

User Manual

IVU-4000

Computing Box for Fleet management & surveillance

Copyright

The documentation and the software included with this product are copyrighted 2016 by Xerox Co., Ltd. All rights are reserved. Xerox Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Xerox Co., Ltd. Information provided in this manual is intended to be accurate and reliable. How- ever, Xerox Co., Ltd. assumes no responsibility for its use, nor for any infringe- ments of the rights of third parties, which may result from its use.

Acknowledgements

Intel® and Atom are trademarks of Intel Corporation.

Microsoft Windows® is registered trademarks of Microsoft Corp. All other product names or trademarks are properties of their respective owners.

Product Warranty (2 year)

Xerox warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Xerox, or which have been subject to misuse, abuse, accident or improper installation. Xerox assumes no liability under the terms of this warranty as a consequence of such events.

Because of Xerox's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Xerox product is defec tive, it will be repaired or replaced at no charge during the warranty period. For out- of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- 1. Collect all the information about the problem encountered. (For example, CPU speed, Xerox products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandize authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Part No. Printed in Taiwan

Declaration of Conformity

For FCC Class A digital device or peripheral

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

- Any changes or modifications not expressly approved by the party responsible for compliance could void the authority to operate equipment.
- This device and its antenna must not be co-located or operating in conjunction with any other antenna or transmitter.

FCC RF Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

For IC

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

For RSS-247 6.4(5) WLAN 11a

(i) the device for operation in the band 5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

(ii) for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall be such that the equipment still complies with the e.i.r.p. limit;

(iii) for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the band 5725-5850 MHz shall be such that the equipment still complies with the e.i.r.p. limits specified for point-to-point and non-point-to-point operation as appropriate; and

(iv) the worst-case tilt angle(s) necessary to remain compliant with the e.i.r.p. elevation mask requirement set forth in Section 6.2.2(3) shall be clearly indicated.

Users should also be advised that high-power radars are allocated as primary users (i.e. priority users) of the bands 5250-5350 MHz and 5650-5850 MHz and that these radars could cause interference and/or damage to LE-LAN devices.

(i) l'appareil pour fonctionner dans la bande 5150-5250 MHz est réservé à une utilisation en intérieur afin de réduire les risques d'interférences nuisibles à la co-canal systèmes mobiles par satellite;

(ii) pour les appareils avec antenne (s) détachable, le gain d'antenne maximal autorisé pour les appareils dans les bandes 5250-5350 MHz et 5470-5725 MHz doit être telle que l'équipement satisfait encore la pire limite;

(iii) pour les appareils avec antenne (s) détachable, le gain d'antenne maximal autorisé pour les appareils dans la bande 5725-5850 MHz doit être telle que l'équipement satisfait encore la pire limites spécifiées pour le point-à-point et non point-à-point, le cas échéant; opération et

(iv) l'angle d'inclinaison du pire (s) nécessaire pour rester conforme à la pire exigence de masque d'élévation énoncées dans la section 6.2.2 (3) doit être clairement indiqué.

Devraient également être informés les utilisateurs que les radars à haute puissance sont désignés comme utilisateurs principaux (c.-à-utilisateurs prioritaires) des bandes 5250-5350 MHz et 5650-5850 MHz et que ces radars pourraient provoquer des interférences et / ou endommager les appareils LE-LAN.

IC Radiation Exposure Statement:

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Technical Support and Assistance

- 1. Visit the Xerox web site at http://support.Xerox.com where you can find the latest information about the product.
- 2. Contact your distributor, sales representative, or Xerox's customer service center for technical support if you need additional assistance. Please have the following information ready before you call:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Warnings, Cautions and Notes

Warning! Warnings indicate conditions, which if not observed, can cause personal

injury!

Caution! Cautions are included to help you avoid damaging hardware or losing data. e.g.

> There is a danger of a new battery exploding if it is incorrectly installed. Do not attempt to recharge, force open, or heat the battery. Replace the battery only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Note!

Notes provide optional additional information.

Document Feedback

To assist us in making improvements to this manual, we would welcome comments and constructive criticism. Please send all such - in writing to: support@advantech.com

Packing List

Before setting up the system, check that the items listed below are included and in good condition. If any item does not accord with the table, please contact your dealer immediately.

Part number	Description	Q`ty
410000-AAAAAX	IVU MP unit, 16GB mSATA, 4GB	1
	Cfast, 1x WiFi, 1x4G, Baytrail	
410001	MDT Display MP unit	1
To be update	MDT Cable	1

Ordering Information

P/N	Description	
410000-AAAAAX	Atom E3827 /LTE/GPS/WLAN/WE8S 32bit	
410000-AAAXAX	Atom E3827 /GPS/WLAN/WE8S 32bit	
410000-AABAAX	Atom E3827 /LTE/GPS/WLAN*2/WE8S 32bit	

Safety Instructions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- Do not leave this equipment in an environment unconditioned where the storage temperature under -40° C (-40° F) or above 80° C (176° F), it may damage the equipment. Operating temperature: -30° C ~65° C.
- 8. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 9. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 10. Position the power cord so that people cannot step on it. Do not place anything over the power cord. The voltage and current rating of the cord should be greater than the voltage and current rating marked on the product.
- 11. All cautions and warnings on the equipment should be noted.
- 12. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 13. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 14. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 15. If one of the following situations arises, get the equipment checked by service personnel:
 - ,, The power cord or plug is damaged.
 - " Liquid has penetrated into the equipment.
 - ,, The equipment has been exposed to moisture.
 - " The equipment does not work well, or you cannot get it to work according to the user's manual.
 - " The equipment has been dropped and damaged.
 - " The equipment has obvious signs of breakage.
- 16. CAUTION: The computer is provided with a battery-powered real-time clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace

only with same or equivalent type recommended by the manufacture. Discard used batteries according to the manufacturers instructions.

17. THE COMPUTER IS PROVIDED WITH CD DRIVES COMPLY WITH APPRO-PRIATE SAFETY STANDARDS INCLUDING IEC 60825.

> CLASS 1 LASER PRODUCT KLASSE 1 LASER PRODUKT

- 18. This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:
 - (1) this device may not cause harmful interference, and
 - (2) this device must accept any interference received, including interference that may cause undesired operation.
- 19. CAUTION: Always completely disconnect the power cord from your chassis whenever you work with the hardware. Do not make connections while the power is on. Sensitive electronic components can be damaged by sudden power surges.
- 20. CAUTION: Always ground yourself to remove any static charge before touching the motherboard, backplane, or add-on cards. Modern electronic devices are very sensitive to static electric charges. As a safety precaution, use a grounding wrist strap at all times. Place all electronic components on a static-dissipative surface or in a static-shielded bag when they are not in the chassis.
- 21. CAUTION: Any unverified component could cause unexpected damage. To ensure the correct installation, please always use the components (ex. screws) provided with the accessory box.
- 22. Caution text concerning lithium batteries:

- 23. "Rack Mount Instructions The following or similar rack-mount instructions are included with the installation instructions:
 - A) Elevated Operating Ambient If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.
 - B) Reduced Air Flow Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.
 - C) Mechanical Loading Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.
 - D) Circuit Overloading Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on over current protection and supply wiring. Appropriate consid-

eration of equipment nameplate ratings should be used when addressing this concern.

E) Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips)."

24. CAUTION :

To avoid any possible accident, please following instructions to operate this unit.

25. CAUTION :

Only the qualified engineer by Xerox Transportation Management Solution can perform the installation in a vehicle. Improper installation can injure the operator or damage the vehicle and/or IVU4000 computer system.

Follow the installation as below to avoid overloading the circuit after adding this device.

Follow the instructions below to properly install the IVU4000 computing system in a vehicle.

- Determine the best location for mounting the unit taking into consideration the driver's field of view and ease of accessing the unit. (Only install this unit in the car passenger compartment. Suggested locations are next to driver's seat or located on center console.)
- Connect the vehicle computer to the vehicle's wiring system as below.

Routing Electrical Cables

- Establish a near route for the cable, staying clear of moving parts or hot surfaces whenever possible.
- Fix the cable to existing cable runs inside the vehicle using cable ties, but make sure they are away from any moving or hot surfaces.
- When the cabling must go through a panel, use a suitable cable gland.
- Ensure the cable does not have tight bends. The minimum recommended radius is 2.5".
- Ensure cables do not swing or chafe on the structure.
- DO NOT wind a cable in and out of the mesh on a cage.
- Ensure that all fuses installed as instruction. 32 Volt is suitable for unit.
- All power wiring must use the supplied power cable comply with intended applications of SAE with suitable ratings of electrical, temperature, exposure and flammability.

CAUTION

Do not open the cover on the front side as illustration as below before turning off the power.

Safety Precaution - Static Electricity

Follow these simple precautions to protect yourself from harm and the products from damage.

,, To avoid electrical shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other

cards while the PC is on.

" Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a card may damage sensitive electronic components.

This product is intended to be supplied by a Listed DC power source, rated 9~32Vdc, 10A minimum and Tma 65 degree C, if need further assistance with purchasing the DC power source, please contact Xerox Transportation Management Solution for further information.

Warning! 1. Input voltage rated: 9 ~ 32 Vdc.

- 2. Transport: carry the unit with both hands and handle with care.
- 3. Maintenance: to properly maintain and clean the surfaces, use only approved products or clean with a dry applicator.
- 4. CompactFlash: Turn off the power before inserting or removing CompactFlash storage cards.

Contents

Chapter	1	General Information1
	1.1 1.2 1.3	Introduction
Chapter	2	System Setup7
	2.1 2.2	A Quick Tour of the IVU4000 Computing Box
	2.3	2.2.1 Connecting the Power Cord

3.1	Setting Switches.	13
	3.1.1 Switches List	13
	3.1.2 Switch Location.	13
	3.1.3 Switch Setting	
	3.1.3.1 MiniPCIe (WWAN) Power Voltage Setup (SW2)	13
	3.1.3.2 MiniPCIe(WWAN) Support WWAN Module Setup (SW3)	13
	3.1.3.3 CAN BUS Termination (Only for test use) (SW6)	14
	3.1.3.4 MiniPCIe(WWAN) Power Voltage Setup (SW8)	14
	3.1.3.5 MiniPCIe(WWAN) Support WWAN Module Setup(SW9)	14
	3.1.3.6 I/O DB9 PIN9 Select (ON TOP LAYOUT)(CN15)	14
3.2	LED Indicator	14
33	I/O Connectors Pin Assignment	15
0.0	3.3.1 Power Connector	15
	3.3.2 HDMI Connector	15
	3.3.3 Smart Display Connector	16
	3.3.4 USB Connector (Rear side)	17
	3.3.5 USB Connector (Front side)	18
	3.3.6 VGA & RS-232 Connector.	19
	3.3.7 Video Input Connector	20
	3.3.8 VI/O Connector	21
	3.3.9 Generic I/O Connector	22
	3.3.10 LAN Connector	23

Chapter	4	Software Demo Utility Setup	29
	4.1	Introduction	
	4.2	IVCP Demonstration	30
		4.2.1 Information	
		4.2.2 Mode Control	31
		4.2.3 Low voltage Protection	32
		4.2.4 Event Delay	
		4.2.5 Alarm	34
		4.2.6 Watchdog	35
		4.2.7 G-Sensor	36
		4.2.8 Peripheral	37
		4.2.9 Storage	38
		4.2.10 Digital IO	
		4.2.11 P-sensor	40
	4.3	VCIL Demonstration	41
		4.3.1 Port selection	41
		4.3.2 Information	42
		4.3.3 Option	43
		4.3.4 CAN/J1939/OBD2/J1708/J1587	44
	4.4	Smart Display Demonstration	45
		4.4.1 Information	46
		4.4.2 Backlight	47
		4.4.3 Hot Key	48
		4.4.4 Peripheral	49
	4.5	GPS Demonstration	50
		4.5.1 Port selection	50
		4.5.2 Information	51
		4.5.3 NEMA	52
Appendix	Α	MDT	53
	A.1	MDT-1000 Specification Table A.1 MDT Specification	54 54

Chapter

General Information

This chapter gives background information on the IVU4000 Premium Computing Box.

Sections include:

- " Introduction
- " General Specifications
- " Dimensions

1.1 Introduction

IVU4000 is an industrial-grade, powered by Intel® Atom[™] E3827 SOC dual core CPU computing box designed to provide high quality video surveillance and fleet management for eBus and BRT(Bus Rapid Transit). It can work in extreme environments with features like the wide working temperature range (-30°C -65°C) and anti-shock/vibration to pass MIL-STD-810G and 5M3 standard. Its special power protection surges from impacting the system. Guarding against damage from transient car power.

IVU4000 combined with variety of I/O connectors can be connected to devices like TPMS (Tire Pressure Monitoring System), Rear view Camera (for parking monitoring) and CAN Bus devices. It has dual CAN BUS ports and support several kind of vehicle protocols (e.g. J1939,OBD-II) for vehicle diagnostics and driver behavior management. Build-in wireless communication (WWAN, WLAN) enable IVU4000 to send important

driver/vehicle/location/cargo information back to the control center. Furthermore, IVU4000 also reserved two displays/dual audio interfaces supporting different resolutions can deliver different applications to different displays; eg:one application to a fleet driver and another to passenger to IVI and digital signage application.

IVU4000 I/O Overview

1.2 General Specifications

Features

- Intel[®] Atom[™] E3827 SOC Dual core high performance processor for multitasking.
- Embedded video encoder supports up to 4 analog video inputs for D1, 30fps resolution and 4 audio inputs
- Cfast tray with key-lock protection.
- Easily paired with MDT in-vehicle smart displays via a single-cable connection.
- Intelligent vehicle power management system for ignition on/off/delay and power protection functions.
- Vehicle diagnostic interface with configurable dual CAN(J1939,OBD-II/ISO 15765) and J1708 protocols.
- Built-in LTE/GNSS/WLAN (with dual SIM cards) modules.
- Advanced Shock & anti-vibration certified by MIL-STD-810G, EN60721-3(5M3)
- Rich management & video SDK , test utility for customer evaluating.

