 1 | 17 | 15.07 | Yes | | | | 11 | 2462 | | 14 | 13.3 | | | | | 1 | 2412 | | 18 | 17.69 | | | | 802.11g | 6 | 2437 | 6 | 18 | 17.78 | No | | | | 11 | 2462 | | 18 | 17.84 | | | | | 1 | 2412 | | 18 | 17.63 | | | | 802.11n HT20 | 6 | 2437 | 6.5 | 18 | 17.67 | No | | | | 11 | 2462 | | 18 | 16.27 | | | | | 3 | 2422 | | 16 | 15.7 | | | | 802.11n HT40 | 6 | 2437 | 13.5 | 16 | 15.69 | No | | | | 9 | 2452 | | 16 | 15.71 | | | Report No.: BTL-FCC-SAR-1-1706122 Page 34 of 57 MIMO_Ant 0+1 | Mode | Channel | Frequency | Data Rate | Ant 0 | Ant 1
| | Average Power | SAR Test | |--------------|---------|-----------|-----------|-----------|-----------|---------|---------------|----------| | | | (MHz) | (Mbps) | Avg Power | Avg Power | Tune up | (dBm) | (Yes/No) | | 802.11b | 1 | 2412 | MCS8 | 13.85 | 13.32 | 17 | 16.60 | No | | | 6 | 2437 | | 12.7 | 12.35 | 17 | 15.54 | | | | 11 | 2462 | | 10.84 | 10.27 | 14 | 13.57 | | | 802.11g | 1 | 2412 | MCS8 | 15.08 | 14.81 | 18 | 17.96 | No | | | 6 | 2437 | | 14.87 | 14.75 | 18 | 17.82 | | | | 11 | 2462 | | 14.9 | 14.87 | 18 | 17.90 | | | 802.11n HT20 | 1 | 2412 | MCS8 | 14.84 | 14.66 | 18 | 17.76 | No | | | 6 | 2437 | | 14.96 | 14.9 | 18 | 17.94 | | | | 11 | 2462 | | 13.66 | 13.26 | 18 | 16.47 | | | 802.11n HT40 | 3 | 2422 | MCS8 | 12.95 | 12.86 | 16 | 15.92 | No | | | 6 | 2437 | | 12.89 | 12.8 | 16 | 15.86 | | | | 9 | 2452 | | 12.73 | 12.69 | 16 | 15.72 | | # Note: The Average conducted power of WiFi is measured with RMS detector. Report No.: BTL-FCC-SAR-1-1706122 Page 35 of 57 # 8.3 CONDUCTED POWER MEASUREMENTS OF WIFI 5AND I SISO Ant 0 | Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR Test
(Yes/No) | |-------------------|---------|----------------|--------------------|---------|-----------------------|----------------------| | | 36 | 5180 | | 15 | 14.33 | Yes | | 000 44- | 40 | 5200 | 6 | 15 | 14.25 | | | 802.11a | 44 | 5220 | б | 15 | 14.54 | | | | 48 | 5240 | | 15 | 14.35 | | | | 36 | 5180 | | 15 | 14.14 | No | | 802.11n HT20 | 40 | 5200 | 6.5 | 15 | 14.11 | | | 602.1111 H120 | 44 | 5220 | 0.5 | 15 | 14.1 | | | | 48 | 5240 | | 15 | 14.06 | | | 802.11n HT40 | 38 | 5190 | 13.5 | 15 | 14.11 | No | | 802.1111 H140 | 46 | 5230 | 13.3 | 15 | 14.02 | | | | 36 | 5180 | | 15 | 14.02 | | | 802.11ac | 40 | 5200 | 6.5 | 15 | 14.33 | No | | VHT20 | 44 | 5220 | 0.5 | 15 | 14.25 | | | | 48 | 5240 | | 15 | 14.54 | | | 802.11ac | 38 | 5190 | 13.5 | 15 | 14.35 | No | | VHT40 | 46 | 5230 | 13.3 | 15 | 14.14 | | | 802.11ac
VHT80 | 42 | 5210 | 29.3 | 15 | 14.11 | No | Report No.: BTL-FCC-SAR-1-1706122 Page 36 of 57 SISO Ant 1 |
Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR Test
(Yes/No) | |-------------------|---------|----------------|--------------------|---------|-----------------------|----------------------| | | 36 | 5180 | | 15 | 14.33 | | | 000 44- | 40 | 5200 | 6 | 15 | 14.25 | Vaa | | 802.11a | 44 | 5220 | 6 | 15 | 14.54 | Yes | | | 48 | 5240 | | 15 | 14.35 | | | | 36 | 5180 | | 15 | 14.14 | | | 802.11n HT20 | 40 | 5200 | 6.5 | 15 | 14.11 | No | | 802.11N H120 | 44 | 5220 | 20 | | 14.1 | NO | | | 48 | 5240 | | 15 | 14.06 | | | 802.11n HT40 | 38 | 5190 | 13.5 | 15 | 14.29 | No | | 602.1111 H140 | 46 | 5230 | 13.3 | 15 | 14.16 | INU | | | 36 | 5180 | | 15 | 14.18 | | | 802.11ac | 40 | 5200 | 6.5 | 15 | 14.33 | No | | VHT20 | 44 | 5220 | 0.5 | 15 | 14.25 | INO | | | 48 | 5240 | | 15 | 14.54 | | | 802.11ac | 38 | 5190 | 13.5 | 15 | 14.35 | No | | VHT40 | 46 | 5230 | 10.0 | 15 | 14.14 | INO | | 802.11ac
VHT80 | 42 | 5210 | 29.3 | 15 | 14.11 | No | Report No.: BTL-FCC-SAR-1-1706122 MIMO_Ant 0+1 | Mode | Channel | Frequency
(MHz) | Data Rate
(Mbps) | Ant 0
Avg
Power | Ant 1
Avg
Power | Tune-up | Average
Power
(dBm) | SAR Test
