
LTE Band 2

CHANNEL BANDWIDTH: 1.4MHz / QPSK CH Low

Date: 14.JUL.2016 15:45:08

-50 dBm-

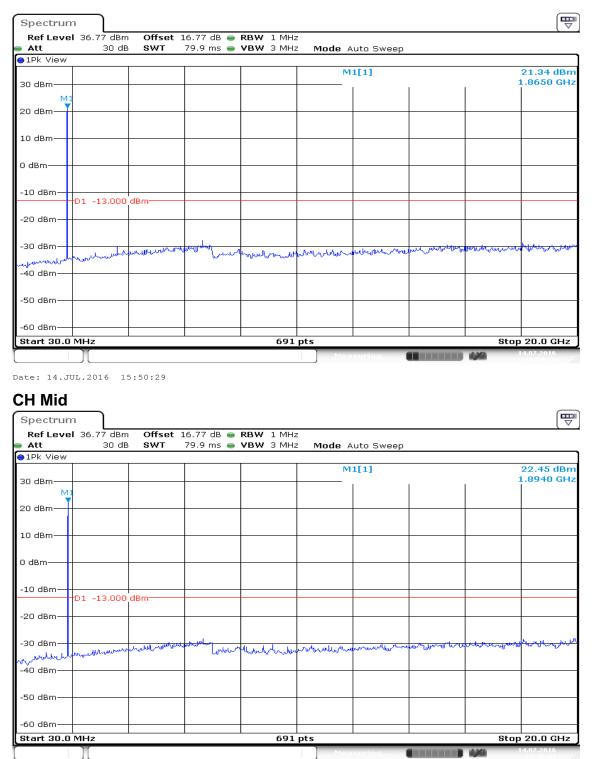
-60 dBm-

Start 30.0 MHz

691 pts

Stop 20.0 GHz

II 48



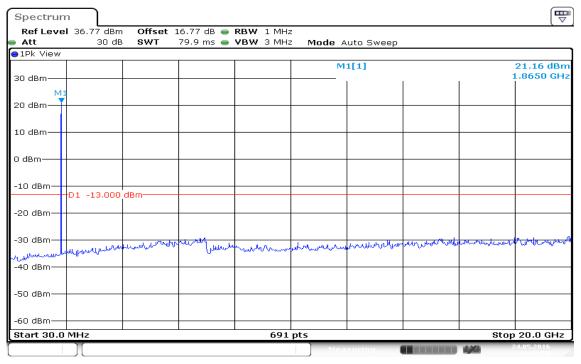
Spectrum									
Ref Level 36	5.77 dBm	Offset :	16.77 dB 👄	RBW 1 MHz	2				
Att 🗧	30 dB	SWT	79.9 ms 👄	УВЖ З МН2	: Mode A	Auto Sweep			
●1Pk View									
30 dBm					M	1[1]	I		21.13 dBm L.9230 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	-13.000 d	IBm							
-20 dBm									
-30 dBm	Malyan march	when	mound	number	whenter	whenter	Munhow	ton norther	Water Carles
-40 dBm									
-50 dBm									
-60 dBm				(81					
Start 30.0 MH	Z			691	pts			stop	20.0 GHz
					Mea	isuring		ayes	

Date: 14.JUL.2016 15:48:04

CHANNEL BANDWIDTH: 1.4MHz / 16QAM

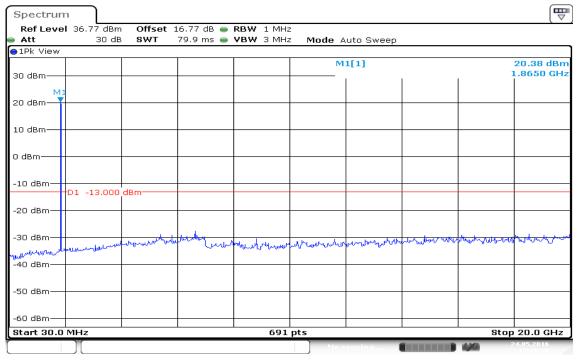
CH Low

Date: 14.JUL.2016 15:49:43



	Spectrum									
1Pk View 10 dBm	Ref Level	36.77 dBm	Offset	16.77 dB 👄	RBW 1 MHz	2				
30 dBm 1.9230 G 20 dBm 1.9230 G 10 dBm 1 0 dBm 1 -10 dBm 1 -20 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1		30 dB	SWT	79.9 ms 👄	VBW 3 MHz	: Mode 4	Auto Sweep			
30 dBm	●1Pk View			1						
20 dBm Image: state	30 dBm					M	1[1]	I.		20.76 dBm 1.9230 GHz
0 dBm Image: set of the s	_									
-10 dBm 01 -13.000 dBm 0.000 0	10 dBm									
-20 dBm -30 dBm -40 dBm -40 dBm	0 dBm									
-30 dBm -30 dBm -40 dBm -40 dBm		01 -13.000	dBm							
-40 dBm										
-40 dBm	-30 dBm	ulurburaltural	Unentru	wanter Walture	mendelin	whhywelly when	under hor hours Mik	wyawhote	mohun	ᢧᡰᡶᡔᡰᢗᡟᢦᠾᡘᡊᠼ᠖ᡃ᠉
-50 dBm	-40 dBm									
	-50 dBm									
-60 dBm 691 pts Stop 20.0 GH		442			601	nte			Stor	20.0.042
atan 30.0 Minz 091 pts stop 20.0 GP	31311 30.0 1				091	prs No:	Suring		atur 434	14.07.2016

Date: 14.JUL.2016 15:51:05

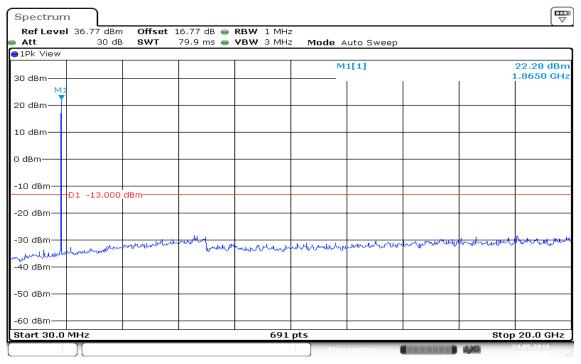

CHANNEL BANDWIDTH: 5MHz / QPSK

CH Low

Date: 24.MAY.2016 13:41:49

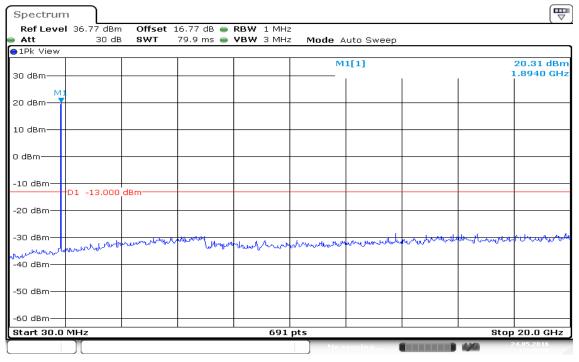
CH Mid

Date: 24.MAY.2016 13:41:18



Spectrum)						
Ref Level 36.7	7 dBm Offset	16.77 dB 👄 RBW	/ 1 MHz				
Att	30 dB SWT	79.9 ms 👄 VBW	/ 3 MHz Mode	Auto Sweep			
●1Pk View							
30 dBm			r	M1[1]	I		52 dBm 30 GHz
20 dBm							
10 dBm							
0 dBm							
-10 dBm	.3.000_dBm						
-20 dBm———							
-30 dBm	Hurranyurratur	antward porontword	Lawar John Mark	wwwwww	www.www.www.www.www.www.www.www.www.ww	wheelinter	wyper
-40 dBm							
-50 dBm							
-60 dBm Start 30.0 MHz			691 pts			Stop 20.	0.047
			oathra			24.05.	2016

Date: 24.MAY.2016 13:40:49

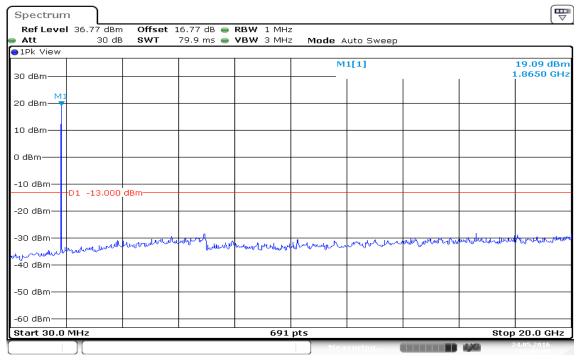

CHANNEL BANDWIDTH: 5MHz / 16QAM

CH Low

Date: 24.MAY.2016 13:39:42

CH Mid

Date: 24.MAY.2016 13:39:07



Spectrum								
Ref Level 36.77	dBm Offset	16.77 dB 👄	RBW 1 MHz					
	80 dB SWT	79.9 ms 👄	VBW 3 MHz	Mode A	uto Sweep			
●1Pk View	I	Т	, ,					
30 dBm				M	1[1]	I	:	19.97 dBm 1.9230 GHz
20 dBm								
10 dBm								
0 dBm								
-10 dBm	.000 dBm							
-20 dBm								
-30 dBm	wan when when	whythe Julian	hurrow	N/K March Marthall	unum	an human	whenter	Arrow wat
-40 dBm								
-50 dBm								
-60 dBm Start 30.0 MHz			691	nts			Stor	20.0 GHz
			071	Mea	suring		4/4	24.05.2016

Date: 24.MAY.2016 13:40:08

CHANNEL BANDWIDTH: 10MHz / QPSK

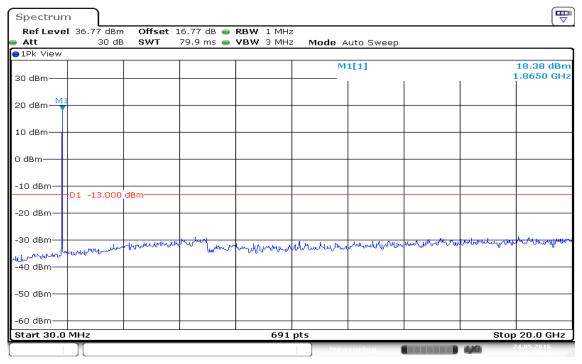
CH Low

Date: 24.MAY.2016 13:42:42

CH Mid

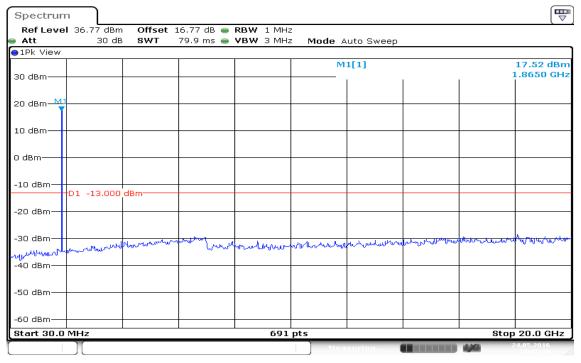
Spectrum									
Ref Level Att	36.77 dBm 30 dB			RBW 1 MHz					
) Att 1Pk View	30 QB	5W1	79.9 ms 🖷	VBW 3 MHz	Mode	Auto Sweep			
30 dBm					N	M1[1]	1		19.49 dBr 1.8940 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm	1 -13.000	dBm							
-20 dBm									
-30 dBm	herdenorgena	handerverterland	workand without	muchanne	whenter	numum	united		rww
-40 dBm									
-50 dBm									
-60 dBm Start 30.0 M	111-7			691	nte			Stor	20.0 GHz
start 30.0 M)[091	Me	asuring			24.05.2016

Date: 24.MAY.2016 13:42:18



Spectrum									
Ref Level		Offset	16.77 dB 👄	RBW 1 MHz	2				
Att Att	30 dB	SWT	79.9 ms 👄	VBW 3 MHz	Mode /	Auto Sweep			
●1Pk View			1						
30 dBm					×	11[1]			17.44 dBm L.8940 GHz
20 dBm									
10 dBm									
10 0.0111									
0 dBm									
-10 dBm			-						
	1 -13.000	dBm							
-20 dBm									
-30 dBm		u. martin	www.www.		A KAKET THE CARE	a water and the and the second second	-	the first way have	allow work
marshered	mount		man	and a more than	16-00-00-00 v]		
-40 dBm									
-50 dBm									
-60 dBm									
Start 30.0 M	1Hz			691	pts			Stop	20.0 GHz
	Л				Me	asuring		di Ma	13:43:04 //

Date: 24.MAY.2016 13:43:04

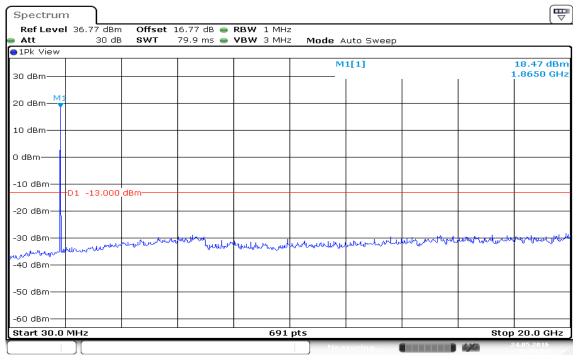

CHANNEL BANDWIDTH: 10MHz / 16QAM

CH Low

Date: 24.MAY.2016 13:38:04

CH Mid

Date: 24.MAY.2016 13:37:36



Spectrum								
Ref Level 36.77 d	Bm Offset	16.77 dB 👄	RBW 1 MHz	:				
	dB SWT	79.9 ms 👄	VBW 3 MHz	Mode /	Auto Sweep			
●1Pk View		-,						
30 dBm					11[1]			17.06 dBm L.8940 GHz
20 dBm- <u>141</u>								
10 dBm								
0 dBm								
-10 dBm)00_dBm							
-20 dBm								
-30 dBm	walnut	man how	howhow	mun	- Mary Market Market	whenthen	even margare	Mutywareth
.40 dBm								
-50 dBm								
-60 dBm			691	nte			Ston	20.0 GHz
			091	Me.	asuring		atop	20.0 GHZ

