7.6 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

<u>Test Data</u>

Not applicable, because EUT not connect to AC Main Source direct.

7.7 FREQUENCY STABILITY

<u>LIMIT</u>

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the operational description.

Temperature Chamber

Test Configuration

Remark: Measurement setup for testing on Antenna connector

.....

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

TEST RESULTS

Operating Frequency: 5280 MHz								
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit (20ppm)	Test Result				
50	12	5179.96179	-7.3764	Pass				
40	12	5179.96701	-6.3687	Pass				
30	12	5179.97699	-4.4421	Pass				
20	12	5179.99887	-0.2180	Pass				
10	12	5179.99522	-0.9228	Pass				
0	12	5179.99913	-0.1680	Pass				
-10	12	5180.00263	0.5077	Pass				
-20	12	5179.99957	-0.0830	Pass				

No non-compliance noted.

Operating Frequency: 5280 MHz								
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit (20ppm)	Test Result				
20	10.2	5179.99852	-0.2849	Pass				
	12	5179.99887	-0.2180	Pass				
	13.8	5179.99866	-0.2585	Pass				

7.8 DYNAMIC FREQUENCY SELECTION

TEST PROCEDURE

According to "KDB 905462 D02 v02" and "KDB 905462 D03 v01r01"

<u>LIMIT</u>

According to §15.407 (h) and FCC 06-96 appendix "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection".

Table 1: Applicability of DFS requirements prior to use of a channel

Bandana	Operational Mode					
Requirement	Master	Client (without radar detection)	Client(with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

Dominoment	Operational Mode				
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Table 3: Interference Threshold values, Master or Client incorporating In-Service

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Table 4: DFS Response requirement values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note	e 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \end{cases}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	e (Radar Types bort Pulse Rac	s 1-4) lar Type 0 sho	ould be used for the detection	80% bandwidth test, chann	120 el move time

Table 5 – Short Pulse Radar Test Waveforms

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
						Delection	
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 6 – Long Pulse Radar Test Signal

Table 7 – Frequency Hopping Radar Test Signal

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

DESCRIPTION OF EUT

Overview Of EUT With Respect To §15.407 (H) Requirements

The firmware installed in the EUT during testing was:

Firmware Rev: 10.0.0.287

The EUT operates over the 5250-5350 MHz range as a Client Device that does not have radar detection capability.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Only one antenna port is connected to the test system since the EUT has one antenna only.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 5 = -57dBm.

The calibrated conducted DFS Detection Threshold level is set to -57 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

TEST AND MEASUREMENT SYSTEM

System Overview

The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), 50 ohm termination would be removed from the splitter so that connection can be established between splitter and the Master and/or Slave devices.

Conducted Method System Block Diagram

System Calibration

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –62 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from -62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -62 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -62 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Adjustment Of Displayed Traffic Level

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Test Setup

TEST RESULTS

No non-compliance noted

PLOT OF WLAN TRAFFIC FROM SLAVE

IEEE 802.11n HT 40 MHz mode / 5310MHz

Noise Floor

Date:23MAY.2016 17:07:35

Master Level

Spectrum	ı)								
Ref Level	10.00 dBm	ı	👄 RBW	1 MHz					
Att	20 dB	8 👄 SWT 13	2 s 👄 VBW	1 MHz					
9 1Pk Clrw									
					M	1[1]			50.22 dBm
									9.346800 s
0 dBm									
10 40									
-10 dBm									
-20 dBm									
20 0.0111									
-30 dBm									
-40 dBm									
							M1		
-50 dBm	demonstration and a structure	and the state field of the state of the	tona alsolutible com	the character to and the	لى الله أخذ من فلفناه من ا	والمعاد فيألم أيعارا والمارية	A MARKAN BALLAN	a kashi da kata bi sa tata tu	a katalen ata ata ata
exactly body or the	the decourter of the	en official international official	and the second	and all substantiations of	· • •				
	an farmana an ina mila ana dari								www.els.see.st.masset
-70 aBm									
-80 dBm									
	1-1			0000	1 ntc				1.0.64
<u>сназі</u> GH	12			3000	1 pts				1.2.5/
						ready		1. A. S.	

Date:23MAY 2016 17:08:37

Slave Level

Spectrun	n D								
Ref Leve	l 10.00 dBm	1	👄 RBW	1 MHz					
🗕 Att	20 dE	8 👄 SWT 12	2 s 👄 VBW	1 MHz					
SGL									
∣o1Pk Clrw									
					м	1[1]		1	11.34 dBm 0.530000 s
0 dBm								+	
								M1	
-10 dBm—							a na a ba a	1 .	to the off of the state
adimentation of the	and the second strends whe		ad the find for the set	1977 A.	in the second second	de la constante	(landkardshald) bu wa	an a little an directed and the little	and related as
and the second secon									
-70 dBm									
-70 abiii									
0.0 - 10									
-80 dBm									
CF 5.31 GF	lz	I	I	3000	1 pts	1	1	I	1.2 s/
						teady		440	3.05.2016