(Yes/No) | |-------------------|---------|--------------------|---------------------|-----------------------|-----------------------|---------|---------------------------|----------------------| | | 36 | 5180 | | 11.52 | 11.57 | 15 | 14.56 | | | 802.11a | 40 | 5200 | 6.5 | 11.3 | 11.72 | 15 | 14.53 | No | | 002.11a | 44 | 5220 | 0.5 | 11.63 | 11.87 | 15 | 14.76 | NO | | | 48 | 5240 | | 11.38 | 11.77 | 15 | 14.59 | | | | 36 | 5180 | | 11.19 | 11.46 | 15 | 14.34 | | | 802.11n HT20 | 40 | 5200 | MCS8 | 11.17 | 11.54 | 15 | 14.37 | No | | 602.1111 H120 | 44 | 5220 | IVICSO | 11.29 | 11.58 | 15 | 14.45 | No | | | 48 | 5240 | | 11.17 | 11.65 | 15 | 14.43 | | | 802.11n HT40 | 38 | 5190 | MCS8 | 11.22 | 11.52 | 15 | 14.38 | No | | 802.1111 H140 | 46 | 5230 | IVICOO | 11.18 | 11.49 | 15 | 14.35 | INO | | | 36 | 5180 | | 10.89 | 11.58 | 15 | 14.26 | | | 802.11ac | 40 | 5200 | MCS8 | 11.52 | 11.57 | 15 | 14.56 | No | | VHT20 | 44 | 5220 | IVICOO | 11.3 | 11.72 | 15 | 14.53 | INO | | | 48 | 5240 | | 11.63 | 11.87 | 15 | 14.76 | | | 802.11ac | 38 | 5190 | MCS8 | 11.38 | 11.77 | 15 | 14.59 | No | | VHT40 | 46 | 5230 | IVICSO | 11.19 | 11.46 | 15 | 14.34 | INO | | 802.11ac
VHT80 | 42 | 5210 | MCS8 | 11.17 | 11.54 | 15 | 14.37 | No | Report No.: BTL-FCC-SAR-1-1706122 Page 38 of 57 ¹⁾ The Average conducted power of WiFi is measured with RMS detector. # 8.4 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND II SISO Ant 0 | Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR
Test(Yes/No) | |-------------------|----------------|----------------|--------------------|---------|-----------------------|---------------------| | | 52 | 5260 | | 15 | 14.79 | | | 000 44- | 56 | 5280 | 6 | 15 | 14.68 | \/a a | | 802.11a | 60 | 5300 | 0 | 15 | 14.43 | Yes | | | 64 | 5320 | | 15 | 14.46 | | | | 52 | 5260 | | 15 | 14.47 | | | 902 44n UT20 | 02.11n HT20 56 | | 6.5 | 15 | 14.12 | No | | 802.11N H120 | 60 | 5300 | 0.5 | 15 | 14.18 | INO | | | 64 | 5320 | | 15 | 14.21 | | | 802.11n HT40 | 54 | 5270 | 13.5 | 15 | 14.29 | No | | 602.1111 H140 | 62 | 5310 | 13.3 | 15 | 14.23 | INU | | | 52 | 5260 | | 15 | 14.33 | | | 802.11ac | 56 | 5280 | 6.5 | 15 | 14.79 | No | | VHT20 | 60 | 5300 | 0.5 | 15 | 14.68 | INO | | | 64 | 5320 | | 15 | 14.43 | | | 802.11ac | 54 | 5270 | 13.5 | 15 | 14.46 | No | | VHT40 | 62 | 5310 | 13.3 | 15 | 14.47 | INU | | 802.11ac
VHT80 | 58 | 5290 | 29.3 | 15 | 14.12 | No | Report No.: BTL-FCC-SAR-1-1706122 Page 39 of 57 SISO Ant 1 | Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR
Test(Yes/No) | |---------------|---------|----------------|--------------------|---------|-----------------------|---------------------| | | 52 | 5260 | | 15 | 14.84 | | | 000 44- | 56 | 5280 | 6 | 15 | 14.71 | Voo | | 802.11a | 60 | 5300 | 0 | 15 | 14.62 | Yes | | | 64 | 5320 | | 15 | 14.81 | | | | 52 | 5260 | | 15 | 14.8 | | | 802.11n HT20 | 56 | | 6.5 | 15 | 14.24 | No | | 802.11n H120 | 60 | 5300 | 0.5 | 15 | 14.35 | INO | | | 64 | 5320 | | 15 | 14.63 | | | 802.11n HT40 | 54 | 5270 | 13.5 | 15 | 14.52 | No | | 802.1111 H140 | 62 | 5310 | 13.3 | 15 | 14.48 | INO | | | 52 | 5260 | | 15 | 14.46 | | | 802.11ac | 56 | 5280 | 6.5 | 15 | 14.84 | No | | VHT20 | 60 | 5300 | 0.5 | 15 | 14.71 | INO | | | 64 | 5320 | | 15 | 14.62 | | | 802.11ac | 54 | 5270 | 13.5 | 15 | 14.81 | No | | VHT40 | 62 | 5310 | 13.3 | 15 | 14.8 | INU | | 802.11ac | 58 | 5290 | 29.3 | 15 | 14.24 | No | | VHT80 | 56 | 5290 | 29.3 | 15 | 14.24 | INU | Report No.: BTL-FCC-SAR-1-1706122 MIMO_Ant 0+1 | Mode | Channel | Frequency
(MHz) | Data Rate
(Mbps) | Ant 0
Avg | Ant 1
Avg | Tune-up | Average
Power | SAR