	Processor	Intel Bay Trail SOC, Atom E3827	
	Momony	1 x SO-DIMM socket	
	wentory	4GB DDR3L-1600 Non-ECC memory module;	
Core	Graphic	Intel HD graphics 4400 1.1GHz	
	Video LIW Encodor	Stretch S7, support H.264, MJPEG format; Resolution up to D1, 30fps	
		per channel	
	0.S	WE8S 32 bits as default.	
	CEast	1 x external accessible CFast slot with cover,	
	Crasi	Default configuration: 4GB, SLC SQFlash CFast card	
Storage	mCATA	1 x mSATA slot, support system boot up	
	IIISATA	Default configuration: 16 GB;	
		15V/1.2A power output for MDT smart display unit	
		1 x 18-bits LVDS (1024 x768 MDT)	
		1 x Line-Out (*2) (For Speakers on MDT)	
		2 x UART (TX/RX, TX/RX/RTS) (For T/S, Hot keys, brightness, light-	
	DVI-I (*1)	sensor control)	
Display		1 x USB 2.0 Type A	
		1 x Reset Button Signal	
		1 x MIC-in	
HDMI		1 x HDMI 1.3b (Resolution up to 1920 x 1080)	
	Vehicle I/O Port	2 x CAN Bus (Support Raw CAN, J1939, OBD-II/ISO 15765; FW	
		configurable)	
		2 x J1708 (Support J1587)	
		1 x 4-wire RS-232/422/485 (Default RS-485, by software setting)	
	Generic I/O Port	2 x 4-wire RS-232	
		4 x Isolated DI (Dry Contact)	
I/O		4 x Isolated DO (Open collector output, driving by relay)	
		1 x Line-Out (*2)	
		1 x Mic-In	
	Audio I/O	4 X codec	
	Radio I/O	ТВС	
	Standard I/O Port	1 x USB 2.0 Type A (Front side)	
		1 x USB 3.0 Type A (Rear side, with cable clip)	

Specifications

		1 x High Speed Full RS-232, DB-9 (Pin 9 = Ring, 12V/5V @ 0.5A is BOM	
		optional by jumper setting)	
		4 x Giga LAN, with 4-pin M12 connector	
	Video / Audio input	4-ch Video inputs, Video Compression: support H.264, MJPEG format;	
	(AV1 & AV2, via dual	Resolution up to D1, 30fps per channel	
	DVI-I connector)	4-ch mono Audio inputs, Audio Compression: G.711	
	LED	5 x LEDs (PWR(Red), Storage(Green),	
		WLAN(Green),WWAN(Green),GPS(Yellow)	
	Power Button Via MDT(In-Vehicle Smart Display); System is powered or		
ir		in default	
	Reset Button	Via MDT 1 x Reset button (Rear side)	
	WLAN	IEEE 802.11a/b/g/n via Full Mini-PCIe Slot	
	WWAN	4G (LTE,HSPA+,GSM/GPRS/EDGE, EV-DO Rev a1, 1xRTT): Sierra	
		Wireless MC73xx via Full Mini-PCIe Slot	
RF		(Default: MC7354 for US)	
	GNSS	Build-in u-blox MAX-M8L GPS/Glonass/Beidou module, support AGPS	
	Antenna	4 x SMA type antenna hole for GPS, WiFI, WWAN/Cell#1,)	
		WiFi#2/Cell#2	
	Voltage input	Supports 12/24 V car power system. (9V ~ 32V wide DC input 10A, ISO	
		7637-2 & SAE J1113 compliant.)	
	Intelligent Vehicle	System power on/off/hibernate management (e.g. Programmable	
	Power	Ignition On/Off Time delay)	
Dowor	Management (iVPM 2.0)	Support Wake up Events:	
FOWEI		- Alarm (RTC) Wake up.	
		- Wake up by Call/SMS.	
		- Wake up by G-sensor.	
		System power protection (e.g.Car Battery Low Voltage Protection)	
		System monitoring and diagnostic	
Machanical	Dimensions (W x H x D)	4.92" x 13.86" x 11.44" (125mm x 352mm x 290.5mm);	
wiechanica	Weight	17lb (7.72Kg)	
	IP Rating	IP54	
	Vibration/Shock	MIL-STD-810G, EN60721-3(5M3)	
	EMC	FCC	
En vine in ment	Safety	UL/cUL, CB	
Environment	Vehicle Regulation	SAE J1455 class C, ISO 7637-2,	
	RF Regulation	FCC ID	
	Operating Temperature	-30° C ~ 65° C	
	Storage Temperature	-40° C ~ 80° C	

*1: To be paired with MDT directly. (Single-cable connection)

*2: Support dual independent audio streams. (i.e. The Line-Out interface in "Smart Display Port" and "Generic I/O Port" are driven by different Audio codecs.)

1.3 Dimensions (inches)

System Setup

This chapter details system setup on IVU4000

Sections include:

- A Quick Tour of the Computer Box
- Installation Procedures
- Running the BIOS Setup Program

2.1 A Quick Tour of the IVU4000 Computing Box

Before starting to set up the In-Vehicle Computing Box, take a moment to become familiar with the locations and functions of the controls, drives, connectors and ports, which are illustrated in the figures below.

Figure 2.2 Rear view of IVU4000

2.1.1 Installing CFast Card & SIM card

slot because default priority is SIM1. If you insert to SIM2 slot, you have to modify setting of SDK.

Remove CFast door screw and can install CFast Card & SIM Card directly. Please insert SIM Card from SIM1

SIM1 SIM2 CFast Card

Memory and WWAN WIFI installation

2.2 Installation Procedures

2.2.1 Connecting the Power Cord

Connect the three pin waterproof power cord to the DC inlet of the In-Vehicle Computing Box. On the open-wire end, one pin is reserved for positive voltage and is marked, "+"; one pin is reserved for ground and is marked, "-"; and, one pin is reserved for the ignition signal with an "ignition" mark.

Ignition on/off setting: The IVU4000 supports an ignition on/off function so that you can power on/off the IVU4000 via the ignition signal/volt-age and connect the IVU4000 vehicle ignition switch.

Pin	Definition	Color	
1	GND	TBC	
2	Car Power +	TBC	
3	GND	TBC	
4	IGNITION	TBC	

2.2.2 Power Connector

Figure 2.4 Power connector outlook

Ро	Power input connector		
1	DC-IN		
2	DC-IN_+		
3	DC-IN		
4	IGNITION_SENSE		

2.3 Running the BIOS Setup Program

In most cases, the computer will have been properly set up and configured by the dealer or SI prior to delivery. However, it may still be necessary to adjust some of the computer's BIOS (Basic Input-Output System) setup programs to change the system configuration data, like the current date and time, or the specific type of hard drive currently installed.

The setup program is stored in read-only memory (ROM). It can be accessed either when turning on or resetting the computer, by pressing the "Del" key on the keyboard immediately after powering up the computer.

The settings that are specified with the setup program are recorded in a special area of the memory called CMOS RAM. This memory is backed up by a battery so that it will not be erased when turning off or resetting the system. Whenever the power is turned on, the system reads the settings stored in CMOS RAM and compares them to the equipment check conducted during the power on self-test (POST). If an error occurs, an error message is displayed on screen, and the user is prompted to run the setup program.