Date:23MAY 2016 17:10:10

PLOTS OF RADAR WAVEFORMS

Sample of Short Pulse Radar Type 0

Date: 27 MAY 2016 11:34:36

IEEE 802.11n HT 40 MHz mode / 5510MHz

Noise Floor

Date: 23 MAY 2016 16:32:39

Master Level

Spectrum									
Ref Level	10.00 dBm	I	👄 RBW	1 MHz					
🗕 Att	20 dB	e swt :	12 s 👄 VBW	1 MHz					
SGL									
						1111			45.06 dBm
						1[1]			2.763200 s
0 dBm									+
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm		MI							
	1	Ţ.					1.1		
and plant is a first state of the	and the state of the state of the		مباطات بتجنين بيادير المارير أعاقته الأدرا		المروا بالمراجع أرام ومردانا وال	ine dissibilities in the	la providel del provident have have	de la constitución de la const	di televent dege des altra di
-70 dBm									
-80 dBm									
CF 5.51 GH	z			3000	1 pts				1.2 s/
[Л				F	te ad y		4,76	23.05.2016

Date:23 MAY 2016 16:33:39

Slave Level

Spectrum									
Ref Level	10.00 dBm	1	👄 RBW	1 MHz					
🗕 Att	20 dB	5 👄 SWT 12	2 s 👄 VBW	1 MHz					
SGL									
●1Pk Clrw									
					м	1[1]			-6.78 dBm
0 dBm						l	l	1	
	M1								
-10 dBm	الملبول والمعارية	and the second states	عالم العالية معالم العدار	here in the second	In the later of	the liter of the date	hills Herstein and		والمالي والمعربين والمالي
	and the second							en in tea let i	
	ana alƙasara ang ang	and some till state at a trade state of a loss	dan perintakan seria seria seria seria s	and following the strength					
-70 dBm									
-80 dBm									
CF 5.51 GH	z	I		3000	1 pts	I	I	I	1.2 s/
][Ready		4,46	23.05.2016

Date:23 MAY 2016 16:34:33

PLOTS OF RADAR WAVEFORMS

Sample of Short Pulse Radar Type 0

Date:27 MAY 2016 11:40:06

TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5530 MHz utilizing a conducted test method.

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated

Begins at (Reference Marker + 200 msec) and

Ends no earlier than (Reference Marker + 10 sec).

IEEE 802.11n HT 40 MHz mode / 5310MHz

Type 1 Channel Move Time Results

No non-compliance noted.

Channel Move Time	Limit
(ms)	(s)
20.6800	10

Date:23 MAY.2016 16:04:00

Type 1 Channel Closing Transmission Time Results

No non-compliance noted.

IEEE 802.11n HT 40 MHz mode / 5510MHz

Type 1 Channel Move Time Results

No non-compliance noted.

Channel Move Time	Limit
(ms)	(s)
133.4400	10

Date:23MAY.2016 17:00:10

Type 1 Channel Closing Transmission Time Results

No non-compliance noted.

NON-OCCUPANCY PERIOD

IEEE 802.11n HT 40 MHz mode / 5310MHz

Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

Spectru	m											_
Ref Lev	el 10.	oo de	3m	😑 RB\	N 1 MHz							
🕳 Att		20	dB 👄 SWT 2000 s	👄 VB1	🖌 1 MHz							
SGL												
⊖1Pk Clrw												
							M:	2[1]				57.03 dBm
0 dBm											1	820.2667 s
							IVI.	1[1]				20 2667 s
📲 LO dBm—	-											20.2007 3
-80 dBm—	_											
- <mark>4</mark> 0 dBm—	+											
			Althous Report to the Burley Court of	المرابع والمراجع	مارية والمعادية	أساد والمراجع والم	م حالهما با	J. S. M. March and	International Action	والمدامين وال	به مارد بر بامر جمار در د	M2
-60 dBm-	-											
-70 dBm—	-											
-80 aBm—												T2
11												
CF 5.31 (GHz				3000	1 pts						200.0 s/
Marker	<u> </u>											
Type R	et T	1 1	X-value	-	-15 46 dp		-unct	ion		Funct	ion Result	
D1	м1	1	10.0	5	-41.74 c	iв						
M2		1	1.8202667	s	-57.03 dB	m						
								eady			NA I	23.05.2016

Date:23 MAY 2016 18:08:14

IEEE 802.11n HT 40 MHz mode / 5510MHz

Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

opeculum						1
Ref Level	10.00 dB		RBW 1 MHz			
SGL	20 0	18 - SWI 2000 S -	BW I MHZ			
1Pk Clrw		92	ea			
				M2[1]		-55.94 dBn
0 dBm	2	20 22				1821.6667
			1 1	M1[1]		-11,82 dBr
10 dBm					8	21,0007
RO dBm						
20 0011						
-30 dBm						
-40 dBm			1 1			11
50 dBm						
dal continued		a and a second and a second	and then a produced for the	and the second second second	an And a shifty of a strategy of	and a second and a start of the
-60 dBm						
				-		
-70 dBm-						
-80 dBm-						
T1			1			1 [°]
CF 5.51 GH	z		30001 pt	s		200.0 s/
Marker						
Type Ref	Trc	X-value	Y-value	Function	Functio	on Result
M1	1	21.6667 s	-11.82 dBm			
M2 M2	1	1.8216667 ks	-40.38 dB			
	-	1.02100001 100	55.51 000			

Date: 23 MAY 2016 19:09:39