Test(Yes/ | |-------------------|---------|--------------------|---------------------|--------------|--------------|---------|------------------|------------------| | | | , , | | Power | Power | | (dBm) | No) | | | 52 | 5260 | | 11.77 | 11.92 | 15 | 14.86 | | | 802.11a | 56 | 5280 | MCS8 | 11.65 | 11.8 | 15 | 14.74 | No | | 002.11a | 60 | 5300 | IVICOO | 11.51 | 11.78 | 15 | 14.66 | INO | | | 64 | 5320 | | 11.47 | 12.18 | 15 | 14.85 | | | | 52 | 5260 | | 11.76 | 11.9 | 15 | 14.84 | | | 002 44 m LIT20 | 56 | 5280 | MCCO | 11.26 | 11.63 | 15 | 14.46 | No | | 802.11n HT20 | 60 | 5300 | MCS8 | 11.31 | 11.62 | 15 | 14.48 | No | | | 64 | 5320 | | 11.35 | 12.03 | 15 | 14.71 | | | 802.11n HT40 | 54 | 5270 | MCS8 | 11.57 | 11.66 | 15 | 14.63 | No | | 602.1111 F1140 | 62 | 5310 | IVICSO | 11.32 | 11.86 | 15 | 14.61 | INO | | | 52 | 5260 | | 11.53 | 11.91 | 15 | 14.73 | | | 802.11ac | 56 | 5280 | MCCO | 11.77 | 11.92 | 15 | 14.86 | No | | VHT20 | 60 | 5300 | MCS8 | 11.65 | 11.8 | 15 | 14.74 | No | | | 64 | 5320 | | 11.51 | 11.78 | 15 | 14.66 | | | 802.11ac | 54 | 5270 | MCS8 | 11.47 | 12.18 | 15 | 14.85 | No | | VHT40 | 62 | 5310 | IVICSO | 11.76 | 11.9 | 15 | 14.84 | No | | 802.11ac
VHT80 | 58 | 5290 | MCS8 | 11.26 | 11.63 | 15 | 14.46 | No | Report No.: BTL-FCC-SAR-1-1706122 Page 41 of 57 ¹⁾ The Average conducted power of WiFi is measured with RMS detector. # 8.5 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND III SISO Ant 0 | SISO_Ant 0 | Ob | F (8411-) | Data | T | Average | SAR | |-----------------------|---------|----------------|------------|----------|------------|--------------| | Mode | Channel | Frequency(MHz) | Rate(Mbps) | Tune-up | Power(dBm) | Test(Yes/No) | | | 100 | 5500 | | 15 | 14.31 | | | | 104 | 5520 | | 15 | 14.08 | | | | 108 | 5540 | | 15 | 14.15 | | | 200.44 | 112 | 5560 | | 15 | 14.26 | .,, | | 802.11a | 116 | 5580 | 6 | 15 | 14.49 | Yes | | | 132 | 5660 | | 15 | 14.33 | | | | 136 | 5680 | | 15 | 14.35 | | | | 140 | 5700 | | 15 | 14.41 | | | | 100 | 5500 | | 15 | 14.35 | | | | 104 | 5520 | | 15 | 14.12 | | | | 108 | 5540 | | 15 | 14.17 | | | 802.11n HT20 | 112 | | 6.5 | 15 | 14.16 | No | | 802.11n H120 | 116 | 5580 | 0.5 | 15 | 14.41 | INO | | | 132 | 5660 | | 15 | 14.2 | | | | 136 | 5680 | | 15 | 14.17 | | | | 140 | 5700 | | 15 | 14.38 | | | | 102 | 5510 | | 15 | 14.14 | | | 802.11n HT40 | 118 | 5590 | 13.5 | 15 | 14.11 | No | | | 134 | 5670 | | 15 | 14.34 | | | | 100 | 5500 | | 15 | 14.42 | | | | 104 | 5520 | | 15 | 14.27 | | | | 108 | 5540 | | 15 | 14.38 | | | 802.11ac | 112 | 5560 | 6.5 | 15 | 14.31 | No | | VHT20 | 116 | 5580 | 0.5 | 15 | 14.08 | 140 | | | 132 | 5660 | | 15 | 14.15 | | | | 136 | 5680 | | 15 | 14.26 | | | | 140 | 5700 | | 15 | 14.49 | | | 802 11ac | 102 | 5510 | | 15 | 14.33 | | | 802.11ac -
VHT40 - | 118 | 5590 | 13.5 | 15 | 14.35 | No | | VHT40 | 134 | 5670 | | 15 | 14.41 | | | 802.11ac | 106 | 5530 | | 15 | 14.35 | | | VHT80 | 122 | 5610 | 29.3 | 15 | 14.12 | No | | V11100 | 138 | 5690 | | 15
| 14.17 | | Report No.: BTL-FCC-SAR-1-1706122 SISO Ant 1 | SISO_Ant 1 Mode | Channel | Frequency(MHz) | Data | Tune-up | Average | SAR | |-------------------|---------|----------------|------------|---------|------------|--------------| | | | | Rate(Mbps) | | Power(dBm) | Test(Yes/No) | | | 100 | 5500 | | 15 | 14.13 | | | | 104 | 5520 | | 15 | 14.02 | | | | 108 | 5540 | | 15 | 14.09 | | | 802.11a | 112 | 5560 | 6 | 15 | 14.2 | Yes | | 002.11a | 116 | 5580 | U | 15 | 14.33 | 165 | | | 132 | 5660 | | 15 | 14.29 | | | | 136 | 5680 | | 15 | 14.24 | | | | 140 | 5700 | | 15 | 14.26 | | | | 100 | 5500 | | 15 | 14.1 | | | | 104 | 5520 | | 15 | 14.08 | | | | 108 | 5540 | | 15 | 14.02 | | | 802.11n HT20 | 112 | | 6.5 | 15 | 14.04 | No | | 002.1111 H120 | 116 | 5580 | 0.5 | 15 | 14.12 | NO | | | 132 | 5660 | | 15 | 14.06 | | | | 136 | 5680 | | 15 | 14.04 | | | | 140 | 5700 | | 15 | 14.11 | | | | 102 | 5510 | | 15 | 14.01 | | | 802.11n HT40 | 118 | 5590 | 13.5 | 15 | 14.07 | No | | | 134 | 5670 | | 15 | 14.14 | | | | 100 | 5500 | | 15 | 14.3 | | | | 104 | 5520 | | 15 | 14.08 | | | | 108 | 5540 | | 15 | 14.19 | | | 802.11ac | 112 | 5560 | 0.5 | 15 | 14.13 | A.I | | VHT20 | 116 | 5580 | 6.5 | 15 | 14.02 | No | | | 132 | 5660 | | 15 | 14.09 | | | | 136 | 5680 | | 15 | 14.2 | | | | 140 | 5700 | | 15 | 14.33 | | | 902 44 | 102 | 5510 | | 15 | 14.29 | | | 802.11ac
