

FCC Radio Test Report FCC ID: M82-FWA1012VC

This report concerns: Original Grant

Project No. : 1807T071

Equipment: Network Security Platform

Test Model : FWA-1012VC

be any alphanumeric character, blank or "-".)

Applicant: Advantech Co., Ltd.

Address : No.1, Alley 20, Lane 26, Rueiguang Road, Neihu

District, Taipei 11491, Taiwan, R.O.C.

Date of Receipt : Aug. 02, 2018

Date of Test : Aug. 02, 2018 ~ Sep. 14, 2018

Issued Date : Sep. 19, 2018 Tested by : BTL Inc.

Technical Manager

(James Chiu)

Authorized Signatory:

Sean Chen

(Sean Chen

BTL INC.

No.18, Ln. 171, Sec. 2, Jiuzong Rd.,
Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

TEL: +886-2-2657-3299 FAX: +886-2-2657-3331

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FCCP-3-1807T071 Page 2 of 58

CONTENTS

REPO	RT ISSUED HISTORY	5
1	CERTIFICATION	6
2	SUMMARY OF TEST RESULTS	7
2.1	TEST FACILITY	8
2.2	MEASUREMENT UNCERTAINTY	8
3	GENERAL INFORMATION	11
3.1	DESCRIPTION OF EUT	11
3.2	TEST MODES	12
3.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM	1
	TESTED	13
3.4	SUPPORT UNITS	13
4	RF POWER OUTPUT TEST	14
4.1	LIMIT	14
4.2	TEST PROCEDURE	14
4.3	DEVIATION FROM TEST STANDARD	14
4.4	TEST SETUP	14
4.5	TEST RESULT	14
5	OCCUPIED BANDWIDTH TEST	15
5.1	TEST PROCEDURE	15
5.2	DEVIATION FROM TEST STANDARD	15
5.3	TEST SETUP	15
5.4	TEST RESULT	15
6	OUT OF BAND EMISSIONS TEST	16
6.1	LIMIT	16
6.2	TEST PROCEDURE	16
6.3	DEVIATION FROM TEST STANDARD	16
6.4	TEST SETUP	16
6.5	TEST RESULT	16
7	SPURIOUS EMISSIONS AT ANTENNA TERMINALS TEST	17
7.1	LIMIT	17
7.2	TEST PROCEDURE	17
7.3	DEVIATION FROM TEST STANDARD	17
7.4	TEST SETUP	17
7.5	TEST RESULT	17
8	FIELD STRENGTH OF SPURIOUS RADIATION TEST	18
8.1	LIMIT	18
8.2	TEST PROCEDURE	18
8.3	DEVIATION FROM TEST STANDARD	18
8.4	TEST SETUP	18
8.5	TEST RESULT	19
9	FREQUENCY STABILITY TEST	20
9.1	LIMIT	20

9.2	TEST	PROCEDURE	20
9.3	DEVIA	TION FROM TEST STANDARD	20
9.4	TEST	SETUP	20
9.5	TEST	RESULT	20
10	LIST OF	MEASURING EQUIPMENTS	21
11	EUT TES	T PHOTO	22
APPEND	IX A	RF POWER OUTPUT	24
APPEND	IX B	OCCUPIED BANDWIDTH	28
APPEND	IX C	OUT OF BAND EMISSIONS	34
APPEND	IX D	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	44
APPEND	IX E	FIELD STRENGTH OF SPURIOUS RADIATION	47
APPEND	IX F	FREQUENCY STABILITY	56

Report No.: BTL-FCCP-3-1807T071 Page 4 of 58

REPORT ISSUED HISTORY

Issue No.	Description	Issued Date
BTL-FCCP-3-1807T071	Original Issue.	Sep. 19, 2018

Report No.: BTL-FCCP-3-1807T071 Page 5 of 58

1 CERTIFICATION

Equipment : Network Security Platform

Brand Name : ADVANTECH Test Model : FWA-1012VC

Series Model : FWA-1012VCXXXXXXXXXXXXXXXXXX (where X may be any alphanumeric

character, blank or "-".)

Applicant : Advantech Co., Ltd. Manufacturer : Advantech Co., Ltd.

Address : No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan,

R.O.C.

Date of Test : Aug. 02, 2018 ~ Sep. 14, 2018

Test Sample : Production Unit Standard(s) : 47 CRF FCC Part 2

47 CRF FCC Part 22, Subpart H

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA-603-D-2010

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-3-1807T071) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the WCDMA Band V and LTE Band 5.

2 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Clause No	Description	Test Result	Judgement	Tested By
§2.1046 §22.913(a)	RF Power Output	APPENDIX A	Pass	Kay Wu
§2.1049 §22.917(b)	Occupied Bandwidth	APPENDIX B	Pass	Kay Wu
§2.1051 §22.917(a)	Out of Band Emissions	APPENDIX C	Pass	Kay Wu
§2.1051 §22.917(a)	Spurious Emissions at Antenna Terminals	APPENDIX D	Pass	Kay Wu
§2.1053 §22.917(a)	Field strength of spurious radiation	APPENDIX E	Pass	Toby Tian
§2.1055 §22.355	Frequency stability	APPENDIX F	Pass	Kay Wu

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.

Report No.: BTL-FCCP-3-1807T071 Page 7 of 58

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

CB08: (FCC RN:674415; FCC DN:TW0659; IC Assigned Code:20088-1)
No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

CB11: (FCC RN:674415; FCC DN:TW0659; IC Assigned Code:20088-2)
No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

CB15: (FCC RN:674415; FCC DN:TW0659; IC Assigned Code:20088-5)
No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

CB16: (FCC RN:674415; FCC DN:TW0659; IC Assigned Code:20088-6)
No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

TR03: (FCC RN:674415; FCC DN:TW0659)
No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted test:

Applied	Parameter	Uncertainty
	RF Power Output	± 024 dB
	Frequency stability	± 1.2x10 ⁻⁷
	Occupied Bandwidth	± 3.8 %
	Spurious Emissions at Antenna Terminals	± 2.71dB
	Temperature	± 0.08 °C

Report No.: BTL-FCCP-3-1807T071 Page 8 of 58

B. Radiated emissions below 1 GHz test:

Applied	Test Site	Method	Measurement Frequency Range	Ant. H / V	U (dB)
			30 MHz ~ 200 MHz	V	3.48
	CB08	CISPR	30 MHz ~ 200 MHz	Н	3.08
	(10m)	CISPR	200 MHz ~ 1,000 MHz	V	3.94
			200 MHz ~ 1,000 MHz	Н	3.46
			30 MHz ~ 200 MHz	V	3.68
	CB08	CISPR	30 MHz ~ 200 MHz	Η	3.28
	(3m)	CISPR	200 MHz ~ 1,000 MHz	V	4.26
			200 MHz ~ 1,000 MHz	Н	3.92
	CB11 (3m)	CISPR	30 MHz ~ 200 MHz	V	4.26
			30 MHz ~ 200 MHz	Н	3.76
			200 MHz ~ 1,000 MHz	V	4.46
			200 MHz ~ 1,000 MHz	Н	3.84
			30 MHz ~ 200 MHz	V	4.20
	CB15	CISPR	30 MHz ~ 200 MHz	Н	3.64
	(3m)	CISER	200 MHz ~ 1,000 MHz	V	4.56
			200 MHz ~ 1,000 MHz	Н	3.90
			30 MHz ~ 200 MHz	V	4.20
	CB16	CISPR	30 MHz ~ 200 MHz	Н	3.64
	(3m)	CISPR	200 MHz ~ 1,000 MHz	V	4.56
			200 MHz ~ 1,000 MHz	Н	3.90