Date: 24.MAY.2016 13:38:28

CHANNEL BANDWIDTH: 20MHz / QPSK

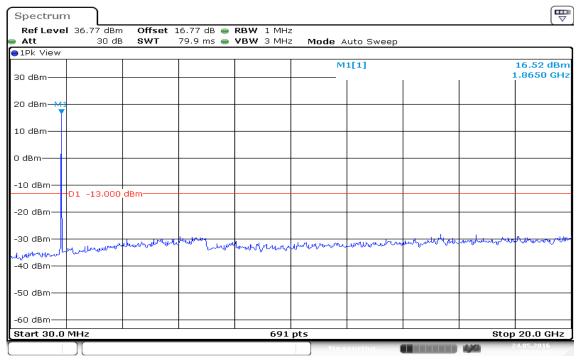
CH Low

Date: 24.MAY.2016 13:43:54

CH Mid

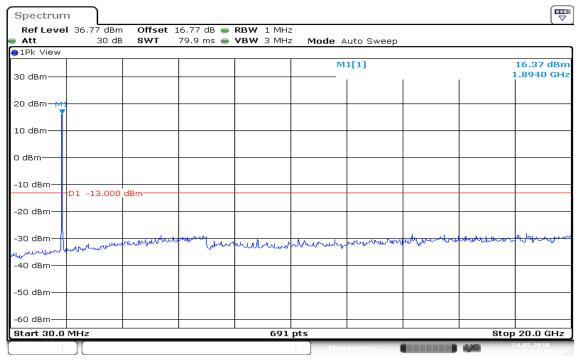
Spectrum Ref Level 36.77 dBm	Offset	16.77 dB 👄	RBW 1 MHz	,				
Att 30 dB	SWT		VBW 3 MHz		Auto Sweep			
∍1Pk View								
30 dBm					M1[1]	1	I	16.79 dBr 1.8940 GH
20 dBm 141								
10 dBm								
0 dBm								
-10 dBm	3m							
-20 dBm								
-30 dBm	www	and your	mundretask	ununul	white when when when the second	honderwork	the three	Howard
-40 dBm								
-50 dBm								
-60 dBm								
Start 30.0 MHz			691	pts			Stop	o 20.0 GHz

Date: 24.MAY.2016 13:43:29



Spectrum									
Ref Level	36.77 dBm	Offset	16.77 dB 👄	RBW 1 MHz	2				
Att Att	30 dB	SWT	79.9 ms 👄	УВЖ З МН2	: Mode /	Auto Sweep			
●1Pk View									
30 dBm					M	11[1]			18.30 dBm L.8940 GHz
00 0.0									
20 dBm 🕂									
10 dBm									
0 dBm									
-10 dBm									
	1 -13.000 c	18m							
-20 dBm									
20 d8m			. Lan bi						ىلىرى م
-30 dBm	Munover Magel	han when a start	When When	undhrough	whenthe	newhoursetter	www.www.ww	and a construction of the second s	Control Marco
-40 dBm									
-50 dBm									
-60 dBm									
Start 30.0 M	1Hz			691	pts			Stop	20.0 GHz
	Л				Me	asuring		4/4	4.05.2016

Date: 24.MAY.2016 13:44:20


CHANNEL BANDWIDTH: 20MHz / 16QAM

CH Low

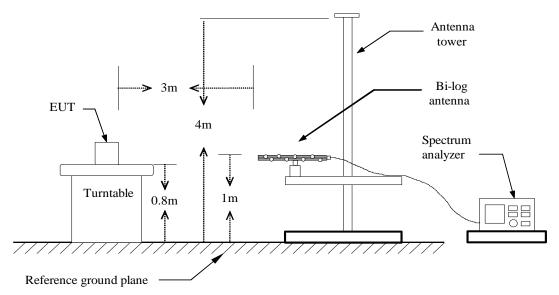
Date: 24.MAY.2016 13:37:09

CH Mid

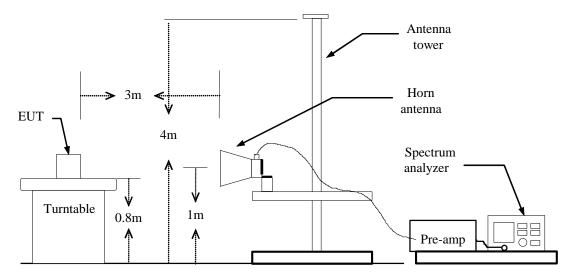
Date: 24.MAY.2016 13:34:44

Spectrum									
Ref Level 3	6.77 dBm	Offset	16.77 dB 👄	RBW 1 MHz	2				
🗕 Att	30 dB	SWT	79.9 ms 👄	УВЖ З МНа	: Mode A	uto Sweep			
⊖1Pk View									
30 dBm					M	1[1]	I		17.30 dBm 1.8940 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	-13.000 d	IBm							
-20 dBm									
-30 dBm	here Manuscrander	monterestand	Mark June	mountputpet	photometre	which days which	Chrymmen and	wether where	the three the
-40 dBm									
-50 dBm									
-60 dBm								00	
Start 30.0 MI	HZ			691	pts			Stop	20.0 GHz
					Mea	suring		4/4	13 36 32 ///

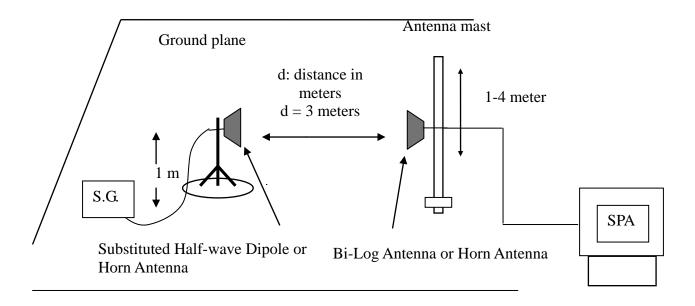
Date: 24.MAY.2016 13:36:32


7.3 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

<u>LIMIT</u>


According to FCC §2.1053

Test Configuration


Below 1 GHz

Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

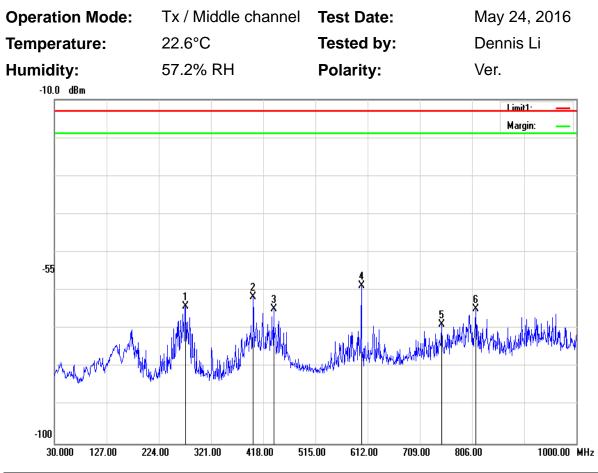
The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

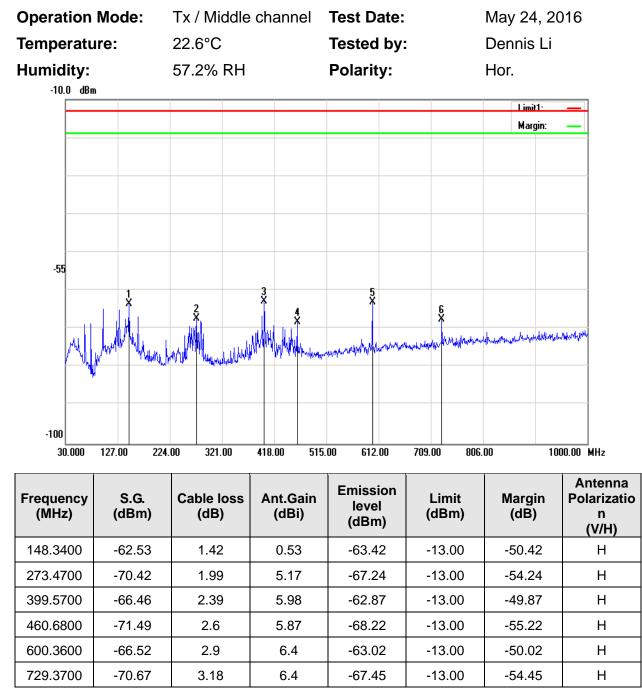
ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)


TEST RESULTS

Refer to the attached tabular data sheets.

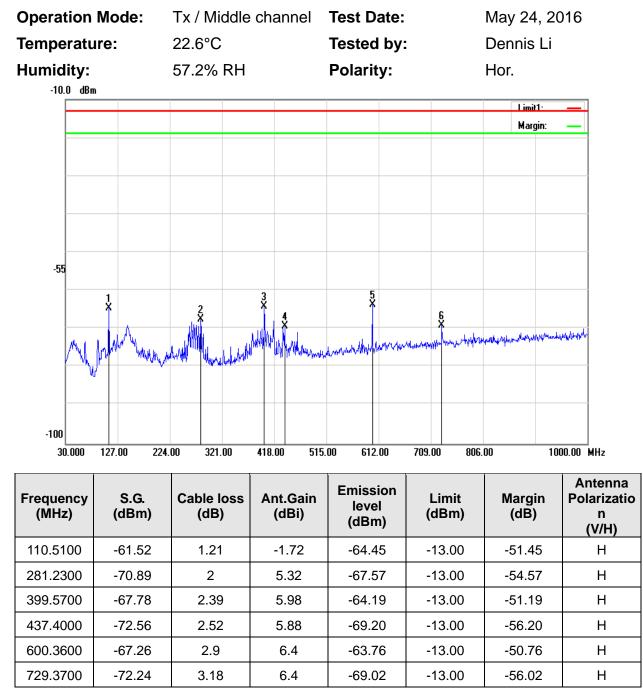
Test Results


Below 1GHz

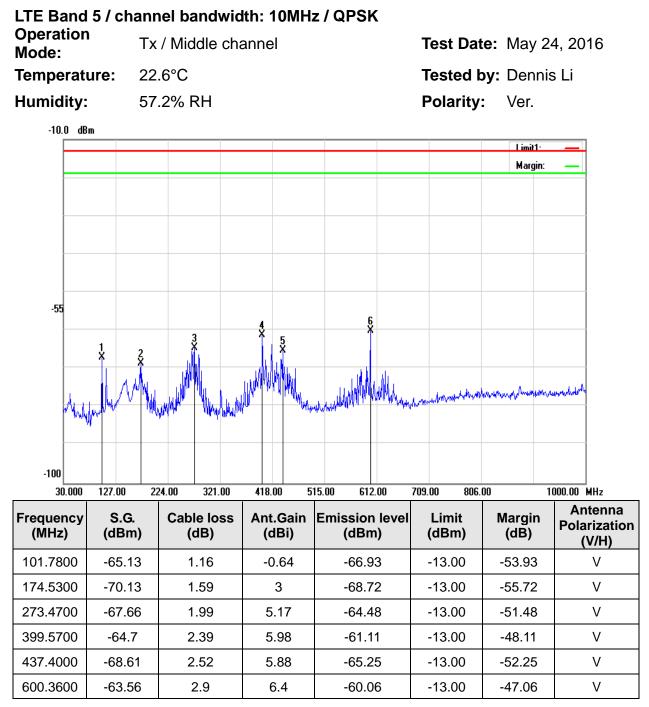
LTE Band 25 / CHANNEL BANDWIDTH: 20MHz / QPSK

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizatio n (V/H)
273.4700	-67.31	1.99	5.17	-64.13	-13.00	-51.13	V
399.5700	-65.23	2.39	5.98	-61.64	-13.00	-48.64	V
437.4000	-68.22	2.52	5.88	-64.86	-13.00	-51.86	V
600.3600	-62.15	2.9	6.4	-58.65	-13.00	-45.65	V
749.7400	-71.72	3.2	6.1	-68.82	-13.00	-55.82	V
812.7900	-67.6	3.35	6.2	-64.75	-13.00	-51.75	V

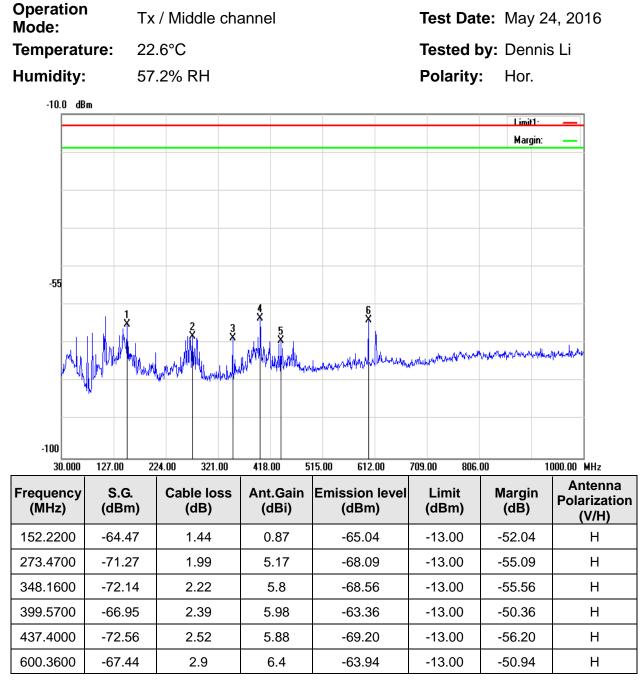
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Tx / Middle channel May 24, 2016 **Operation Mode: Test Date:** 22.6°C **Tested by:** Dennis Li **Temperature:** 57.2% RH **Humidity: Polarity:** Ver. -10.0 dBm Limit1 Margin: -55 -100 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz


LTE Band 25 / CHANNEL BANDWIDTH: 20MHz / 16QAM

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizatio n (V/H)
273.4700	-67.46	1.99	5.17	-64.28	-13.00	-51.28	V
399.5700	-64.9	2.39	5.98	-61.31	-13.00	-48.31	V
437.4000	-68.14	2.52	5.88	-64.78	-13.00	-51.78	V
600.3600	-61.22	2.9	6.4	-57.72	-13.00	-44.72	V
812.7900	-67.9	3.35	6.2	-65.05	-13.00	-52.05	V
955.3800	-69.77	3.65	6.37	-67.05	-13.00	-54.05	V


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

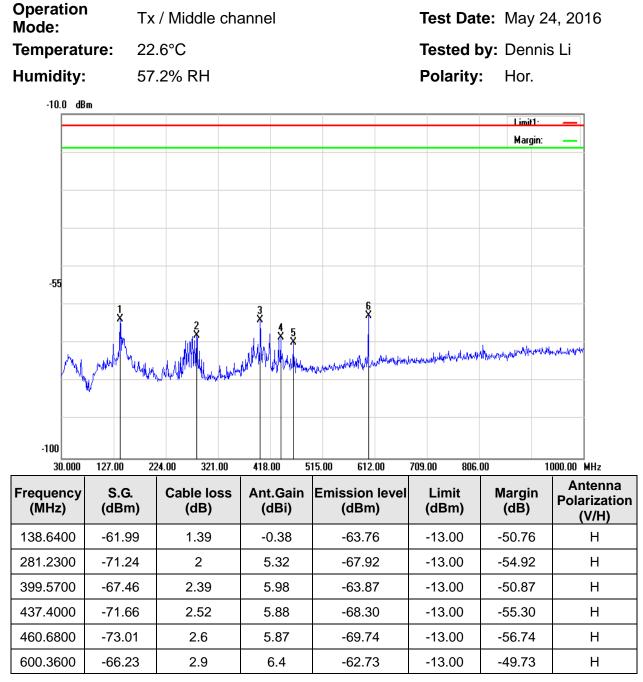
- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