VHT40 | 118 | 5590 | 13.5 | 15 | 14.24 | No | | | 134 | 5670 | | 15 | 14.26 | | | 000 44 | 106 | 5530 | | 15 | 14.1 | | | 802.11ac | 122 | 5610 | 29.3 | 15 | 14.08 | No | | VHT80 | 138 | 5690 | | 15 | 14.02 | | Report No.: BTL-FCC-SAR-1-1706122 MIMO Ant 0+1 | MIMO_Ant | . 0+1 | | | Ant 0 | Ant 1 | | Average | | |---------------|---------|-----------|-----------|-------|-------|---------|---------|--------------| | Mode | Channel | Frequency | Data Rate | Avg | Avg | Tune-up | Power | SAR | | | | (MHz) | (Mbps) | Power | Power | ташо ар | (dBm) | Test(Yes/No) | | | 100 | 5500 | | 10.81 | 11.86 | 15 | 14.38 | | | | 104 | 5520 | | 10.45 | 11.69 | 15 | 14.12 | | | | 108 | 5540 | | 10.52 | 11.77 | 15 | 14.20 | | | 000 44- | 112 | 5560 | 0.5 | 10.45 | 12.02 | 15 | 14.32 | NI- | | 802.11a | 116 | 5580 | 6.5 | 10.67 | 12.24 | 15 | 14.54 | No | | | 132 | 5660 | | 11.12 | 11.63 | 15 | 14.39 | | | | 136 | 5680 | | 11.29 | 11.45 | 15 | 14.38 | | | | 140 | 5700 | | 11.35 | 11.56 | 15 | 14.47 | | | | 100 | 5500 | | 10.74 | 11.9 | 15 | 14.37 | | | | 104 | 5520 | | 10.71 | 11.62 | 15 | 14.20 | | | | 108 | 5540 | | 10.46 | 11.79 | 15 | 14.19 | | | 000 44 - UT00 | 112 | 5560 | MOOO | 10.51 | 11.83 | 15 | 14.23 | NI- | | 802.11n HT20 | 116 | 5580 | MCS8 | 10.78 | 12.05 | 15 | 14.47 | No | | | 132 | 5660 | | 11.05 | 11.49 | 15 | 14.29 | | | | 136 | 5680 | | 11.16 | 11.24 | 15 | 14.21 | | | | 140 | 5700 | | 11.25 | 11.53 | 15 | 14.40 | | | | 102 | 5510 | | 10.53 | 11.74 | 15 | 14.19 | | | 802.11n HT40 | 118 | 5590 | MCS8 | 10.41 | 11.78 | 15 | 14.16 | No | | | 134 | 5670 | | 11.24 | 11.46 | 15 | 14.36 | | | | 100 | 5500 | | 10.82 | 11.96 | 15 | 14.44 | | | | 104 | 5520 | | 10.76 | 11.94 | 15 | 14.40 | | | | 108 | 5540 | | 11.26 | 11.49 | 15 | 14.39 | | | 802.11ac | 112 | 5560 | MCS8 | 10.81 | 11.86 | 15 | 14.38 | No | | VHT20 | 116 | 5580 | IVICSO | 10.45 | 11.69 | 15 | 14.12 | INU | | | 132 | 5660 | | 10.52 | 11.77 | 15 | 14.20 | | | | 136 | 5680 | | 10.45 | 12.02 | 15 | 14.32 | | | | 140 | 5700 | | 10.67 | 12.24 | 15 | 14.54 | | | 802.11ac | 102 | 5510 | | 11.12 | 11.63 | 15 | 14.39 | | | VHT40 | 118 | 5590 | MCS8 11.2 | 11.29 | 11.45 | 15 | 14.38 | No | | VIII-40 | 134 | 5670 | | 11.35 | 11.56 | 15 | 14.47 | | | 802.11ac | 106 | 5530 | | 10.74 | 11.9 | 15 | 14.37 | | | VHT80 | 122 | 5610 | MCS8 | 10.71 | 11.62 | 15 | 14.20 | No | | VIIIOU | 138 | 5690 | | 10.46 | 11.79 | 15 | 14.19 | | Report No.: BTL-FCC-SAR-1-1706122 # 8.6 CONDUCTED POWER MEASUREMENTS OF WIFI 5G BAND IV SISO Ant 0 | Mode Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR
Test(Yes/No) | |-------------------|---------|----------------|--------------------|---------|-----------------------|---------------------| | | 149 | 5745 | | 17 | 16.81 | | | | 153 | 5765 | | 17 | 16.79 | | | 802.11a | 157 | 5785 | 6 | 17 | 16.84 | Yes | | | 161 | 5805 | | 17 | 16.74 | | | | 165 | 5825 | | 17 | 16.89 | | | | 149 | 5745 | | 17 | 16.80 | | | | 153 | 5765 | | 17 | 16.77 | | | 802.11n HT20 | 157 | 5785 | 6.5 | 17 | 16.82 | No | | | 161 | 5805 | | 17 | 16.73 | | | | 165 | 5825 | | 17 | 16.81 | | | 802.11n HT40 | 151 | 5755 | 13.5 | 17 | 16.83 | No | | 002.111111140 | 159 | 5795 | 10.0 | 17 | 16.82 | 140 | | | 149 | 5745 | | 17 | 15.87 | | | 802.11ac | 153 | 5765 | | 17 | 16.81 | | | VHT20 | 157 | 5785 | 6.5 | 17 | 16.79 | No | | VIIIZU | 161 | 5805 | | 17 | 16.84 | | | | 165 | 5825 | | 17 | 16.74 | | | 802.11ac | 151 | 5755 | 13.5 | 17 | 16.89 | No | | VHT40 | 159 | 5795 | 10.0 | 17 | 16.80 | 140 | | 802.11ac
