

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard FCC Part 15.247 FCC ID M82-MITW101A1

Product name Computer

Brand Name ADVANTECH

may be any alphanumeric character, "-" or blank)

Test Result Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Tested by:

Approved by:

Sum Cleany

ED. Chiang

Sam Chuang Manager Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	June 27, 2017	Initial Issue	Vicki Huang
01	September 1, 2017	Modify model name in P.1, 4 Remove the test mode 3 from AC power line conducted emission test in P.11	Vicki Huang
02	September 11, 2017	 Added Antenna description in P.5 Modify AVG power in P.20 	Vicki Huang

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	5
1.4	MEASUREMENT UNCERTAINTY	6
1.5	FACILITIES AND TEST LOCATION	7
1.6	INSTRUMENT CALIBRATION	7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	8
1.9	TABLE OF ACCREDITATIONS AND LISTINGS	8
2.	TEST SUMMERY	9
3.	DESCRIPTION OF TEST MODES	10
3.1	THE WORST MODE OF OPERATING CONDITION	10
3.2	THE WORST MODE OF MEASUREMENT	11
3.3	EUT DUTY CYCLE	12
4.	TEST RESULT	13
4.1	AC POWER LINE CONDUCTED EMISSION	13
4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	16
4.3	OUTPUT POWER MEASUREMENT	19
4.4	FREQUENCY SEPARATION	21
4.5	NUMBER OF HOPPING	24
4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	26
4.7	TIME OF OCCUPANCY (DWELL TIME)	31
	RADIATION BANDEDGE AND SPURIOUS EMISSION	33
AP	PENDIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.
Equipment	Computer
Model No.	MIT-W101;MIT-W101XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Model Discrepancy	All models are electrically identical, different model names are for marketing purpose
Received Date	April 11, 2017
Date of Test	May 9 ~ June 22, 2017
Output Power(W)	GFSK: 0.0024 (EIRP: 0.0029) 8DPSK: 0.0033 (EIRP: 0.0041)
Power Supply	1. VDC from Power Adapter (1)FSP / FSP065-REBN2 I/P: 100-240Vac, 1.5A, 50-60Hz O/P: 19Vdc, 3.42A (2)SINPRO/ HPU63A-107 I/P: 100-240Vac, 1.62-0.72A, 47-63Hz O/P: 18Vdc, 3.5A max 2. Battery (1) ADVANTECH / MIT101-BATC Rating: 11.1V, 2860mAh

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested						
Frequency range in Number of Location in frequency which device operates frequencies range of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Type	□ PIFA □ PCB □ Dipole □ Coils
Antenna Gain	Main Antenna Model: BJTEK NAVIGATION,INC. Part number: BJHEM851101830B00A-A Gain: 3.94dBi
	Aux Antenna Model: INVAX System Technology Corp. Part number: IVX0035-C30BLF Gain: 2.90dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 **FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Stemmi Guo	
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

INSTRUMENT CALIBRATION 1.6

RF Conducted Test Site							
Equipment Manufacturer Model S/N Cal Date Cal Due							
Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017		
Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017		
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017		

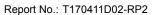
3M 966 Chamber Test Site							
Equipment Manufacturer Model S/N Cal Date							
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017		
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018		
Pre-Amplifier	EMCI	EMC 012635	980151	6/21/2017	06/20/2018		
Pre-Amplifier	EMEC	EM330	060609	06/16/2017	06/15/2018		
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		

AC Conducted Emissions Test Site							
Equipment Manufacturer Model S/N Cal Date Cal Due							
LISN	R&S	ENV216	101054	05/18/2017	05/17/2018		
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/14/2017	02/13/2018		
Receiver	R&S	ESCI	101073	08/20/2016	08/19/2017		

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No. Equipment Brand Model Series No. FCC ID							
	N/A						


Support Equipment							
No.	lo. Equipment Brand Model Series No. FCC ID						
	N/A						

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 2 and RSS-GEN Issue 4.

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo		
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039		
Canada Industry 3M Semi perform		3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2		

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.2)(a)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	

3. DESCRIPTION OF TEST MODES

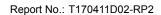
3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)		
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz		

Remark:

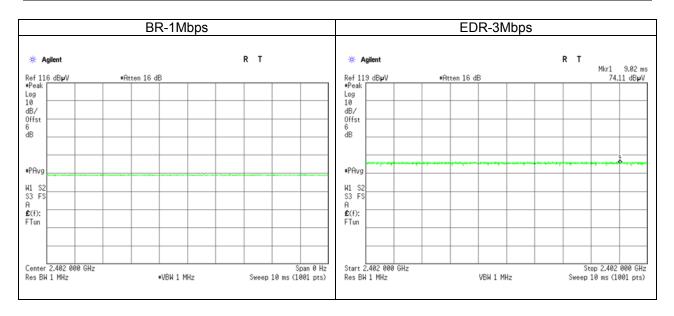
^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT


	AC Power Line Conducted Emission							
Test Condition	AC Power line conducted emission for line and neutral							
Voltage/Hz	120V/60Hz							
	Mode 1: EUT power by AC adapter via power cable.(HPU63A-107) Mode 2: EUT power by AC adapter via power cable. (FSP065-REBN2)							
Worst Mode								

Radiated Emission Measurement Above 1G						
Test Condition	Band edge, Emission for Unwanted and Fundamental					
Voltage/Hz	120V/60Hz					
Test Mode	Mode 1: EUT power by AC adapter via power cable.(HPU63A-107) Mode 2: EUT power by AC adapter via power cable. (FSP065-REBN2) Mode 3: EUT power by Battery					
Worst Mode						
Worst Position	 □ Placed in fixed position. ☑ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) □ Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity						

	Radiated Emission Measurement Below 1G								
Test Condition	* I Radiated Emission Relow 1G								
Voltage/Hz	e/Hz 120V/60Hz								
Test Mode	Mode 1: EUT power by AC adapter via power cable.(HPU63A-107) Mode 2: EUT power by AC adapter via power cable. (FSP065-REBN2) Mode 3: EUT power by Battery								
Worst Mode	Mode 1								


Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report
- 3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle								
Configuration TX ON (ms) TX ALL (ms) Duty Cycle (%) Duty Factor(dB)								
BR-1Mbps	1.0000	1.0000		0.00				
EDR-3Mbps	1.0000	1.0000		0.00				

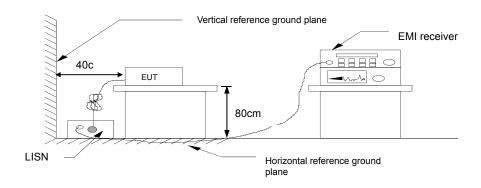
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