Switches Setting and Connectors

This chapter explains how to set up the In-Vehicle Computing Box hardware, including instructions on setting and how to set switches and read indicators. Sections include:

- Setting Switches
- Indicators introduction
- I/O connectors pin assignment

3.1 Setting Switches

It is possible to configure the In-Vehicle Computing Box to match the needs of the application by resetting the switches.

3.1.1 Switches List

Switches	Description
SW2	MiniPCle (WWAN1) Power Voltage Setup
SW3	Clear CMOS
SW4	CAN BUS Termerater (Only for test use)
SW6	MiniPCIe (WWAN2) Power Voltage Setup

3.1.2 Switches Location

3.1.2 Switches Setting

	SW2.1	SW2.2	SW2.3
3.8V	OFF	OFF	ON
3.5V	ON	OFF	OFF
3.3V	OFF	ON	OFF

3.1.3.2 Clear CMOS

SW3.1	SW3.2	SW3.3	Description
ON	OFF	OFF	Clear CMOS
OFF	ON	OFF	Normal
OFF	OFF	ON	Clear CMOS

3.1.3.3 CAN BUS Termination (Only for test use) (SW4)

ON/ON	Disable (Default)
OFF/OFF	Enable CAN BUS Terminator(120ohm)

3.1.3.4 MiniPCIe (WWAN2) Power Voltage Setup (SW6)

	SW6.1	SW6.2	SW6.3
3.8V	OFF	OFF	ON
3.5V	ON	OFF	OFF
3.3V	OFF	ON	OFF

3.2 LED Indicator

Ċ	Power Activity	When the system is in NORMAL mode, this LED will be light
-	Indicator LED	up.(Red color)
()	WLAN Activity	The WLAN activity indicator is an orange LED, and flashes to
0	Indicator LED	show the activity of the WLAN module.(Green color)
		This LED is controlled directly by the WLAN module.
	WWAN Activity	The WWAN activity indicator is a green LED, and flashes to show
oOJUU	Indicator LED	the activity of the WWAN module. (Green color)
		This LED is controlled directly by the WWAN module.
An a	GPS Activity	The GPS activity indicator is an orange LED, and is used to show
୍ଟ୍ୟାନ୍ଷ	Indicator LED	GPS activity. This LED is controlled directly by the GPS
2		chips.(Yellow color)

0	Storage Access Indicator LED	The Storage Access indicator is a green LED, and flashes to show the activity of the Storage transportation. (Green color)
System p	ower indicator LED	
	Red LED kee Normal mode System is in I	p light 9 NORMAL mode
	Red LED flas Boot loader n F/W can be u	hing node pdate

3.3 I/O Connectors Pin Assignment

3.3.1 Power connector

Ро	Power input connector				
1	DC-IN				
2	DC-IN_+				
3	DC-IN				
4	IGNITION_SENSE				
-					

3.3.2 HDMI Connector

Connector type: HDMI Conn. 19P 0.5mm 180D(F)

	Table HDMI Cor	nnector F	Pin Assignment
Pin	Signal Depiction	Pin	Signal Depiction
1	TMDS_DATA2+	11	TMDS_Clock Shield
2	TMDS_DATA2+ Shield	12	TMDS Clock-
3	TMDS_DATA2-	13	CEC
4	TMDS_DATA1+	14	Reserved
5	TMDS_DATA1 Shield	15	SCL
6	TMDS_DATA1-	16	SDAA
7	TMDS_DATA0+	17	GND
8	TMDS_DATA0 shield	18	HDMI_Power(5V)
9	TMDS_DATA0-	19	HDMI_HPD
10	TMDS Clock		

3.3.3 MDT Connector (DVI-I)

ſ	1	2	3	4	5	6	7	8	[C]] [C]
	9	10	11	12	13	14	15	16	
	17	18	19	20	21	22	23	24	

Pin	Signal	Pin	Signal
1	LVDS1_p/[D0]	2	LVDS1_n
3	LVDS1_RTN	4	LVDS2_p/[D1]
5	LVDS1_n	6	MDT_DET#
7	Vdd_en	8	VBL_en
9	LVDS3_p/[D3]	10	LVDS3_n
11	LVDS3_RTN	12	LVDS4_p/[CLK]
13	LVDS4_n	14	LVDS4_RTN
15	BTN_RST	16	RTN
17	USB_P	18	USB_N
19	USB_RTN	20	RTN
21	AUD_RTN	22	Cover_MIC
23	SPK	24	AUD_RTN

C1	DC-IN				
C2	DC-IN				
C3	DC-IN				
C4	PWR_RTN				
C5	PWR_RTN				

3.3.4 USB Connector (Front side)

Connector type: Single USB A-Type

Table 3.	Fable 3. : USB Connector		
Pin	Signal Depiction		
1	Vcc		
2	USB_Data-		
3	USB_Data+		
4	GND		

3.3.5 USB Connector (Rear side)

Connector type: Single USB A-Type with water-proof housing

Table 3. : USB Connector			
Pin	Signal Depiction		
1	Vcc		
2	USB_Data-		
3	USB_Data+		

3.3.6 Video Input Connector

Connector type : M12 12PIN Female right angle

Table	VIO Connector Pin Assignment
1	Video_RTN1
2	Video_RTN4
3	Video_IN4
4	Video_RTN3
5	Video_IN3
6	Shielding (if needed)
7	Video_IN2
8	Video_RTN2
9	Video_IN1
10	Shielding (if needed)
11	NC
12	NC

3.3.7 Vehicle I/O Connector

VI/O Port is TREK's next generation communication interface connector which contains Dual CAN Bus and Dual J1708 interface.

Connector type: 44PIN D-SUB FEMALE CONNECTOR

Table VIO Connector Pin Assignment			
1	COM1_RX	23	Vehicle_RTN
2	COM1_CTS	24	COM4_RX
3	COM1_TX	25	COM4_CTS
4	COM1_RTS	26	COM4_TX
5	COM1_RTN	27	COM4_RTS
6	COM2_RX	28	COM4_RTN
7	COM2_CTS	29	RTN
8	COM2_TX	30	RTN
9	COM2_RTS	31	COM5_RX
10	COM2_RTN	32	COM5_CTS
11	COM3_RX	33	COM5_TX
12	COM3_CTS	34	COM5_RTS
13	COM3_TX	35	COM5_RTN
14	COM3_RTS	36	ODBII_P
15	COM3_RTN	37	ODBII_N
16	CAN_P	38	ODBII_RTN
17	CAN_N	39	J1708_P2_P
18	CAN_RTN	40	J1708_P2_N
19	J1708_P1_P	41	J1708_RTN
20	J1708_P1_N	42	RTN
21	J1708_RTN	43	RTN
22	Dallas Vehicle ID	44	RTN

3.3.8 Generic I/O Connector

Generic I/O Port is a high density connector which provides several common I/O interface for peripheral control but it is more compact and cost effective than the HDC connector (a.k.a. Extended I/O Port) on IVU4000.

