FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E

Report No.: T160515D04-RP4

TEST REPORT

For

Xerox TMS

Model: IVU-4000

Trade Name: xerox

Issued to

Advantech Co.Ltd.
No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: June 1, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Page 1 / 178 Rev.00

Report No.: T160515D04-RP4

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	June 1, 2016	Initial Issue	ALL	Doris Chu
01	July 18, 2016	1. Modify Peak and Average power.	P. 15 ~ 19	Doris Chu

Page 2 Rev.00

TABLE OF CONTENTS

1. TE	ST RESULT CERTIFICATION	4
2. EU	T DESCRIPTION	5
3. TE	ST METHODOLOGY	7
3.1	EUT CONFIGURATION	7
3.2	EUT EXERCISE	7
3.3	GENERAL TEST PROCEDURES	
3.4	DESCRIPTION OF TEST MODES	8
4. INS	STRUMENT CALIBRATION	9
4.1	MEASURING INSTRUMENT CALIBRATION	9
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	10
5. FA	CILITIES AND ACCREDITATIONS	11
5.1	FACILITIES	11
5.2	EQUIPMENT	
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	12
6. SE	TUP OF EQUIPMENT UNDER TEST	13
6.1	SETUP CONFIGURATION OF EUT	13
6.2	SUPPORT EQUIPMENT	13
7. FC	C PART 22 & 24 REQUIREMENTS	14
7.1	PEAK POWER	14
7.2	AVERAGE POWER	17
7.3	ERP & EIRP MEASUREMENT	
7.4	OCCUPIED BANDWIDTH MEASUREMENT	
7.5	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
7.6	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
7.7	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	
7.8	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	170
APPEN	IDIX I PHOTOGRAPHS OF TEST SETUP	176
APPEN	NDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant: Advantech Co.Ltd.

No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District,

Taipei 114, Taiwan, R.O.C.

Manufacturer: Advantech Co.Ltd.

No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District,

Taipei 114, Taiwan, R.O.C.

Equipment Under Test: Xerox TMS

Trade Name: xerox

Model Number: IVU-4000

Date of Test: March 29 ~ July 14, 2016

APPLICABLE STANDARDS						
STANDARD TEST RESULT						
FCC 47 CFR Part 22 Subpart H & Part 24 Subpart E	No non-compliance noted					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-C: 2004 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Tested by:

Miller Lee

Section Manager

Compliance Certification Services Inc.

Willer Lee

Dennis Li Engineer

Compliance Certification Services Inc.

Page 4 Rev.00

Report No.: T160515D04-RP4

2. EUT DESCRIPTION

Product	Xerox TMS
Trade Name	xerox
Model Number	IVU-4000
Received Date	May 15, 2016
Power Supply	Powered from host device.
Frequency Range	GPRS / EDGE: 850: 824.2 ~ 848.8 MHz GPRS / EDGE: 1900: 1850.2 ~ 1909.8 MHz WCDMA / HSDPA / HSUPA Band II: 1852.4 ~ 1907.6 MHz WCDMA / HSDPA / HSUPA Band V: 826.4 ~ 846.6MHz
Transmit Power (ERP & EIRP Power)	GPRS 850: 32.99 dBm GPRS 1900: 26.57 dBm EDGE 850: 27.06 dBm EDGE 1900: 23.86 dBm WCDMA Band II: 23.62 dBm HSDPA Band II: 23.84 dBm HSUPA Band II: 22.59 dBm WCDMA Band V: 24.93 dBm HSDPA Band V: 25.92 dBm HSDPA Band V: 25.72 dBm
Cellular Phone Protocol	GPRS: GMSK EDGE: 8PSK WCDMA: Quadrature Phase Shift Keying (QPSK) with Root-raised cosine pulse shaping filters (roll off = 0.22)
Type of Emission	GPRS 850: 244KGXW GPRS 1900: 244KGXW EDGE 850: 243KG7W EDGE 1900: 246KG7W WCDMA Band II: 4M18F9W WCDMA Band V: 4M17F9W HSDPA Band II: 4M18F9W HSDPA Band V: 4M17F9W HSUPA Band II: 4M18F9W HSUPA Band V: 4M18F9W

Page 5 Rev.00

GPRS / EDGE 850: 2.53 dBi GPRS / EDGE 1900: -0.86 dBi WCDMA band II: -0.86 dBi WCDMA band V: 2.53 dBi 2. MA230.LBC.002 / MONOPOLE Antenna GPRS / EDGE 850: 2.16 dBi GPRS / EDGE 1900: 0.42 dBi WCDMA band II: 0.42 dBi WCDMA band V: 2.16 dBi	Antenna Gain	WCDMA band II: -0.86 dBi WCDMA band V: 2.53 dBi 2. MA230.LBC.002 / MONOPOLE Antenna GPRS / EDGE 850: 2.16 dBi GPRS / EDGE 1900: 0.42 dBi WCDMA band II: 0.42 dBi
---	--------------	--

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>M82-IVU4000</u> filing to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.

Page 6 Rev.00

FCC ID: M82-IVU4000

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.10: 2013, TIA/EIA-603-C: 2004 and FCC CFR 47, Part 2, PART 22 SUBPART H AND PART 24 SUBPART E

Report No.: T160515D04-RP4

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to the requirements in ANSI C63.10: 2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2013.

> Page 7 Rev.00

3.4 DESCRIPTION OF TEST MODES

The EUT (model: IVU-4000) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed.

GPRS / EDGE 850:

Channel Low (CH128), Channel Mid (CH190) and Channel High (CH251) were chosen for full testing.

GPRS / EDGE 1900:

Channel Low (CH512), Channel Mid (CH661) and Channel High (CH810) were chosen for full testing.

WCDMA Band II:

Channel Low (CH9262), Channel Mid (CH9400) and Channel High (CH9538) were chosen for full testing.

WCDMA Band V:

Channel Low (CH4132), Channel Mid (CH4182) and Channel High (CH4233) were chosen for full testing.

HSDPA Band II:

Channel Low (CH9262), Channel Mid (CH9400) and Channel High (CH9538) were chosen for full testing.

HSDPA Band V:

Channel Low (CH4132), Channel Mid (CH4182) and Channel High (CH4233) were chosen for full testing.

HSUPA Band II:

Channel Low (CH9262), Channel Mid (CH9400) and Channel High (CH9538) were chosen for full testing.

HSDPA Band V:

Channel Low (CH4132), Channel Mid (CH4182) and Channel High (CH4233) were chosen for full testing.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

For GPRS / EDGE 850,

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

For GPRS / EDGE 1900, WCDMA Band II, WCDMA Band V, HSDPA Band II, HSDPA Band V, HSUPA Band II, HSDPA Band V

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Page 8 Rev.00

FCC ID: M82-IVU4000

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T160515D04-RP4

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

	Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
DC Power Supplies	GW Instek	SPS-3610	GPE880163	01/19/2016	01/18/2017		
Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017		
Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017		
Signal Analyzer	R&S	FSV 40	101073	07/20/2015	07/19/2016		
Spectrum Analyzer	Agilent	E4446A	US42510268	02/15/2016	02/14/2017		
Thermostatic/Hrgrosatic Chamber	TAICHY	MHG-150LF	930619	10/08/2015	10/07/2016		
Vector Signal Generator	R&S	SMU 200A	102239	03/10/2016	03/09/2017		
AC Power Source	EXTECH	6205	1140845	N.C.R	N.C.R		

Wugu 966 Chamber A							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Bilog Antenna	g Antenna Sunol JB3		A030105	08/06/2015	08/05/2016		
EMI Test Receiver	R&S	ESCI	100064	06/04/2015	06/03/2016		
Horn Antenna	EMCO	3117	55165	02/24/2016	02/23/2017		
Horn Antenna	EMCO	3116	26370	01/15/2016	01/14/2017		
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	01/12/2016	01/11/2017		
K Type Cable	Huber+Suhner	SUCOFLEX 102	22470/2	01/12/2016	01/11/2017		
Pre-Amplifier	MITEQ	AMF-6F-2604 00-40-8P	985646	01/14/2016	01/13/2017		
Pre-Amplifier	EMCI	EMC 012635	980151	06/05/2015	06/04/2016		
Pre-Amplifier	EMCI	EM330	N/A	06/05/2015	06/04/2016		
Spectrum Analyzer	Agilent	E4446A	US42510252	12/08/2015	12/07/2016		
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		
Software			EZ-EMC (CCS-3	A1RE)			

Page 9 Rev.00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev.00

5. FACILITIES AND ACCREDITATIONS 5.1 FACILITIES

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.
Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 11 Rev.00

FCC ID: M82-IVU4000

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Report No.: T160515D04-RP4

Page 12 Rev.00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

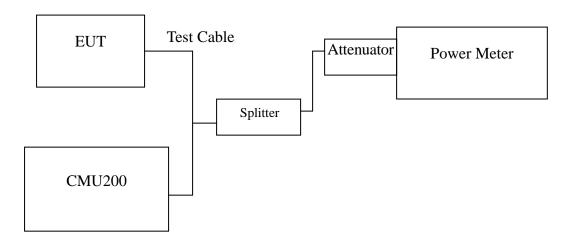
No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
	N/A						

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev.00

FCC ID: M82-IVU4000


7. FCC PART 22 & 24 REQUIREMENTS

7.1 PEAK POWER

LIMIT

According to FCC §2.1046.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

Page 14 Rev.00

Report No.: T160515D04-RP4

Test Data

Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power (W)
	128	824.20	32.30	1.69824
GPRS 850	190	836.60	32.20	1.65959
	251	848.80	32.70	1.86209
	128	824.20	26.66	0.46345
EDGE 850	190	836.60	26.67	0.46452
	251	848.80	26.53	0.44978

Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power (W)
	512	1850.20	27.90	0.61660
GPRS 1900	661	1880.00	28.30	0.67608
	810	1909.80	27.50	0.56234
512		1850.20	24.61	0.28907
EDGE 1900	661	1880.00	24.69	0.29444
	810	1909.80	23.81	0.24044

Remark: The value of factor includes both the loss of cable and external attenuator