C. Radiated emissions above 1 GHz test:

Applied	Test Site	Method	Measurement Frequency Range	Ant. H / V	U (dB)
			1 GHz ~ 6 GHz	V	4.40
	CB08	CISPR	1 GHz ~ 6 GHz	Н	3.88
	(3m)	CISPR	6 GHz ~18 GHz	V	4.70
			6 GHz ~18 GHz	Н	4.08
			1 GHz ~ 6 GHz	V	4.44
	CB11 (3m)	CISPR	1 GHz ~ 6 GHz	Н	4.40
		CISER	6 GHz ~18 GHz	V	4.02
			6 GHz ~18 GHz	Н	4.00
			1 GHz ~ 6 GHz	V	4.46
	CB15	CISPR	1 GHz ~ 6 GHz	Н	4.40
	(3m)	CISPR	6 GHz ~18 GHz	V	3.88
			6 GHz ~18 GHz	Н	4.00
			1 GHz ~ 6 GHz	V	4.46
	CB16	CISPR	1 GHz ~ 6 GHz	Н	4.40
	(3m)	CISER	V	3.88	
			6 GHz ~18 GHz	Н	4.00

Report No.: BTL-FCCP-3-1807T071 Page 9 of 58

Applied	Test Site	Method	Measurement Frequency Range	U (dB)
	CB08	CISPR	18 GHz ~ 26.5 GHz	4.68
	(1m)	CISEK	26.5 GHz ~ 40 GHz	5.16
	CB11	CISPR	18 GHz ~ 26.5 GHz	4.76
	(1m)	CISEK	26.5 GHz ~ 40 GHz	5.24
\boxtimes	CB15	CISPR	18 GHz ~ 26.5 GHz	4.62
	(1m)	CISPR	26.5 GHz ~ 40 GHz	5.12
	CB16	CISPR	18 GHz ~ 26.5 GHz	4.62
	(1m)	CIOPK	26.5 GHz ~ 40 GHz	5.12

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR}, as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz : 3.6 dB Radiated Disturbance (electric field strength on an open area test site or alternative test site) - 30 MHz - 1000 MHz : 5.2 dB

3 GENERAL INFORMATION

3.1 DESCRIPTION OF EUT

Equipment		Network Security Platform										
Brand Name	/	ADVANTECH										
Test Model		FWA-1012VC										
Series Model		FWA-1012VCXXXXXXXXXXXXXXXX (where X may be any										
Series Woder		alphanumeric character , blank or "-".)										
Model Differen	ce	Different mod	del distribu	te to diff	eren	nt area.						
Power Source		DC Voltage s			C a	dapter.						
Power Rating		/P: 100-240\ O/P: 12.0V=										
Products Cove	red											
AC Adapter Ma	anufacturer	FSP		Model	FSI	P060-DIB	AN2					
WWAN Module Manufacturer	e ,	Sierra		Model	ЕМ	:M7455 (FCC ID: N7NEM7455)						
Specification in	nformation				•							
Modulation Tu		WCDMA		UL: BPSK DL: QPSK								
Modulation Typ		_TE		UL: QPSK,16QAM DL: QPSK,16QAM								
Frequency Rai	nge	TX: 824-849 MHz, RX: 869-894 MHz										
	-											
Band	Frequency	Channel Bandwidth	Modulatio Type			ım ERP er Output	Maximum Frequency Tolerance	Emission Designator				
	MHz	MHz		dB	m	W	ppm					
WCDMA Band V	836.4	-	BPSK	20.	16	0.104	0.0010	4M14F9W				
LTE Band 5	836.5	10	QPSK	20.0	67	0.117	0.0010	8M94G7D				
LIE Dand 5	844	10	16QAM	20.0	07	0.102	-0.0012	8M94W7D				

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Table for Filed Antenna:

					Antenna	Gain(dBi)	
(2)	Brand	Model	Connector	Type	WCDMA Band V	LTE Band 5	
(2)					Daria v	Daria 5	
	Advantech	TE FULL BAND DIPOLE ANTENNA(148)	SMA	DIPOLE	-0.06	-0.06	

Page 12 of 58

3.2 TEST MODES

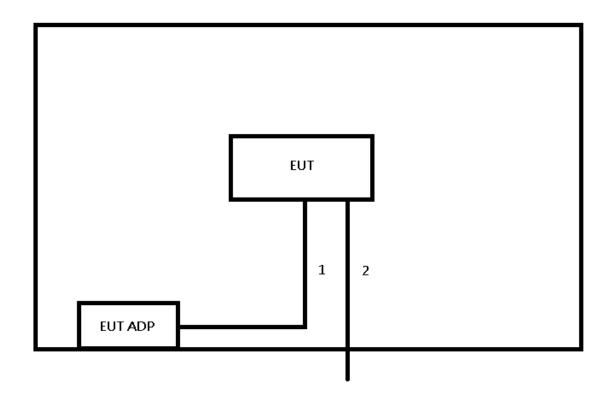
To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

WCDMA										
Test Items	Band		Test Channel							
rest items	Dana	L	М	Н						
RF Power Output	V	V	V	V						
Occupied Bandwidth	٧	V	V	V						
Out of Band Emissions	V	V		V						
Spurious Emissions at Antenna Terminals	V		V							
Field strength of spurious radiation	V		V							
Frequency stability	V		V							

	LTE														
Test Items	Band		Bandwidth (M					Modulation		RB Size			Test Channel		nnel
	Danu	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full	L	М	Н
RF Power Output	5	V	V	٧	V	-	-	V	V	V	V	V	٧	٧	V
Occupied Bandwidth	5	V	V	V	V	-	-	V	V			V	V	٧	V
Out of Band Emissions	5	٧	٧	٧	٧	•	1	V	V	V		٧	٧		V
Spurious Emissions at Antenna Terminals	5	٧	V	>	V	1	1	V	V	>				٧	
Field strength of spurious radiation	5				٧	-	-	V		>				V	
Frequency stability	5	٧	>	٧	>	-	-	V		>				٧	

NOTE:

- (1) The marker "V" means this configuration is used for testing.
- (2) The gray marker "-" means this bandwidth is not supported.


EUT TEST CONDITIONS:

Test Item	Environmental Conditions	Test Voltage							
RF Power Output	25 °C, 60 % RH	AC 120V/60Hz							
Occupied Bandwidth	25 °C, 60 % RH	AC 120V/60Hz							
Out of Band Emissions	25 °C, 60 % RH	AC 120V/60Hz							
Spurious Emissions at Antenna Terminals	25 °C, 60 % RH	AC 120V/60Hz							
Field strength of spurious radiation	23 °C, 70 % RH	AC 120V/60Hz							
Frequency stability	Normal and Extreme	Normal and Extreme							

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	YES	NO	1.5 m	Power Cable
2	NO	NO	3.0 m	LAN Cable

Report No.: BTL-FCCP-3-1807T071 Page 13 of 58

4 RF POWER OUTPUT TEST

4.1 LIMIT

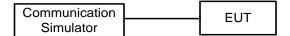
The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

4.2 TEST PROCEDURE

EIRP / ERP Power Measurement:

EIRP = Conducted Power + Antenna gain. ERP power = EIPR power - 2.15 dBi.