Table GIO Connector Pin Assignment			
1	SIO_IN_CO	26	ISO_OUT0_COL
2	SIO_RTN_C0	27	ISO_OUT_RTN
3	SIO_IN_C1	28	ISO_OUT1_COL
4	SIO_RTN_C1	29	ISO_OUT_RTN
5	SIO_IN_C2	30	ISO_OUT2_COL
6	SIO_RTN_C2	31	ISO_OUT_RTN
7	SIO_IN_C3	32	ISO_OUT3_COL
8	SIO_RTN_C3	33	ISO_OUT_RTN
9	SIO_INC0:3_shield	34	EMER
10	SIO_IN_C4	35	EMER_RTN
11	SIO_INC_RTNC4	36	Odometer
12	SIO_IN_C5	37	Odometer_RTN
13	SIO_INC_RTNC5	38	RES_DRY_IN_0
14	SIO_IN_C6	39	RES_DRY_IN_1
15	SIO_INC_RTNC6	40	RES_DRY_IN_2
16	SIO_IN_C7	41	RES_DRY_IN_3
17	SIO_INC_RTNC7	42	RES_DRY_IN_RTN
18	SIO_IN_A0	43	RES_DRY_OUT_0
19	SIO_INA_RTN_A0	44	RES_DRY_OUT_RTN
20	SIO_IN_A1	45	RES_DRY_OUT_1
21	SIO_INA_RTN_A1	46	RES_DRY_OUT_RTN
22	SIO_IN_A2	47	RES_DRY_OUT_2
23	SIO_INA_RTN_A2	48	RES_DRY_OUT_RTN
24	SIO_IN_A3	49	RES_DRY_OUT_3
25	SIO_INA_RTN_A3	50	RES_DRY_OUT_RTN

Connector type: FEMALE D-SUB Conn. 50P

3.3.9 LAN Connector

Connector type: FEMALE M12 4P

Table	LAN Connector Pin Assignment
1	TX+
2	RX+
3	TX-
4	RX-
5	Shielding

3.3.10 Audio connector

Table Audio Connector Pin Assignment			
1	Handset SPK_p	14	Handset_MIC
2	Handset_SPK_n	15	Handset_MIC_RTN
3	Gooseneck MIC	16	Interior AGC MIC
4	Gooseneck_RTN	17	Interior AGC MIC_RTN
5	SPARE Audio In	18	Exterior AGC MIC
6	Spare_Audio_In_RTN	19	Exterior AGC MIC_RTN
7	SPARE Audio OUT	20	HOOK_OFF
8	SPARE Audio_OUT_RTN	21	GooseNeck_PTT_N
9	INTERIOR LINE OUT	22	MIC_PTT

10	INTERIOR LINE OUT RTN
11	Sheilding (PA signal)

- 12 Interior Speaker_p
- 13 Interior Speaker_n
- 23 PTT_RTN24 Exterior Speaker_p25 Exterior Speaker_n

3.3.11 Radio connector

Connector type: FEMALE D-SUB Conn. 26

Table Radio Connector Pin Assignment			
1	Voice Radio TX	14	RADIO_CHAN_SEL_2
2	Voice Radio RTN (analog)	15	RADIO_CHAN_RTN 2
3	Voice Radio RX	16	RADIO_CHAN_SEL_3
4	Voice Radio RTN (analog)	17	RADIO_CHAN_RTN 3
5	RADIO_EMER	18	RTN
6	RADIO_VOL_CON/BUSY	19	Radio_Power_Control
7	RTN	20	RADIO_PTT_N
8	RADIO_CTS	21	RTN
9	RADIO_READY	22	COM6_RX
10	RADIO_CHAN_SEL_0	23	COM6_CTS
11	RADIO_CHAN_RTN 0	24	COM6_TX
12	RADIO_CHAN_SEL_1	25	COM6_RTS
13	RADIO_CHAN_RTN 1	26	COM6_RTN

Ρ

IVU-4000 User Manual

Software Demo Utility Setup

This appendix explains the software demo utility for IVU4000 Sections include:

- "Introduction
- " How to Set up Demo Utility

4.1 Introduction

Xerox has developed demo utilities based on Xerox provided SDK APIs to let user test the functions on IVU4000. This document describes the usage of each demo utilities and also provide a basic concept of the application development on IVU4000.

For technical support, contact Xerox application engineers worldwide. For news updates, please visit our website : <u>www.Xerox.com</u> and MRM forum : http://mrmforum.Xerox.com/index.aspx

4.2 IVCP Demonstration

The IVCP demonstration application demonstrate the usage of MRM IVCP API which is a lightweight interface between OS (Operating system) and IVCP (Intelligent Vehicle Co-Processor) allow user to access the status of machine and change machine behavior such as power management, boot behavior, peripheral control etc.

4.2.1 Information

In this page, the demo application shows the current status and basic information.

	IVCP SD	K Sample	- 🗆 🗙
Alarm	Watchdog Mode Control	Peripheral Low Voltage Protection	Storage Event Delay
SDK Version: Firmware Version: Platform Name: Voltage:	4.0.11.0 000.090 0DMA0004-4 12.35	A02	
Ignition Status: Wakueup Source CPU Temp:	Unit: volt ON : Keep a live M 45	lode	
Sys 1 Temp: Sys 2 Temp:	34 32 Unit: C		
Serial Number:	TPA0000001		
		Save Default	Load Default

4.2.2 Mode Control

In this page, you can toggle "AT Mode" and "Keep Alive Mode".

Press "Save Default" to set current settings as default value of VPM(Vehicle Power Management) controller.

Press "Load Default" to load the default values.

	IVCP S	SDK Sample	- 🗆 🔜
Alarm Information	Watchdog Mode Control	Peripheral Low Voltage Protection	Storage Event Delay
AT Mode	Disable		
Keep Alive Mo	de O Disable		
Power Mode	0.201		
• 124	0 244		
		Save Default	Load Default

4.2.3 Low Voltage Protection

You can enable/disable and set the pre-boot/post-boot low voltage protection threshold in this page.

Press "Get" to get the current threshold value and Press "Set" to set the value.

Press "Save Default" to set current value as default value of VPM controller.

-	IVCP S	DK Sample	- 🗆 ×
Alarm Information	Watchdog Mode Control	Peripheral Low Voltage Protection	Storage Event Delay
Low Voltage P Min: 8.00	rotection Range 30 Max: 12.258	4 Default: 11.4266	Unit: volt
Pre-boot Low Enable Disable	/oltage Protection Threshold: 11	1.4266 Get	Set
Post-boot Low O Enable O Disable	Voltage Protection Threshold: 11	.4266 Get	Set
Reset Threshol	d	Save Default	Load Default

4.2.4 Event Delay

4.2.4.1 Power control mechanism

IVU4000 provides VPM (Vehicle Power Management) features to fulfill specific requirements. The basic mechanism is shown in the following figure.

The power of system can be controlled with the following events:

Ignition ON

The ignition signal can be used to power on or shutdown the system. When the system is in an OFF state and the ignition is turned ON, the VPM controller will countdown a delay period (ON_DELAY). Once it counts to zero, the system will be powered on.