Page 15 Rev.00

Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power (W)
	9262	1852.40	23.45	0.22131
WCDMA (BAND II)	9400	1880.00	23.42	0.21979
(5/ 1.5)	9538	1907.60	23.74	0.23659
	4132	826.40	23.56	0.22699
WCDMA (BAND V)	4182	836.60	23.78	0.23878
(=: :: •2 • •)	4233	846.60	23.89	0.24491

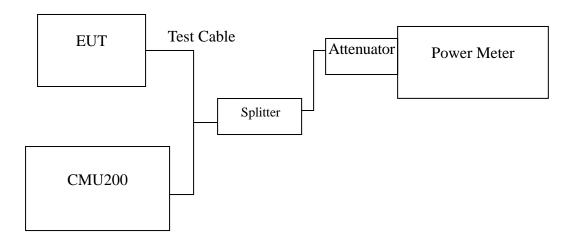
Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power (W)
	9262	1852.40	23.97	0.24946
HSDPA (BAND II)	9400	1880.00	23.82	0.24099
(5/ 1.5)	9538	1907.60	23.78	0.23878
	4132	826.40	23.25	0.21135
HSDPA (BAND V)	4182	836.40	23.52	0.22491
	4233	846.60	23.69	0.23388

Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power (W)
	9262	1852.40	23.72	0.23550
HSUPA (BAND II)	9400	1880.00	23.69	0.23388
(5/ 1.5)	9538	1907.60	23.86	0.24322
	4132	826.40	23.47	0.22233
HSUPA (BAND V)	4182	836.40	23.58	0.22803
	4233	846.60	23.69	0.23388

Remark: The value of factor includes both the loss of cable and external attenuator

Page 16 Rev.00

Report No.: T160515D04-RP4



7.2 AVERAGE POWER

LIMIT

For reporting purposes only.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

Page 17 Rev.00

Test Data

Test Mode	СН	H Frequency AVG Power (MHz) (dBm)		Output Power W
	128	824.20	32.10	1.62181
GPRS 850	190	836.60	32.00	1.58489
	251	848.80	848.80 32.50	1.77828
	128	824.20	26.43	0.43954
EDGE 850	190	836.60	26.49	0.44566
	251	848.80	26.32	0.42855

Test Mode	СН	Frequency (MHz)	AVG Power (dBm)	Output Power W
	512	1850.20	27.70	0.58884
GPRS 1900	661	1880.00	28.10	0.64565
	810	1909.80	27.30	0.53703
	512	1850.20	24.33	0.27102
EDGE 1900	661	1880.00	24.58	0.28708
	810	1909.80	23.67	0.23281

Remark: The value of factor includes both the loss of cable and external attenuator

Page 18 Rev.00

Report No.: T160515D04-RP4

Test Mode	СН	Frequency (MHz)	AVG Power (dBm)	Output Power W
	9262	1852.40	21.96	0.15704
WCDMA (BAND II)	9400	1880.00	21.11	0.12912
(27 12)	9538	1907.60	21.87	0.15382
	4132	826.40	21.99	0.15812
WCDMA (BAND V)	4182	836.40	22.29	0.16943
	4233	846.60	22.39	0.17338

Test Mode	СН	Frequency (MHz)	AVG Power (dBm)	Output Power W
	9262	1852.40	21.51	0.14158
HSDPA (BAND II)	9400	1880.00	21.45	0.13964
	9538	1907.60	21.39	0.13772
	4132	826.40	21.31	0.13521
HSDPA (BAND V)	4182	836.40	21.62	0.14521
	4233	846.60	21.92	0.15560

Test Mode	СН	Frequency (MHz)	AVG Power (dBm)	Output Power W
	9262	1852.40	20.96	0.12474
HSUPA (BAND II)	9400	1880.00	20.93	0.12388
	9538	1907.60	21.31	0.13521
	4132	826.40	20.89	0.12274
HSUPA (BAND V)	4182	836.40	21.30	0.13490
	4233	846.60	21.34	0.13614

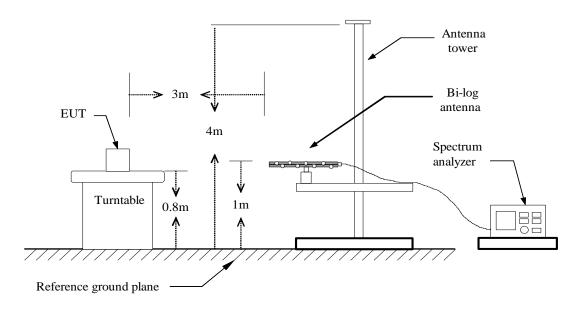
Remark: The value of factor includes both the loss of cable and external attenuator

Page 19 Rev.00

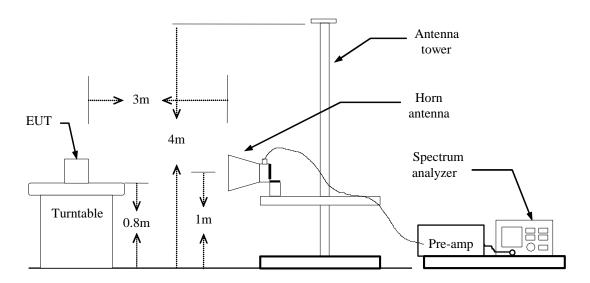
7.3 ERP & EIRP MEASUREMENT

LIMIT

According to FCC §2.1046

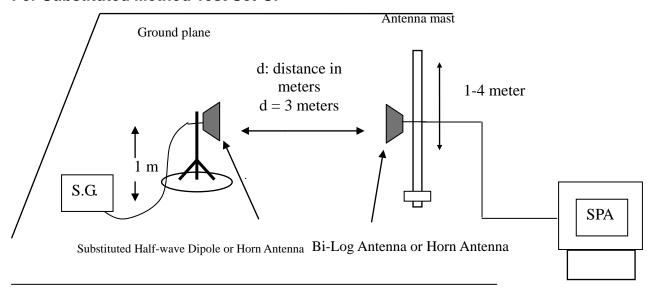

FCC 22.913(a): The Effective Radiated Power (ERP) of mobile transmitters must not

exceed 7 Watts.


FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

Test Configuration

Below 1 GHz



Above 1 GHz

Page 20 Rev.00

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 5MHz and the average bandwidth was set to 50MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)-2.15 EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

Page 21 Rev.00

FCC ID: M82-IVU4000

GPRS 850 TEST DATA

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
120	824.3600	V	30.05	3.39	6.24	32.90	38.45	-5.55
128	824.2400	Н	22.65	3.39	6.24	25.50	38.45	-12.95
400	836.7800	V	29.13	3.4	6.37	32.10	38.45	-6.35
190	836.6000	Н	21.66	3.4	6.37	24.63	38.45	-13.82
054	849.2000	V	29.99	3.4	6.4	*32.99	38.45	-5.46
251	849.0200	Н	21.79	3.4	6.4	24.79	38.45	-13.66

GPRS 1900 TEST DATA

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
E40	1850.160	V	26.27	5.37	5.67	*26.57	33.00	-6.43
512	1850.040	Н	25.28	5.37	5.67	25.58	33.00	-7.42
664	1880.160	V	23.87	5.42	5.62	24.07	33.00	-8.93
661	1850.040	Н	25.28	5.37	5.67	25.58	33.00	-7.42
040	1909.680	V	24.22	5.48	5.56	24.30	33.00	-8.70
810	1909.800	Н	22.56	5.48	5.56	22.64	33.00	-10.36

EDGE 850 Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
120	824.4200	V	23.62	3.39	6.24	26.47	38.45	-11.98
128	824.3000	Н	19.85	3.39	6.24	22.70	38.45	-15.75
400	836.8400	V	22.78	3.4	6.37	25.75	38.45	-12.70
190	836.4200	Н	18.97	3.4	6.36	21.93	38.45	-16.52
054	848.6600	V	24.06	3.4	6.4	*27.06	38.45	-11.39
251	848.7200	Н	19.61	3.4	6.4	22.61	38.45	-15.84

EDGE 1900 Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
F10	1850.160	V	23.35	5.37	5.67	23.65	33.00	-9.35
512	1850.160	Η	22.1	5.37	5.67	22.40	33.00	-10.60
664	1880.040	V	22.82	5.42	5.62	23.02	33.00	-9.98
661	1879.920	Н	21.44	5.42	5.62	22.64	33.00	-10.36
910	1909.680	V	23.78	5.48	5.56	*23.86	33.00	-9.14
810	1909.920	Н	21.94	5.48	5.56	22.02	33.00	-10.98

Page 22 Rev.00

Report No.: T160515D04-RP4

WCDMA Test Data (BAND II)

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
9262	1853.760	V	21.41	5.38	5.66	21.69	33.00	-11.31
9202	1853.160	Н	20.7	5.38	5.66	20.98	33.00	-12.02
0.400	1879.200	V	23.42	5.42	5.62	*23.62	33.00	-9.38
9400	1879.320	Н	21.3	5.42	5.62	21.50	33.00	-11.50
0520	1908.960	V	21.81	5.47	5.56	21.90	33.00	-11.10
9538	1908.720	Н	20.16	5.47	5.56	20.25	33.00	-12.75

WCDMA Test Data (BAND V)

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
4422	825.3200	V	15.16	3.39	6.25	18.02	38.45	-20.43
4132	825.3200	Н	20.97	3.39	6.25	23.83	38.45	-14.62
4182	837.0800	V	14.25	3.4	6.37	17.22	38.45	-21.23
4102	837.2000	Н	21.96	3.4	6.37	*24.93	38.45	-13.52
4000	845.7800	V	13.44	3.4	6.4	16.44	38.45	-22.01
4233	845.9600	Н	21.7	3.4	6.4	24.70	38.45	-13.75

HSDPA BAND II Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
9262	1853.520	V	22.53	5.38	5.66	22.81	33.00	-10.19
9202	1853.160	Н	20.82	5.38	5.66	21.10	33.00	-11.90
0400	1881.360	V	22.73	5.42	5.61	22.92	33.00	-10.08
9400	1881.120	Н	21.75	5.42	5.61	21.94	33.00	-11.06
0520	1908.600	V	23.75	5.47	5.56	*23.84	33.00	-9.16
9538	1908.960	Н	20.22	5.47	5.56	20.31	33.00	-12.69