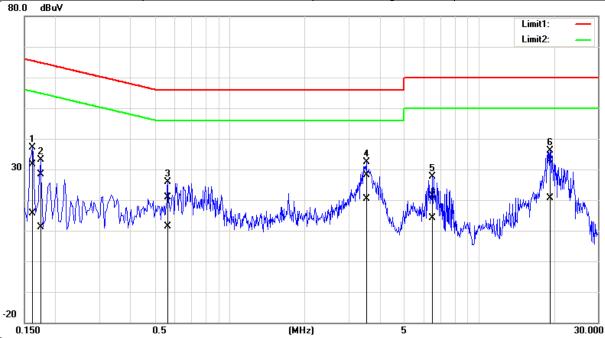

^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

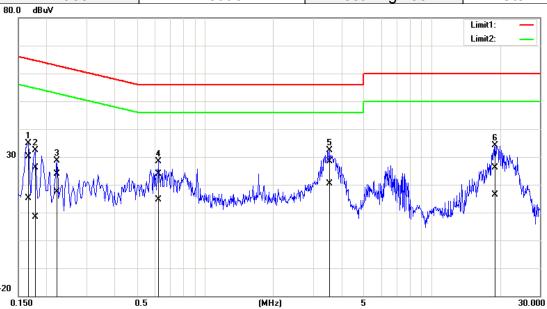
- The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

PASS


Test Data

Test Mode:	Mode 1	Temp/Hum	24(°ℂ)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2017/6/22
Phase:	Line	Test Engineer	Stemmi Guo

No	Fraguenay	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
No.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1620	31.54	15.68	-0.02	31.52	15.66	65.36	55.36	-33.84	-39.70
2	0.1740	28.35	11.10	-0.02	28.33	11.08	64.77	54.77	-36.44	-43.69
3	0.5660	21.00	11.48	-0.05	20.95	11.43	56.00	46.00	-35.05	-34.57
4	3.5460	28.26	20.32	-0.05	28.21	20.27	56.00	46.00	-27.79	-25.73
5	6.5220	21.39	14.08	0.06	21.45	14.14	60.00	50.00	-38.55	-35.86
6	19.3540	33.25	20.91	-0.31	32.94	20.60	60.00	50.00	-27.06	-29.40

Test Mode:	Test Mode: Mode 1		27(°ℂ)/ 53%RH		
Test Voltage:	120Vac / 60Hz	Test Date	2017/6/22		
Phase:	Neutral	Test Engineer	Stemmi Guo		

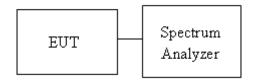
No.	Erogueney	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
INO.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1660	30.16	15.28	-0.09	30.07	15.19	65.16	55.16	-35.09	-39.97
2	0.1780	26.33	8.60	-0.10	26.23	8.50	64.58	54.58	-38.35	-46.08
3	0.2220	24.09	17.47	-0.10	23.99	17.37	62.74	52.74	-38.75	-35.37
4	0.6260	23.95	14.66	-0.13	23.82	14.53	56.00	46.00	-32.18	-31.47
5	3.5460	28.55	20.63	-0.13	28.42	20.50	56.00	46.00	-27.58	-25.50
6	19.0980	26.52	16.62	-0.33	26.19	16.29	60.00	50.00	-33.81	-33.71

20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%) 4.2

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.6,

20 dB Bandwidth : For reporting purposes only.

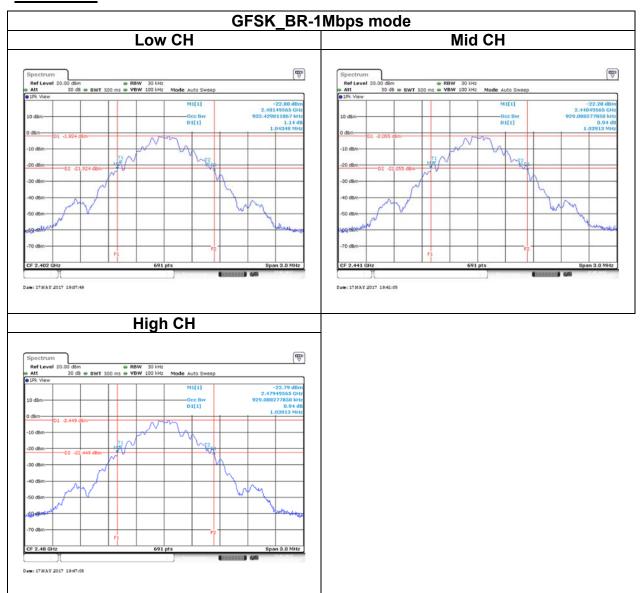

Occupied Bandwidth(99%) : For reporting purposes only.

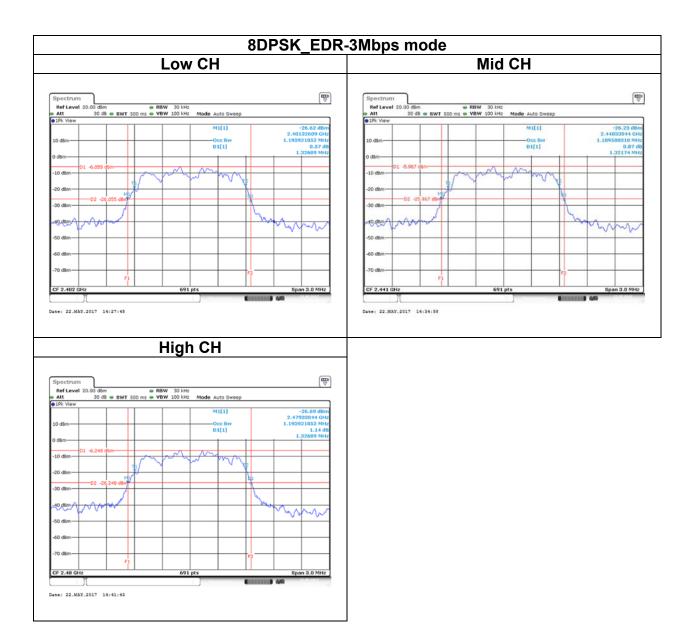
4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- Measure and record the result of 20 dB Bandwidth and 99% Bandwidth, in the test report.

4.2.3 Test Setup




4.2.4 Test Result

Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz							
Channel Frequency OBW(99%) 20dB BW (MHz) (MHz) (MHz)							
Low	2402	0.9334	1.0434				
Mid	2441	0.9290	1.0391				
High	2480	0.9290	1.0391				

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz								
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)					
Low	2402	1.1939	1.3260					
Mid	2441	1.1895	1.3217					
High	2480	1.1939	1.3260					

Test Data

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(b)

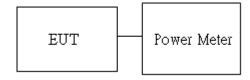
Peak output power:

FCC

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

IC

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


Limit	Antenna not exceed 6 dBi : 21dBm Antenna with DG greater than 6 dBi : 21dBm
	[Limit = $30 - (DG - 6)$]

Average output power: For reporting purposes only.