1

		nel bandv	vidth: 10N	1Hz / 16QAM			
Operation Mode:	T:	x / Middle (channel		Test Da	te: May 24	4, 2016
Temperate	u re: 22	2.6°C			Tested I	by: Dennis	s Li
Humidity:	5	7.2% RH			Polarity	: Ver.	
-10.0 dB	m						
						Limit1 Margin:	_
-55			4	6 X			
		2	× 5				
Murty	www.My			benaun wellow Mall	Hyman manager	detres de contrata de la contrata de	hillingenetation
-100 30.000	127.00	224.00 321.0	0 418.00	515.00 612.00	709.00 806.	00 11	000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable los (dB)				Margin (dB)	Antenna Polarization (V/H)
174.5300	-71.41	1.59	3	-70.00	-13.00	-57.00	V
273.4700	-68.24	1.99	5.17	-65.06	-13.00	-52.06	V
293.8400	-78.73	2.05	5.48	-75.30	-13.00	-62.30	V
399.5700	-65.26	2.39	5.98	-61.67	-13.00	-48.67	V
417.0300	-68.9	2.46	5.84	-65.52	-13.00	-52.52	V
600.3600	-62.54	2.9	6.4	-59.04	-13.00	-46.04	V

Remark:


- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

		nel bandwic	th: 20MH	z / QPSK			
Operation Mode:	Tx	/ Middle cha	annel		Test Dat	e: May 24	4, 2016
Temperat	u re: 22	.6°C			Tested b	y: Dennis	s Li
Humidity:	57	.2% RH			Polarity	: Ver.	
-10.0 dB	m						
						Limit1 Margin:	
						Hargin.	
-55							
		.	3 X	4 X		c	
	1 1	×.	Î.		5 X J	×.	
	× ×			AL MA	ulus Luns MM	MW MAN WAR	WAAN
A 11			Marin Marine Marine	None willing the Minny Planski	WWWWWWWWW	e il b akteras i	· · · • • •
L DYN	Wr. 140	Physical LIMbold Media of	,				
-100							
30.000	127.00 22	24.00 321.00	418.00 5	15.00 612.00	709.00 806.	00 11	DOD.00 MHz Antenna
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Polarization
. ,							(V/H)
172.5900	-70.96	1.58	2.8	-69.74	-13.00	-56.74	V
273.4700	-67.23	1.99	5.17	-64.05	-13.00	-51.05	V
399.5700	-65.12	2.39	5.98	-61.53	-13.00	-48.53	V
600.3600	-61.61	2.9	6.4	-58.11	-13.00	-45.11	V
749.7400	-69.54	3.2	6.1	-66.64	-13.00	-53.64	V
812.7900	-67.28	3.35	6.2	-64.43	-13.00	-51.43	V

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

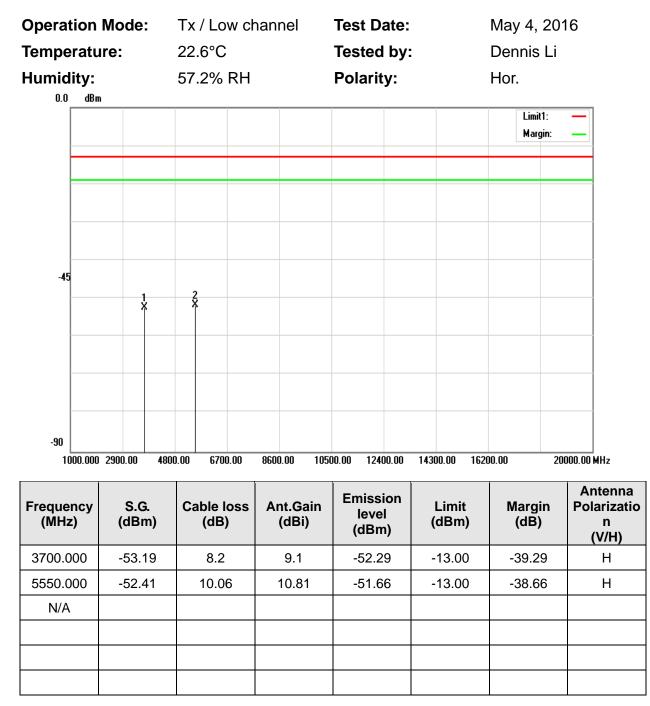
1 1 141

LTE Band		nnel b	andwic	ith: 2	20MH	z / 16QA	Μ				
Operation Mode:	Τ	x / Mic	ddle cha	anne	el			Test Dat	t e: May	24, 20	16
Temperat	u re: 2	2.6°C						Tested I	by: Den	nis Li	
Humidity:	5	7.2%	RH					Polarity	: Ver.		
-10.0 dB	m										
									Limit Margi		
-55						5					
	1 X		3 X	X					6		
	2 X						ku i			u diulilu i	
	M			MARY		. WWW	Maria	MANNA AND AND AND AND AND AND AND AND AND	MANN AND	ullaidadh lla Mr ^{ain}	
Ant	ANNA I	MAAM	Manufalla	, , , , , , , , , , , , , , , , , , , 	1 Wry	Million Million					
-100											
30.000	127.00	224.00	321.00	418.	00 5	15.00 612	.00	709.00 806.	00	1000.00	MHz
Frequency (MHz)	S.G. (dBm)		le loss dB)		Gain dBi)	Emission (dBm		Limit (dBm)	Margir (dB)	ר Pola	tenna rization V/H)
87.2300	-63.5	1	1.09	0	.73	-63.8	6	-13.00	-50.86	;	V
174.5300	-70.58		1.59		3	-69.1	7	-13.00	-56.17	,	V
273.4700	-67.37		1.99	5	5.17	-64.1	9	-13.00	-51.19		V
399.5700	-65.2	2	2.39	5	.98	-61.6	1	-13.00	-48.61		V
600.3600	-61.23		2.9	(6.4	-57.7	3	-13.00	-44.73	6	V

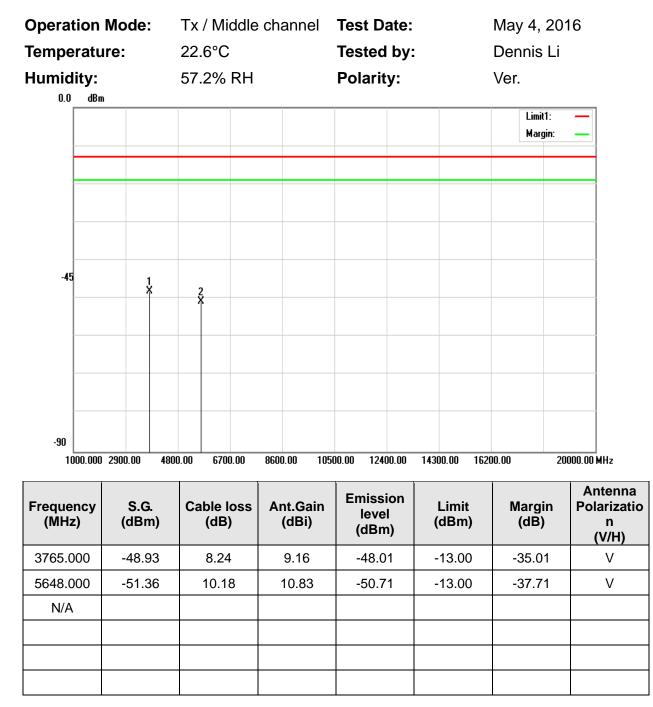
Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

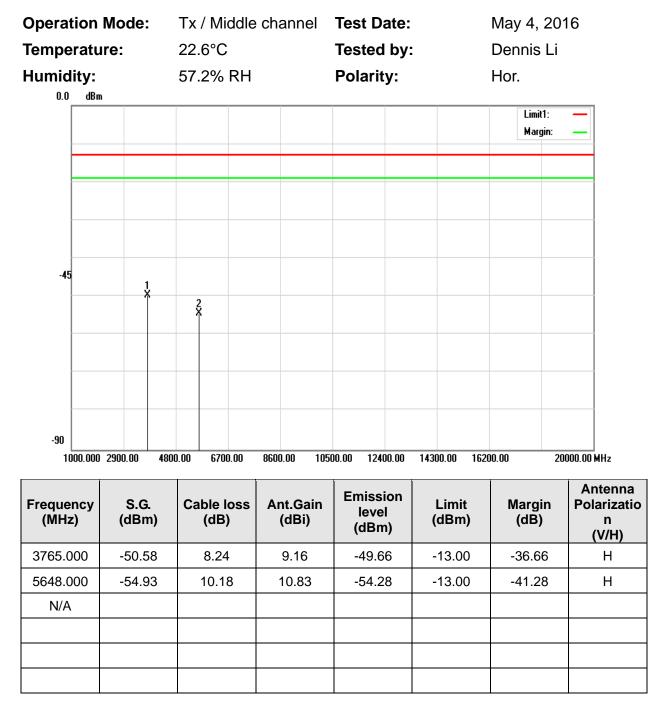
Operation Mode: Temperate Humidity:	ure: 22 57	/ Middle cha .6°C .2% RH	annel			:e: May 24 by: Dennis : Hor.	
						Margin:	
-55				E E E E E E E E E E E E E E E E E E E			
30.000	127.00 22	24.00 321.00	418.00 5	15.00 612.00	709.00 806.		000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
143.4900	-70.04	1.4	0.08	-71.36	-13.00	-58.36	Н
273.4700	-72.71	1.99	5.17	-69.53	-13.00	-56.53	Н
337.4900	-77.89	2.17	5.77	-74.29	-13.00	-61.29	Н
378.2300	-76.62	2.31	5.96	-72.97	-13.00	-59.97	Н
417.0300	-76.68	2.46	5.84	-73.30	-13.00	-60.30	Н
600.3600	-69.42	2.9	6.4	-65.92	-13.00	-52.92	Н

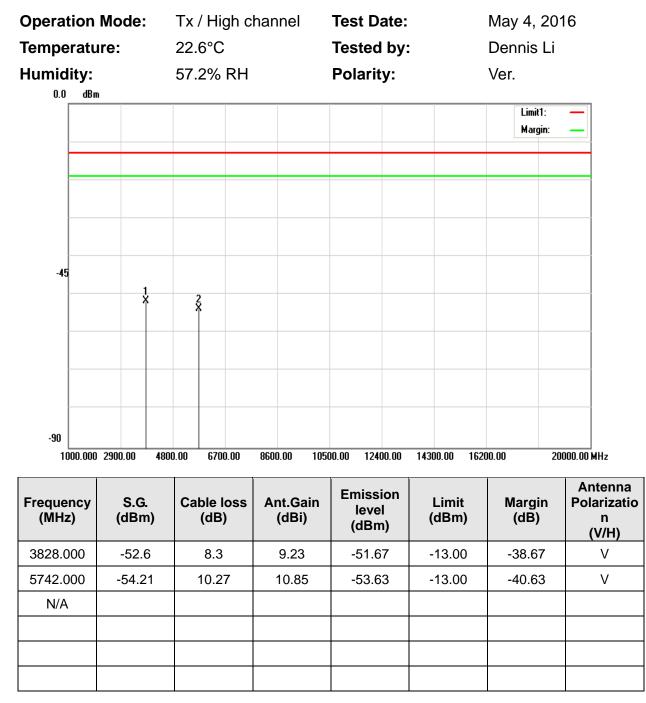

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

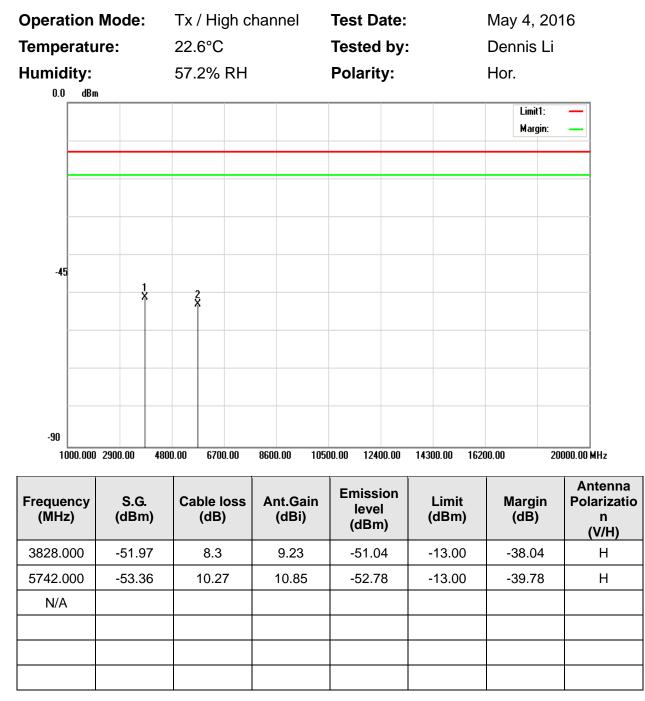
Above 1GHz


eration woue.	Tx / Low channel	Test Date:	May 4, 2016 Dennis Li Ver.		
nperature:	22.6°C	Tested by:			
midity: 0.0 dBm	57.2% RH	Polarity:			
			Limit1: — Margin: —		
-45					
	2				
-90					

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizatio n (V/H)
3700.000	-51.76	8.2	9.1	-50.86	-13.00	-37.86	V
5550.000	-52.74	10.06	10.81	-51.99	-13.00	-38.99	V
N/A							

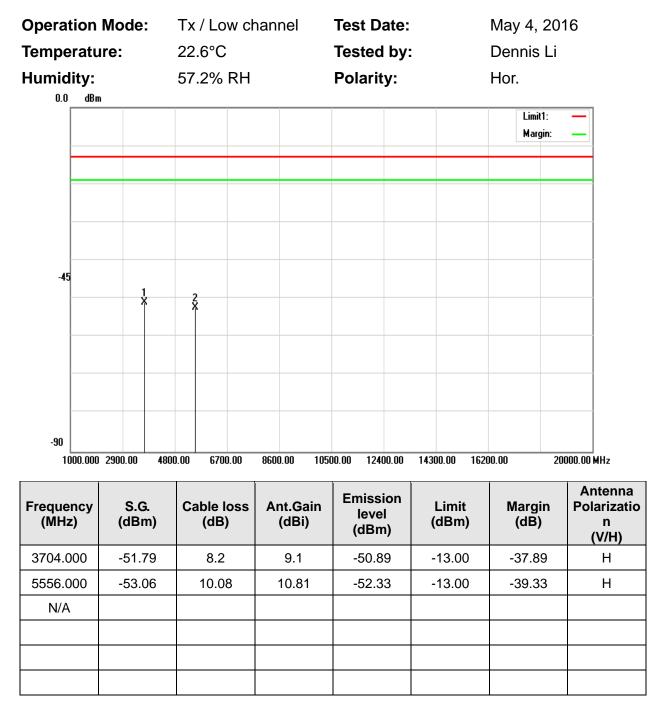

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

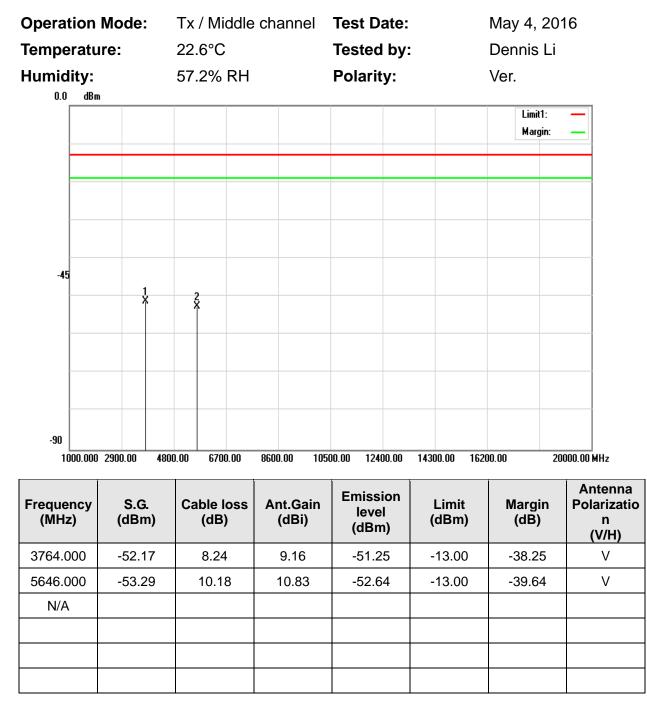
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