HSDPA BAND V Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
4132	827.2400	V	13.31	3.39	6.27	16.19	38.45	-22.26
4132	825.4400	Ι	23.06	3.39	6.25	*25.92	38.45	-12.53
4182	835.1600	V	14.8	3.4	6.35	17.75	38.45	-20.70
4102	837.5600	Н	22.83	3.41	6.38	25.80	38.45	-12.65
4222	845.4800	V	14.3	3.4	6.4	17.30	38.45	-21.15
4233	845.6600	Н	22.78	3.4	6.4	25.78	38.45	-12.67

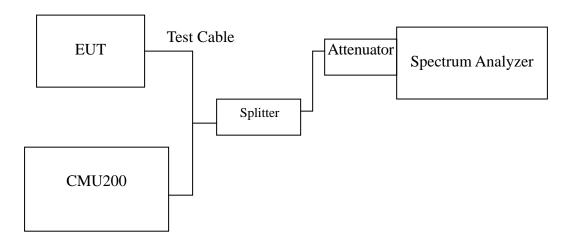
Page 23 Rev.00

HSUPA BAND II Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
9262	1853.880	V	14.38	5.38	5.66	14.66	33.00	-18.34
9202	1851.720	Н	20.29	5.37	5.67	20.59	33.00	-12.41
0400	1878.960	V	22.39	5.42	5.62	*22.59	33.00	-10.41
9400	1880.880	Ι	21.63	5.42	5.61	21.82	33.00	-11.18
0520	1908.720	V	20.98	5.47	5.56	21.07	33.00	-11.93
9538	1908.480	Н	20.43	5.47	5.56	20.52	33.00	-12.48

HSUPA BAND V Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
4422	827.3600	V	13.62	3.39	6.27	16.50	38.45	-21.95
4132	825.5000	Н	22.86	3.39	6.25	*25.72	38.45	-12.73
4182	837.6200	V	14.76	3.41	6.38	17.73	38.45	-20.72
4102	837.3800	Н	22.39	3.4	6.37	25.36	38.45	-13.09
4000	825.4400	V	13.3	3.39	6.25	16.16	38.45	-22.29
4233	825.4400	Н	22.73	3.39	6.25	25.59	38.45	-12.86


Page 24 Rev.00

7.4 OCCUPIED BANDWIDTH MEASUREMENT

LIMIT

According to §FCC 2.1049.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

No non-compliance noted

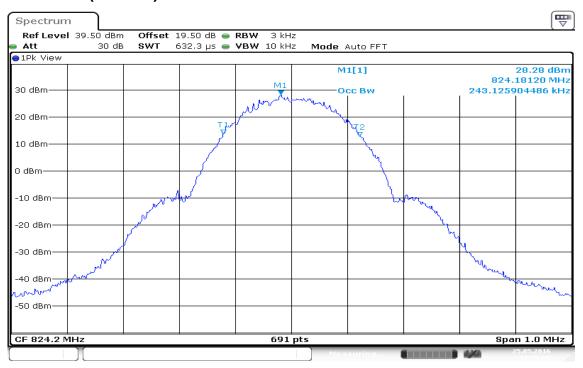
Page 25 Rev.00

Report No.: T160515D04-RP4

Test Data

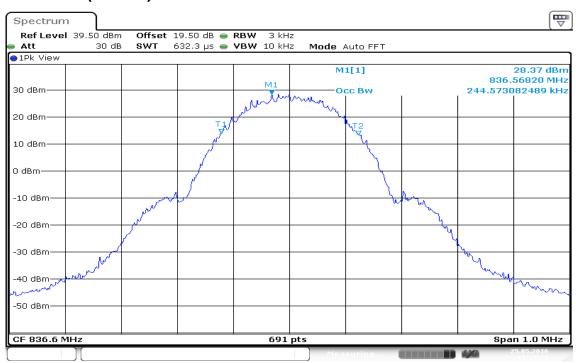
Test Mode	СН	Frequency (MHz)	99% Bandwidth (kHz)
	128	824.20	243.1259
GPRS 850	190	836.60	*244.5730
	251	848.80	243.1259
	128	824.20	*243.1259
EDGE 850	190	836.60	243.1259
	251	848.80	240.2315

Test Mode	СН	Frequency (MHz)	99% Bandwidth (kHz)	
	512	1850.20	*244.5730	
GPRS 1900	661	1880.00	244.5730	
	810	1909.80	244.5730	
	512	1850.20	*246.0202	
EDGE 1900	661	1880.00	244.5730	
	810	1909.80	243.1259	


Page 26 Rev.00 Report No.: T160515D04-RP4

		Frequency	99% Bandwidth
Test Mode	СН	(MHz)	(MHz)
	9262	1852.40	4.1534
WCDMA (Band II)	9400	1880.00	*4.1823
(= =)	9538	1907.60	4.1823
	4132	826.40	*4.1678
WCDMA (Band V)	4182	836.40	4.1678
(======================================	4233	846.60	4.1678
	9262	1852.40	*4.1823
HSDPA (BAND II)	9400	1880.00	4.1678
(=: :: = ::)	9538	1907.60	4.1823
	4132	826.40	*4.1678
HSDPA (BAND V)	4182	836.40	4.1678
(=: :: = : ;	4233	846.60	4.1534
	9262	1852.40	*4.1823
HSUPA (BAND II)	9400	1880.00	4.1823
(=: :: -= ::)	9538	1907.60	4.1678
	4132	826.40	*4.1823
HSUPA (BAND V)	4182	836.40	4.1678
(BAIND V)	4233	846.60	4.1823

Page 27 Rev.00 FCC ID: M82-IVU4000


Test Plot

GPRS 850 (CH Low)

Date: 25 M AY 2016 13:31:00

GPRS 850 (CH Mid)

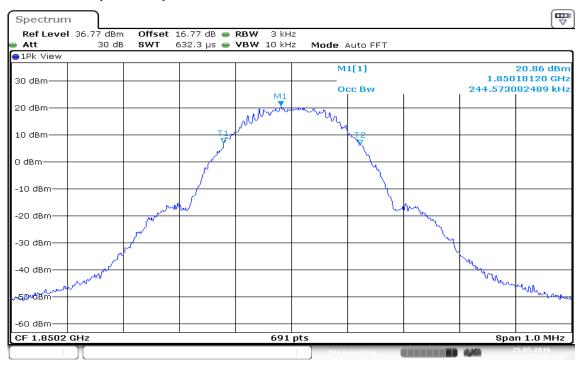


Date: 25 M AY 2016 13:25:21

Page 28 Rev.00

Report No.: T160515D04-RP4

Report No.: T160515D04-RP4



Date: 25 M AY 2016 13:29:56

Page 29 Rev.00


FCC ID: M82-IVU4000

GPRS 1900 (CH Low)

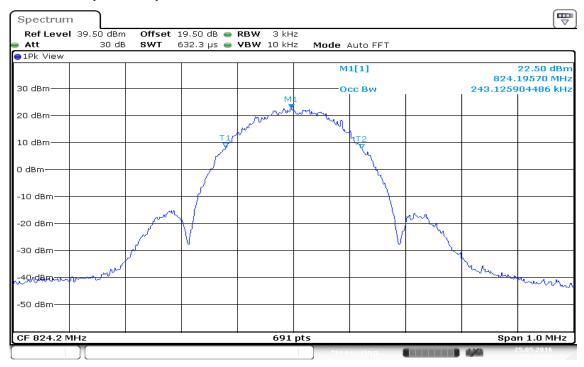
Date: 25 M AY 2016 14:38:02

GPRS 1900 (CH Mid)

Date: 25 M AY 2016 14:37:16

Page 30 Rev.00

Report No.: T160515D04-RP4


GPRS 1900 (CH High)

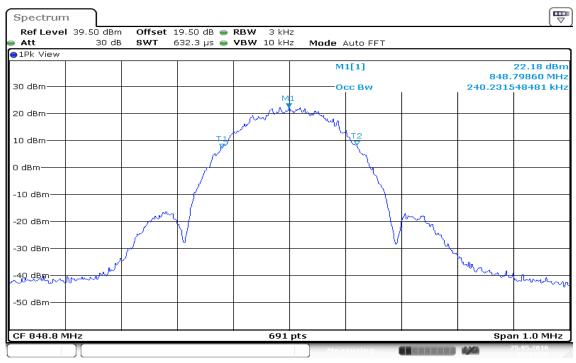
Date: 25 M AY 2016 14:36:25

Page 31 Rev.00

EDGE 850 (CH Low)

Date: 25 M AY 2016 15:53:03

EDGE 850 (CH Mid)



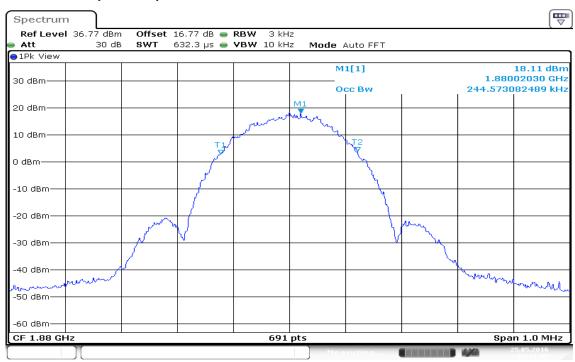
Date: 25 M AY 2016 15:54:14

Page 32 Rev.00

Report No.: T160515D04-RP4


EDGE 850 (CH High)

Date: 25 M AY 2016 15:54:57


Page 33 Rev.00

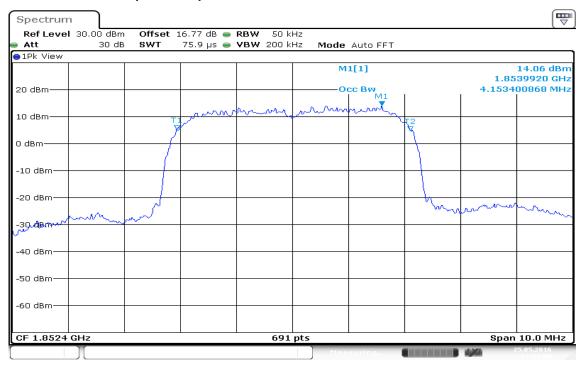
EDGE 1900 (CH Low)