4.3.2 Test Procedure

- The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power:

	ВТ									
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)		
GFSK	0	2402	13.42	14.31	0.0220	0.0270				
BR-1Mbps	39	2441	13.47	14.36	0.0222	0.0273				
(DH5)	78	2480	13.18	14.07	0.0208	0.0255	21	27		
8DPSK	0	2402	14.34	15.23	0.0272	0.0333	21	21		
EDR-3Mbps	39	2441	14.34	15.23	0.0272	0.0333				
(DH5)	78	2480	14.01	14.90	0.0252	0.0309				

Average output power:

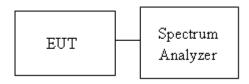
	ВТ						
Config.	СН	Freq. (MHz)	AV Power (dBm)				
GFSK	0	2402	13.05				
BR-1Mbps	39	2441	13.11				
(DH5)	78	2480	12.86				
8DPSK	0	2402	11.69				
EDR-3Mbps	39	2441	11.68				
(DH5)	78	2480	11.33				

FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

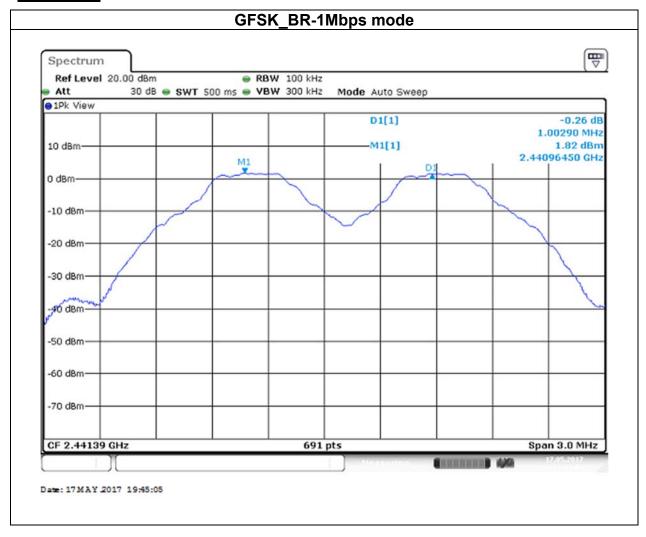

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

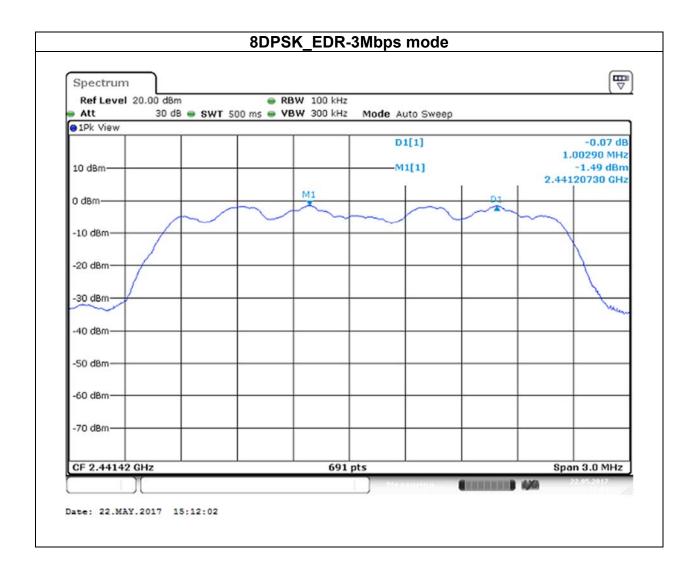
Limit > two-thirds of the 20 dB bandwidth	
---	--

4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup




4.4.4 Test Result

Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz							
Channel Frequency (MHz) Channel Separation Limits (MHz) Result							
Low	2402	1.0029	0.6956	PASS			
Mid	2441	1.0029	0.6927	PASS			
High	2480	1.0029	0.6927	PASS			

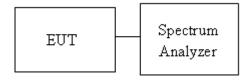
Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz							
Channel	Channel Frequency (MHz) Channel Separation (MHz) Res						
Low	2402	1.0029	0.8840	PASS			
Mid	2441	1.0029	0.8811	PASS			
High	2480	1.0029	0.8840	PASS			

Test Data

NUMBER OF HOPPING 4.5

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)

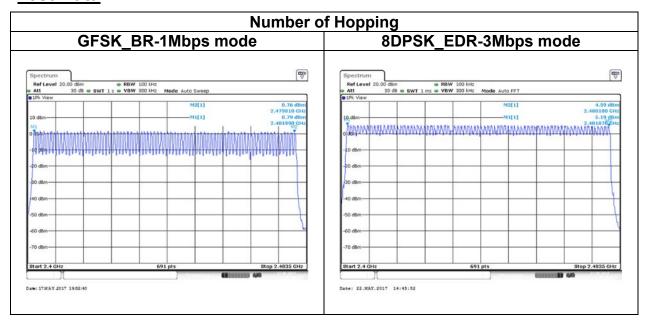

Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup


4.5.4 Test Result

Number of Hopping								
Mode Frequency (MHz)		Hopping Channel Number	Hopping Channel Number Limits	Result				
BR-1Mbps	2402-2480	79	15	Pass				
EDR-3Mbps	2402-2480	79	15	F d 5 5				

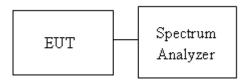
REMARK:

The frequency spectrum was broken up in to two sub-range to clearly show all of the hopping frequencies. In the AFH mode, this device operation was using 20 channels, so the requirement for minimum number of hopping channels is satisfied

Test Data

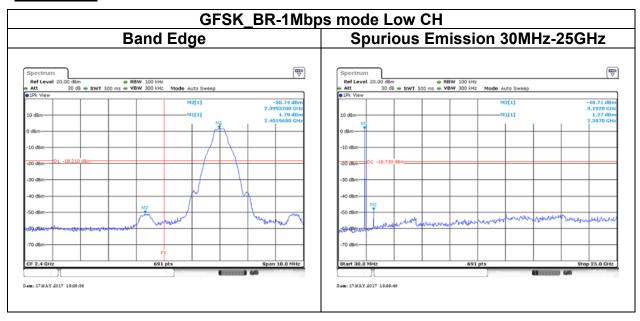
CONDUCTED BANDEDGE AND SPURIOUS EMISSION