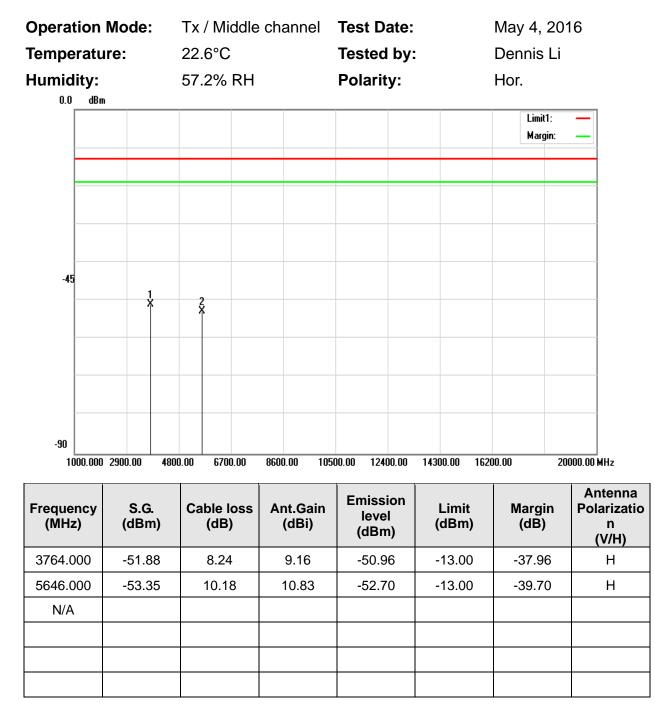


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

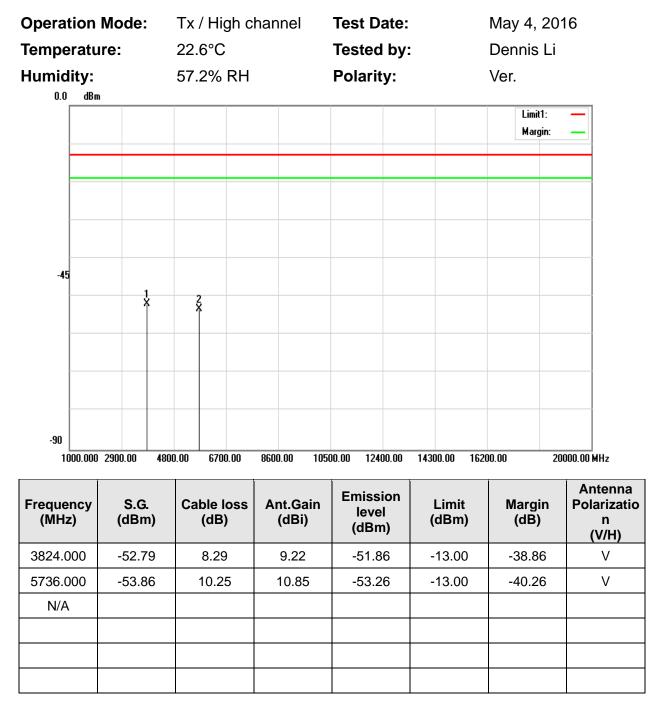
Operation	Mode:	Tx / Low cl	hannel	Test Date:		May 4, 2016				
Temperatu	ire:	22.6°C		Tested by:	:	Dennis Li				
Humidity:		57.2% RH		Polarity:		Ver.				
0.0 dBm	1	i i		i i		Limit1:				
						Margin:	_			
							_			
-45	1	2								
	Î	X								
-90	2000.00 400	0.00 0700.00	0000 00 105	00.00 10100.00	1 4000 00 1000	20.00				
1000.000	2900.00 480	0.00 6700.00	8600.00 105	00.00 12400.00	14300.00 1620	00.00 200	000.00 MHz			
Frequency	S.G.	Cable loss	Ant.Gain	Emission	Limit	Margin	Antenna Polarizatio			
(MHz)	(dBm)	(dB)	(dBi)	level (dBm)	(dBm)	(dB)	n (V/H)			
3704.000	-51.46	8.2	9.1	-50.56	-13.00	-37.56	(v/ii) V			
5556.000	-52.69	10.08	10.81	-51.96	-13.00	-38.96	V			
N/A										
		+	1	1	L	1	1			

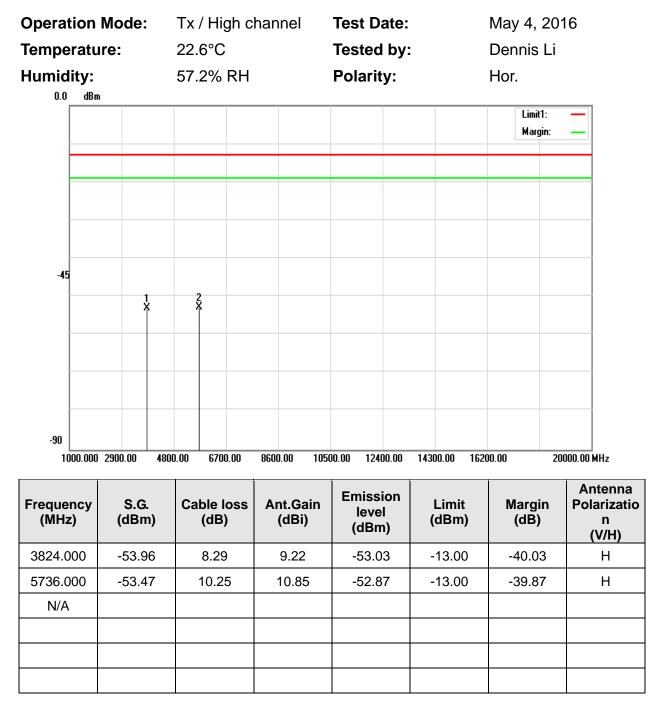

LTE Band 25 / CHANNEL BANDWIDTH: 5MHz / QPSK

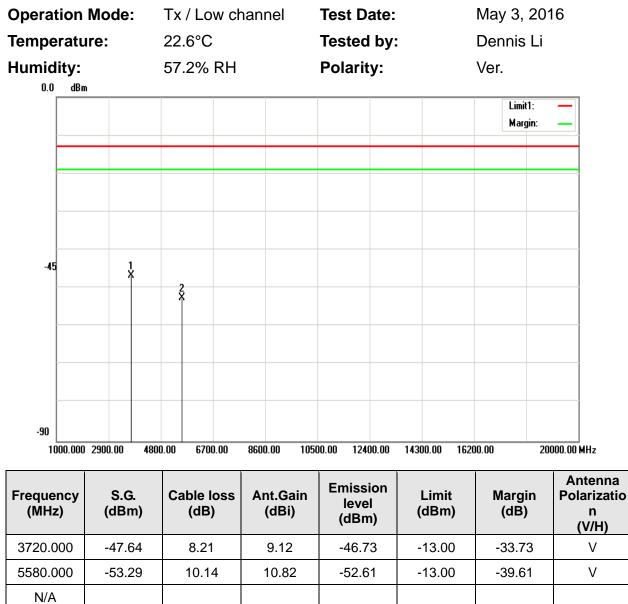
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



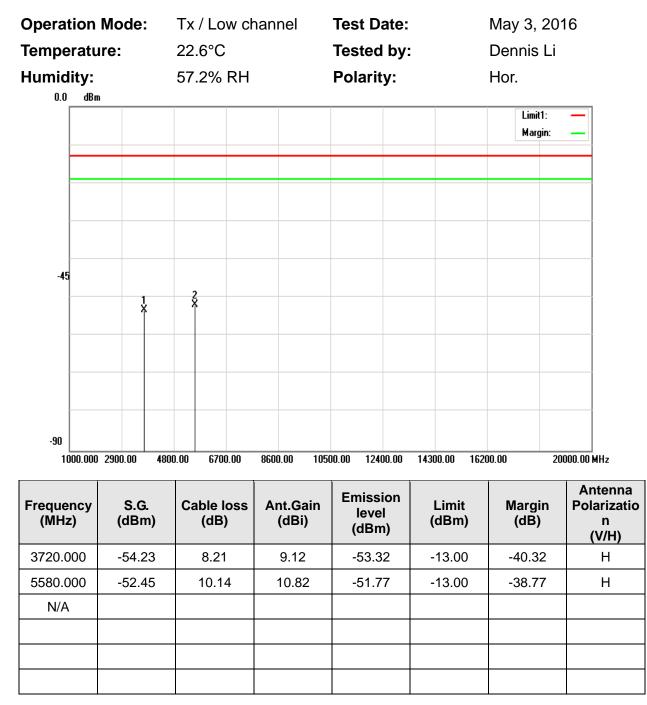
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



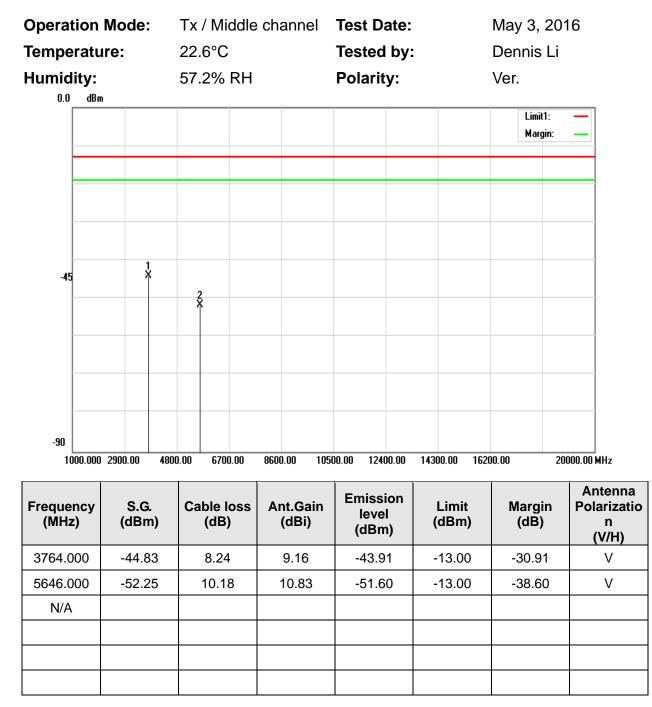

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

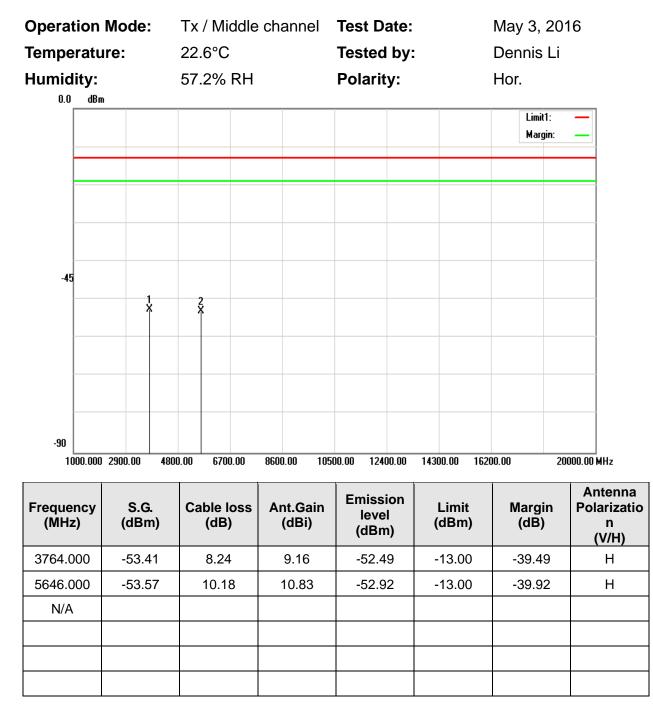
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

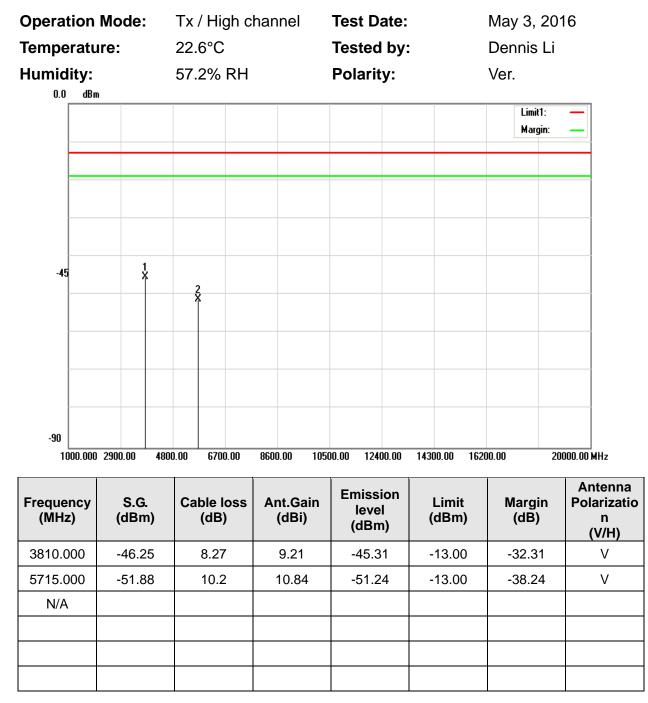


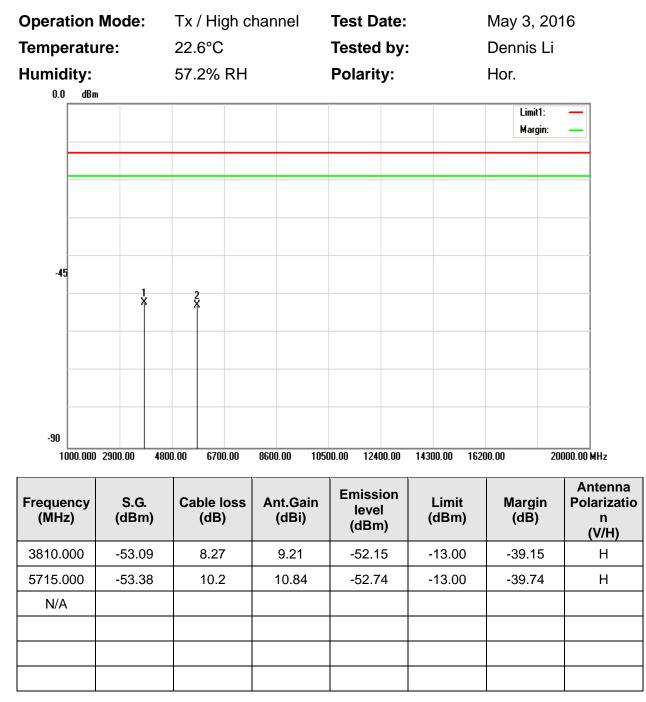
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