Date: 25 M AY 2016 16:31:50

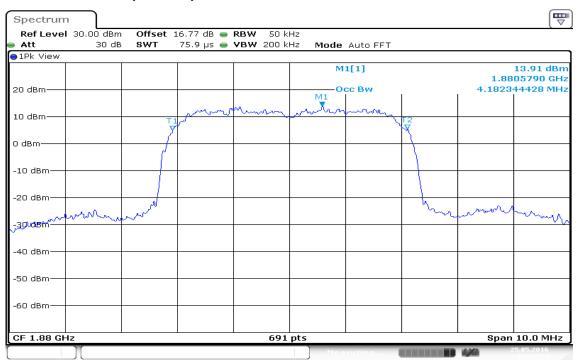

EDGE 1900 (CH Mid)

Date: 25 M AY 2016 16:41:46

Page 34 Rev.00

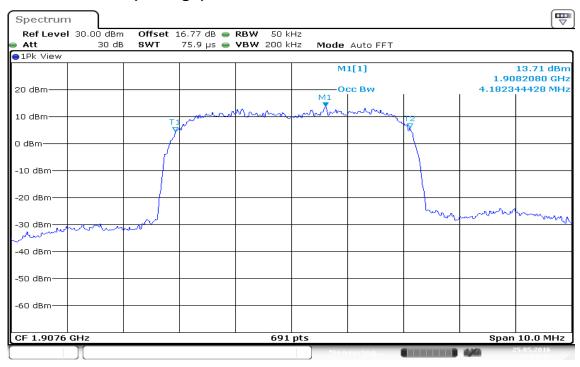

EDGE 1900 (CH High)

Date: 25 M AY 2016 16:42:58


Page 35 Rev.00

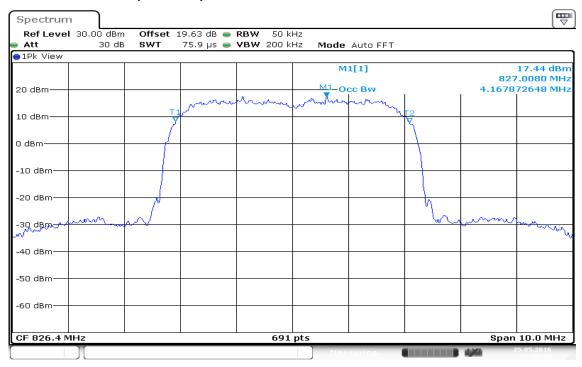
WCDMA Band II (CH Low)

Date: 25 M AY 2016 18:01:07


WCDMA Band II (CH Mid)

Date: 25 M AY 2016 18:02:53

Page 36 Rev.00


WCDMA Band II (CH High)

Date: 25 M AY 2016 18:05:48

Page 37 Rev.00

WCDMA Band V (CH Low)

Date: 25 M AY 2016 20:09:19

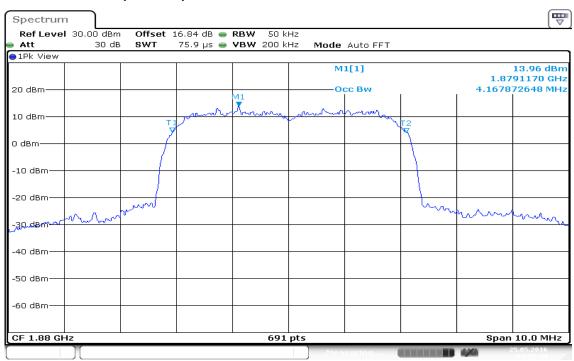
WCDMA Band V (CH Mid)

Date: 25 M AY 2016 20:08:23

Page 38 Rev.00

WCDMA Band V (CH High)

Date: 25 M AY 2016 20:07:28


Page 39 Rev.00

HSDPA Band II (CH Low)

Date: 25 M AY 2016 21:01:19

HSDPA Band II (CH Mid)

Date: 25 M AY 2016 21:02:44

Page 40 Rev.00

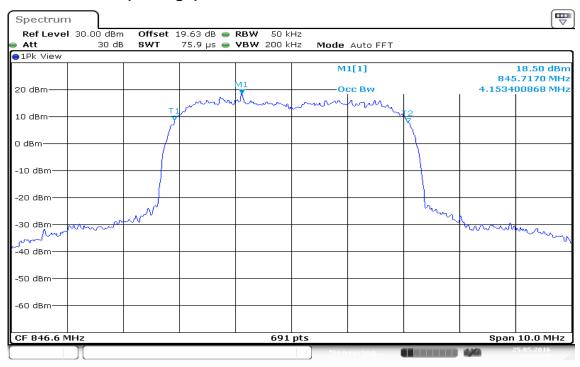
HSDPA Band II (CH High)

Date: 25 M AY 2016 21:03:20


Page 41 Rev.00

HSDPA Band V (CH Low)

Date: 25 M AY 2016 21:22:08

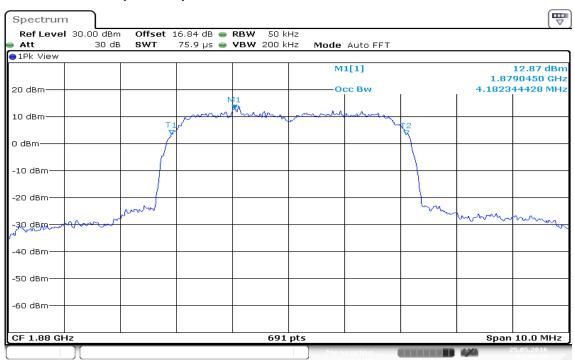

HSDPA Band V (CH Mid)

Date: 25 M AY 2016 21:22:48

Page 42 Rev.00


HSDPA Band V (CH High)

Date: 25 M AY 2016 21:23:20


Page 43 Rev.00

HSUPA Band II (CH Low)

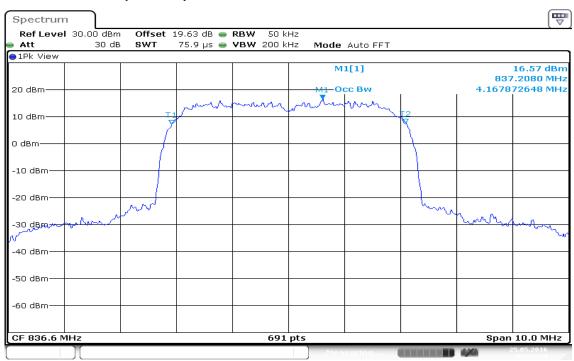
Date: 25 M AY 2016 21:41:49

HSUPA Band II (CH Mid)

Date: 25 M AY 2016 21:40:49

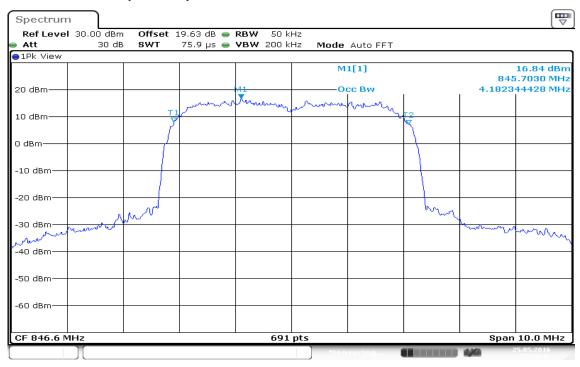
Page 44 Rev.00

Date: 25 M AY 2016 21:39:58


Page 45 Rev.00

HSUPA Band V (CH Low).

Date: 25 M AY 2016 22:21:57


HSUPA Band V (CH Mid)

Date: 25 M AY 2016 22:21:24

Page 46 Rev.00

HSUPA Band V (CH Mid)

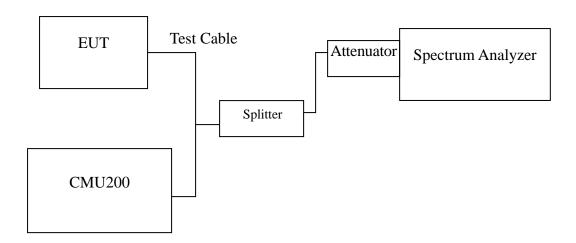
Date: 25 M AY 2016 22:20:46

Page 47 Rev.00

7.5 OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §22.917, FCC §24.238(a).


<u>Out of Band Emissions:</u> The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease 43 + 10 log P dB.

Mobile Emissions in Base Frequency Range: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

Test Configuration

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

TEST RESULTS

No non-compliance noted.

Page 48 Rev.00

Test Data

Mode	СН	Location	Description
GPRS 850	128	Figure 8-1	Conducted spurious emissions, 30MHz - 20GHz
	190	Figure 8-2	Conducted spurious emissions, 30MHz - 20GHz
	251	Figure 8-3	Conducted spurious emissions, 30MHz - 20GHz

Mode	СН	Location	Description
GPRS 1900	512	Figure 9-1	Conducted spurious emissions, 30MHz - 20GHz
	661	Figure 9-2	Conducted spurious emissions, 30MHz - 20GHz
	810	Figure 9-3	Conducted spurious emissions, 30MHz - 20GHz

Mode	СН	Location	Description
0000 050	128	Figure 10-1	Band Edge emissions
GPRS 850	251	Figure 10-2	Band Edge emissions

Mode	СН	Location	Description
GPRS 1900	512	Figure 11-1	Band Edge emissions
	810	Figure 11-2	Band Edge emissions

Mode	СН	Location	Description
	128	Figure 12-1	Conducted spurious emissions, 30MHz - 20GHz
EDGE 850	190	Figure 12-2	Conducted spurious emissions, 30MHz - 20GHz
	251	Figure 12-3	Conducted spurious emissions, 30MHz - 20GHz
	512	Figure 13-1	Conducted spurious emissions, 30MHz - 20GHz
EDGE 1900	661	Figure 13-2	Conducted spurious emissions, 30MHz - 20GHz
	810	Figure 13-3	Conducted spurious emissions, 30MHz - 20GHz

Mode	СН	Location	Description
EDGE 850	128	Figure 14-1	Band Edge emissions
	251	Figure 14-2	Band Edge emissions
EDGE 1900	512	Figure 15-1	Band Edge emissions
	810	Figure 15-2	Band Edge emissions