Conducted Power Measurement:


The EUT was set up for the maximum power with WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

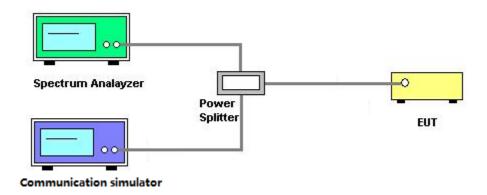
4.4 TEST SETUP

Conducted Power Measurement:

4.5 TEST RESULT

Please refer to the APPENDIX A.

5 OCCUPIED BANDWIDTH TEST


5.1 TEST PROCEDURE

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26 dB bandwidth.

5.2 DEVIATION FROM TEST STANDARD

No deviation.

5.3 TEST SETUP

5.4 TEST RESULT

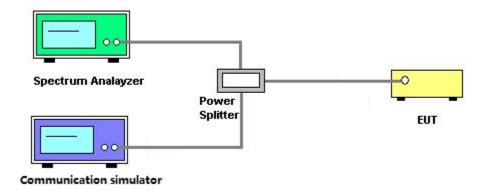
Please refer to the APPENDIX B.

6 OUT OF BAND EMISSIONS TEST

6.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


6.2 TEST PROCEDURE

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 5 MHz. RB of the spectrum is 100 kHz and VB of the spectrum is 300 kHz (WCDMA).
- c. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 13 kHz and VB of the spectrum is 51 kHz (LTE Bandwidth 1.4MHz).
- d. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 30 kHz and VB of the spectrum is 100 kHz (LTE Bandwidth 3MHz).
- e. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 100 kHz and VB of the spectrum is 300 kHz (LTE Bandwidth 5MHz/10MHz).
- f. Record the max trace plot into the test report.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

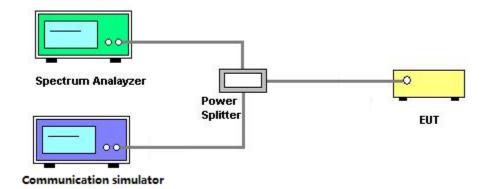
6.5 TEST RESULT

Please refer to the APPENDIX C.

7 SPURIOUS EMISSIONS AT ANTENNA TERMINALS TEST

7.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit is equal to -13 dBm.


7.2 TEST PROCEDURE

- a. The testing follows FCC KDB 971168 D01 Power Meas License Digital Systems v03r01.
- b. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- c. The band edges of low and high channels for the highest RF powers were measured. Set RBW ≥ 1% EBW in the 1 MHz band immediately outside and adjacent to the band edge.
- d. Set spectrum analyzer with RMS detector.
- e. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- f. The limit line is derived from 43 + 10log(P) dB below the transmitter power P (Watts)
 - $= P(W) [43 + 10 \log(P)] (dB)$
 - $= [30 + 10 \log(P)] (dBm) [43 + 10 \log(P)] (dB)$
 - = 13 dBm

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULT

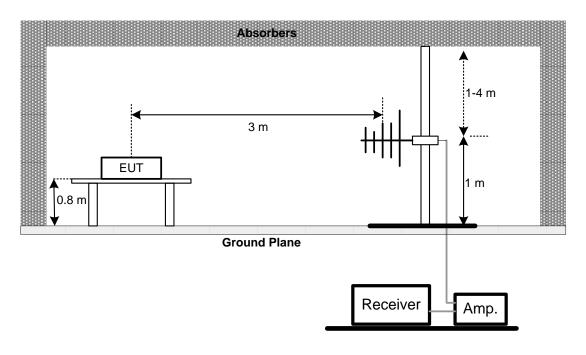
Please refer to the APPENDIX D.

8 FIELD STRENGTH OF SPURIOUS RADIATION TEST

8.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit is equal to -13 dBm.

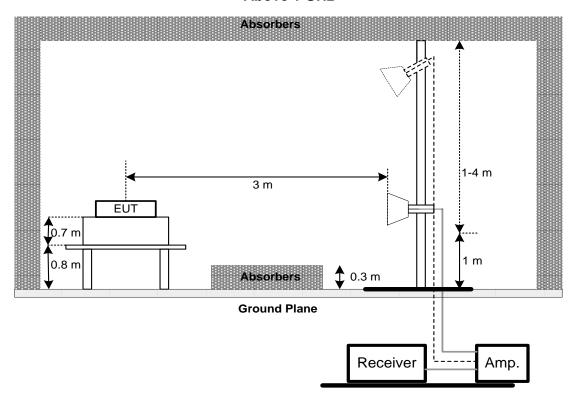
8.2 TEST PROCEDURE


- a. In the semi-anechoic chamber, EUT placed on the 0.8 m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP power can be calculated form EIRP power by subtracting the gain of dipole, ERP power = EIRP power 2.15 dBi.
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz / 3 MHz.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP


30 MHz to 1 GHz

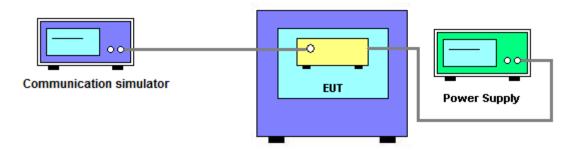
8.5 TEST RESULT

Please refer to the APPENDIX E.

9 FREQUENCY STABILITY TEST

9.1 LIMIT

Frequency range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
821 to 896	1.5	2.5	2.5


9.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- d. The frequency error was recorded frequency error from the communication simulator.

9.3 DEVIATION FROM TEST STANDARD

No deviation.

9.4 TEST SETUP

9.5 TEST RESULT

Please refer to the APPENDIX F.

10 LIST OF MEASURING EQUIPMENTS

	RF Power Output and Frequency stability									
Item	Kind of Equipment	Manufacturer	Manufacturer Type No. Serial No.		Calibrated until					
1	Wireless Communications Test Set (WCDMA)	Agilent	8960	US38080149	Oct. 16, 2018					
2	Radio Communication Analyzer (LTE)	Anritsu	MT8820C	6201525878	Nov. 04, 2018					

Occu	Occupied Bandwidth, Out of Band Emissions and Spurious Emissions at Antenna Terminals									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	EXA Signal Analyzer	Agilent	N9010A	MY54200240	Oct. 01, 2018					
2	Wireless Communications Test Set (WCDMA)	Agilent	8960	US38080149	Oct. 16, 2018					
3	Radio Communication Analyzer (LTE)	Anritsu	MT8820C	6201525878	Nov. 04, 2018					