VHT80 | 155 | 5775 | 29.3 | 17 | 16.77 | No | Report No.: BTL-FCC-SAR-1-1706122 Page 45 of 57 SISO Ant 1 | Mode | Channel | Frequency(MHz) | Data
Rate(Mbps) | Tune-up | Average
Power(dBm) | SAR
Test(Yes/No) | |-------------------|---------|----------------|--------------------|---------|-----------------------|---------------------| | | 149 | 5745 | | 17 | 16.70 | | | | 153 | 5765 | | 17 | 16.64 | | | 802.11a | 157 | 5785 | 6 | 17 | 16.73 | Yes | | | 161 | 5805 | | 17 | 16.70 | | | | 165 | 5825 | | 17 | 16.62 | | | | 149 | 5745 | | 17 | 16.77 | | | | 153 | 5765 | | 17 | 16.70 | | | 802.11n HT20 | 157 | 5785 | 6.5 | 17 | 16.68 | No | | | 161 | 5805 | | 17 | 16.65 | | | | 165 | 5825 | | 17 | 16.76 | | | 802.11n HT40 | 151 | 5755 | 13.5 | 17 | 16.70 | No | | 002.1111 H140 | 159 | 5795 | 15.5 | 17 | 16.75 | INO | | | 149 | 5745 | | 17 | 15.67 | | | 802.11ac | 153 | 5765 | | 17 | 16.70 | | | VHT20 | 157 | 5785 | 6.5 | 17 | 16.64 | No | | V11120 | 161 | 5805 | | 17 | 16.73 | | | | 165 | 5825 | | 17 | 16.70 | | | 802.11ac | 151 | 5755 | 13.5 | 17 | 16.62 | | | VHT40 | 159 | 5795 | 13.5 | 17 | 16.77 | No | | 802.11ac
VHT80 | 155 | 5775 | 29.3 | 17 | 16.70 | INO | Report No.: BTL-FCC-SAR-1-1706122 MIMO_Ant 0+1 | Mode | Channel | Frequency
(MHz) | Data Rate
(Mbps) | Ant 0
Avg
Power | Ant 1
Avg
Power | Tune-up | Total Avg
Power
(dBm) | SAR Test
(Yes/No) | |-------------------|----------|--------------------|---------------------|-----------------------|-----------------------|---------|-----------------------------|----------------------| | | 149 | 5745 | | 14.23 | 13.44 | 17 | 16.86 | | | | 153 | 5765 | | 14.25 | 13.38 | 17 | 16.85 | | | 802.11a | 157 | 5785 | 6.5 | 14.3 | 13.46 | 17 | 16.91 | Yes | | 302.110 | 161 | 5805 | 0.0 | 14.33 | 13.09 | 17 | 16.76 | | | | 165 | 5825 | | 14.5 | 13.15 | 17 | 16.89 | | | | 149 | 5745 | | 14.29 | 13.49 | 17 | 16.92 | | | | 153 | 5765 | | 14.2 | 13.37 | 17 | 16.82 | | | 802.11n HT20 | 157 | 5785 | MCS8 | 14.36 | 13.51 | 17 | 16.97 | | | | 161 5805 | | 14.25 | 13.16 | 17 | 16.75 | | | | | 165 | 5825 | | 14.5 | 13.11 | 17 | 16.87 | | | 000 44 × UT40 | 151 | 5755 | MCCO | 14.13 | 13.77 | 17 | 16.96 | | | 802.11n HT40 | 159 | 5795 | MCS8 | 14.41 | 13.15 | 17 | 16.84 | No | | | 149 | 5745 | | 12.98 | 12.9 | 17 | 15.95 | | | 802.11ac | 153 | 5765 | | 14.23 | 13.44 | 17 | 16.86 | | | VHT20 | 157 | 5785 | MCS8 | 14.25 | 13.38 | 17 | 16.85 | No | | VH120 | 161 | 5805 | | 14.3 | 13.46 | 17 | 16.91 | | | | 165 | 5825 | | 14.33 | 13.09 | 17 | 16.76 | | | 802.11ac | 151 | 5755 | MCS8 | 14.5 | 13.15 | 17 | 16.89 | | | VHT40 | 159 | 5795 | IVICOU | 14.29 | 13.49 | 17 | 16.92 | No | | 802.11ac
VHT80 | 155 | 5775 | MCS8 | 14.2 | 13.37 | 17 | 16.82 | 140 | Report No.: BTL-FCC-SAR-1-1706122 Page 47 of 57 ¹⁾ The Average conducted power of WiFi is measured with RMS detector. #### 9. SAR TEST RESULTS #### **General Notes:** - 1) Per KDB447498 D01v06, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant. - 2) Per KDB447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 3) Per KDB865664 D01v01r04,for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required. - 4) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing. #### **WLAN Notes:** - 1) For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated(peak)SAR is used as the initial test position. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. - 2) Justification for test
configurations for WLAN per KDB Publication 248227 for 2.4GHZ WIFI single transmission chain operations, the highest measured maximum output power Channel for DSSS was selected for SAR measurement.SAR for OFDM modes(2.4GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.1 for more information. Report No.: BTL-FCC-SAR-1-1706122 Page 48 of 57 #### 9.1 SAR MEASUREMENT RESULT OF BODY Body SAR Mode For WiFi 2.4G | Test