Page 49 Rev.00

Mode	СН	Location	Description
	9262	Figure 16-1	Conducted spurious emissions, 30MHz - 20GHz
WCDMA (Band II)	9400	Figure 16-2	Conducted spurious emissions, 30MHz - 20GHz
(Bana n)	9538	Figure 16-3	Conducted spurious emissions, 30MHz - 20GHz
WCDMA (Band V)	4132	Figure 17-1	Conducted spurious emissions, 30MHz - 20GHz
	4182	Figure 17-2	Conducted spurious emissions, 30MHz - 20GHz
	4233	Figure 17-3	Conducted spurious emissions, 30MHz - 20GHz

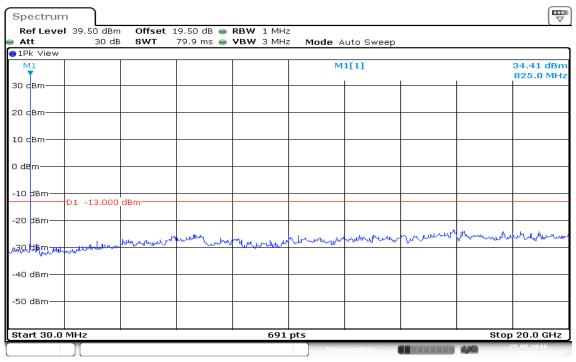
Mode	СН	Location	Description
WCDMA	9262	Figure 18-1	Band Edge emissions
(Band II)	9538	Figure 18-2	Band Edge emissions
WCDMA (Band V)	4132	Figure 19-1	Band Edge emissions
	4233	Figure 19-2	Band Edge emissions

Mode	СН	Location	Description
HSDPA (Band II)	9262	Figure 20-1	Conducted spurious emissions, 30MHz - 20GHz
	9400	Figure 20-2	Conducted spurious emissions, 30MHz - 20GHz
	9538	Figure 20-3	Conducted spurious emissions, 30MHz - 20GHz
HSDPA (Band V)	4132	Figure 21-1	Conducted spurious emissions, 30MHz - 20GHz
	4182	Figure 21-2	Conducted spurious emissions, 30MHz - 20GHz
	4233	Figure 21-3	Conducted spurious emissions, 30MHz - 20GHz

Mode	СН	Location	Description
HSDPA (Band II)	9262	Figure 22-1	Band Edge emissions
	9538	Figure 22-2	Band Edge emissions
HSDPA	4132	Figure 23-1	Band Edge emissions
(Band V)	4233	Figure 23-2	Band Edge emissions

Page 50 Rev.00

Mode	СН	Location	Description
	9262	Figure 24-1	Conducted spurious emissions, 30MHz - 20GHz
HSUPA (Band II)	9400	Figure 24-2	Conducted spurious emissions, 30MHz - 20GHz
(24.14.11)	9538	Figure 24-3	Conducted spurious emissions, 30MHz - 20GHz
HSUPA (Band V)	4132	Figure 25-1	Conducted spurious emissions, 30MHz - 20GHz
	4182	Figure 25-2	Conducted spurious emissions, 30MHz - 20GHz
	4233	Figure 25-3	Conducted spurious emissions, 30MHz - 20GHz


Mode	СН	Location	Description
HSUPA (Band II)	9262	Figure 26-1	Band Edge emissions
	9538	Figure 26-2	Band Edge emissions
HSUPA (Band V)	4132	Figure 27-1	Band Edge emissions
	4233	Figure 27-2	Band Edge emissions

Page 51 Rev.00

Test Plot

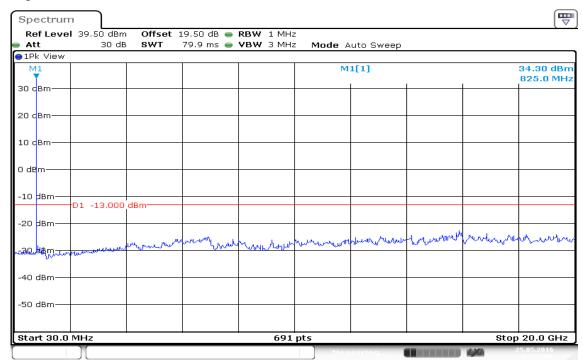
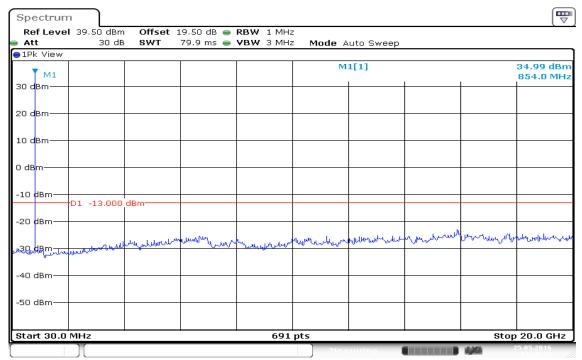

GPRS 850

Figure 8-1: Out of Band emission at antenna terminals - GPRS CH Low

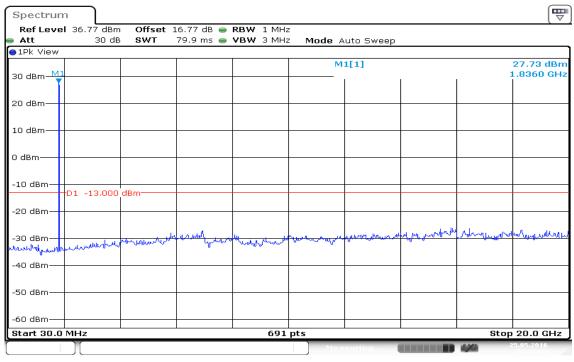
Date: 25 M AY 2016 14:16:29


Figure 8-2: Out of Band emission at antenna terminals - GPRS CH Mid

Date: 25 M AY 2016 14:16:06

Page 52 Rev.00

Figure 8-3: Out of Band emission at antenna terminals – GPRS CH High



Date: 25 M AY 2016 14:15:12

Page 53 Rev.00

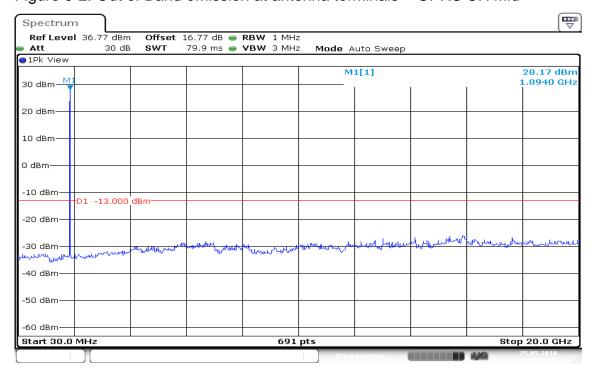
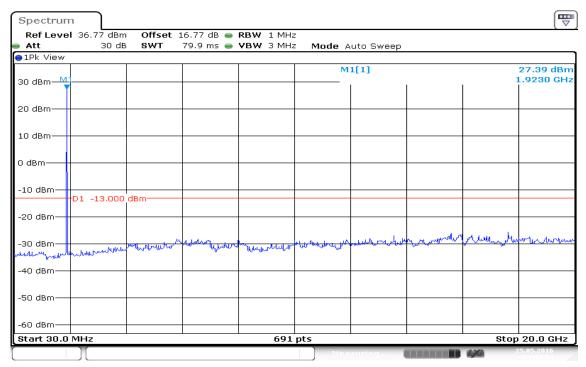

GPRS 1900

Figure 9-1: Out of Band emission at antenna terminals - GPRS CH Low

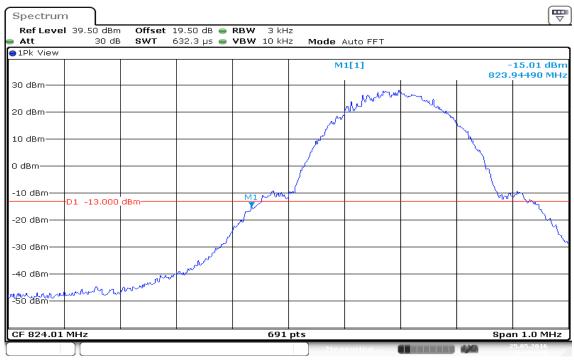
Date: 25 M AY 2016 14:42:03


Figure 9-2: Out of Band emission at antenna terminals – GPRS CH Mid

Date: 25 M AY 2016 14:41:40

Page 54 Rev.00

Figure 9-3: Out of Band emission at antenna terminals – GPRS CH High



Date: 25 M AY 2016 14:40:54

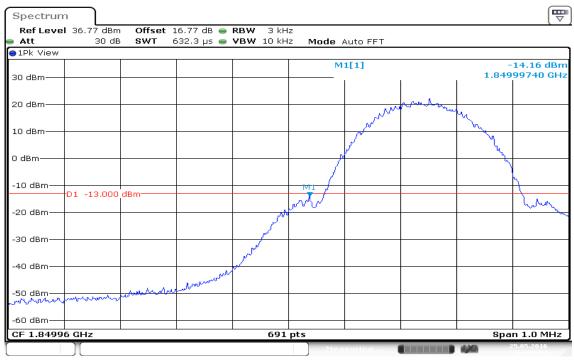
Page 55 Rev.00

GPRS 850

Figure 10-1: Band Edge emissions - GPRS CH Low

Date: 25 M AY 2016 14:07:48

Figure 10-2: Band Edge emissions -GPRS CH High



Date: 25 M AY 2016 14:10:01

Page 56 Rev.00

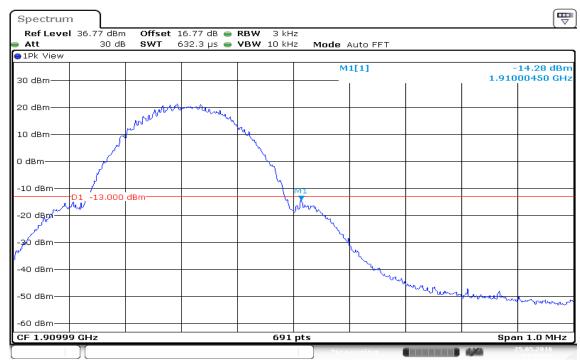
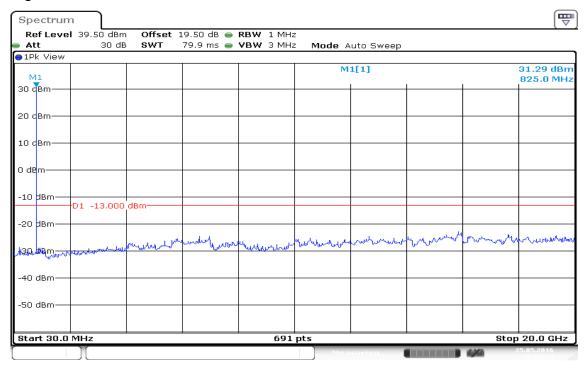