LTE Band 25 / CHANNEL BANDWIDTH: 10MHz / QPSK

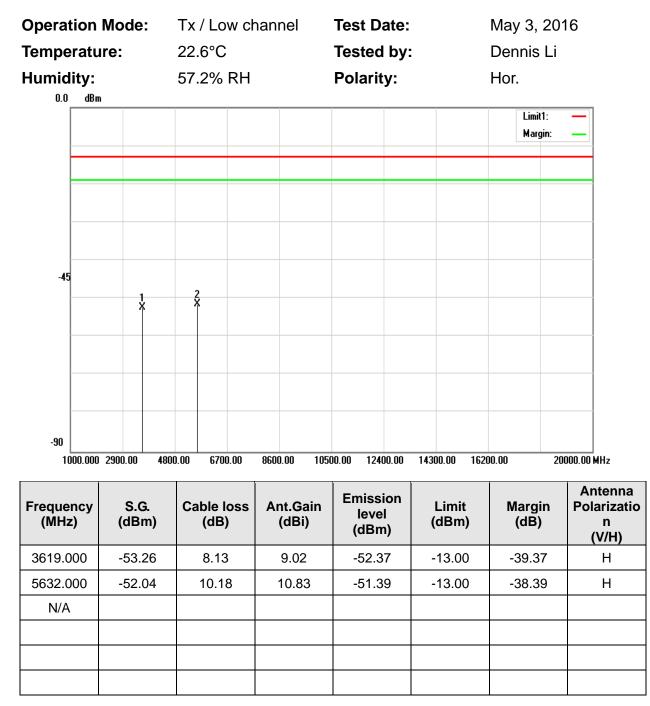

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

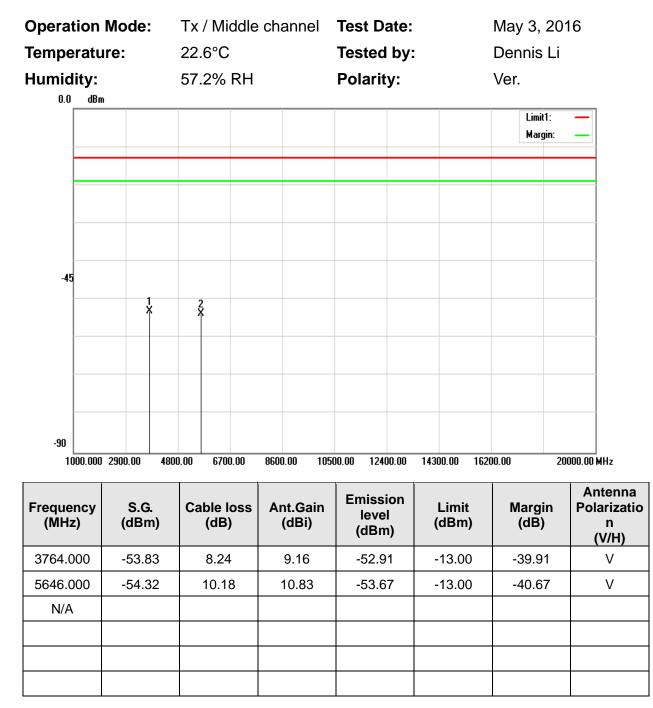

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

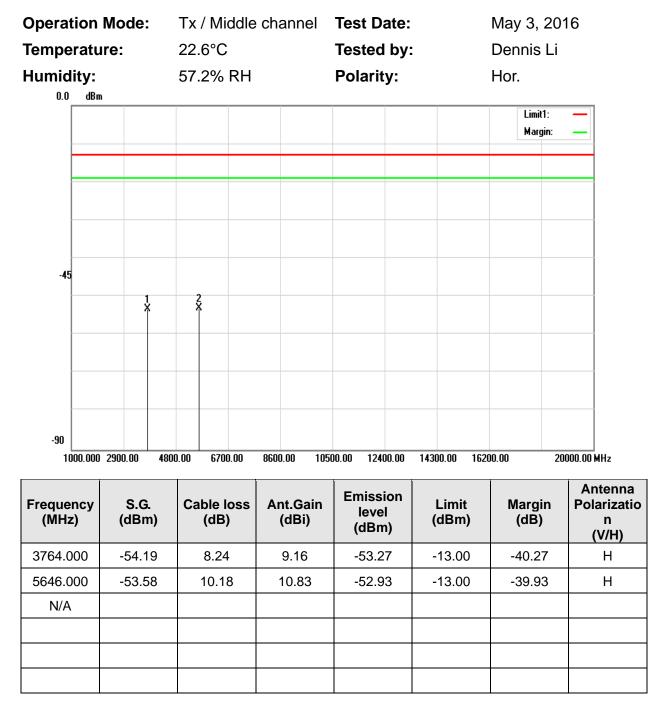
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

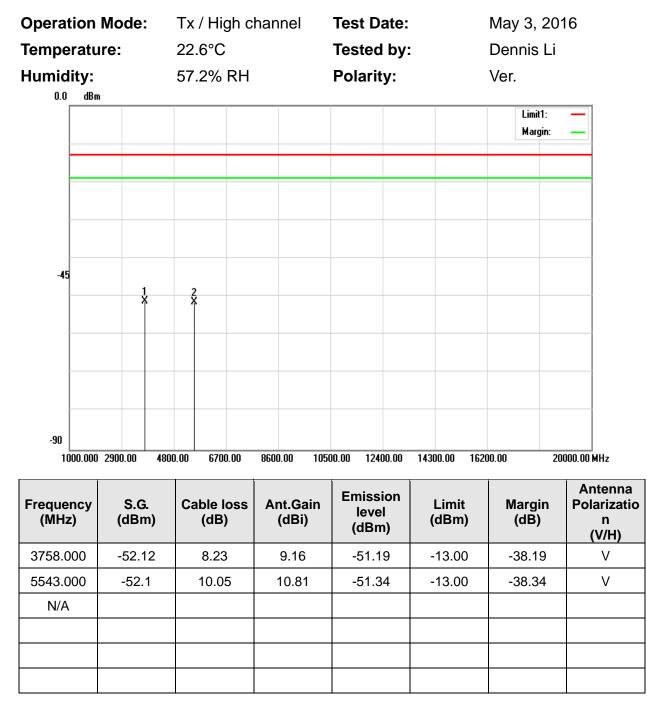


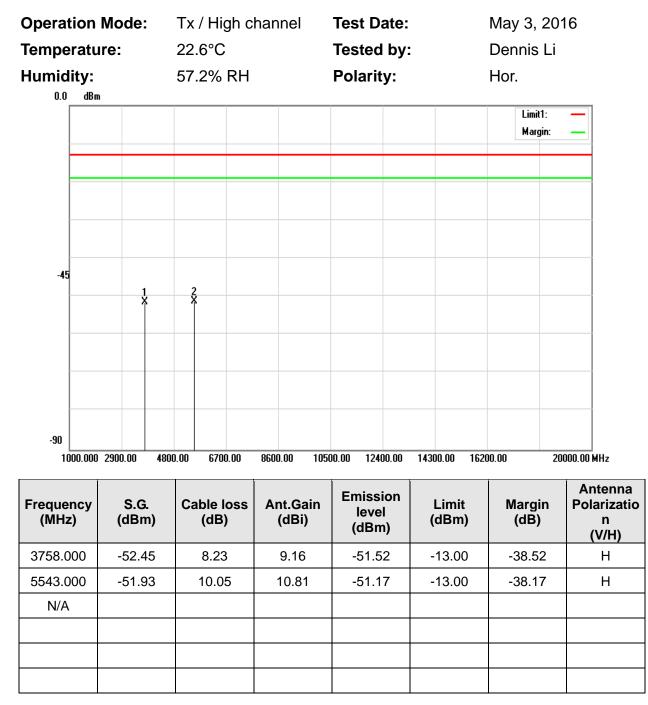
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


n Mode:	Tx / Low cł	nannei	Test Date:		May 3, 2016				
ure:	22.6°C		Tested by:	ł	Dennis Li Ver.				
	57.2% RH		Polarity:						
					Limit1: Margin:				
	_								
X	X								
00 2900.00 480	0.00 6700.00	8600.00 105	00.00 12400.00	14300.00 162	00.00 200	000.00 MHz			
S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizat n (V/H)			
-53.9	8.13	9.02	-53.01	-13.00	-40.01	V			
-53.39	10.18	10.83	-52.74	-13.00	-39.74	V			
	EURE: Bm Bm Control Control	Rure: 22.6°C S7.2% RH Bm I I	Rure: 22.6°C : 57.2% RH Bm 1 I I	Sure: 22.6°C Tested by: 57.2% RH Polarity: Bm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Rure: 22.6°C Tested by: 57.2% RH Polarity: Bm 1 1 1 Image: Strate in the	Rure: 22.6°C Tested by: Dennis Li 57.2% RH Polarity: Ver. Bm Imagin: Imagin: Imagin: Imagin: Imagin: <			

LTE Band 25 / CHANNEL BANDWIDTH: 20MHz / QPSK


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation	Mode:	Tx / Low cł	nannel	Test Date:		May 7, 2016				
Temperatu	re:	22.6°C		Tested by:	1	Dennis Li				
Humidity:		57.2% RH		Polarity:		Ver.				
0.0 dBm						Limit1: Margin:				
-45		2								
-90 1000.000	2900.00 4800	0.00 6700.00	8600.00 1050	0.00 12400.00	14300.00 1620	00.00 200	000.00 MHz			
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizatio n (V/H)			
4325.000	-59.64	8.61	9.66	-58.59	-13.00	-45.59	V			

LTE Band 25 / CHANNEL BANDWIDTH: 1.4MHz / 16QAM

Remark:

7398.000

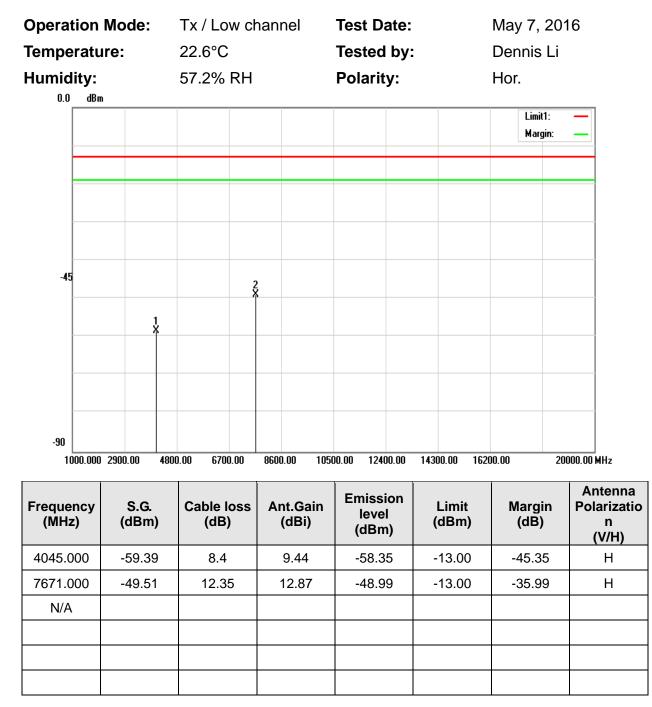
N/A

-50.09

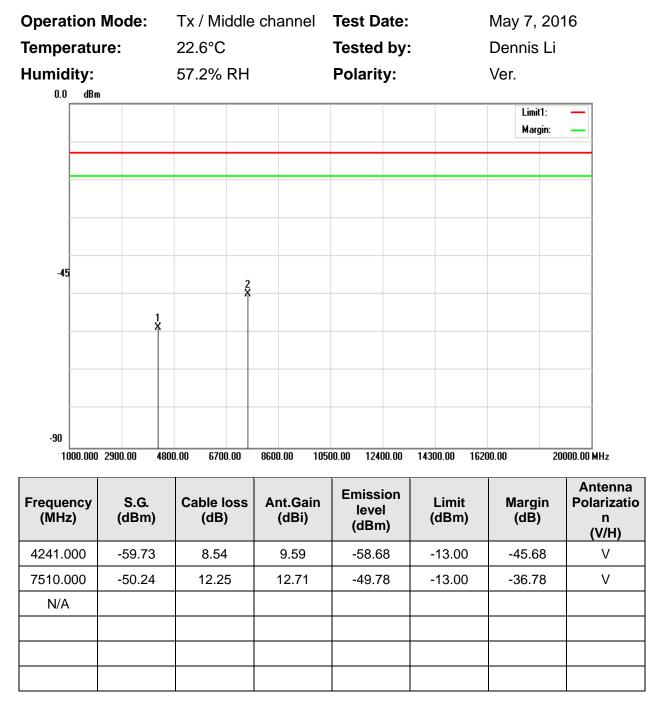
12.09

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

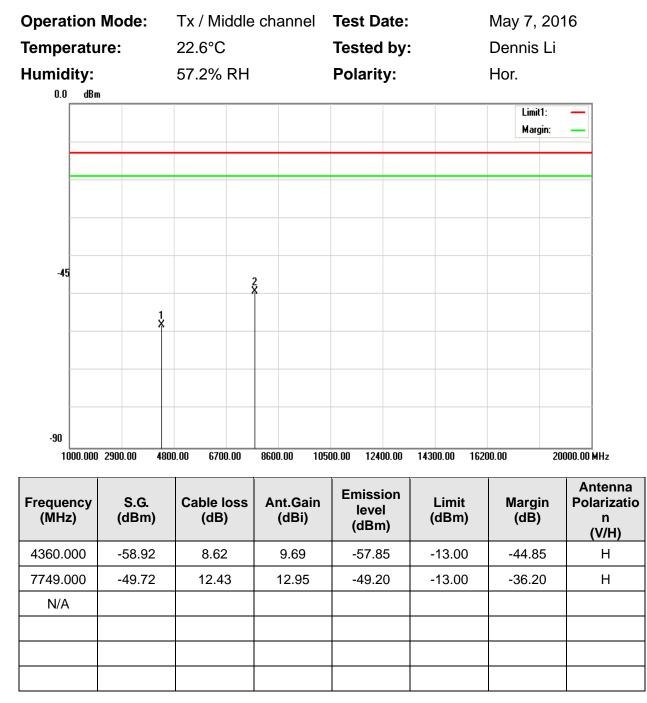
12.54

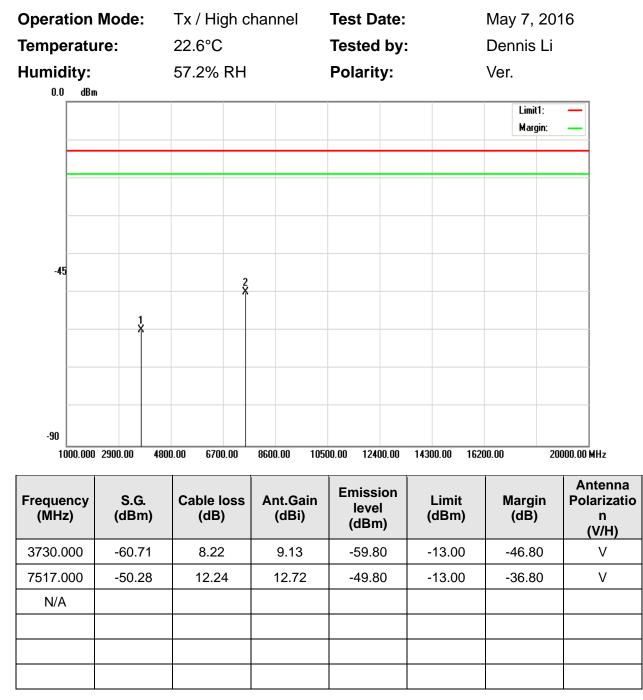

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

-49.64

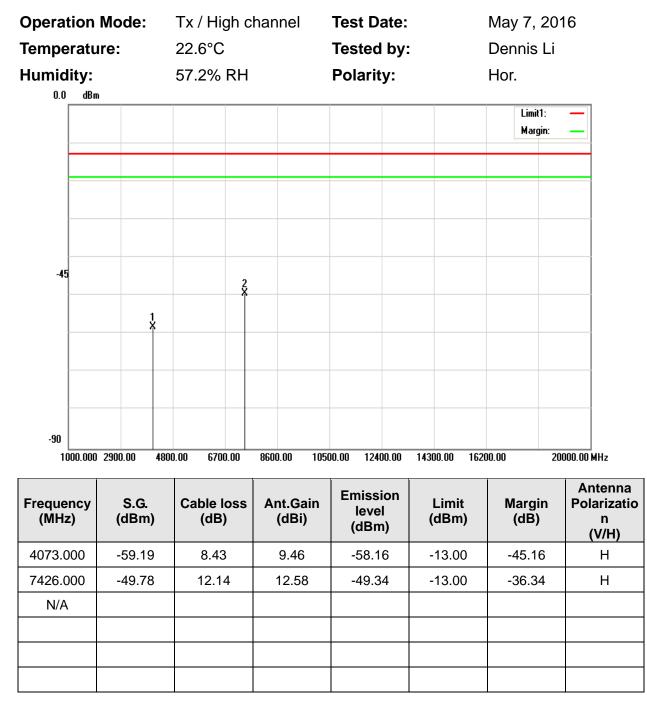

-13.00

-36.64


V


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

LTE Ba	and 2	25 /	CF	IAN	INE	LB	ANL	DWI	DTH	1: 5	MH	z / 1	6Q/	٩M							
Operation Mode:				Tx / Low channel						Test Date:					May 7, 2016						
Temperature:				22.6°C						Tested by:					Dennis Li						
Humidity:				57.2% RH						Polarity:					Ver.	Ver.					
0.0	dBm																	11.54			
																		Limit1: Margir			
																				_	
-45							Ş														
							Î														
				1 X																	
-90																					
10)00.000	2900	.00	4800).00	670	0.00	860	D.00	1050)0.00	1240	0.00	1430	0.00	1620)0.00		2000	00.00	H Hz
Freque (MHz			S.G. dBm		Ca	ble I (dB)			nt.Ga (dBi			nissi level dBm			Limit dBm	-		largir (dB)	ו	Pol	atenna arizatio n V/H)

ITE Band 25 / CHANNEL BANDWIDTH: 5MHz / 160AM

Remark:

4493.000

7447.000

N/A

-59.98

-50.02

8.89

12.17

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

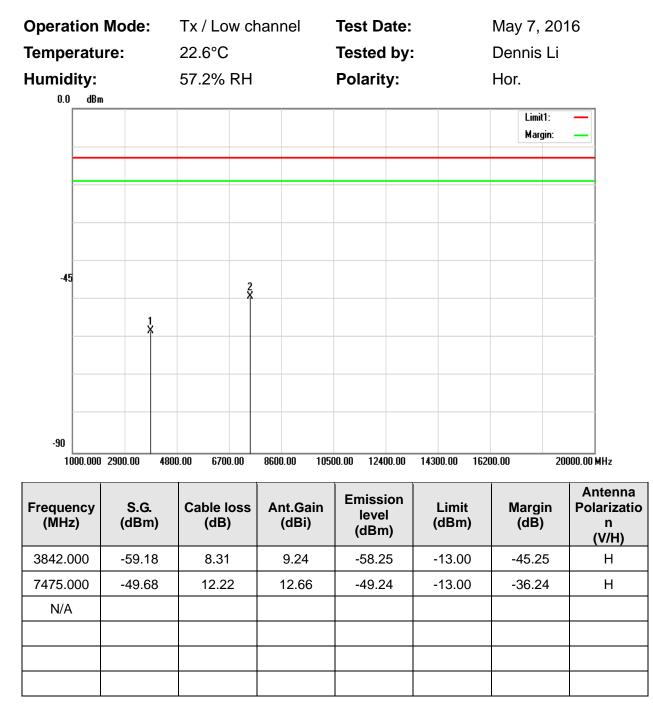
9.79

12.62

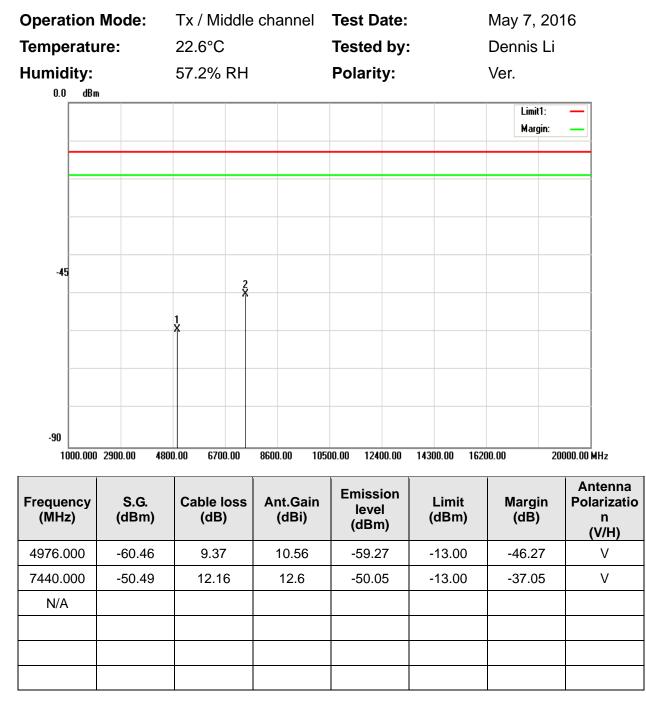
-59.08

-49.57

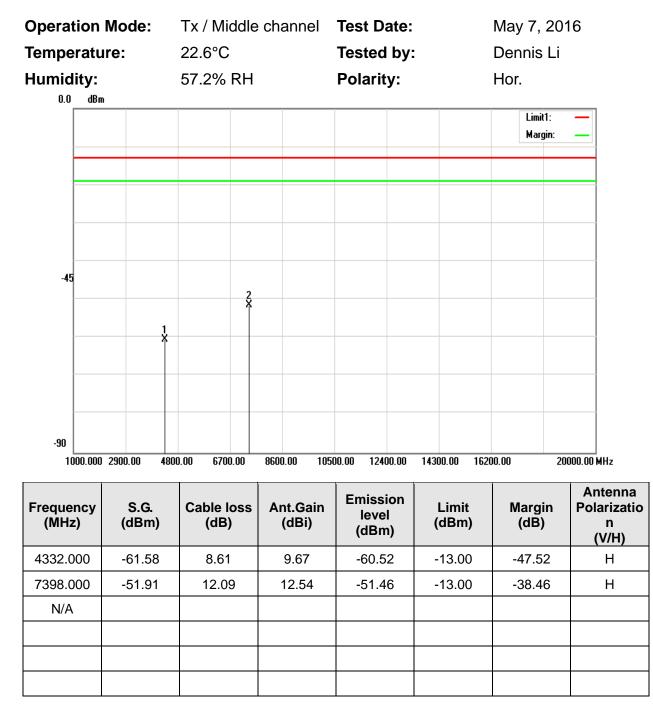
-13.00

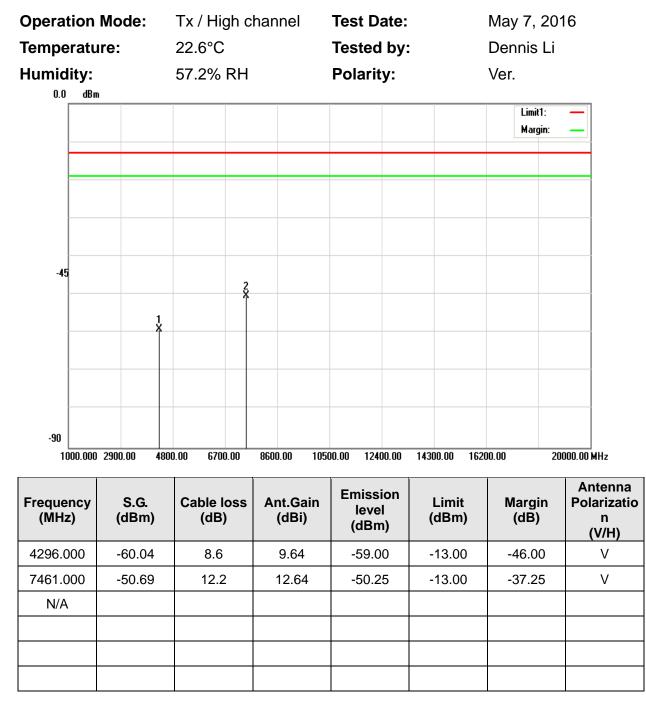

-13.00

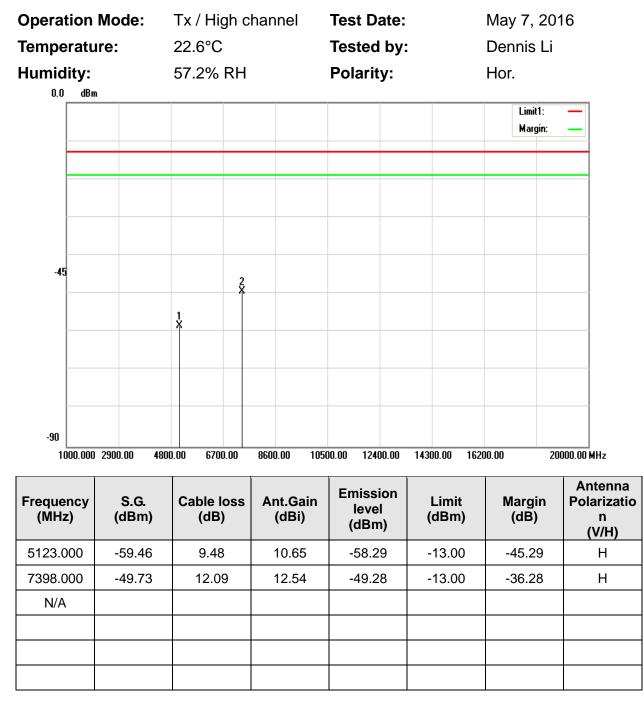
-46.08


-36.57

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

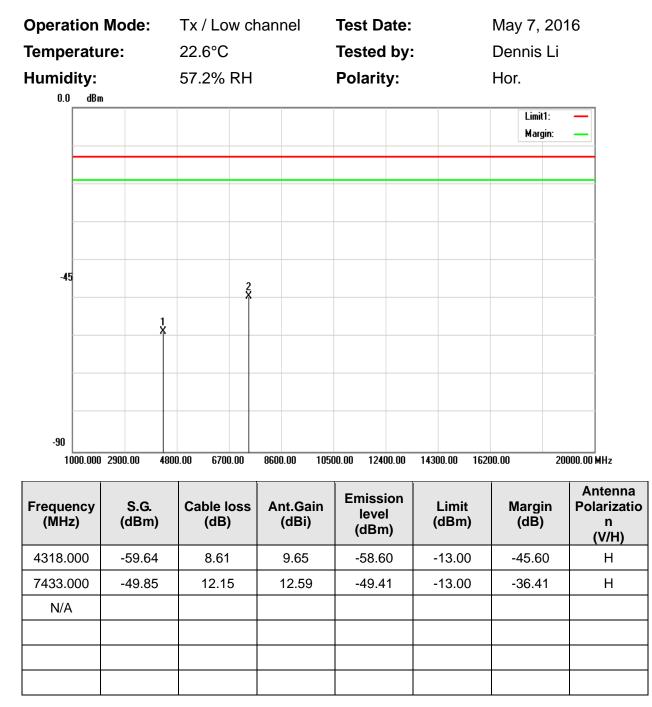

> V V


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

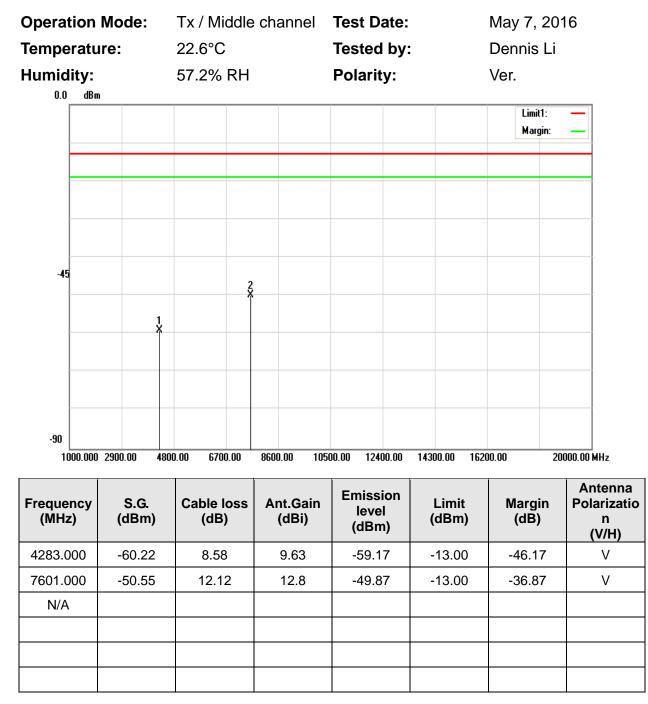

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

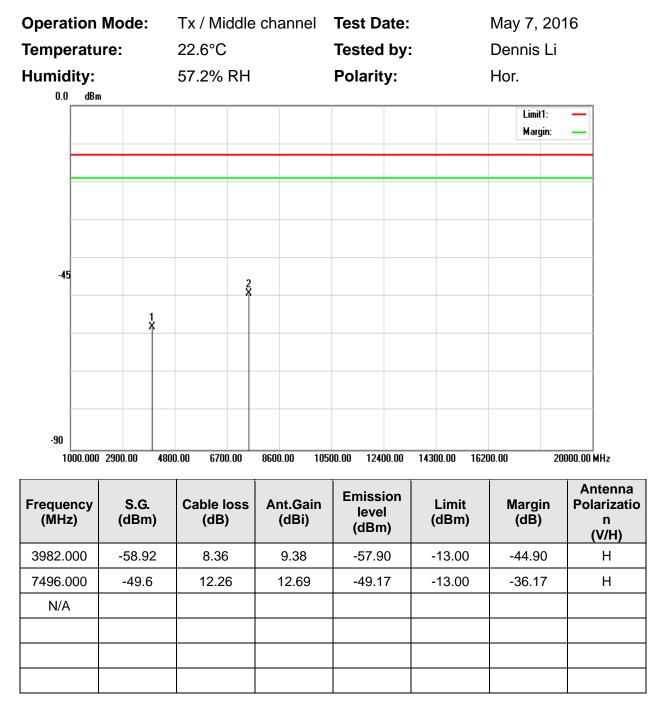
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

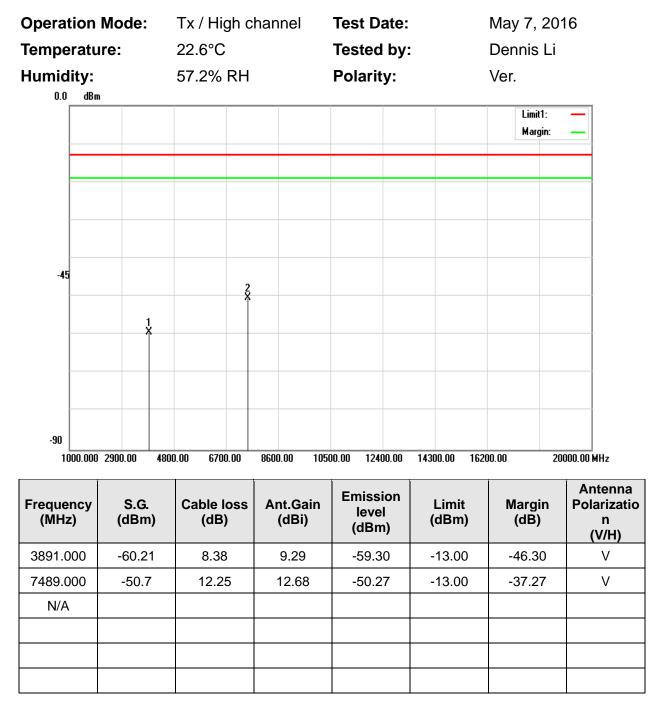


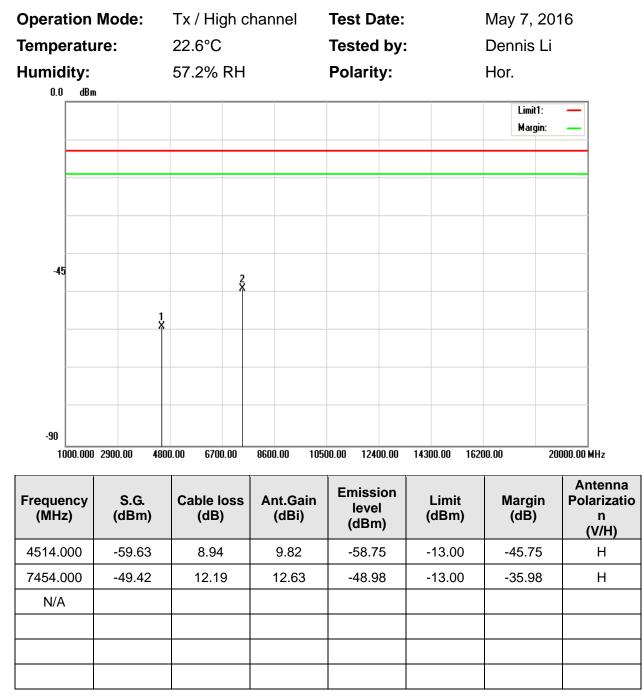
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


LTE Band 25 / CHANNEL BANDWIDTH: 10MHz / 16QAM

Operation Temperatu Humidity:	ıre:	Tx / Low cł 22.6°C 57.2% RH	nannel	Test Date: Tested by: Polarity:		May 7, 2016 Dennis Li Ver.			
-45		2				Limit1: Margin:			
	2300.00 4800	0.00 6700.00		00.00 12400.00 Emission	14300.00 162	00.00 20	D00.00 MHz		
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	level (dBm)	Limit (dBm)	Margin (dB)	Polarizatio n (V/H)		
4360.000	-59.73	8.62	9.69	-58.66	-13.00	-45.66	V		
7398.000			12.54	-50.59	-13.00	-37.59	V		
N/A									

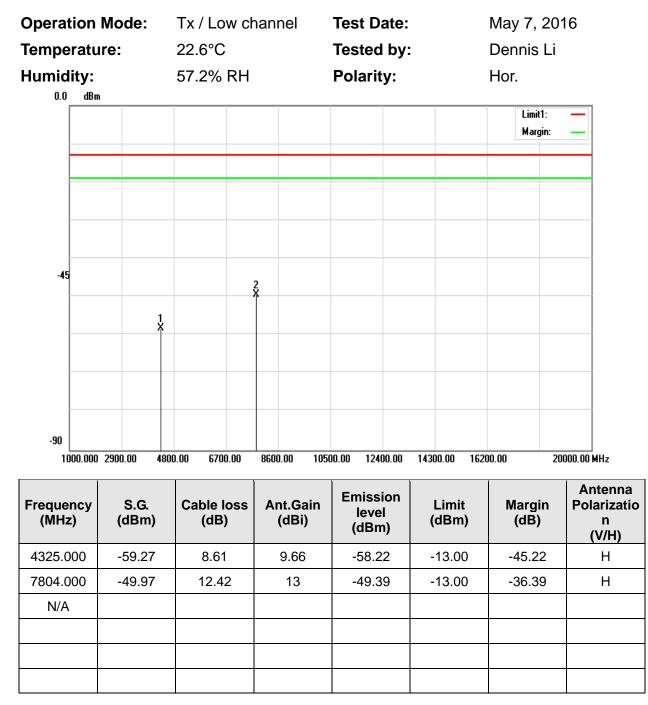

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

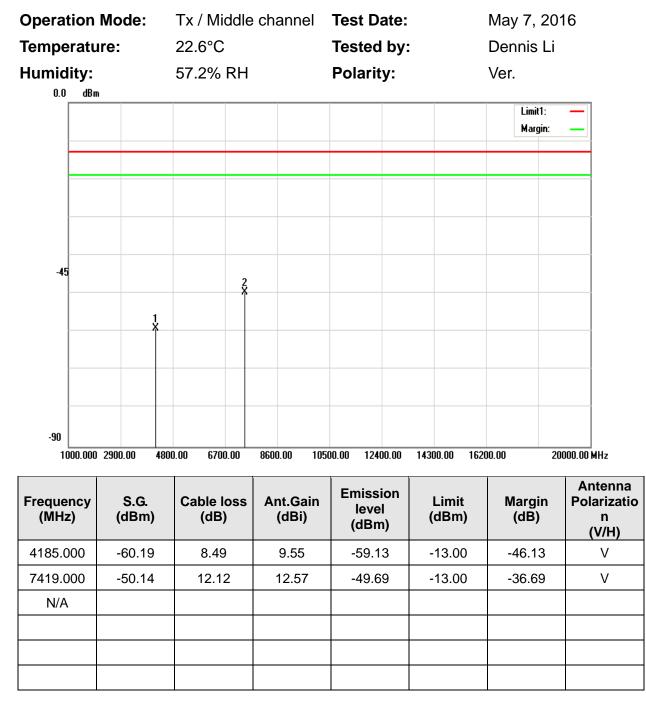

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

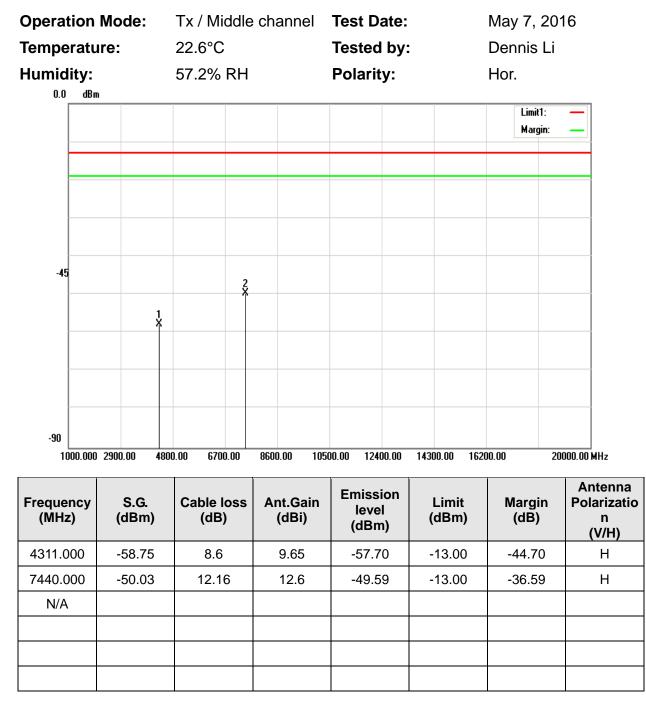
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

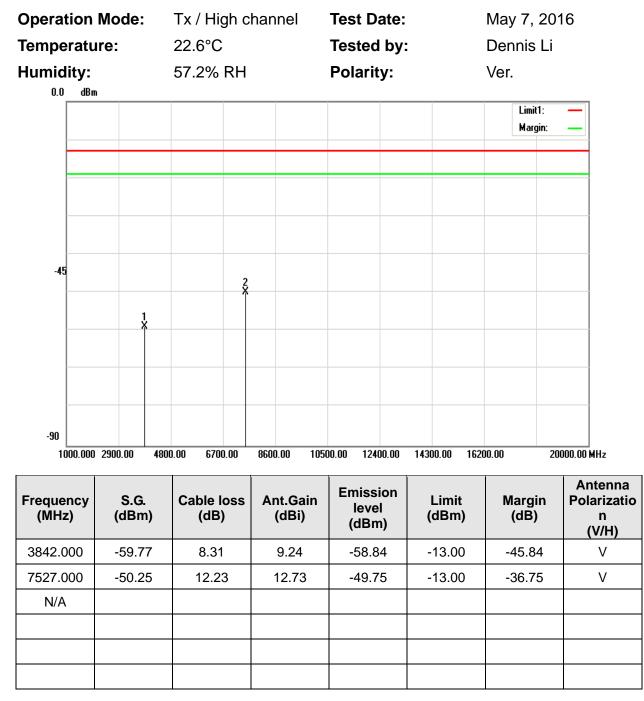


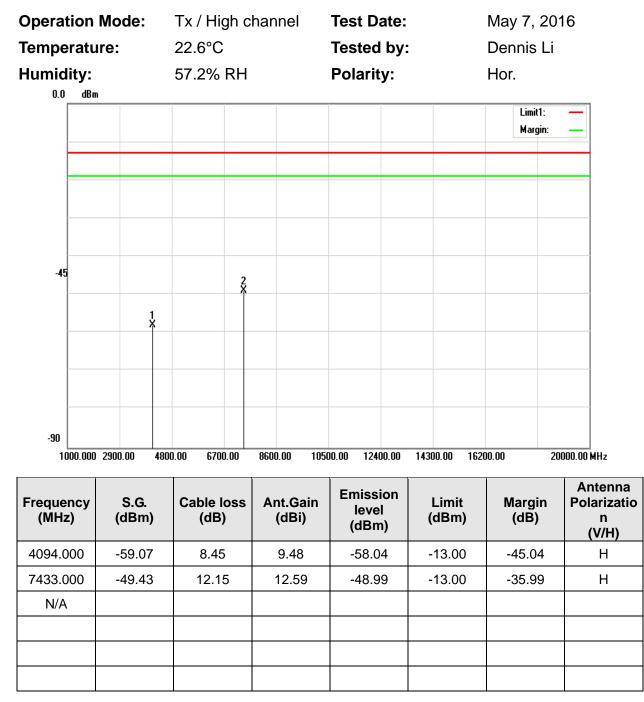
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


LTE Band 25 / CHANNEL BANDWIDTH: 20MHz / 16QAM

Operation Temperatu Humidity:	ire:	Tx / Low cł 22.6°C 57.2% RH	nannel	Test Date: Tested by: Polarity:		May 7, 20 [.] Dennis Li Ver.	16
-45						Limit1: Margin:	
-90	2900.00 4800	0.00 6700.00	8600.00 1050	00.00 12400.00	14300.00 16/	200.00 20	000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarizatio n (V/H)
4297.000	-59.77	8.6	9.64	-58.73	-13.00	-45.73	V
7426.000	-50.1	12.14	12.58	-49.66	-13.00	-36.66	V
N/A							


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	IX	/ Low chanr	el		Test Date: May 3, 2016			
Temperat	ure: 22	.6°C			Tested by: Dennis Li			
Humidity	: 57	2% RH			Polarity:	Ver.		
0.0 di	Bm					Limit1: Margin:	_	
-45 1 X	2×							
-90								
Frequency (MHz)		800.00 6700.00 Cable loss (dB)		0500.00 12400.00 Emission level (dBm)	14300.00 1620 Limit (dBm)	0.00 20 Margin (dB)	Antenna Polarization (V/H)	
1648.000	-54.82	5.04	6.03	-53.83	-13.00	-40.83	V	
2472.000	-54.41	6.3	6.06	-54.65	-13.00	-41.65	V	
N/A								
<u> </u>								