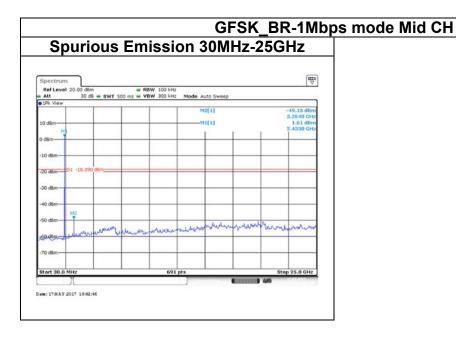
4.6.1 Test Limit

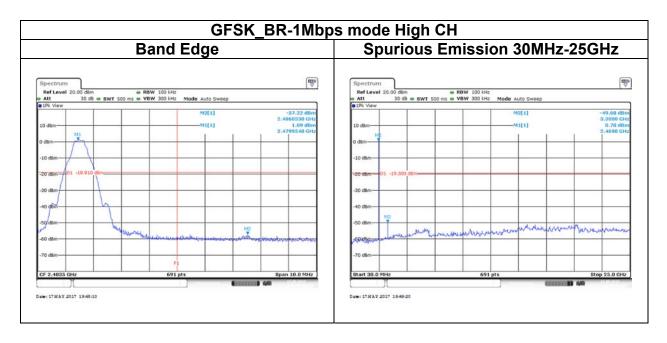

According to §15.247(d) and RSS-247 section 5.5

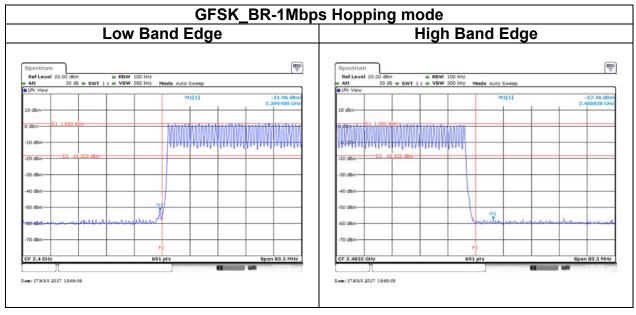
Limit	-20 dBc
-------	---------

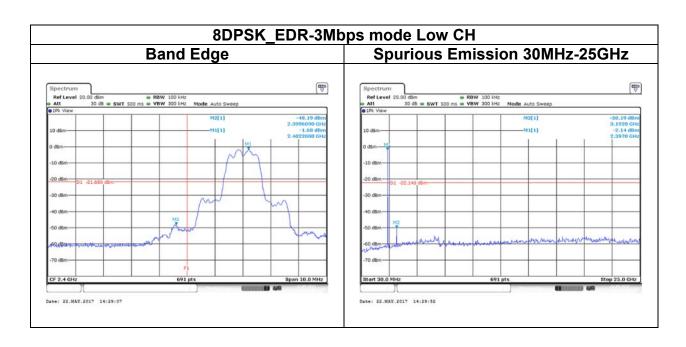
4.6.2 Test Procedure

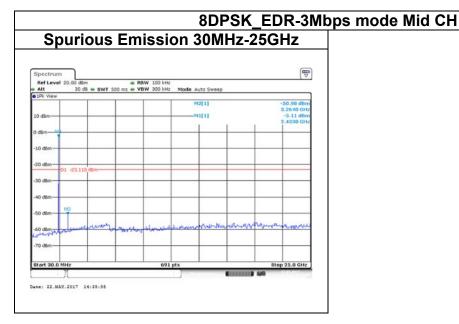

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

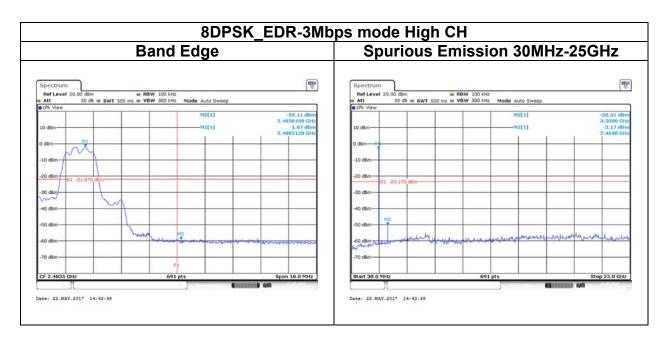

4.6.3 Test Setup

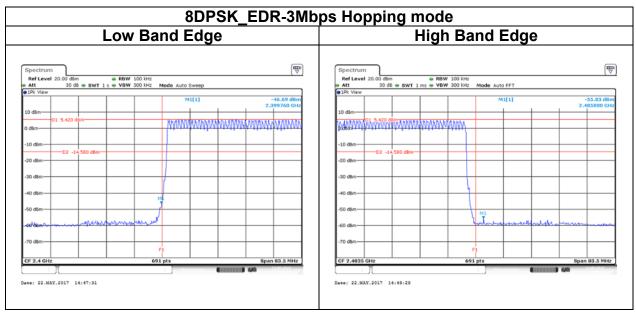



4.6.4 Test Result


Test Data

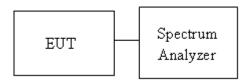






TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit

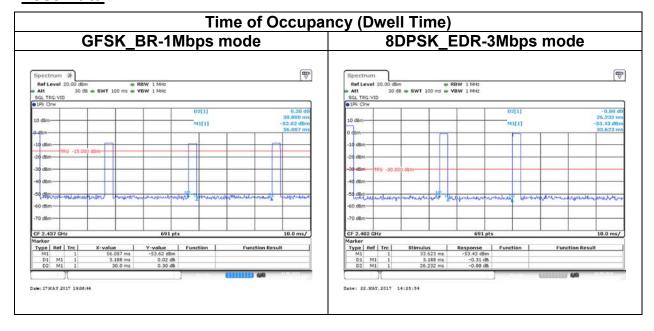

According to §15.247(a)(1)(iii)and RSS-247 section 5.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup


4.7.4 Test Result

Time of Occupancy (Dwell Time)									
Mode	Frequency	Pulse Time Per Hopping	Minimum Number of	Number of pulse in	Dwell Time IN	Dwell Time Limits (s)	Result		
	(MHz)	(ms)	Hopping Freq.	(0.4 * N sec)	(0.4 * N sec)				
BR-1Mbps	2441	3.188	79	106.67	0.3401	0.4	Door		
EDR-3Mbps	2441	3.188	79	106.67	0.3401	0.4	Pass		

Non-AFH: DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6

AFH: DH5 Packet permit maximum 800/20 / 6 = 6.666 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 6.666*0.4*20 = 53.33

Test Data

RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

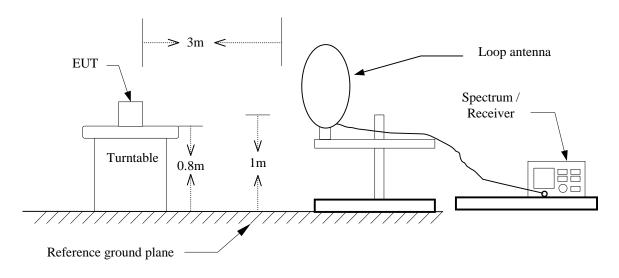
Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4.8.2 Test Procedure

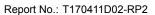
Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.
- 4. For harmonic, the worst case of output power was BR-1Mbps. Therefore only BR-1Mbps record in the report.
- 5. The SA setting following:
 - (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

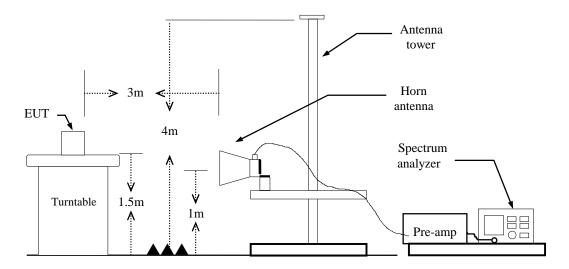

If Duty Cycle ≥ 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	T(ms)	1/T (Hz)	VBW setting
GFSK_BR-1Mbps	100%	1.0000	-	10Hz
8DPSK_EDR-3Mbps	100%	1.0000	-	10Hz