No. | Band | СН | Test Position At 0 mm | Ant
Status | Tune
up
(dBm) | Measured
(dBm) | Drift
(dB) | Area
Scan
Peak
SAR | SAR
Value
(W/kg)1-g | Reported
SAR | |-------------|---------|----|-----------------------|---------------|---------------------|-------------------|---------------|-----------------------------|---------------------------|-----------------| | 1 | 802.11b | 1 | Rear Face | 0 | 17 | 16.5 | 0.14 | 0.225 | 0.076 | 0.085 | | 2 | 802.11b | 1 | Top Side | 0 | 17 | 16.5 | -0.16 | 0.605 | 0.407 | 0.457 | | 3 | 802.11b | 1 | Right Side | 0 | 17 | 16.5 | 0.1 | 0.0247 | 0.00302 | 0.003 | | 4 | 802.11b | 1 | Rear Face | 1 | 17 | 16.02 | 0 | 0.0468 | 0.0111 | 0.014 | | 5 | 802.11b | 1 | Top Side | 1 | 17 | 16.02 | 0.13 | 0.0106 | 0.00423 | 0.005 | | 6 | 802.11b | 1 | Right Side | 1 | 17 | 16.02 | -0.12 | 0.0329 | 0.0116 | 0.015 | | 7 | 802.11g | 11 | Rear Face | 0 | 18 | 17.9 | 0.18 | 0.415 | 0.345 | 0.353 | | 8 | 802.11g | 11 | Top Side | 0 | 18 | 17.9 | -0.04 | 1.12 | 0.744 | 0.761 | | 9 | 802.11g | 11 | Right Side | 0 | 18 | 17.9 | 0.12 | 0.023 | 0.00787 | 0.008 | | 10 | 802.11g | 11 | Rear Face | 1 | 18 | 17.84 | 0.15 | 0.0607 | 0.0424 | 0.044 | | 11 | 802.11g | 11 | Top Side | 1 | 18 | 17.84 | 0.14 | 0.0665 | 0.0405 | 0.042 | | 12 | 802.11g | 11 | Right Side | 1 | 18 | 17.84 | -0.09 | 0.149 | 0.103 | 0.107 | Note: Per KDB248227D01, the highest SAR measured for the <u>initial test position</u> or <u>initial test configuration</u> should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or <u>initial test configuration</u> procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements. Report No.: BTL-FCC-SAR-1-1706122 Page 49 of 57 Body SAR Mode For WiFi 5.3G | Test
No. | Band | СН | Test Position At 0 mm | Ant
Status | Tune up
(dBm) | Measured
(dBm) | Drift
(dB) | Area
Scan
Peak
SAR | SAR Value
(W/kg)1-g | Reported
SAR | |------------------------|---------|----|-----------------------|---------------|------------------|-------------------|---------------|-----------------------------|------------------------|-----------------| | 31 | 802.11a | 52 | Rear Face | 0 | 15 | 14.79 | 0.16 | 0.318 | 0.217 | 0.228 | | 32 | 802.11a | 52 | Top Side | 0 | 15 | 14.79 | -0.04 | 1.15 | 0.689 | 0.723 | | 33 | 802.11a | 52 | Right Side | 0 | 15 | 14.79 | 0.12 | 0.0249 | 0.09 | 0.094 | | 34 | 802.11a | 52 | Rear Face | 1 | 15 | 14.84 | 0 | 0.454 | 0.332 | 0.344 | | 35 | 802.11a | 52 | Top Side | 1 | 15 | 14.84 | 0.15 | 0.66 | 0.212 | 0.220 | | 36 | 802.11a | 52 | Right Side | 1 | 15 | 14.84 | 0.12 | 1.64 | 1.13 | 1.172 | | 105 | 802.11a | 64 | Right Side | 1 | 15 | 14.81 | 0.13 | 1.16 | 0.821 | 0.858 | | 205
Repe
at test | 802.11a | 52 | Right Side | 1 | 15 | 14.84 | -0.13 | 1.66 | 1.1 | 1.141 | - 1) The adjusted Body SAR is $1.172 \times (29.92 \text{ mW} / 30.48 \text{ mW}) = 1.15 \text{mW/g}$, the U-NII-1 is not required . - 2) Per KDB248227D01, the highest SAR measured for the <u>initial test position</u> or <u>initial test configuration</u> should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or <u>initial test configuration</u> procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements. Report No.: BTL-FCC-SAR-1-1706122 Page 50 of 57 Body SAR Mode For WiFi 5.5G | Test
No. | Band | СН | Test Position At 0 mm | Ant
Status | Tune up
(dBm) | Measured
(dBm) | Drift
(dB) | Area
Scan
Peak
SAR | SAR
Value
(W/kg)1-g | Reported
SAR | |-----------------------|---------|-----|-----------------------|---------------|------------------|-------------------|---------------|-----------------------------|---------------------------|-----------------| | 41 | 802.11a | 116 | Rear Face | 0 | 15 | 14.49 | 0.1 | 0.283 | 0.182 | 0.205 | | 42 | 802.11a | 116 | Top Side | 0 | 15 | 14.49 | -0.16 | 2.08 | 1.05 | 1.181 | | 103 | 802.11a | 140 | Top Side | 0 | 15 | 14.41 | -0.17 | 1.47 | 0.744 | 0.852 | | 43 | 802.11a | 116 | Right Side | 0 | 15 | 14.49 | 0.1 | 0.013 | 0.00131 | 0.001 | | 203