• Ignition OFF

When the system is powered on and the ignition is turned off, the VPM controller will countdown a delay period(OFF_EVENT_DELAY). During this period, if the ignition

is switched back to ON, the VPM controller will stop countdown and reset the OFF_EVENT_DELAY. If OFF_EVENT_DELAY counts to zero, the VPM controller will trigger an power off event (i.e. power button press). System and applications which receives this event can do pre-defined tasks, like storing data and preparing to turn off the system.

After the event is triggered, VPM controller starts to countdown next delay period (HARD_OFF_DELAY). If HARD_OFF_DELAY counts to zero, the system power will be cut off abruptly to avoid unexpected IVU-4000 User Manual 34 system hang. Aldo, once VPM controller enter the HARD_OFF_DELAY stage, the process cannot be reversed.

• Low power protection

To avoid draining power, low-power protection is to ensure that there is enough power

to start the machine. When the system is ON, the VPM controller will monitor the power voltage. If the voltage is lower than the programmable threshold (LOW_THRESHOLD), the VPM controller will start to countdown a delay(LOW_DELAY). During the stage of LOW_DELAY countdown, if voltage

goes back above LOW_THRESHOLD, the VPM controller will stop counting down and exit.

If LOW_DELAY counts to zero, the VPM controller will trigger an power off event (i.e. power button press) and starts to countdown next delay period (LOW_HARD_DELAY). If LOW_HARD_DELAY counts to zero, the system power will be cut off abruptly to avoid draining the power.

4.2.4.2 Demonstration

You can set the delay and hard delay time of the low voltage event and ignition event.

Low Voltage Event

• Delay:

The delay time before VPM trigger a power off event (i.e. power button press).

Hard Delay:

The delay time counted down after a power off event is triggered. VPM will force power off the machine if the hard delay time is counted down to zero.

- **Ignition Event**
- On Delay:

The delay time before VPM trigger an power on event (power on the machine).

• Off Delay:

The delay time before VPM trigger an power off event (i.e. power button press).

• Hard Off Delay:

The delay time counted after an power off event is triggered. VPM will force power off the machine if the hard delay time is counted down to zero.

Pre-Alarm Event

• Delay: TBC

Press "Save Default" to set current value as default value.

99	IVCP	SDK Sample	- 🗆 🗙
Alarm Information	Watchdog Mode Control	Peripheral Low Voltage Protection	Storage Event Delay
- Low Voltage	Event		
Delay:	30 Hard D	elay: 60 Get	Set
Ignition Ever	nt		
On Delay	2		
Off Delay	5 Hard O	ff Delay: 60 Get	Set
Pre-Alarm Ev	rent		
Delay:	30	Get	Set
			Unit: second
		Save Default	Load Default

4.2.5 Alarm

In this page, you can set the time and set alarm wakeup time to VPM controller and enable/disable the alarm as a system wakeup source.

Press "Save Default" to set current value as default value.

2	IVCP SI	OK Sample	- 🗆 🗙
Information Mo Alarm	de Control Vatchdog	Low Voltage Protection Peripheral	Event Delay Storage
Real Time 3/10/2000		6 PM 🔹	Set
Alarm Wakeup Enable Disable Mode:	Day of Hour Minute	Week Sunday 0	✓ Get ✓ Set
		Save Default	Load Default

4.2.6 Watchdog

In this page, you can enable/disable the watchdog function and set the count time (second) for the watchdog to avoid unexpected system hang.

When watchdog is enabled, the VPM controller will start counting down the time set for watchdog and power off the machine if it is counted to 0. You can press "Trigger" button while watchdog is counting to reset the count down time and keep it counting.

Press "Save Default" to set current value as default value.

•	IVCP	SDK Sample	- 🗆 🗙
Information Alarm	Mode Control Watchdog	Low Voltage Protection Peripheral	Event Delay Storage
Watchdog Cor O Enable O Disable Time:	ntrol	G	iet Set
Current Time	e: O	Unit: second	Triger
		Save Default	Load Default

4.2.7 Peripheral

In this page, you can enable/disable the peripheral functions such as WiFi/WWAN/GPS and also configure each serial port functions such as RS-232/RS-485/RS-422 and enable/disable its termination.

•	I	VCP SD	K Sample	Ş.	- 🗆 🗙
Information Alarm	Mode Contro Watcho	dog	Low Voltage Perij	Protection pheral	Event Delay Storage
Power Control	V WIFI	•	àPS 🔽	WWAN2	WIFI2
COM Port Mod	le				
COMA:	~	COMD:		Ge	t
COMB:	~	COME:		✓ Se	t
COMC:	~	COMF:		~	
COM Port Terr	mination				
COMA:] Enable	COMD:	🗌 Enable	Ge	t
СОМВ:] Enable	COME:	🗌 Enable		
COMC:] Enable	COMF:	🗌 Enable	Se	
			S	ave Default	Load Default

4.2.8 Storage

In this page, you can save/load arbitrary data to the private storage (256 byte) on the machine.

3	IVCP	SDK Sample	- 🗆 🗙
Information Alarm	Mode Control Watchdog	Low Voltage Protection Peripheral	Event Delay Storage
Single Byte (Hex)		
Address:	00		
Data:		Read	Write
Multi Byte (H	ex)		
Address:	00 Length:	16 Read	Write
Data:			
		Save Default	Load Default

4.3 VCIL Demonstration

The VCIL demonstration application demonstrate the usage of MRM VCIL (Vehicle Communication Interface Layer) API which allow user to access vehicle protocol easily.

4.3.1 Port selection

When first open VCIL demonstration app, you will see a port selection windows as following.

Please select the VCIL port path and press **Connect** button.

VCIL port path in different platforms have different nodes. The common path at Window is **COM7**.

•	Connec	t ×
Selec	t CAN Port:	
	M1 M2 M3 M4 M5 M6	^
CO CO CO	M7 M8 M9	~
		Connect

4.3.2 Information

In this page, the demo application shows the current status and basic information.

•						1	/CIL SI	DK Sam	ple			×
Γ	Information	Options	CAN	J1939	OBD2	J1708	J1587					
	SDK Ve	rsion:		4.0.11	.0							
	Firmware	e Version:		0.8								
L												

4.3.3 Option

In this page, you can the set the protocol for each port.

•					VCIL S	DK Sample	9			×
Information	Options	CAN J	1939 OB	D2 J1708	J1587	1				
Protoc	Col Control Port 0:	AN 339 8D2	CAN Po	rt 1: CAN J193: OBD:	3	J1708 Port 0:	J1708 J1587	J1708 Port 1:	J1708 J1587	
										Reset

4.3.4 CAN / J1939 / OBD2 / J1708 / J1587

To use CAN / J1939 / OBD2 / J1708 / J1587 protocol on each port, please click on corresponding tab to switch to the page of specific protocol, then you can send/read message on specific port by setting the detail items.