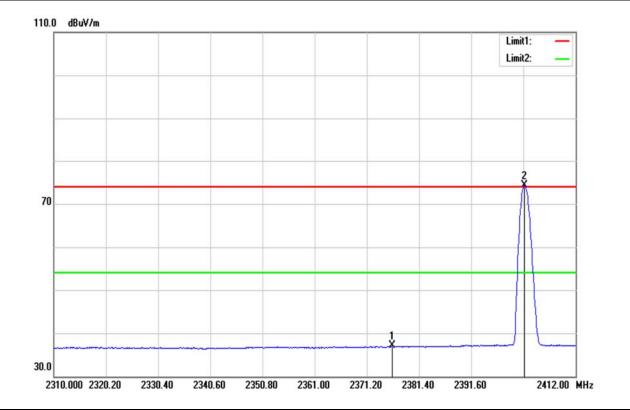

4.8.3 Test Setup

9kHz ~ 30MHz



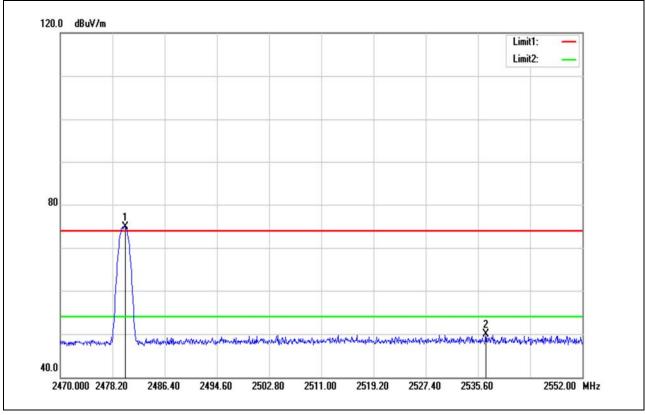
30MHz ~ 1GHz

Above 1 GHz

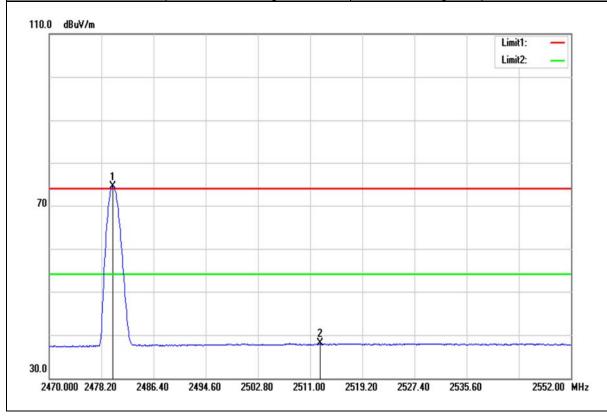

4.8.4 Test Result

Band Edge Test Data

Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22(°C)/ 35%R⊦	
Test Item	Band Edge	Test Date	May 9, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Peak	Test Voltage:	120Vac / 60Hz	
120.0 dBuV/m				
			Limit1: —	
			Limit2:	
80				
00			2	
			<u> </u>	
		1		
abberion abasement	الريار والموارد والدود بالموارد والمراد والمراد والمواد والديد والديد والدوار والدوار والواد والواد والمواد وا	polaricipality of the information of the property of the contraction o	environmental functional spectra	
40.0				
2310.000 2320.20	2330.40 2340.60 2350.80 2361.00	2371.20 2381.40 239	1.60 2412.00 MHz	


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2384.460	51.73	-2.54	49.19	74.00	-24.81	peak
2	2401.800	77.39	-2.41	74.98			peak

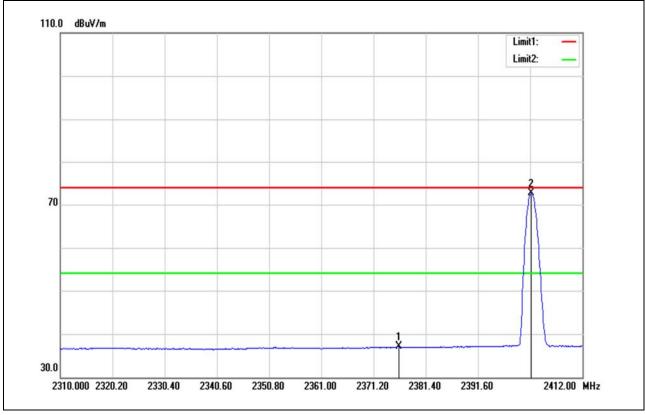
Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22(℃)/ 35%RH
Test Item	Test Item Band Edge		May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Average	Test Voltage:	120Vac / 60Hz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2376.096	39.66	-2.61	37.05	54.00	-16.95	AVG
2	2402.004	76.77	-2.41	74.36			AVG

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Band Edge	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak	Test Voltage:	120Vac / 60Hz

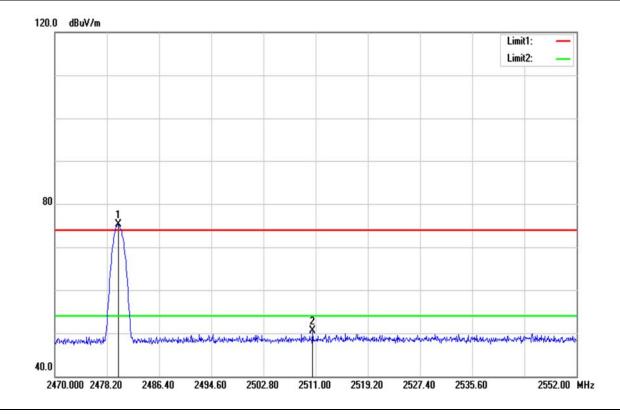
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.168	77.02	-2.03	74.99			peak
2	2536.830	51.69	-1.77	49.92	74.00	-24.08	peak

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22(°C)/ 35%RH
Test Item	Band Edge	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Average	Test Voltage:	120Vac / 60Hz

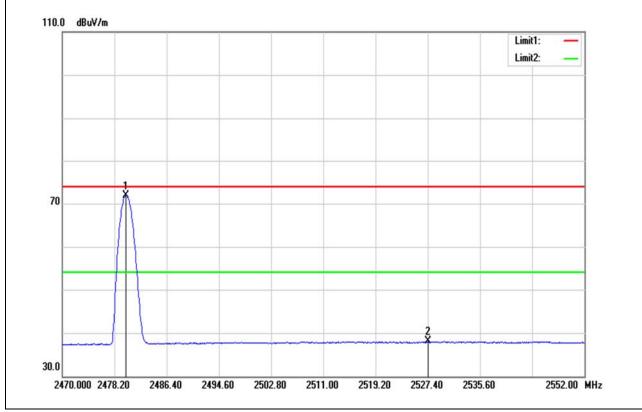


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	76.52	-2.03	74.49			AVG
2	2512.558	39.84	-1.83	38.01	54.00	-15.99	AVG