LTE Band 5 / channel bandwidth: 1.4MHz / QPSK

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperate Humidity:	ure: 2	x / Low chanr 2.6°C 7.2% RH	nel			e: May 3, 2 /: Dennis Hor. Limit1: Margin:	
-45	2×						
-90	0 2900.00	4800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 162	00.00 2	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1648.000	-53.94	5.04	6.03	-52.95	-13.00	-39.95	Н
2472.000	-53.67	6.3	6.06	-53.91	-13.00	-40.91	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperat Humidity	ure: 22	2 / Middle cha 2.6°C 7.2% RH		т		May 3, 20 Dennis Li Ver.	16
-45 1 × -90 1000.00	X	4800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	00.00 2	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1672.000	-51.08	5.07	5.99	-50.16	-13.00	-37.16	V
2508.000	-53.56	6.36	6.12	-53.80	-13.00	-40.80	V
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperato Humidity: 0.0 dB	ure: 22.	/ Middle cha 6°C 2% RH		т	est Date: ested by: olarity:	-	16
-90	0.0000.00		0000 00 1		11000.00 1000	0.00	2000.00.000
Frequency (MHz)	0 2900.00 4 S.G. (dBm)	Cable loss (dB)	8600.00 1 Ant.Gain (dBi)	0500.00 12400.00 Emission level (dBm)		00.00 2 Margin (dB)	Antenna Polarization
1672.000	-52.7	5.07	5.99	-51.78	-13.00	-38.78	(V/H) H
2508.000	-55.3	6.36	6.12	-55.54	-13.00	-42.54	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Tx /	High chanr	nel	Т	Test Date: May 3, 2016			
Temperature	: 22.0	6°C		Т	ested by:	Dennis Li		
Humidity:	57.2	2% RH		Р	olarity:	Ver.		
0.0 dBm						Limit1: Margin:	_	
-45 -1 -2 -45								
-90 1000.000 290	10.00 48	00.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	0.00 20	0000.00 MHz	
	S.G. JBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)	
1696.000 -6	63.15	5.1	5.95	-62.30	-13.00	-49.30	V	
2544.000 -6	67.24	6.41	6.21	-67.44	-13.00	-54.44	V	
N/A								
Pomark:								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Тх	/ High chanr	nel	Т	Test Date: May 3, 2016			
Temperatu	re: 22.	6°C		Т	ested by:	Dennis Li		
Humidity:	57.	2% RH		Р	olarity:	Hor.		
0.0 dBm						i		
						Limit1: Margin:	_	
-45								
X	2×							
-90								
Frequency (MHz)	S.G. (dBm)	6700.00 Cable loss (dB)		0500.00 12400.00 Emission level (dBm)		00.00 20 Margin (dB)	Antenna Polarization (V/H)	
1696.000	-54.09	5.1	5.95	-53.24	-13.00	-40.24	Н	
2544.000	-55.78	6.41	6.21	-55.98	-13.00	-42.98	Н	
N/A								
Pomark:								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

LTE Band 5 / channel bandwidth: 5MHz / QPSK

Mode: Temperatu	mperature: 22.6°C Tested by:							
Humidity: 0.0 dBm		2% RH			Polarity:	Ver.		
						Limit1: Margin:	_	
-45								
1 X	2 X							
-90								
1000.000		300.00 6700.00			14300.00 1620		Antenna	
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Polarization (V/H)	
1652.000	-53.83	5.05	6.03	-52.85	-13.00	-39.85	V	
2478.000	-55.98	6.31	6.07	-56.22	-13.00	-43.22	V	
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperat Humidity	ure:	22.6	Low cha °C % RH	anne) 					Те	st Date sted by Iarity:	: D	-		1
													Margin:		
															-
															-
-45															
1	2 X														
-90	00 2900.0	0 400	0.00 0700	0.00	8600	1 00 1	050	0.00 1240	0.00	1400	0.00 1620	0.00		20000.00	
			0.00 6700 Cable lo:					0.00 1240 mission			0.00 1620			20000.00 Ar	ntenna
Frequency (MHz)	(dB		(dB)	55		.Gain IBi)		(dBm			(dBm)		argin (dB)		arization (V/H)
1652.000	-56.	31	5.05		6	.03		-55.33	3		-13.00	-4	42.33		H
2478.000	-55.	56	6.31		6	.07		-55.80	0		-13.00	-4	42.80		Н
N/A															

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperat Humidity: 0.0 dB	ure: 22	/ Middle cha .6°C .2% RH		Т	est Date: ested by: olarity:	-	16
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	0.00 2	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)		Margin (dB)	Antenna Polarization (V/H)
1672.000	-53.9	5.07	5.99	-52.98	-13.00	-39.98	V
2508.000	-56.04	6.36	6.12	-56.28	-13.00	-43.28	V
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperat Humidity:	ure: 22.	/ Middle cha .6°C .2% RH	Innel	т	est Date: ested by: olarity:	-	16
-45 1 ×	2x						
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	00.00 2	0000.00 MHz
Frequency (MHz)		Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)		Margin (dB)	Antenna Polarization (V/H)
1672.000	-55.79	5.07	5.99	-54.87	-13.00	-41.87	H
2508.000	-56.34	6.36	6.12	-56.58	-13.00	-43.58	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Tx	/ High chanr	nel	Т	Test Date: May 3, 2016			
Temperatur	e: 22.	6°C		Т	Tested by: Dennis Li			
Humidity:	57.	2% RH		Р	olarity:	Ver.		
0.0 dBm						Limit1: Margin:		
-45								
	2x							
-90 1000.000 2	2900.00 48	300.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	0.00 20		
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)		Margin (dB)	Antenna Polarization (V/H)	
1692.000	-53.87	5.1	5.95	-53.02	-13.00	-40.02	V	
2538.000	-55.83	6.4	6.2	-56.03	-13.00	-43.03	V	
N/A								
Bomark:								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Tx	/ High chanr	nel	Т	est Date:	May 3, 20	16
Temperatu	u re: 22.	.6°C		Т	ested by:	Dennis Li	
Humidity:	57.	.2% RH		Р	olarity:	Hor.	
0.0 dB	m					i	
						Limit1: Margin:	_
-45							
1 X	2						
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 162	00.00 20	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)		Emission level (dBm)		Margin (dB)	Antenna Polarization (V/H)
1692.000	-56.17	5.1	5.95	-55.32	-13.00	-42.32	Н
2538.000	-55.6	6.4	6.2	-55.80	-13.00	-42.80	Н
N/A							
Pomark:							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

LTE Ba Operati Mode:		5/c		el b ′ Lov				10MH	z/	QPSK		est	Date:	Ма	уЗ,	20	16	
Temper	atu	re:	22.6	5°C							Т	est	ed by:	Dei	nnis	Li		
Humidi			57.2	2% F	RH									Ver				
0.0	dBm																	
															Limit Mar <u>c</u>			
																,		
_																		
-45																		
-	1 X	2																
		2 X																
_																		
-90 100	0.000	2900.0	00 48	00.00	670	1.00	860	0.00 1	050	0.00 124	00.00	1430	0.00 1620	0.00		20)000.00	MHz
Frequen (MHz)	су	S.	G. Bm)	Cab	le lo dB)	SS	An	.Gain dBi)		mission (dBm	level		Limit (dBm)	M	largi (dB)	n	An Pola	tenna rization V/H)
1658.00	0	-53	.61	į	5.06		6	5.02		-52.6	5	-	13.00	-:	39.65	5		V
2487.00	0	-56	.27	(5.33		6	6.08		-56.5	2	-	·13.00		43.52	2		V
N/A																		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperatu Humidity:	u re: 22 57	< / Low chanr 2.6°C 7.2% RH	nel	Test Date: May 3, 2016 Tested by: Dennis Li Polarity: Hor.					
						Limit1: Margin:	_		
-45									
1 X	2								
-90	0 2900.00	4800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 162	00.00 2	0000.00 MHz		
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)		
1658.000	-56.7	5.06	6.02	-55.74	-13.00	-42.74	н		
2487.000	-55.89	6.33	6.08	-56.14	-13.00	-43.14	Н		
N/A									
Romark:									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperate Humidity:	ure: 22. 57.	/ Middle cha .6°C .2% RH	Innel	Т	ested by:	May 3, 20 Dennis Li Ver.	16
-45	2					Limit1: Margin: 	
-90 1000.00 Frequency (MHz)	0 2900.00 4 S.G. (dBm)	800.00 6700.00 Cable loss (dB)	8600.00 1 Ant.Gain (dBi)	0500.00 12400.00 Emission level (dBm)		00.00 2 Margin (dB)	0000.00 MHz Antenna Polarization
1672.000	-54.09	5.07	5.99	-53.17	-13.00	-40.17	(V/H) ∨
2508.000	-56.29	6.36	6.12	-56.53	-13.00	-43.53	V
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Tx	/ Middle cha	nnel	Т	est Date:	May 3, 20	16
Temperate	u re: 22.	6°C		Т	ested by:	Dennis Li	
Humidity:	57.	2% RH		Р	olarity:	Hor.	
0.0 dB	m					Limit1: Margin:	_
-45							
*	2						
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	00.00 2	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1672.000	-57.22	5.07	5.99	-56.30	-13.00	-43.30	н
2508.000	-55.58	6.36	6.12	-55.82	-13.00	-42.82	н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperato Humidity:	ure: 2	Tx / High channel 22.6°C 57.2% RH				Test Date: May 3, 2016 Tested by: Dennis Li Polarity: Ver.					
									Limit1 Margi		
-45	2 X										
-90	0 2900.00	4800.00 670	0.00	8600.00	1050	0.00 1240	10.00	14300.00 1620	0.00	20000.00 MHz	
Frequency (MHz)	S.G. (dBm)	Cable Io (dB)	SS	Ant.Gai (dBi)	in E	mission (dBm		Limit (dBm)	Margir (dB)	Antenna Polarization (V/H)	
1688.000	-54.69	5.09		5.96		-53.82	2	-13.00	-40.82	V	
2532.000	-55.04	6.39		6.18		-55.2	5	-13.00	-42.25	V	
N/A											
Pomark:											

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	Tx	High chanr	nel	Te	est Date:	May 3, 20	16
Temperatu	re: 22.	6°C		Т	ested by:	Dennis Li	
Humidity:	57.	2% RH		Р	olarity:	Hor.	
0.0 dBm						Limit1: Margin:	_
-45	2						
*	2						
-90	2900.00 48	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 162	00.00 21	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1688.000	-56.91	5.09	5.96	-56.04	-13.00	-43.04	Н
2532.000	-56.05	6.39	6.18	-56.26	-13.00	-43.26	Н
N/A							
Domorilu							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operati Mode: Temper	rature:	22.6		innel				Test Date: May 3, 2016 Tested by: Dennis Li				
Humidi	dBm	51.2	2% RH					Polarity:	Ver.			
0.0	aßm								Limit Marg		_	
-											-	
-45	1 2 X X										-	
-											-	
-90												
L)0.000 2900	.00 48	00.00 6700	.00 8	3600.00 1	0500.00 124	00.00	14300.00 1620	0.00	20000.00	_l JMHz	
Frequen (MHz)		.G. Bm)	Cable los (dB)	ss A	nt.Gain (dBi)	Emission (dBm		Limit (dBm)	Margir (dB)	ⁿ Pola	ntenna arization (V/H)	
1648.00)0 -5	3.54	5.04		6.03	-52.5	5	-13.00	-39.55	5	V	
2472.00	00 -53	3.75	6.3		6.06	-53.9	9	-13.00	-40.99)	V	
N/A												

LTE Band 5 / channel bandwidth: 1.4MHz / 16QAM

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperatu Humidity: 0.0 dB	ure: 22. 57.	/ Low chann .6°C .2% RH				e: May 3, 2 /: Dennis I Hor. Limit1: Margin:	
-90	0 2900.00 4	800.00 6700.00	8600.00 10)500.00 12400.00	14300.00 1620	00.00 2	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission leve (dBm)		Margin (dB)	Antenna Polarization (V/H)
1648.000	-53.75	5.04	6.03	-52.76	-13.00	-39.76	Н
2472.000	-52.82	6.3	6.06	-53.06	-13.00	-40.06	н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Frequency S.G. Cable loss Ant.Gain Emission level Limit Margin Polarization (MHz) (dBm) (dB) (dB) (dBi) (dBm) (dB)	Operation Mode: Temperat Humidity	ture: 22.	/ Middle cha .6°C .2% RH		Т	est Date: ested by: olarity:	-	
Frequency S.G. Cable loss Ant.Gain Emission level Limit Margin Polarizat		00.0000.00	000.00 0700.00	0000.00 1	0500.00 10100.00	1 4000 00 1000	20.00	2000.00.1411
(V/H)	Frequency	S.G.	Cable loss	Ant.Gain	Emission level	Limit	Margin	Antenna Polarization (V/H)
1672.000 -52.26 5.07 5.99 -51.34 -13.00 -38.34 V	1672.000	-52.26	5.07	5.99	-51.34	-13.00	-38.34	V
2508.000 -54.18 6.36 6.12 -54.42 -13.00 -41.42 V	2508.000	-54.18	6.36	6.12	-54.42	-13.00	-41.42	V
N/A	N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperat Humidity: 0.0 df	ure: 22.	/ Middle cha 6°C 2% RH		Т	est Date: ested by: olarity:	-	16
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	10.00 2	0000.00 MHz
Frequency (MHz)		Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)		Margin (dB)	Antenna Polarization (V/H)
1672.000	-52.7	5.07	5.99	-51.78	-13.00	-38.78	Н
2508.000	-53.63	6.36	6.12	-53.87	-13.00	-40.87	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Mode:	Tx / High chanr	nel	Т	est Date:	May 3, 20	16
Temperature: 2	22.6°C		Т	ested by:	Dennis Li	
Humidity: 5	57.2% RH		Р	olarity:	Ver.	
0.0 dBm					1	
					Limit1: Margin:	_
-45						
-90						
1000.000 2900.00	4800.00 6700.00	8600.00 10	0500.00 12400.00	14300.00 162	00.00 2	0000.00 MHz
Frequency S.G. (MHz) (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1696.000 -54.98	3 5.1	5.95	-54.13	-13.00	-41.13	V
2544.000 -57.31	6.41	6.21	-57.51	-13.00	-44.51	V
N/A						
Pomark:						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: Temperato Humidity:	u re: 22. 57.	/ High chanı 6°C 2% RH	nel	Test Date: May 3, 2016 Tested by: Dennis Li Polarity: Hor.			
						Limit1: Margin:	
-45							
	X						
-90	0 2900.00 4	800.00 6700.00	8600.00 1	0500.00 12400.00	14300.00 1620	00.00 20	0000.00 MHz
Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1696.000	-61.89	5.1	5.95	-61.04	-13.00	-48.04	Н
2544.000	-62.08	6.41	6.21	-62.28	-13.00	-49.28	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.