GPRS 1900

Figure 11-1: Band Edge emissions - GPRS CH Low

Date: 25 M AY 2016 14:39:04

Figure 11-2: Band Edge emissions - GPRS CH High



Date: 25 M AY 2016 14:40:18

Page 57 Rev.00

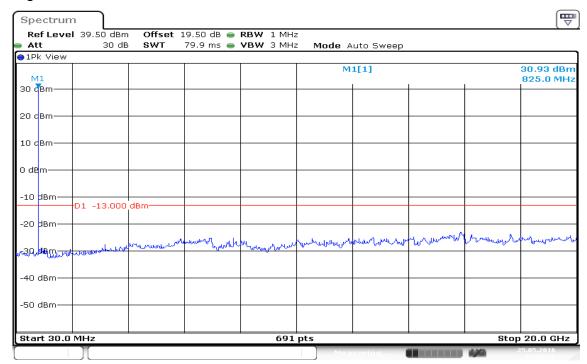
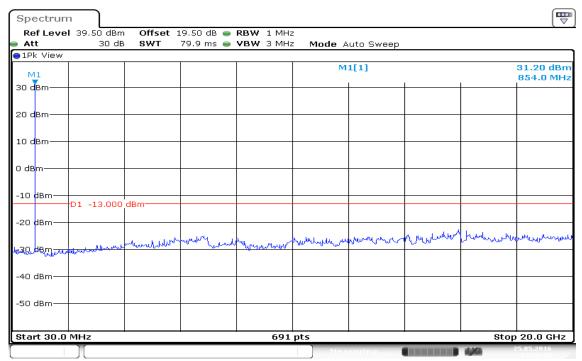

EDGE 850

Figure 12-1: Out of Band emission at antenna terminals -EDGE CH Low

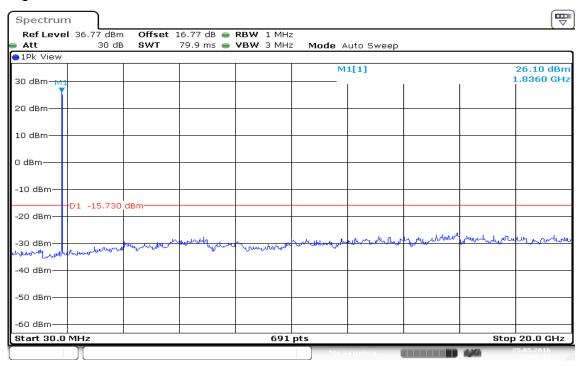
Date: 25 M AY 2016 15:57:24


Figure 12-2: Out of Band emission at antenna terminals –EDGE CH Mid

Date: 25 M AY 2016 15:56:50

Page 58 Rev.00

Figure 12-3: Out of Band emission at antenna terminals -EDGE CH High



Date: 25 M AY 2016 15:56:13

Page 59 Rev.00

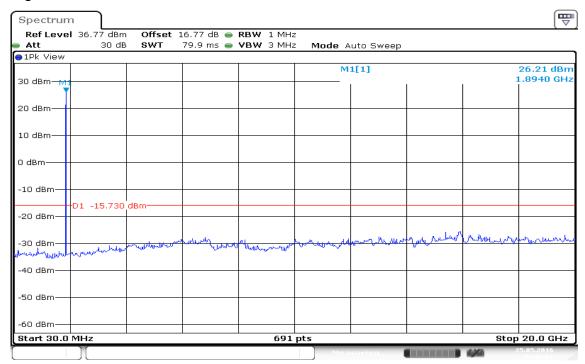
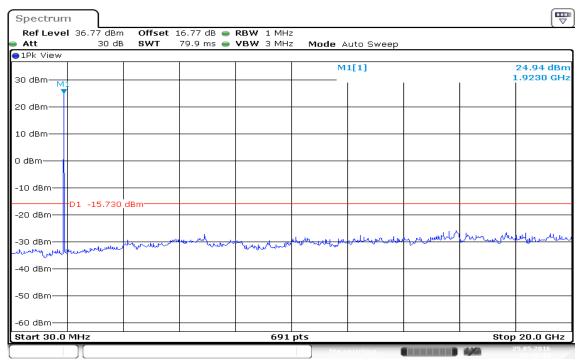

EDGE 1900

Figure 13-1: Out of Band emission at antenna terminals -EDGE CH Low

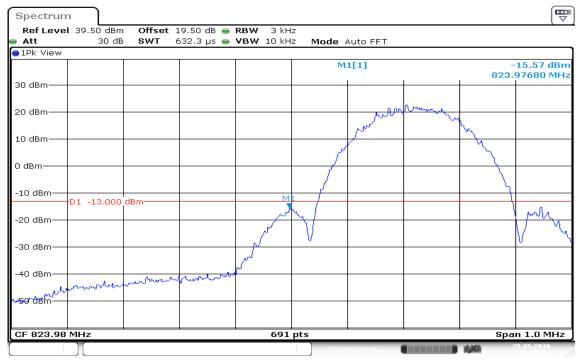
Date: 25 M AY 2016 16:36:10


Figure 13-2: Out of Band emission at antenna terminals –EDGE CH Mid

Date: 25 M AY 2016 16:41:07

Page 60 Rev.00

Figure 13-3: Out of Band emission at antenna terminals -EDGE CH High



Date: 25 M AY 2016 16:46:16

Page 61 Rev.00

EDGE 850

Figure 14-1: Band Edge emissions - EDGE CH Low

Date: 25 M AY 2016 16:50:58

Figure 14-2: Band Edge emissions – EDGE CH High

Date: 25 M AY 2016 15:55:36

Page 62 Rev.00

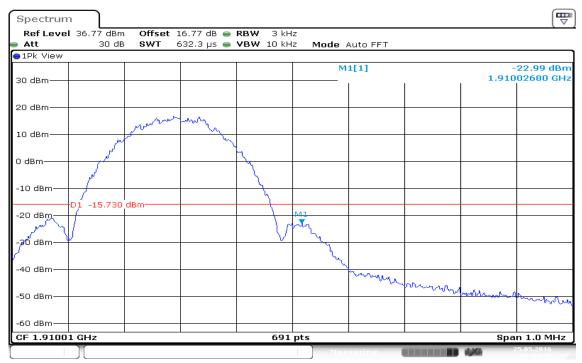
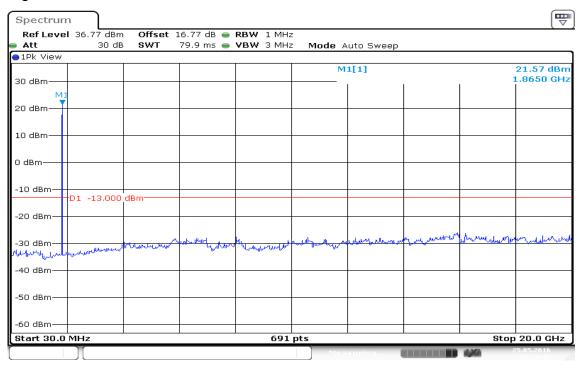

EDGE 1900

Figure 15-1: Band Edge emissions - EDGE CH Low

Date: 25 M AY 2016 16:45:38

Figure 15-2: Band Edge emissions – EDGE CH High



Date: 25 M AY 2016 16:44:40

Page 63 Rev.00

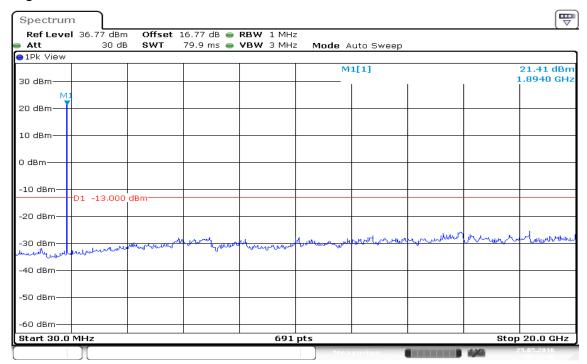
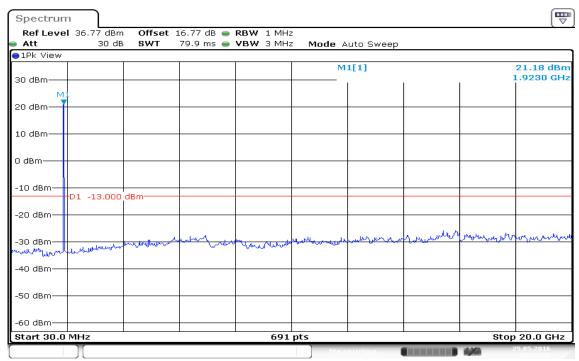