	Field strength of spurious radiation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Preamplifier	EMCI	012645B	980267	Feb. 27, 2019					
2	Preamplifier	EMCI	EMC02325	980217	Dec. 27, 2018					
3	Preamplifier	EMCI	EMC2654045	980030	Feb. 13, 2019					
4	Test Cable	EMCI	EMC104-SM-SM- 8000	8m	Jan. 03, 2019					
5	Test Cable	EMCI	EMC104-SM-SM- 800	150207	Jan. 03, 2019					
6	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	Jan. 03, 2019					
7	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 08, 2019					
8	Signal Analyzer	Agilent	N9010A	MY52220990	Feb. 21, 2019					
9	Loop Ant	EMCI	LPA600	274	May 03, 2019					
10	Horm Ant	SCHWARZBEC K	BBHA 9120D	9120D-1342	Feb. 27, 2019					
11	Horm Ant	Schwarzbeck	BBHA 9170	187	Dec. 05, 2018					
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 15, 2019					
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 15, 2019					
14	Wireless Communications Test Set (WCDMA)	Agilent	8960	US38080149	Oct. 16, 2018					
15	Radio Communication Analyzer (LTE)	Anritsu	MT8820C	6201525878	Nov. 04, 2018					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

APPENDIX A RF POWER OUTPUT

CONTINUE ON NEXT PAGE

Report No.: BTL-FCCP-3-1807T071 Page 24 of 58

	Band		WCDMA Band V						
Antenna Gain (dBi)	-0.06	Conduc	Conducted Power (dBm) ERP Pow			Power (d	er (dBm)		
	Tx Channel	4132	4183	4233	4132	4182	4233		
	Rx Channel	4357	4407	4458	4357	4407	4458		
Fre	equency (MHz)	826.4	836.4	846.6	826.4	836.4	846.6		
	RMC 12.2K	22.36	22.37	22.33	20.15	20.16	20.12		
HS	DPA Subtest-1	21.49	21.33	21.30	19.28	19.12	19.09		
HS	DPA Subtest-2	21.61	21.37	21.38	19.40	19.16	19.17		
HS	DPA Subtest-3	21.02	20.88	20.89	18.81	18.67	18.68		
HS	DPA Subtest-4	21.01	20.85	20.82	18.80	18.64	18.61		
HS	UPA Subtest-1	21.36	21.30	21.30	19.15	19.09	19.09		
HS	UPA Subtest-2	20.32	20.19	20.21	18.11	17.98	18.00		
HS	UPA Subtest-3	19.92	19.89	19.91	17.71	17.68	17.70		
HS	UPA Subtest-4	20.72	20.62	20.56	18.51	18.41	18.35		
HS	UPA Subtest-5	21.22	21.18	21.07	19.01	18.97	18.86		

Remark: ERP power = Conducted Power + Antenna gain - 2.15.

Report No.: BTL-FCCP-3-1807T071 Page 25 of 58

	Band			LTE Band 5					
Antenna Gain (dBi)	-0	.06	Conduc	Conducted Power (dBm) ERP Power (dBm)					
Channal			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH	
Channel Bandwidth	Modulation	RB	20407	20525	20643	20407	20525	20643	
(MHz)	modulation.	Size/Offset	824.7 MHz	836.5 MHz	848.3 MHz	824.7 MHz	836.5 MHz	848.3 MHz	
		1/0	22.44	22.50	22.42	20.23	20.29	20.21	
		1/2	22.17	22.37	22.46	19.96	20.16	20.25	
	QPSK	1/5	22.18	22.30	22.31	19.97	20.09	20.10	
		3/0	21.11	21.17	21.23	18.90	18.96	19.02	
		3/1	21.20	21.29	21.30	18.99	19.08	19.09	
		3/3	21.10	21.18	21.14	18.89	18.97	18.93	
1.4		6/0	21.12	21.30	21.21	18.91	19.09	19.00	
1.4		1/0	21.46	21.86	21.88	19.25	19.65	19.67	
		1/2	21.87	21.67	21.52	19.66	19.46	19.31	
		1/5	21.10	21.46	21.75	18.89	19.25	19.54	
	16QAM	3/0	20.01	20.25	20.33	17.80	18.04	18.12	
		3/1	20.18	20.31	20.22	17.97	18.10	18.01	
		3/3	20.01	20.24	20.09	17.80	18.03	17.88	
		6/0	20.18	20.19	20.14	17.97	17.98	17.93	

	Band		LTE Band 5						
Antenna Gain (dBi)	-0	.06	Conduc	Conducted Power (dBm) ERI				Power (dBm)	
Channal			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH	
Channel Bandwidth	Modulation	RB	20415	20525	20635	20415	20525	20635	
(MHz)	Wioddiation	Size/Offset	825.5 MHz	836.5 MHz	847.5 MHz	825.5 MHz	836.5 MHz	847.5 MHz	
		1/0	22.56	22.62	22.54	20.35	20.41	20.33	
		1/7	22.29	22.49	22.58	20.08	20.28	20.37	
	QPSK	1/14	22.30	22.42	22.43	20.09	20.21	20.22	
		8/0	21.24	21.30	21.36	19.03	19.09	19.15	
		8/3	21.32	21.41	21.42	19.11	19.20	19.21	
		8/7	21.22	21.30	21.26	19.01	19.09	19.05	
3		15/0	21.24	21.42	21.33	19.03	19.21	19.12	
3		1/0	21.59	21.99	22.01	19.38	19.78	19.80	
		1/7	21.99	21.79	21.64	19.78	19.58	19.43	
		1/14	21.22	21.58	21.87	19.01	19.37	19.66	
	16QAM	8/0	20.13	20.37	20.45	17.92	18.16	18.24	
		8/3	20.30	20.43	20.34	18.09	18.22	18.13	
		8/7	20.13	20.36	20.21	17.92	18.15	18.00	
		15/0	20.30	20.31	20.26	18.09	18.10	18.05	

Remark: ERP power = Conducted Power + Antenna gain - 2.15.

	Band			LTE Band 5					
Antenna Gain (dBi)	-0	.06	Conduc	Conducted Power (dBm) ERP Power (dBm)					
Channal			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH	
Channel Bandwidth	Modulation	RB	20425	20525	20625	20425	20525	20625	
(MHz)	modulation	Size/Offset	826.5 MHz	836.5 MHz	846.5 MHz	826.5 MHz	836.5 MHz	846.5 MHz	
		1/0	22.69	22.75	22.67	20.48	20.54	20.46	
		1/12	22.42	22.62	22.71	20.21	20.41	20.50	
	QPSK	1/24	22.43	22.55	22.56	20.22	20.34	20.35	
		12/0	21.37	21.43	21.49	19.16	19.22	19.28	
		12/6	21.47	21.56	21.57	19.26	19.35	19.36	
		12/13	21.37	21.45	21.41	19.16	19.24	19.20	
5		25/0	21.39	21.57	21.48	19.18	19.36	19.27	
5		1/0	21.74	22.14	22.16	19.53	19.93	19.95	
		1/12	22.10	21.90	21.75	19.89	19.69	19.54	
		1/24	21.33	21.69	21.98	19.12	19.48	19.77	
	16QAM	12/0	20.24	20.48	20.56	18.03	18.27	18.35	
		12/6	20.50	20.63	20.54	18.29	18.42	18.33	
		12/13	20.33	20.56	20.41	18.12	18.35	18.20	
		25/0	20.50	20.51	20.46	18.29	18.30	18.25	