Repeat
test | 802.11a | 116 | Top Side | 0 | 15 | 14.49 | 0.12 | 1.7 | 1.03 | 1.158 | | 44 | 802.11a | 116 | Rear Face | 1 | 15 | 14.33 | 0.19 | 0.489 | 0.316 | 0.369 | | 45 | 802.11a | 116 | Top Side | 1 | 15 | 14.33 | 0.17 | 0.163 | 0.107 | 0.125 | | 46 | 802.11a | 116 | Right Side | 1 | 15 | 14.33 | 0.01 | 1.36 | 0.739 | 0.862 | | 104 | 802.11a | 132 | Right Side | 1 | 15 | 14.29 | 0.16 | 1.28 | 0.712 | 0.838 | | 204
Repeat
test | 802.11a | 116 | Right Side | 1 | 15 | 14.33 | 0.18 | 1.21 | 0.719 | 0.839 | 1) Per KDB248227D01, the highest SAR measured for the <u>initial test position</u> or <u>initial test configuration</u> should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or <u>initial test configuration</u> procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements. Report No.: BTL-FCC-SAR-1-1706122 Page 51 of 57 Body SAR Mode For WiFi 5.8G | Test
No. | Band | СН | Test Position At 0 mm | Ant
Status | Tune up
(dBm) | Measured
(dBm) | Drift
(dB) | Area
Scan
Peak
SAR | SAR
Value
(W/kg)1-g | Reported
SAR | |-----------------------|---------|-----|-----------------------|---------------|------------------|-------------------|---------------|-----------------------------|---------------------------|-----------------| | 51 | 802.11a | 165 | Rear Face | 0 | 17 | 16.89 | 0.12 | 0.633 | 0.401 | 0.411 | | 52 | 802.11a | 165 | Top Side | 0 | 17 | 16.89 | -0.17 | 2.34 | 1.1 | 1.128 | | 201
Repeat
test | 802.11a | 165 | Top Side | 0 | 17 | 16.89 | -0.13 | 1.64 | 1.04 | 1.067 | | 53 | 802.11a | 165 | Right Side | 0 | 17 | 16.89 | 0.13 | 0.0297 | 0.0174 | 0.018 | | 101 | 802.11a | 149 | Top Side | 0 | 17 | 16.81 | 0.06 | 1.87 | 0.915 | 0.956 | | 54 | 802.11a | 157 | Rear Face | 1 | 17 | 16.73 | 0.18 | 0.809 | 0.54 | 0.575 | | 55 | 802.11a | 157 | Top Side | 1 | 17 | 16.73 | 0.13 | 0.31 | 0.139 | 0.148 | | 56 | 802.11a | 157 | Right Side | 1 | 17 | 16.73 | -0.12 | 2.1 | 1.01 | 1.075 | | 102 | 802.11a | 161 | Right Side | 1 | 17 | 16.7 | 0.01 | 2.46 | 1.04 | 1.114 | | 202
Repeat
test | 802.11a | 161 | Right Side | 1 | 17 | 16.7 | 0.18 | 2.39 | 1 | 1.072 | 1) Per KDB248227D01, the highest SAR measured for the <u>initial test position</u> or <u>initial test configuration</u> should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or <u>initial test configuration</u> procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements. Report No.: BTL-FCC-SAR-1-1706122 Page 52 of 57 #### 10. MULTIPLE TRANSMITTER INFORMATION The location of the antennas inside is shown as below picture: Per FCC KDB 447498D01v06, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)][$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where: - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Standalone SAR test exclusion for BT | Mode | Position | P _{max}
(dBm)* | P _{max} (mW) | Distance
(mm) | f
(GHz) | Calculation
Result | SAR
Exclusion
threshold | SAR test exclusion | |------|----------|----------------------------|-----------------------|------------------|------------|-----------------------|-------------------------------|--------------------| | ВТ | Body | 2 | 1.58 | 5 | 2.441 | 0.493 | 3 | Yes | #### Note: - 1)* maximum possible output power declared by manufacturer - 2) Held to ear configurations are