Test	Mode:		_EDR-3Mbps .ow CH	Temp/Hum	22(°C)/ 35%R
Tes	t Item	Ва	nd Edge	Test Date	May 9, 2017
Pol	arize		orizontal	Test Enginee	
	tector		Peak	Test Voltage:	
120.0 dBu	andr:			<u> </u>	
					Limit1: — Limit2: —
80					
					2
	ighteres and different committees better starting	phoneum through	en-deler met den viene de sied en stade	t namen and a state of the stat	between more infrarestrum
40.0					


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.356	51.55	-2.50	49.05	74.00	-24.95	peak
2	2402.004	78.10	-2.41	75.69			peak

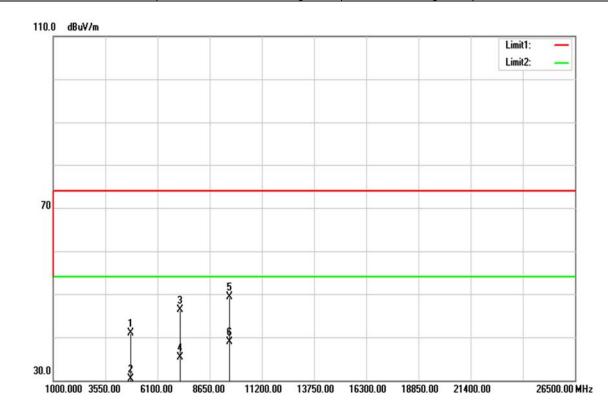
Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Band Edge	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Average	Test Voltage:	120Vac / 60Hz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2376.198	39.78	-2.61	37.17	54.00	-16.83	AVG
2	2402.004	75.03	-2.41	72.62			AVG

Test Mode:	8DPSK_EDR-3Mbps High CH	Temp/Hum	22 (℃)/ 35%RH	
Test Item	Band Edge	Test Date	May 9, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Peak	Test Voltage:	120Vac / 60Hz	

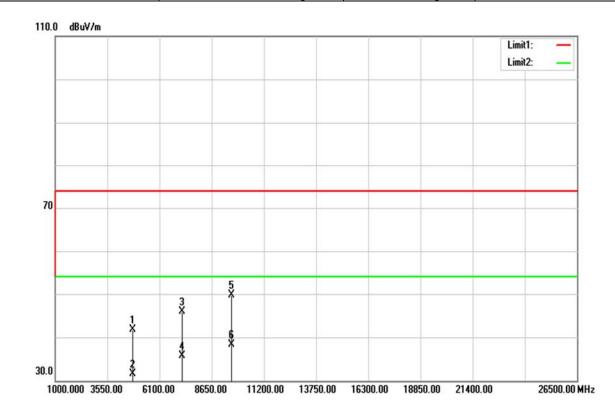
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	77.36	-2.03	75.33			peak
2	2510.508	52.30	-1.83	50.47	54.00	-3.53	peak

Test Mode:	8DPSK_EDR-3Mbps High CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Band Edge	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Average	Test Voltage:	120Vac / 60Hz



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	73.94	-2.03	71.91			AVG
2	2527.400	39.82	-1.79	38.03	54.00	-15.97	AVG

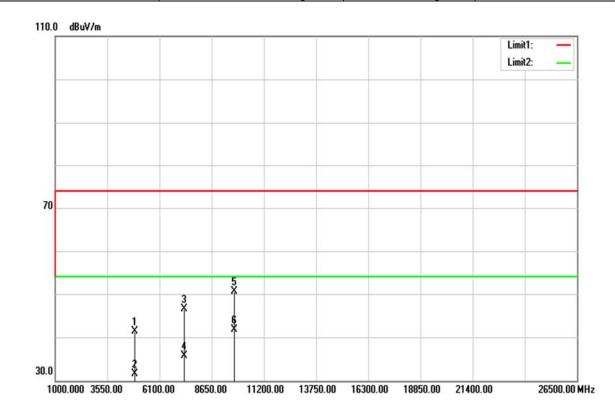
Above 1G Test Data


Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22 (℃)/ 35%RH	
Test Item	Harmonic	Test Date	May 9, 2017	
Polarize	Vertical	Test Engineer	Ed Chiang	
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	35.87	5.04	40.91	74.00	-33.09	peak
4804.000	25.20	5.04	30.24	54.00	-23.76	AVG
7206.000	33.63	12.62	46.25	74.00	-27.75	peak
7206.000	22.76	12.62	35.38	54.00	-18.62	AVG
9608.000	31.69	17.60	49.29	74.00	-24.71	peak
9608.000	21.31	17.60	38.91	54.00	-15.09	AVG

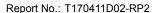

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22 (℃)/ 35%RH	
Test Item	Harmonic	Test Date	May 9, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz	

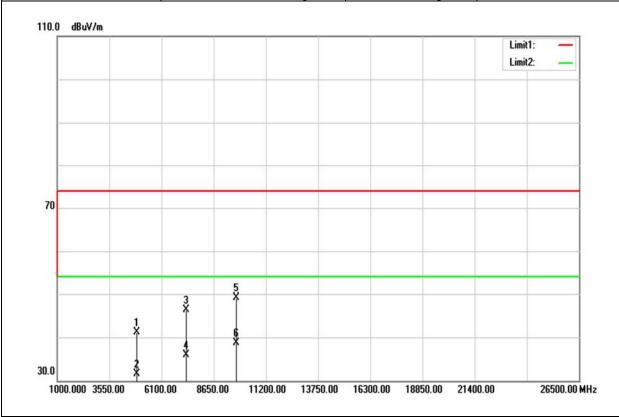


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	36.64	5.04	41.68	74.00	-32.32	peak
4804.000	26.51	5.04	31.55	54.00	-22.45	AVG
7206.000	33.26	12.62	45.88	74.00	-28.12	peak
7206.000	23.12	12.62	35.74	54.00	-18.26	AVG
9608.000	32.02	17.60	49.62	74.00	-24.38	peak
9608.000	20.68	17.60	38.28	54.00	-15.72	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



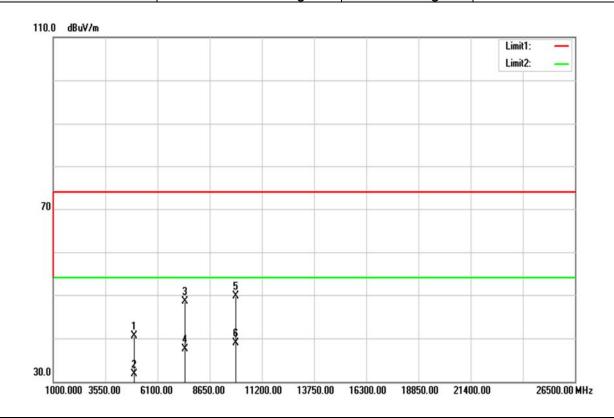
Test Mode:	GFSK_BR-1Mbps Mid CH	Temp/Hum	22 (℃)/ 35%RH	
Test Item	Harmonic	Test Date	May 9, 2017	
Polarize	Vertical	Test Engineer	Ed Chiang	
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz	