	Band		LTE Band 5						
Antenna Gain (dBi)	-0	.06	Conduct	Conducted Power (dBm)			ERP Power (dBm)		
Channal			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH	
Channel Bandwidth	Modulation	RB	20450	20525	20600	20450	20525	20600	
(MHz)	Modelation	Size/Offset	829 MHz	836.5 MHz	844 MHz	829 MHz	836.5 MHz	844 MHz	
		1/0	22.82	22.88	22.80	20.61	20.67	20.59	
		1/24	22.55	22.75	22.84	20.34	20.54	20.63	
	QPSK	1/49	22.56	22.68	22.69	20.35	20.47	20.48	
		25/0	21.50	21.56	21.62	19.29	19.35	19.41	
		25/12	21.59	21.68	21.69	19.38	19.47	19.48	
		25/25	21.49	21.57	21.53	19.28	19.36	19.32	
10		50/0	21.51	21.69	21.60	19.30	19.48	19.39	
10		1/0	21.86	22.26	22.28	19.65	20.05	20.07	
		1/24	22.27	22.07	21.92	20.06	19.86	19.71	
		1/49	21.50	21.86	22.15	19.29	19.65	19.94	
	16QAM	25/0	20.41	20.65	20.73	18.20	18.44	18.52	
		25/12	20.59	20.72	20.63	18.38	18.51	18.42	
		25/25	20.42	20.65	20.50	18.21	18.44	18.29	
		50/0	20.59	20.60	20.55	18.38	18.39	18.34	

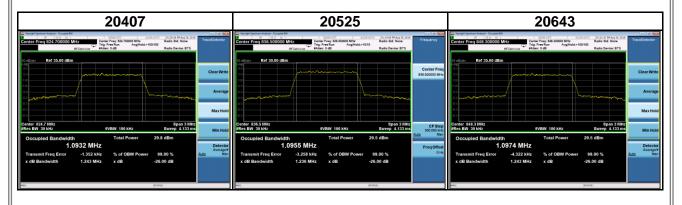
Remark: ERP power = Conducted Power + Antenna gain - 2.15.

APPENDIX B OCCUPIED BANDWIDTH

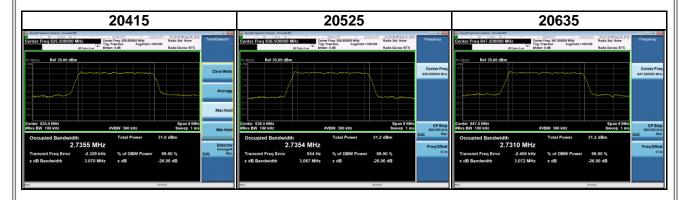
CONTINUE ON NEXT PAGE

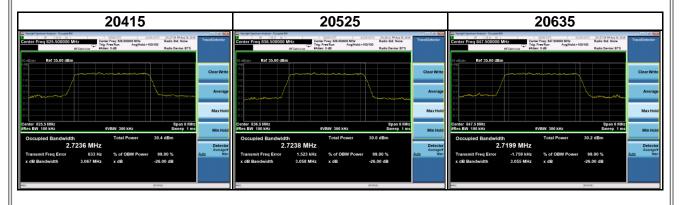
Report No.: BTL-FCCP-3-1807T071 Page 28 of 58


Band	WCDMA Band V		
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
4132	826.0	4.1399	4.740
4183	836.6	4.1351	4.725
4233	846.6	4.1251	4.706



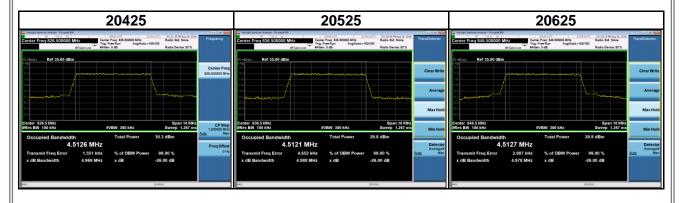
Band	LTE Band 5		
Channel Bandwidth (MHz)	1.4	Modulation	QPSK
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20407	824.7	1.0933	1.238
20525	836.5	1.0934	1.240
20643	848.3	1.0928	1.229


Band	LTE Band 5		
Channel Bandwidth (MHz)	1.4	Modulation	16QAM
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20407	824.7	1.0932	1.243
20525	836.5	1.0955	1.236
20643	848.3	1.0974	1.243



Band	LTE Band 5		
Channel Bandwidth (MHz)	3	Modulation	QPSK
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20415	825.5	2.7355	3.070
20525	836.5	2.7354	3.067
20635	847.5	2.7310	3.072

Band	LTE Band 5		
Channel Bandwidth (MHz)	3	Modulation	16QAM
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20415	825.5	2.7236	3.067
20525	836.5	2.7238	3.058
20635	847.5	2.7199	3.055

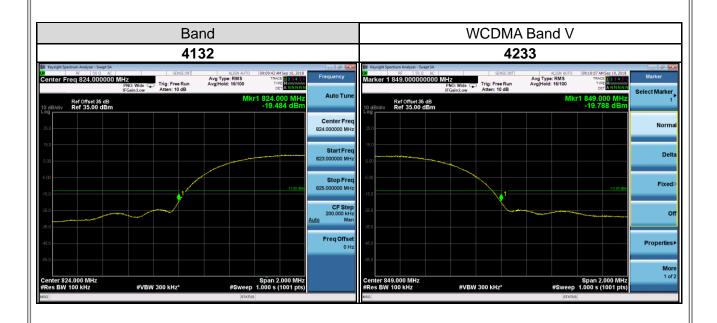


Band	LTE Band 5		
Channel Bandwidth (MHz)	5	Modulation	QPSK
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20425	826.5	4.4980	4.963
20525	836.5	4.4925	4.948
20625	846.5	4.4893	4.958

Band	LTE Band 5		
Channel Bandwidth (MHz)	5	Modulation	16QAM
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20425	826.5	4.5126	4.969
20525	836.5	4.5121	4.988
20625	846.5	4.5127	4.978

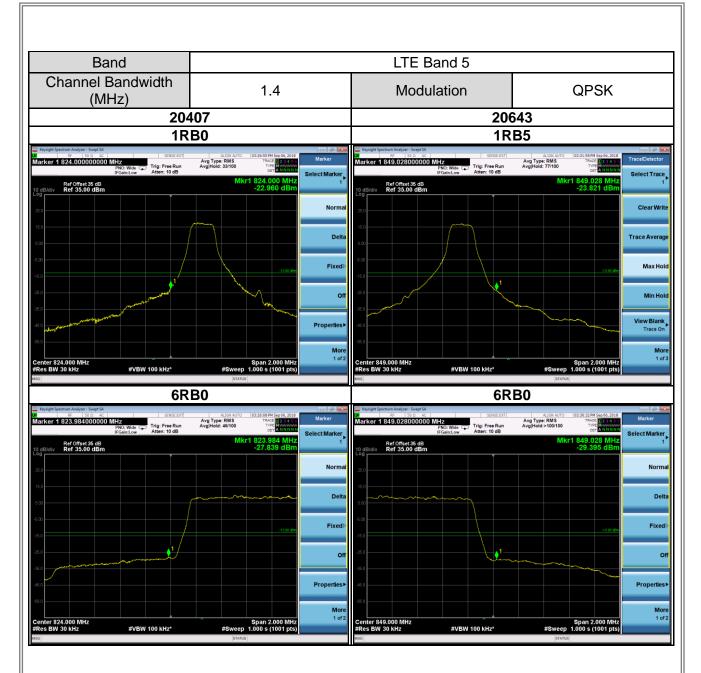
Band	LTE Band 5		
Channel Bandwidth (MHz)	10	Modulation	QPSK
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20450	829.0	8.9404	9.584
20525	836.5	8.9368	9.565
20600	844.0	8.9317	9.604