	CAN		VCIL SDK Sam	ple		
Receive: Pollir	ig Mode () Event Mode	708 J1587		 Enable Receive 	Clear Message
Timestamp	Port	ID(HEX)	DLC Data(HEX)			
Port 0	~	Baud Rate:	250 kBit/s ♥	Set		Filter Setting
Port 0 ID(Hex): D 001 8	V LC:	Baud Rate: Data(07): 11 22 33	250 kBit/s ♥ 44 55 66 7	Set 7 88		Filter Setting

			V	CIL SDK S	ample			
nformation Opti	ions CAN	J1939	0BD2 J1708	J1587				
Receive: 🔘	Polling Mode	⊖ Eve	nt Mode				 Enable Receive 	Clear Messag
Timestamp	Port	PRI	PGN	DST	SRC	DLC	Data(HEX)	
Port 0	~							Filter Setting
Port 0 PGN(Hex) :	V DLC:	Data	(064):					Filter Setting
Port 0 PGN(Hex) : 00FEF6	▼ DLC: 8 €	Data FF88	(064): SFFFFFFFFFFFFF					Filter Setting
Port 0 PGN(Hex) : 00FEF6 Priority:	✓ DLC: 8 ᢏ Destination	Data FF88	(064): SFFFFFFFFFFF ce:					Filter Setting
Port 0 PGN(Hex) : 00FEF6 Priority: 6 🗣	✓ DLC: 8 € Destination FF €	Data FF88 Sour FC	(064): SFFFFFFFFFF ce:					Filter Setting

formation Optic	ons CAN	J1939	UBD2 J1708	J1587			_	
Receive: 🖲 P	olling Mode	⊖ Ever	nt Mode				 Enable Receive 	Clear Messag
Timestamp	Port	PRI	Туре	DST	SRC	DLC	Data(HEX)	
Port 0	~							Film Catting
Port 0	~							Filter Setting
Port 0 Type :	V DLC:	Data	(064):					Filter Setting
Port 0 Type : Physical V	▼ DLC: 2 ♀	Data 0100	(064):					Filter Setting
Port 0 Type : Physical V	DLC:	Data(0100 Source	(064):)					Filter Setting

nformation Option:	s CAN J	1939 08	3D2 J1	708 J1587	1			
Receive: 🖲 Pol	ling Mode () Event I	Mode			•	Enable Receive	Clear Messag
Timestamp	Port	MID	DLC	Data(HEX)				
Port 0	~							Filter Setting
Port 0 MID(Hex) :	V DLC:	Data(0	20):				[Filter Setting
Port 0 MID(Hex) : 0	♥ DLC: 8 €	Data(0 112233	20):	7788				Filter Setting
Port 0 MID(Hex) : 0 🚖 Priority:	▼ DLC: 8 ≑	Data(0 112233	20): 4455667	7788			[Filter Setting

formation 0p	otions (CAN	J1939	OB	D2 J	1708	J1587									
Receive: 🔘	Polling	Mode	() Ev	ent M	lode							√ E	nable F	Receive	e	Clear Messa
Timestamp		Port	t MI		PID		DLC	Da	ata(HE>	<)						
Port 0	~	1														Filter Califica
Port 0	~]														Filter Setting
Port 0 MID(Hex) :	DLC]	Da	a(02	20):											Filter Setting
Port 0 MID(Hex):	DLC 8		Da 111	a(02	20): 445566	7788]					Filter Setting
Port 0 MID(Hex) : 0	DLC 8 PID] • (Hex):	Da 11	a(02	20): 445566	7788]					Filter Setting

4.4 Smart Display Demonstration

The smart display demonstration application demonstrate the usage of MRM SDP API which is a lightweight interface between OS (Operating system) and SDP (Smart Display Co-Processor) allow user to control the font-end display, backlight setting, hotkey, peripheral control, etc.

4.4.1 Information

In this page, the demo application shows the current status and basic information.

•	Smart Display SDK Sample –	×
Information Backlight Ho	ot Key Peripheral	
SDK Version: Firmware Version: Platform Name: Illuminance:	4.0.11.0 000.090 0DMA0003-A02 12	
Temperature:	23.5 Unit: C	
Serial Number:	TPE1457005	
Reset Firmware	Save Default Load Default	

4.4.2 Backlight

In this page, you can set the levels for backlight, the brightness for each level and the current brightness level.

Smart Display SDK Sample	- 🗆 🗙
Information Backlight Hot Key Peripheral	
Level Range Minimum: 1 0 Maximum: 1 30 Get	Set
	36
Level: 1 V Get	Set
Brightness	
Level: 0 🗸 Brightness: 0 🗸 Get	Set
Reset Firmware Save Default	Load Default

4.4.3 Hot key

In this page, you can monitor the press state of each hot key and set the LED brightness of the hot keys.

Information Backlight Hot Key Peripheral
Key States
1: 0 2: 0 3: 0 4: 0 5: 0 Read Mode:
 Polling Callback
LED Brightness
Brightness: 30 V Get Set
Reset Firmware Save Default Load Default

4.4.4 Peripheral

In this page, you can control the status of peripheral devices.

Speaker

Enable/disable speaker volume.

• USB

Enable/disable power of Rear-end USB port.

 Bluetooth Enable/disable power of the Bluetooth function built in MDT system.

🖳 Smart Display SDK Sample – 🗆 🗙	
Information Backlight Hot Key Peripheral	_
Speaker ✓ Mute	
USB Power	
Bluetooth Power	
Reset Firmware Save Default Load Default	

4.5 Multi-purpose Input Output Demonstration

The MIO (Multi-purpose Input Output) demonstration application demonstrate the usage of MRM MIOAPI which is a lightweight interface between OS (Operating system) and MIO module allows user to easily control Multi-purpose Input Output setting (Ex: Odometer, I2C, Audio, Radio, GPS and etc.).

The GPS demonstration application demonstrate the usage of MRM GPS API which is a lightweight interface between OS (Operating system) and GPS module allows user to easily get GPS information.

4.5.1 Information

3		MIO S	DK Sample		
Odometer	1-Wire([)S2431)	Audio Path	Radio	GPS_FWD
Information	12C	G-Sensor	G-Sensor Alar	m Digital	IO ADC
SDK Version: Firmware Versio	on:	4.0.11.0 000.090			
Temperature:		30.1 Unit: C			

In this page, the demo application shows the current status and basic information.

4.5.2 I2C

9 <mark></mark>	MIO S	DK Sample		- 🗆 🗙
O dometer Information	1-Wire(DS2431) I2C G-Sensor	Audio Path G-Sensor Alar	Radio rm Digital	GPS_FWD IO ADC
−Write (hex)− Type: Device:	byte-data byte	Command:		
Data: Read (hex)				Write
Type: Device: Data:	 byte-data O byte v 	Command:		Read

4.5.3 G-Sensor

In this page, you can et resolution and get value of G-sensor

		MIO SDK Sa	ample		
Odometer	1-Wire(DS2431) Audio	Path	Radio	GPS_FWD
Information	12C G-9	Sensor G-	Sensor Alarr	n Digit	al IO ADC
- G-Sensor Co Resolut	ntrol ion: 16G 🗸 🗸			Get	Set
- G-Sensor Va	lue 12			1020	Thit was
heal:	x. 12	y34	۷.	000	UNLC ING
Avg.:	4	51		363	
G-Sensor Of	set				
×	у:	z: [Get	Set
Re	set		Unit: mg	calibra	ation

4.5.4 G-Sensor Alarm

In this page, you can enable/disable the G-sensor Alarm function and set the threshold to trigger Gsensor alarm (2000mg to 16000mg). When you enable the alarm function, you can see the alarm value when the target machine receives greater than alarm threshold.