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	36.13	5.25	41.38	74.00	-32.62	peak
4882.000	26.27	5.25	31.52	54.00	-22.48	AVG
7323.000	33.50	12.98	46.48	74.00	-27.52	peak
7323.000	22.76	12.98	35.74	54.00	-18.26	AVG
9764.000	32.89	17.60	50.49	74.00	-23.51	peak
9764.000	24.09	17.60	41.69	54.00	-12.31	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

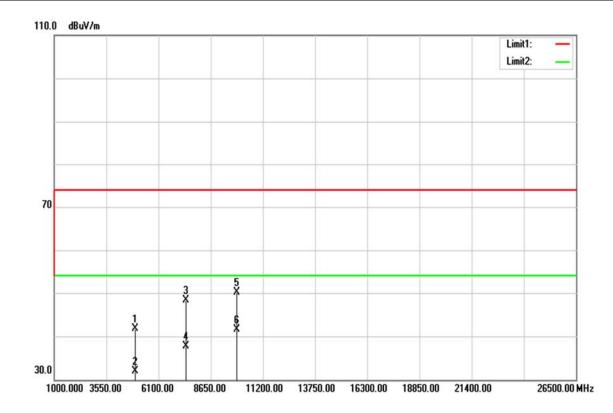
Test Mode:	GFSK_BR-1Mbps Mid CH	Temp/Hum	22(°C)/ 35%RH	
Test Item	Harmonic	Test Date	May 9, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz	



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	35.88	5.25	41.13	74.00	-32.87	peak
4882.000	26.33	5.25	31.58	54.00	-22.42	AVG
7323.000	33.40	12.98	46.38	74.00	-27.62	peak
7323.000	22.96	12.98	35.94	54.00	-18.06	AVG
9764.000	31.48	17.60	49.08	74.00	-24.92	peak
9764.000	21.07	17.60	38.67	54.00	-15.33	AVG

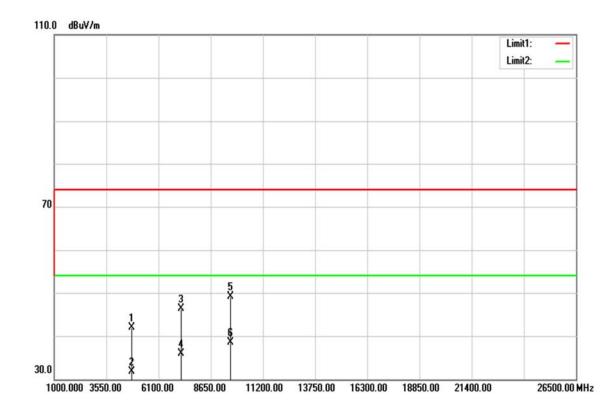
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22 (℃)/ 35%RH	
Test Item	Harmonic	Test Date	May 9, 2017	
Polarize	Vertical	Test Engineer	Ed Chiang	
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz	



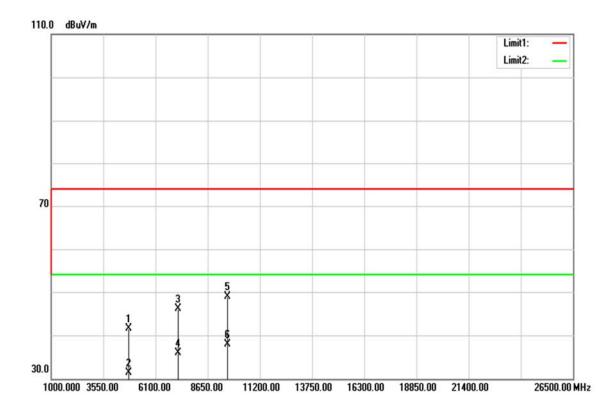
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	34.96	5.46	40.42	74.00	-33.58	peak
4960.000	26.21	5.46	31.67	54.00	-22.33	AVG
7440.000	35.25	13.33	48.58	74.00	-25.42	peak
7440.000	24.22	13.33	37.55	54.00	-16.45	AVG
9920.000	32.07	17.60	49.67	74.00	-24.33	peak
9920.000	21.34	17.60	38.94	54.00	-15.06	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average	Test Voltage:	120Vac / 60Hz

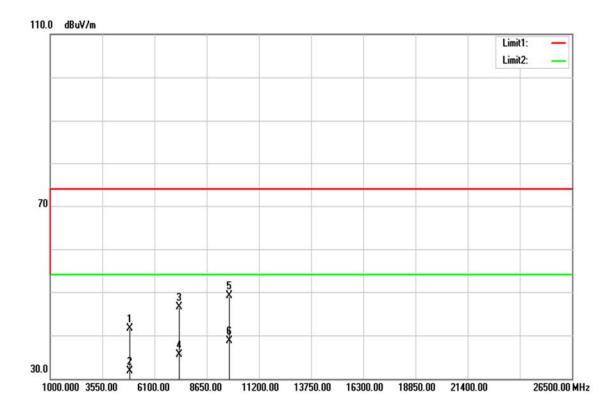
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	36.27	5.46	41.73	74.00	-32.27	peak
4960.000	26.38	5.46	31.84	54.00	-22.16	AVG
7440.000	34.90	13.33	48.23	74.00	-25.77	peak
7440.000	24.31	13.33	37.64	54.00	-16.36	AVG
9920.000	32.54	17.60	50.14	74.00	-23.86	peak
9920.000	23.98	17.60	41.58	54.00	-12.42	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode	8DPSK_EDR-3Mbps Low CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		-

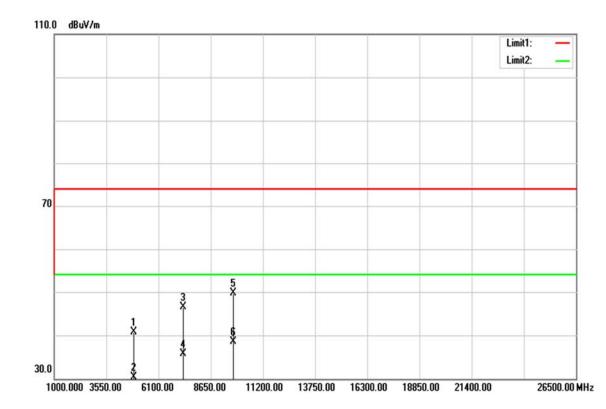
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	36.81	5.04	41.85	74.00	-32.15	peak
4804.000	26.73	5.04	31.77	54.00	-22.23	AVG
7206.000	33.59	12.62	46.21	74.00	-27.79	peak
7206.000	23.30	12.62	35.92	54.00	-18.08	AVG
9608.000	31.49	17.60	49.09	74.00	-24.91	peak
9608.000	20.87	17.60	38.47	54.00	-15.53	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

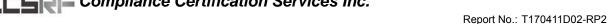

Test Mode	8DPSK_EDR-3Mbps Low CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		_

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	36.52	5.04	41.56	74.00	-32.44	peak
4804.000	26.20	5.04	31.24	54.00	-22.76	AVG
7206.000	33.52	12.62	46.14	74.00	-27.86	peak
7206.000	23.24	12.62	35.86	54.00	-18.14	AVG
9608.000	31.24	17.60	48.84	74.00	-25.16	peak
9608.000	20.32	17.60	37.92	54.00	-16.08	AVG