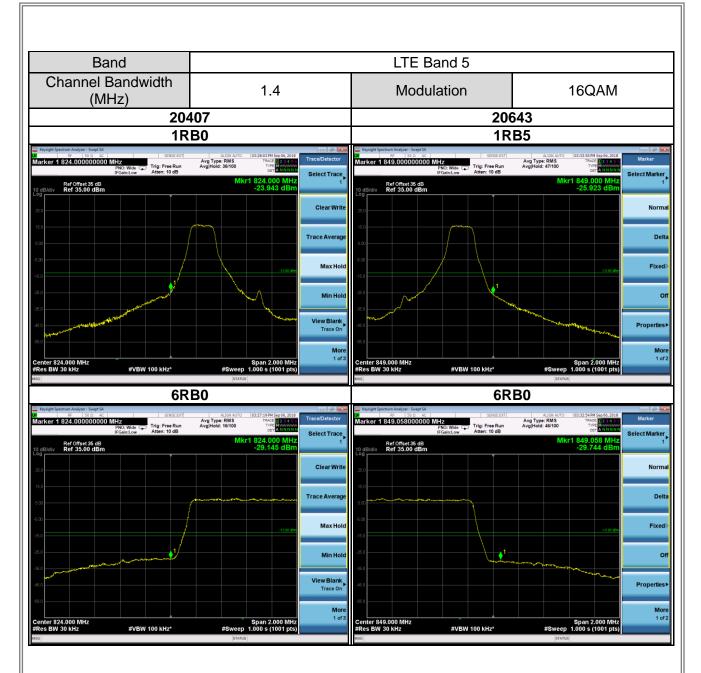
Band	LTE Band 5		
Channel Bandwidth (MHz)	10	Modulation	16QAM
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
20450	829.0	8.9393	9.691
20525	836.5	8.9192	9.638
20600	844.0	8.9242	9.262

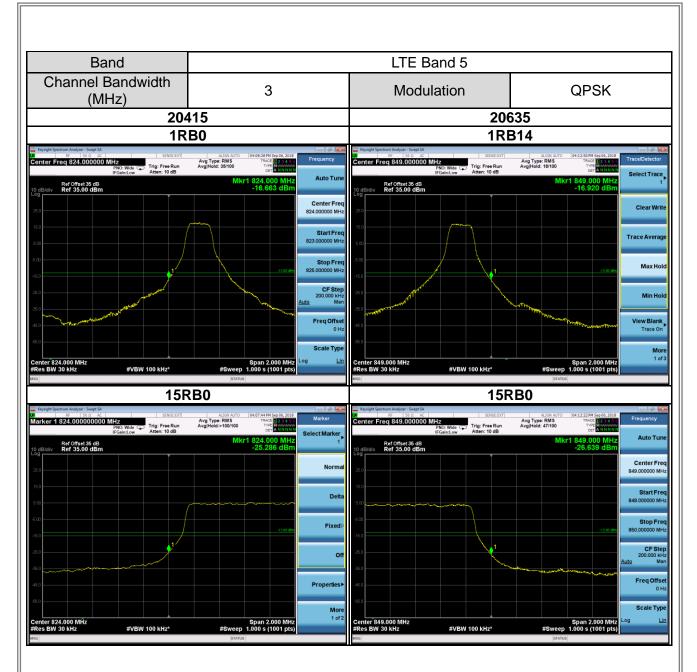

APPENDIX C OUT OF BAND EMISSIONS

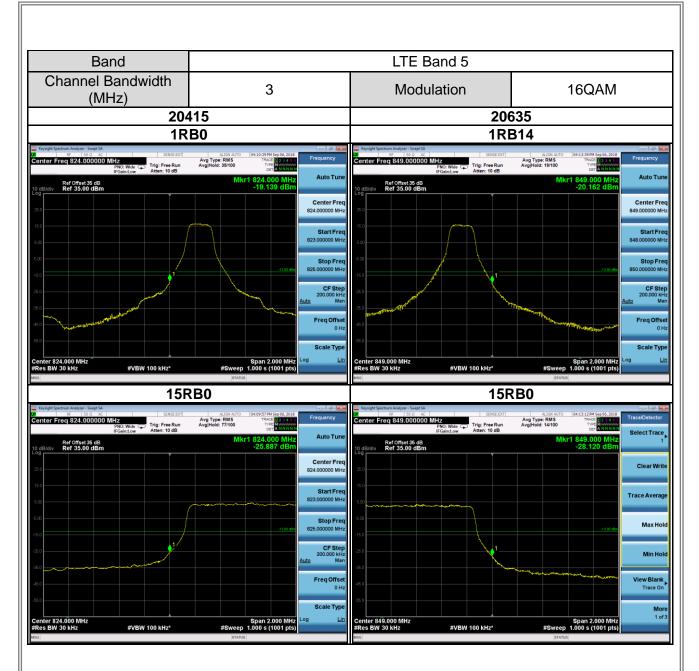
CONTINUE ON NEXT PAGE

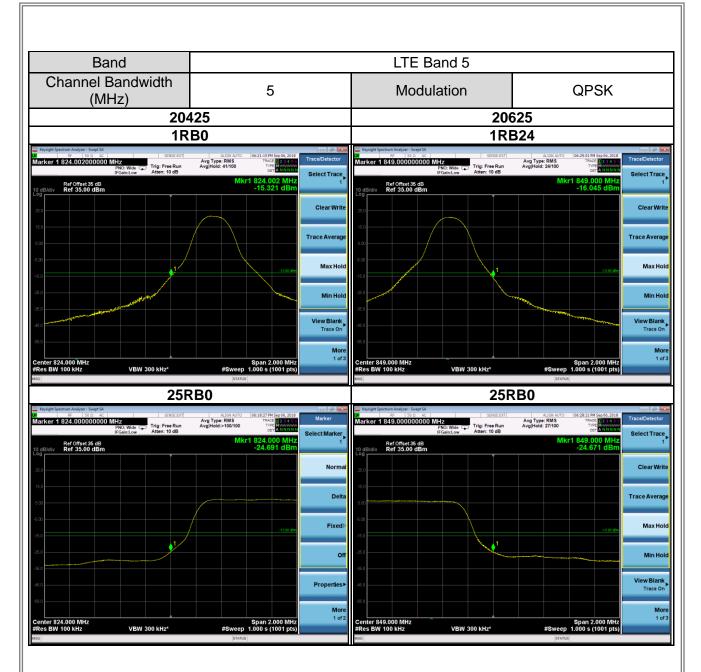
Report No.: BTL-FCCP-3-1807T071 Page 34 of 58