WCDMA Band II

Figure 16-1: Out of Band emission at antenna terminals – WCDMA CH Low

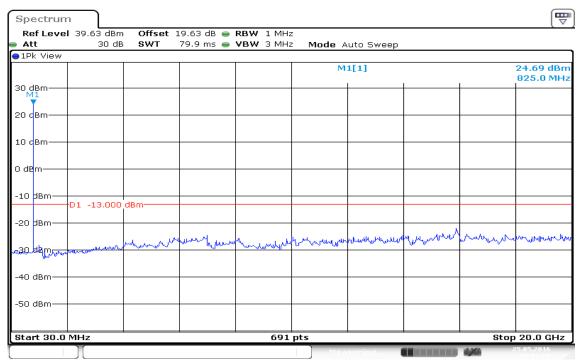
Date: 25 M AY 2016 19:21:45


Figure 16-2: Out of Band emission at antenna terminals – WCDMA CH Mid

Date: 25 M AY 2016 19:22:48

Page 64 Rev.00

Figure 16-3: Out of Band emission at antenna terminals – WCDMA CH High


Date: 25 M AY 2016 19:23:36

Page 65 Rev.00

Report No.: T160515D04-RP4

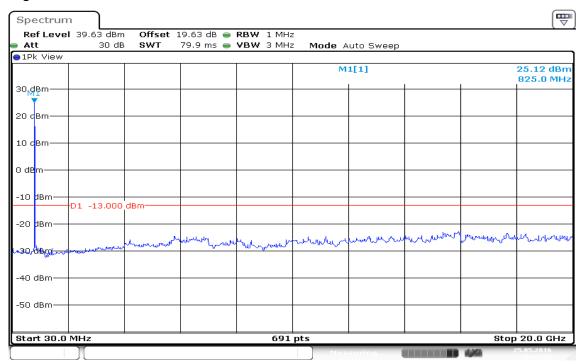
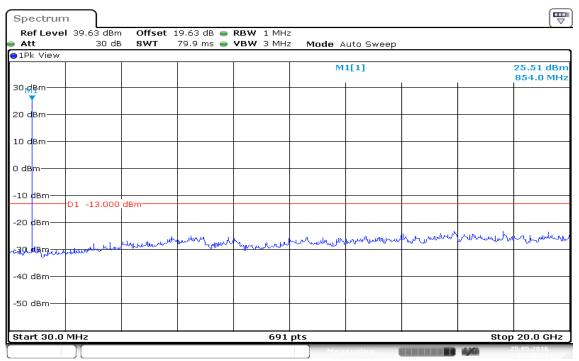

WCDMA Band V

Figure 17-1: Out of Band emission at antenna terminals – WCDMA CH Low

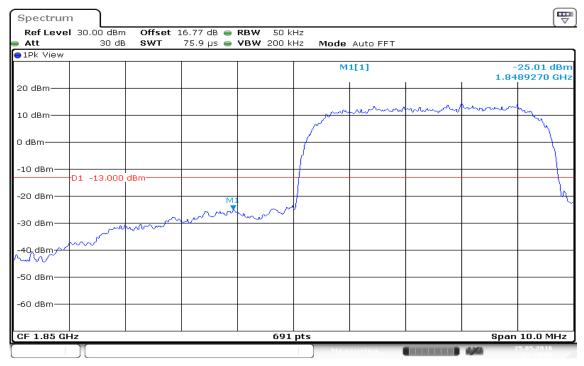
Date: 25 M AY 2016 20:11:26


Figure 17-2: Out of Band emission at antenna terminals – WCDMA CH Mid

Date: 25 M AY 2016 20:12:56

Page 66 Rev.00

Figure 17-3: Out of Band emission at antenna terminals – WCDMA CH High



Date: 25 M AY 2016 20:16:21

Page 67 Rev.00

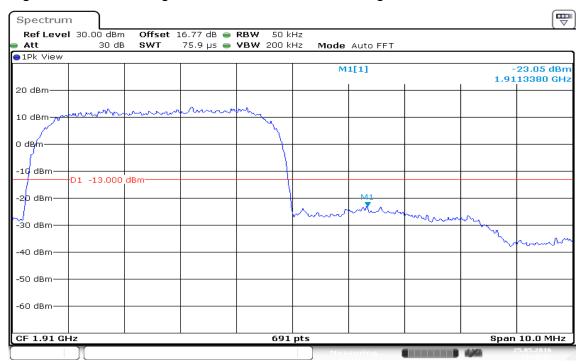
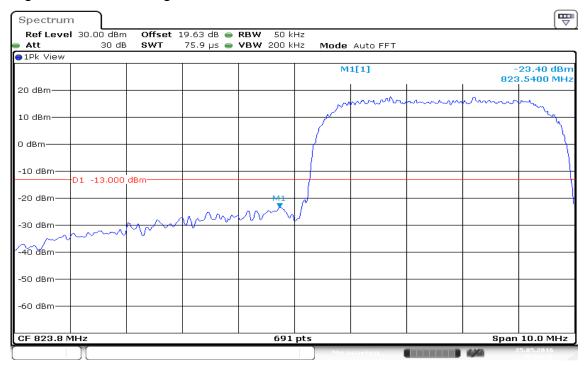

WCDMA Band II

Figure 18-1: Band Edge emissions - WCDMA CH Low

Date: 25 M AY 2016 19:20:57

Figure 18-2: Band Edge emissions –WCDMA CH High



Date: 25 M AY 2016 19:19:15

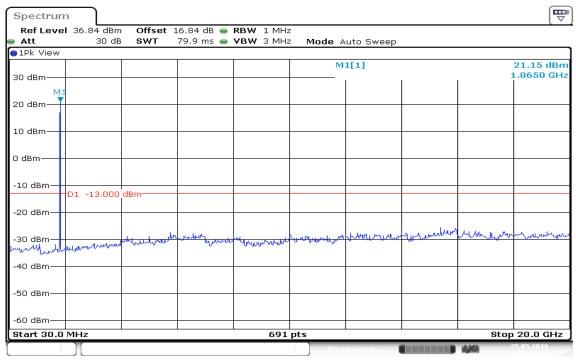
Page 68 Rev.00

WCDMA Band V

Figure 19-1: Band Edge emissions -WCDMA CH Low

Date: 25 M AY 2016 20:10:36

Figure 19-2: Band Edge emissions –WCDMA CH High



Date: 25 M AY 2016 20:06:37

Page 69 Rev.00

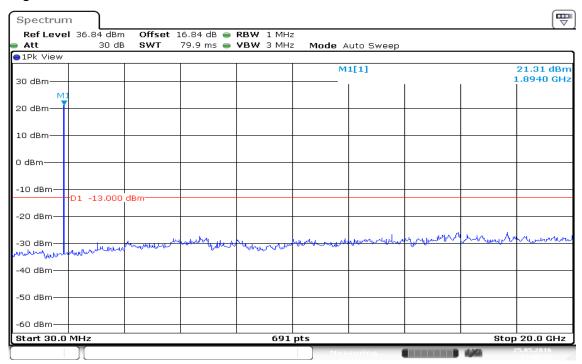
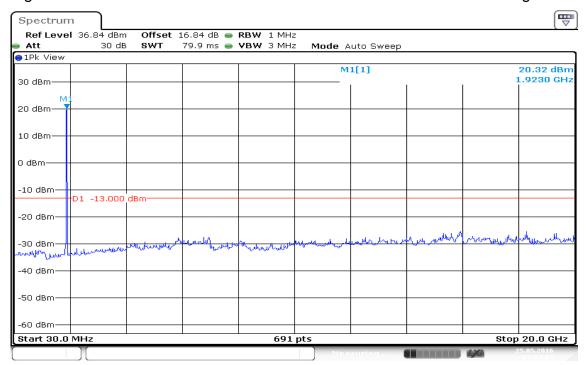

HSDPA Band II

Figure 20-1: Out of Band emission at antenna terminals - HSDPA CH Low

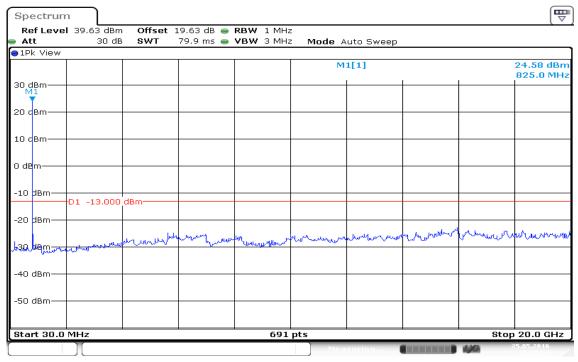
Date: 25 M AY 2016 21:07:39


Figure 20-2: Out of Band emission at antenna terminals – HSDPA CH Mid

Date: 25 M AY 2016 21:09:57

Page 70 Rev.00

Figure 20-3: Out of Band emission at antenna terminals – HSDPA CH High



Date: 25 M AY 2016 21:09:05

Page 71 Rev.00

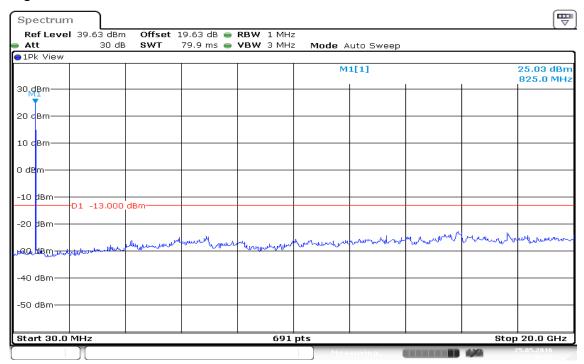
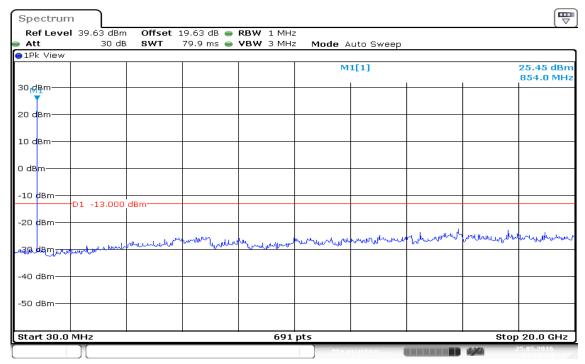