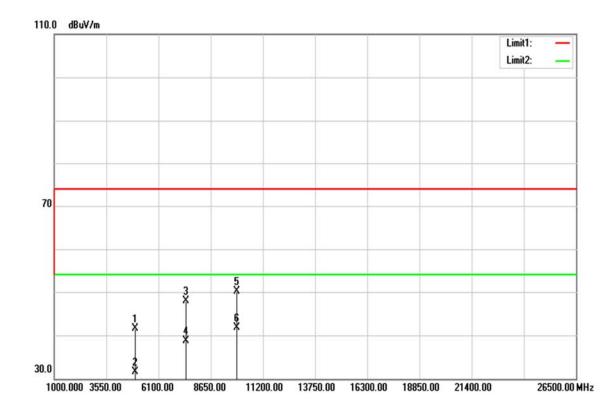
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode	8DPSK_EDR-3Mbps Mid CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		_

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	36.33	5.25	41.58	74.00	-32.42	peak
4882.000	26.41	5.25	31.66	54.00	-22.34	AVG
7323.000	33.61	12.98	46.59	74.00	-27.41	peak
7323.000	22.44	12.98	35.42	54.00	-18.58	AVG
9764.000	31.51	17.60	49.11	74.00	-24.89	peak
9764.000	21.14	17.60	38.74	54.00	-15.26	AVG


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

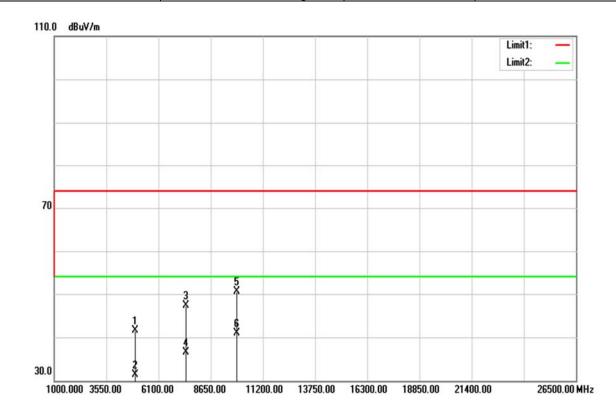
Test Mode	8DPSK_EDR-3Mbps Mid CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		_



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	35.35	5.25	40.60	74.00	-33.40	peak
4882.000	25.03	5.25	30.28	54.00	-23.72	AVG
7323.000	33.44	12.98	46.42	74.00	-27.58	peak
7323.000	22.70	12.98	35.68	54.00	-18.32	AVG
9764.000	32.03	17.60	49.63	74.00	-24.37	peak
9764.000	20.87	17.60	38.47	54.00	-15.53	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

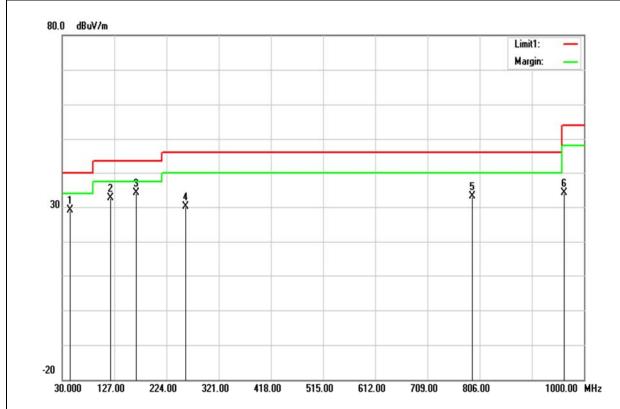
Test Mode	8DPSK_EDR-3Mbps High CH	Temp/Hum	22(°ℂ)/ 35%RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Average		



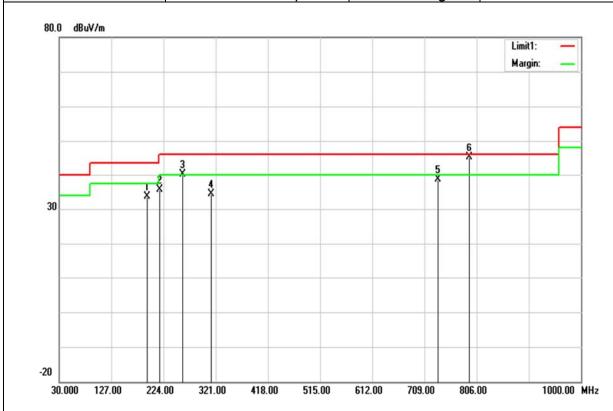
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	36.06	5.46	41.52	74.00	-32.48	peak
4960.000	26.01	5.46	31.47	54.00	-22.53	AVG
7440.000	34.64	13.33	47.97	74.00	-26.03	peak
7440.000	25.39	13.33	38.72	54.00	-15.28	AVG
9920.000	32.43	17.60	50.03	74.00	-23.97	peak
9920.000	24.09	17.60	41.69	54.00	-12.31	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	8DPSK_EDR-3Mbps High CH	Temp/Hum	22(°ℂ)/ 35% RH
Test Item	Harmonic	Test Date	May 9, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Average		_


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	35.97	5.46	41.43	74.00	-32.57	peak
4960.000	25.79	5.46	31.25	54.00	-22.75	AVG
7440.000	33.98	13.33	47.31	74.00	-26.69	peak
7440.000	23.15	13.33	36.48	54.00	-17.52	AVG
9920.000	32.85	17.60	50.45	74.00	-23.55	peak
9920.000	23.35	17.60	40.95	54.00	-13.05	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Below 1G Test Data

Test Mode:	Made 1	Temp/Hum	22(°C)/ 35%RH
Test Item	30MHz-1GHz	Test Date	May 22, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak	Test Voltage:	120Vac / 60Hz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
44.5500	46.97	-17.95	29.02	40.00	-10.98	QP
120.2100	48.13	-15.50	32.63	43.50	-10.87	peak
167.7400	50.77	-16.74	34.03	43.50	-9.47	peak
258.9200	45.72	-15.62	30.10	46.00	-15.90	peak
792.4200	37.60	-4.56	33.04	46.00	-12.96	peak
963.1400	36.38	-2.18	34.20	54.00	-19.80	peak

Test Mode:	Made 1	Temp/Hum	22(°ℂ)/ 35%RH	
Test Item	30MHz-1GHz	Test Date	May 22, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Peak and Qusi-peak	Test Voltage:	120Vac / 60Hz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
193.9300	49.83	-16.09	33.74	43.50	-9.76	peak
216.2400	52.34	-16.69	35.65	46.00	-10.35	peak
258.9200	55.72	-15.62	40.10	46.00	-5.90	QP
312.2700	48.26	-13.91	34.35	46.00	-11.65	peak
734.2200	43.90	-5.28	38.62	46.00	-7.38	peak
792.4200	49.74	-4.56	45.18	46.00	-0.82	QP