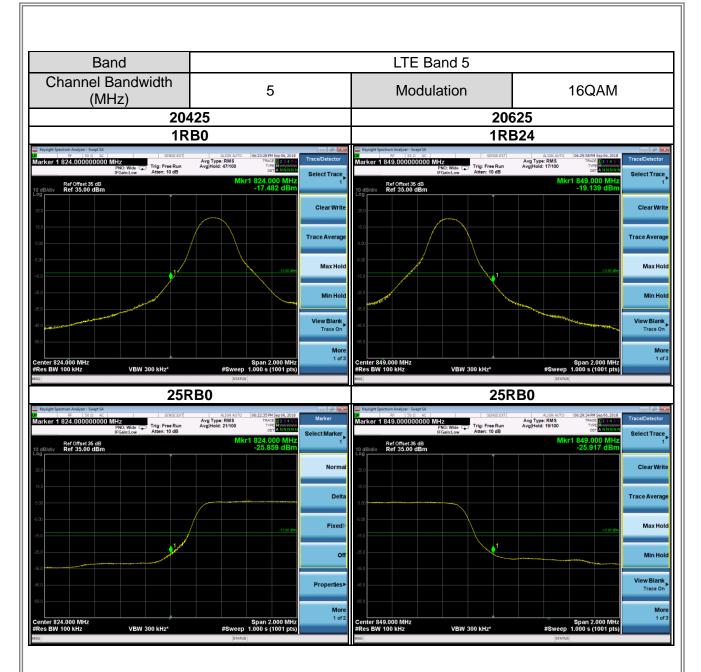


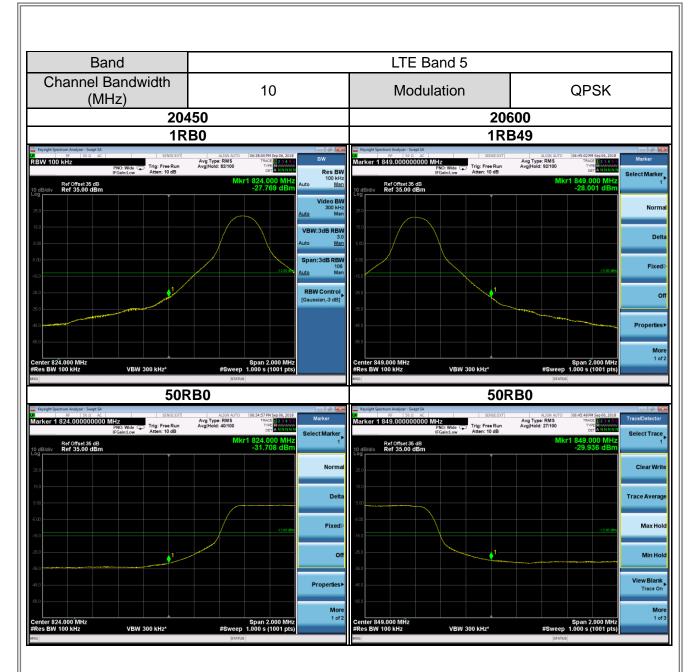


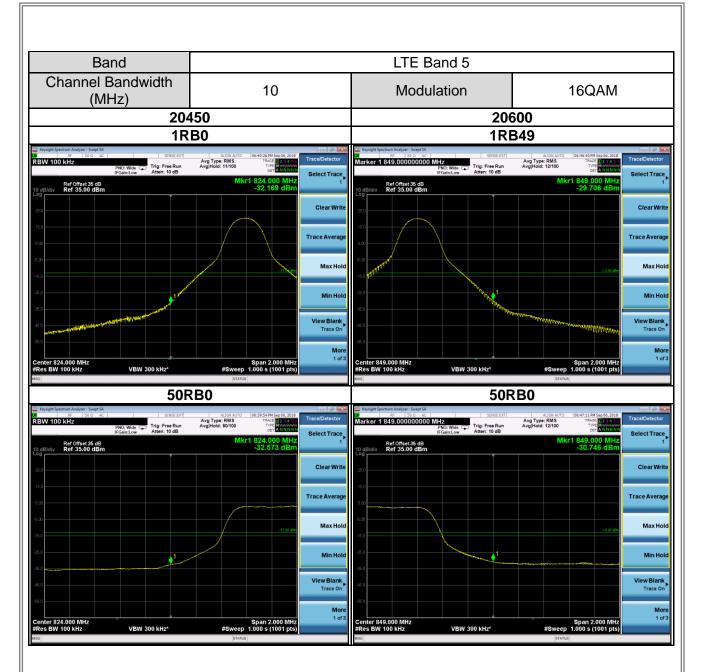


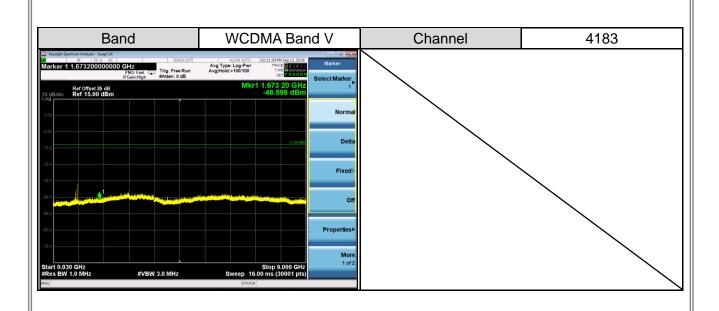






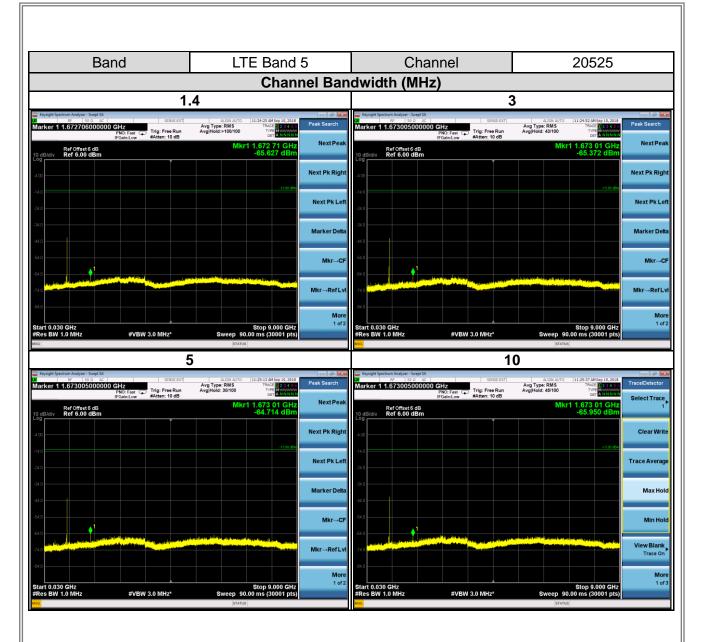


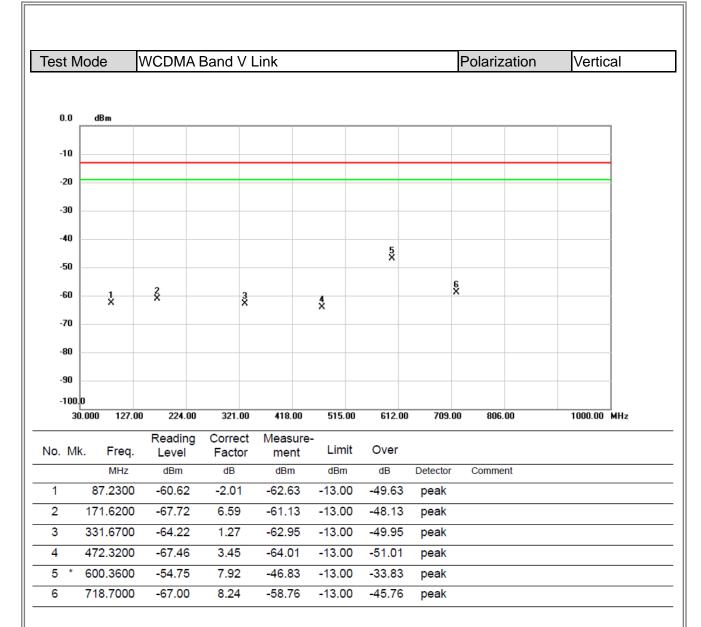



APPENDIX D SPURIOUS EMISSIONS AT ANTENNA TERMINALS

CONTINUE ON NEXT PAGE

Report No.: BTL-FCCP-3-1807T071 Page 44 of 58

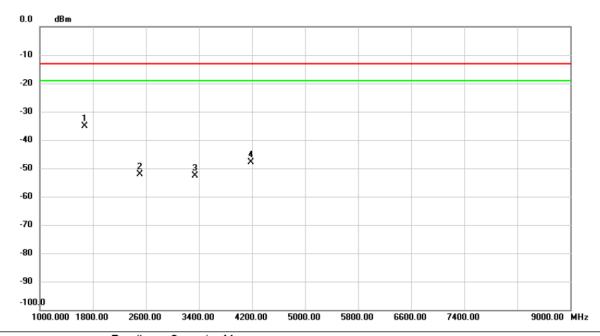



APPENDIX E FIELD STRENGTH OF SPURIOUS RADIATION

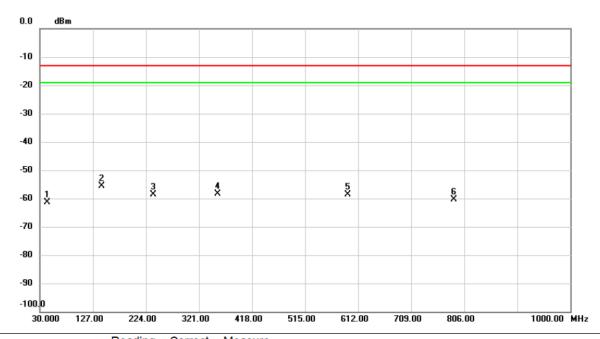
CONTINUE ON NEXT PAGE

Report No.: BTL-FCCP-3-1807T071 Page 47 of 58



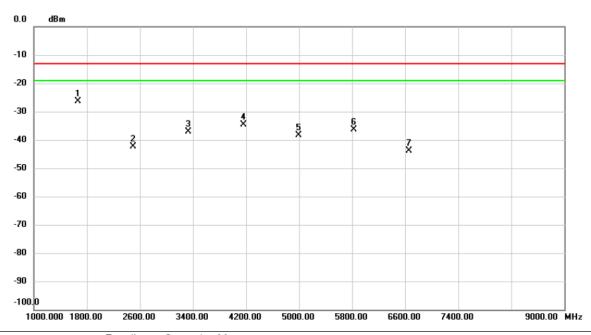


Test Mode WCDMA Band V Link Polarization Horizontal


	No.	M	k. F	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			ı	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
	1	*	1672	2.800	-35.05	0.00	-35.05	-13.00	-22.05	peak	
_	2		2509	9.200	-52.23	0.00	-52.23	-13.00	-39.23	peak	
	3		3345	.600	-52.69	0.00	-52.69	-13.00	-39.69	peak	
	4		4182	2.000	-47.86	0.00	-47.86	-13.00	-34.86	peak	

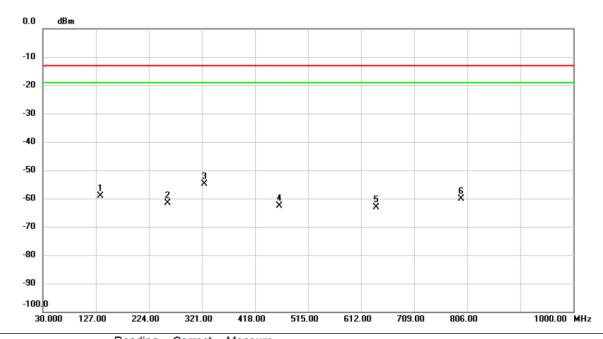
Report No.: BTL-FCCP-3-1807T071 Page 51 of 58

Test Mode	LTE Band 5_Channel Bandwidth 10 MHz_QPSK_1RB0	Polarization	Vertical



	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
	1		43.5800	-53.00	-8.48	-61.48	-13.00	-48.48	peak	
	2	*	142.5200	-59.13	3.46	-55.67	-13.00	-42.67	peak	