HSDPA Band V

Figure 21-1: Out of Band emission at antenna terminals - HSDPA CH Low

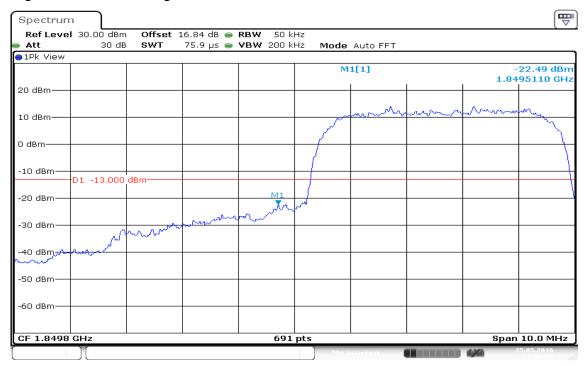
Date: 25 M AY 2016 21:25:53


Figure 21-2: Out of Band emission at antenna terminals – HSDPA CH Mid

Date: 25 M AY 2016 21:26:27

Page 72 Rev.00

Figure 21-3: Out of Band emission at antenna terminals – HSDPA CH High



Date: 25 M AY 2016 21:26:54

Page 73 Rev.00

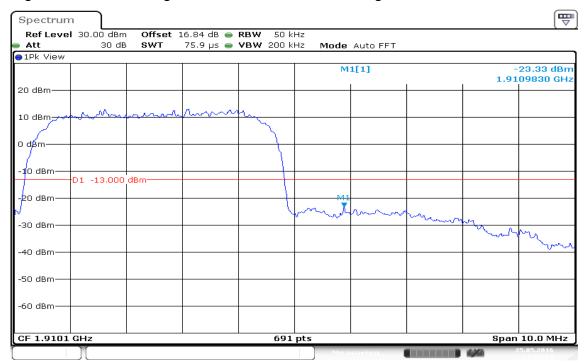
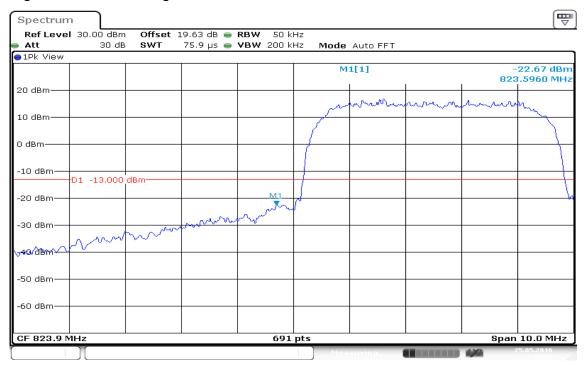

HSDPA Band II

Figure 22-1: Band Edge emissions - HSDPA CH Low

Date: 25 M AY 2016 21:06:55

Figure 22-2: Band Edge emissions – HSDPA CH High



Date: 25 M AY 2016 21:05:18

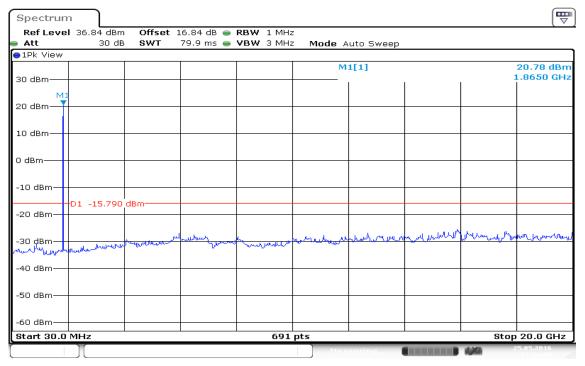
Page 74 Rev.00

HSDPA Band V

Figure 23-1: Band Edge emissions - HSDPA CH Low

Date: 25 M AY 2016 21:25:03

Figure 23-2: Band Edge emissions – HSDPA CH High


Date: 25 M AY 2016 21:24:07

Page 75 Rev.00

Report No.: T160515D04-RP4

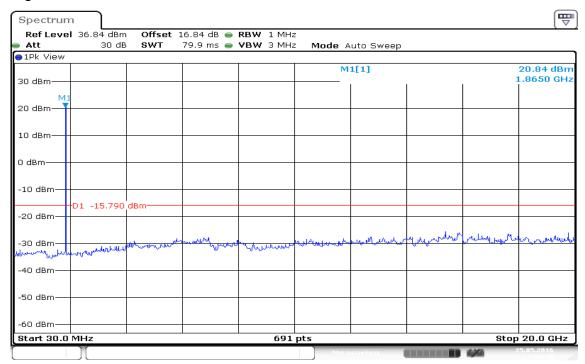
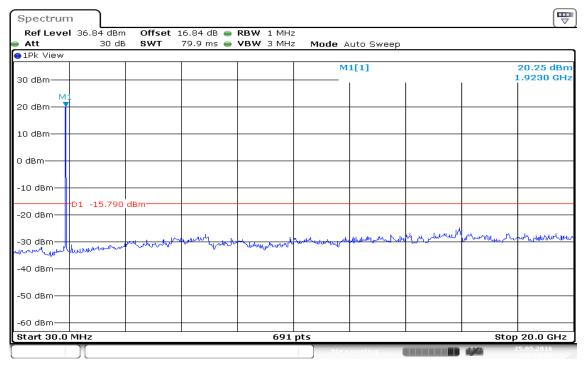

HSUPA Band II

Figure 24-1: Out of Band emission at antenna terminals - HSUPA CH Low

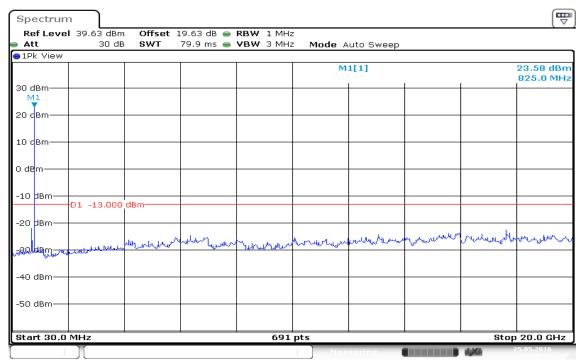
Date: 25 M AY 2016 21:36:00


Figure 24-2: Out of Band emission at antenna terminals – HSUPA CH Mid

Date: 25 M AY 2016 21:34:50

Page 76 Rev.00

Figure 24-3: Out of Band emission at antenna terminals – HSUPA CH High



Date: 25 M AY 2016 21:34:10

Page 77 Rev.00

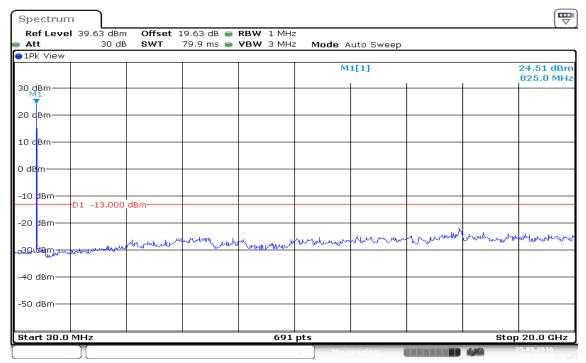
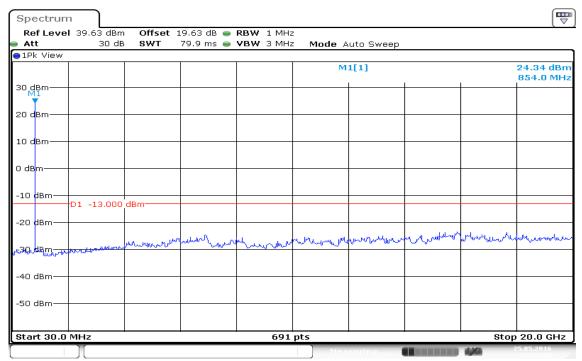

HSUPA Band V

Figure 25-1: Out of Band emission at antenna terminals - HSUPA CH Low

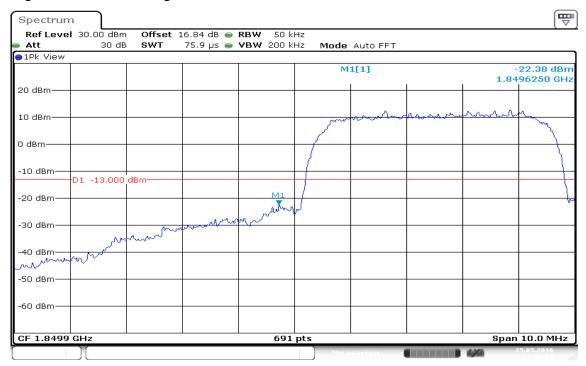
Date: 25 M AY 2016 22:18:27


Figure 25-2: Out of Band emission at antenna terminals – HSUPA CH Mid

Date: 25 M AY 2016 22:17:59

Page 78 Rev.00

Figure 25-3: Out of Band emission at antenna terminals – HSUPA CH High



Date: 25 M AY 2016 22:17:15

Page 79 Rev.00

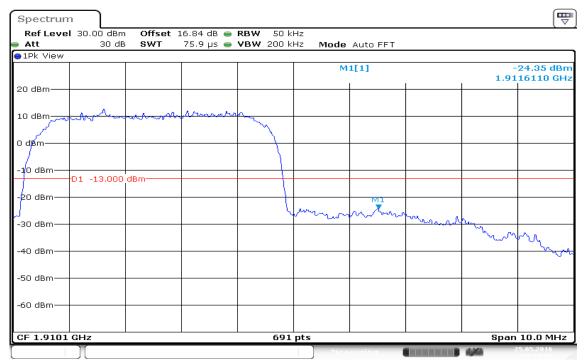
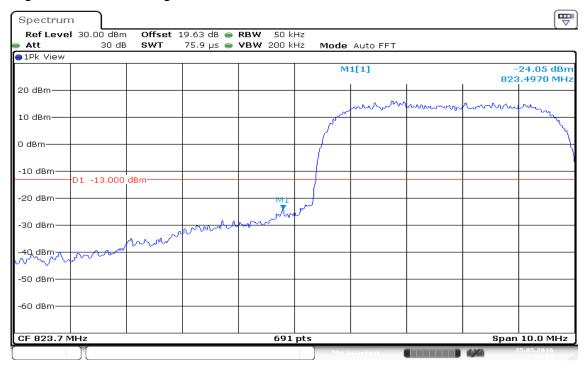

HSUPA Band II

Figure 26-1: Band Edge emissions - HSUPA CH Low

Date: 25 M AY 2016 21:36:53

Figure 26-2: Band Edge emissions – HSUPA CH High



Date: 25 M AY 2016 21:39:11

Page 80 Rev.00

HSUPA Band V

Figure 27-1: Band Edge emissions - HSUPA CH Low

Date: 25 M AY 2016 22:19:13

Figure 27-2: Band Edge emissions – HSUPA CH High

Date: 25 M AY 2016 22:20:04

Page 81 Rev.00