not applicable to Bluetooth for this device. When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm,where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion Report No.: BTL-FCC-SAR-1-1706122 Page 53 of 57 According to KDB 447498 D01,when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standslone SAR was estimated according to following formula to result in substantially conservative SAR values of ≤0.4W/Kg to determine simultaneous transmission SAR test exclusion. $$\text{Estimated SAR} = \frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$ #### BT Estimated SAR calculation | Mode | P _{max}
(dBm) | P _{max}
(mW) | Distance
(mm) | f
(GHz) | Х | Estimated
SAR
(W/Kg)* | |------|---------------------------|--------------------------|------------------|------------|-----|-----------------------------| | ВТ | 2 | 1.58 | 5 | 2.441 | 7.5 | 0.063 | Note: * - maximum possible output power declared by manufacturer ### 11. SIMULTANEOUS TRANSMISSION CONDITIONS WiFi 2.4G / WiFi 5G / BT transmit simultaneously | Co-Location | WiFi 2.4G | WiFi 5G | ВТ | |-------------|-----------|---------|-----| | WiFi 2.4G | Yes | No | Yes | | WiFi 5G | No | Yes | Yes | | ВТ | Yes | Yes | No | Note: 1). BT antenna only supports the aux antenna. 2). The module has support the MIMO Tx. ### About The MIMO Tx for 2.4G | _ | 7 toodt 1110 minut | | | | |---|---------------------------|-----------|----------|------------| | | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | | | Ant 0 | 0.353 | 0.761 | 0.008 | | | Ant 1 | 0.044 | 0.042 | 0.107 | | | MAX. ∑SAR _{1g} | 0.397 | 0.803 | 0.115 | MAX. ∑SAR_{1q}=0.803 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. #### About The MIMO Tx for 5.3G | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | |---------------------------|-----------|----------|------------| | Ant 0 | 0.228 | 0.723 | 0.094 | | Ant 1 | 0.344 | 0.220 | 1.172 | | MAX. ∑SAR _{1g} | 0.572 | 0.943 | 1.266 | MAX. ∑SAR_{1g}=1.266 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. Report No.: BTL-FCC-SAR-1-1706122 Page 54 of 57 # About The MIMO Tx for 5.5G | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | |---------------------------|-----------|----------|------------| | Ant 0 | 0.205 | 1.181 | 0.001 | | Ant 1 | 0.369 | 0.125 | 0.862 | | MAX. ∑SAR _{1g} | 0.574 | 1.306 | 0.863 | MAX. Σ SAR_{1g}=1.306 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. # About The MIMO Tx for 5.8G | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | |---------------------------|-----------|----------|------------| | Ant 0 | 0.411 | 1.128 | 0.018 | | Ant 1 | 0.575 | 0.148 | 1.114 | | MAX. ∑SAR _{1g} | 0.986 | 1.276 | 1.132 | MAX. Σ SAR_{1g}=1.276 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. # About The WiFi 2.4G and BT transmit simultaneously | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | |---------------------------|-----------|----------|------------| | WiFi 2.4G Ant 0 | 0.353 | 0.761 | 0.008 | | ВТ | 0.063 | 0.063 | 0.063 | | MAX. ∑SAR _{1g} | 0.416 | 0.824 | 0.071 | MAX. Σ SAR_{1g}=0.824 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. # About The WiFi 5G and BT transmit simultaneously | Test Position SAR1g(W/Kg) | Rear Face | Top Side | Right Side | |---------------------------|-----------|----------|------------| | WiFi 5.3G Ant 0 | 0.228 | 0.723 | 0.094 | | WiFi 5.5G Ant 0 | 0.205 | 1.181 | 0.001 | | WiFi 5.8G Ant 0 | 0.411 | 1.128 | 0.018 | | ВТ | 0.063 | 0.063 | 0.063 | | MAX. ∑SAR _{1g} | 0.474 | 1.244 | 0.157 | MAX. Σ SAR_{1g}=1.191 W/Kg < 1.6 W/Kg, so the SAR to peak location separation ratio should be not considered. Report No.: BTL-FCC-SAR-1-1706122 Page 55 of 57 # **APPENDIX** # 1. Test Layout # **Specific Absorption Rate Test Layout** Liquid depth in the flat Phantom (≥15cm depth) Report No.: BTL-FCC-SAR-1-1706122 Page 56 of 57 Appendix A. SAR Plots of System Verification **Appendix B. SAR Plots of SAR Measurement** Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of the Test Set-Up Report No.: BTL-FCC-SAR-1-1706122 Page 57 of 57