•			MIOS	SDK Sample			×
F	Odometer Information	1-Wire(DS 12C	2431) G-Sensor	Audio Path G-Sensor Ala	Radio rm Digi	GPS_FV tallO AD	VD DC
	G-Sensor Ak O Enabl Thresh	arm e	Unit: mg		Get	Set	
	×	Y		Z		Clear	

4.5.5 Digital IO

In this page, you can monitor the digital input status and enable/disable digital output.

DI1 default is normal digital input and can be set as dedicated reverse signal input.

Odometer	1-Wire	(DS2431)	Audio Pa	th	Radio	GPS_F	FW
nformation	12C	G-Sensor	G-Sen	sor Alarm	Digita	110 4	ADC
Digital Input							
Debounce	Time:		v		Clear	Set	
Debounce Digital Oupu	t		~		Clear	Set	
Debounce Digital Oupu	t		~		Clear	Set	
Debounce Digital Oupu MIO_DO MIO_DO	Time:	PA4 ^ PA5	~	High	Clear	Set	
Debounce Digital Oupu MIO_DO_ MIO_DO_ MIO_DO_	DDMETER_ ODMETER_ ODMETER_ ODMETER_	PA4 A PA5 PA6		High	Clear	Set	
Debounce Digital Oupu MIO_DO MIO_DO MIO_DO MIO_DO MIO_DO	Time: 0DMETER_ 0DMETER_ 0DMETER_ AMP3_MUT AMP3_SD	PA4 ^ PA5 PA6 E	~	High	Clear	Set	

4.5.6 ADC

In this page, you can read the specific analog to digital signal value of internal MIC or External MIC..

-		MIO S	DK Sample		- 🗆 🗙
Odometer	1-Wire(D	S2431)	Audio Path	Radio Digital IC	GPS_FWD
Analog-to-Dig	ital	d ochion			
Interr	al MIC 🛛 🔘	External MIC			
Value:				Re	ead

4.5.7 Odometer

In this page, you can read and clear the odometer value. In addition, you also can set the odometer's threshold value for controlling vehicle status.

•		MIO S	DK Sample			×
Information Odometer	I2C 1-Wire(D	G-Sensor S2431)	G-Sensor Ala Audio Path	rm Digita Radio	IIO ADC GPS_FWD	
- Odometer-						
Value:		Re	ad C	lear F	Read Clear	
- Threshold						
Value:	1	U	lp D	own		

4.5.8 1-Wire (DS2431)

In this page, you can read/write 1_wire EEPROM (DS2431) ID and EEPROM data.

22		MIO S	DK Sample			×
Information Odometer	I2C 1-Wire(E	G-Sensor (\$2431)	G-Sensor Ala Audio Path	rm Digita Radio	al IO ADC GPS_FWD	
- Test Read 6	4-bits Rom					
					Read	
Test Read 1	byte from EEI	PROM				
Offset:	0	Value:			Read	
Write 1 Row	(8 byte) to EE	PROM				
Row:	~			_		
Value:(H	EX)				Write	

4.5.9 Audio Path

In this page, you can set the audio value for each audio path, and check the behavior for each setting.

2		MIO SD	K Sample		×
Information Odometer	I2C 1-Wire(DS	G-Sensor 2431)	G-Sensor Alarm Audio Path	Digital IO Radio	ADC GPS_FWD
MUX1			MUX2		
PGA			PGA		
117	· · ·	~	L2_L 117	~	~
L3_L 117	v	~	L3_L 117	· ·	~
L1_L 117		~	L1_L 117	· ·	~
L1_R 117		~	L1_R 117	~	~
L3_R 117		~	L3_R 117	· ·	~
L2_R 117		~	L2_R 117	· ·	~
AMP2	~		AMP1	~	
AMP3	~	Reset			Reset
				Play Left Channel	Play Right Channel

4.5.10 Radio

In this page, you can read/set the radio I/O and GPS FWD functions.

Information Odometer	I2C 1-Wire(D	G-Sensor (\$2431)	G-Sensor Ala Audio Path	rm Digita Radio	al IO GPS	ADC _FWD
Odometer Input	1-Wire(D	(\$2431)	Audio Path	Radio	GPS	_FWD
Input						
Value:				Rea	ad	
MIO_RADIO MIO_RADIO MIO_RADIO MIO_RADIO MIO_RADIO MIO_RADIO)_OUT_RAD)_OUT_RAD)_OUT_RAD)_OUT_RAD)_OUT_RAD	DIO_PTT DIO_PWR_CRE DIO_BUSY DIO_EMER DIO_CH_SEL3	EL Î	Hig	jh	
MIO_RADIO)_OUT_RAD output can t	DID_CH_SEL2	d using the SHIFT,	CTRL, and arro	w ow keys	

4.5.11 GPS_FWD

In this page, you can set the specific DI pin mapping to GPS FWD, this will link GPS FWD signal to vehicle by that specific DI pin.

	MIO SDK Sample - 🗆						
Information	12C	G-Sensor	or G-SensorAlarm Dig		gital IO ADC		
Odometer	1-Wire(DS2431)		Audio Path	Radio	GPS_FWD		
Hook GPS_PA MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01 MI0_DI_I01	MD to Digital MCU_SIO_IN, MCU_SIO_IN,	Input Pin _A3 _A2 _A1 _D3 _D2 _D1 _D0 _C7 _C6 _C4 _C3 _C2 _C1 _C0 _Get	Invert GPS_Fv	/D			

MDT

This appendix explains the MDT detailed information.

A.1 MDT Specifications

MDT Specifications				
	Model	MDT		
	Design Compatible Models	Paired with IVU 4000		
	Resolution	1024*768		
Display	Brightness (cd/m ²)	1000 (typical) without touchscreen		
	Viewing Angle	-80° ~80° (H) / -80° ~80° (V)		
	Lamp Life (hrs)	10,000hrs (TYP. @IF=120mA, Ta=25℃)		
	Lamp type	LED		
Touchscreen	Touchscreen	Resistive, 5-Wire, Anti-glare		
	Speaker	2 watts		
Front plane	Hotkeys	Supports 5 hotkeys (user defined)		
i rom plane	Brightness Control	Light sensing (default), manually controlled		
	Bightiess Control	by button (optional)		
	USB Port	X2		
Back nlane	MDT Port (DVI-I)	X1		
Dack plane	Mic in	X1		
	Rest Button	X1		
Power	DC input	15V± 5%		
	Power Consumption(Max.)	16W		
	Mounting	Design compatible with RAM mount		
	Material	PC+ABS		
Mechanical	Weight	4.3 lbs		
	Dimension	9.53" x 11.1"x 1.85" inch		
	IP Rating	IP55		
Environment	Operating Temperature	-30 to 65°C		
	Storage Temperature	-40 to 85°C		
	Vibration	MIL-STD-810G		

Note: The Brightness control is adjusted by the auto light sensor in the front panel as default; it is also defined by button on the front panel by manual.

C. 5 Programmable hotkeys

Figure A.1 MDT Front View

Figure A.2 MDT Rear View
www.Xerox.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission of the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Xerox Co., Ltd. 2010