	3		237.5800	-60.19	1.45	-58.74	-13.00	-45.74	peak	
-	4	,	354.9500	-59.76	1.39	-58.37	-13.00	-45.37	peak	
-	5	;	593.5700	-66.58	7.87	-58.71	-13.00	-45.71	peak	
-	6		786.6000	-69.03	8.59	-60.44	-13.00	-47.44	peak	

Test Mode	LTE Band 5_Channel Bandwidth 10 MHz_QPSK_1RB0	Polarization	Vertical


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_			MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
	1	*	1664.200	-26.48	0.00	-26.48	-13.00	-13.48	peak	
	2		2496.300	-42.36	0.00	-42.36	-13.00	-29.36	peak	
	3		3328.400	-37.04	0.00	-37.04	-13.00	-24.04	peak	
	4		4160.500	-34.55	0.00	-34.55	-13.00	-21.55	peak	
	5		4992.600	-38.27	0.00	-38.27	-13.00	-25.27	peak	
	6		5824.700	-36.30	0.00	-36.30	-13.00	-23.30	peak	
	7		6656.800	-43.83	0.00	-43.83	-13.00	-30.83	peak	

Page 54 of 58

Test Mode	LTE Band 5_Channel Bandwidth 10 MHz_QPSK_1RB0	Polarization	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1		134.7600	-59.52	0.46	-59.06	-13.00	-46.06	peak	
2		257.9500	-58.17	-3.36	-61.53	-13.00	-48.53	peak	
3	*	324.8800	-54.75	-0.10	-54.85	-13.00	-41.85	peak	
4		462.6200	-65.73	3.17	-62.56	-13.00	-49.56	peak	
5		640.1300	-68.33	5.25	-63.08	-13.00	-50.08	peak	
6		795.3300	-68.98	8.95	-60.03	-13.00	-47.03	peak	
	1 2 3 4 5	1 2 3 * 4 5	MHz 1 134.7600 2 257.9500 3 * 324.8800 4 462.6200 5 640.1300	No. Mk. Freq. Level MHz dBm 1 134.7600 -59.52 2 257.9500 -58.17 3 * 324.8800 -54.75 4 462.6200 -65.73 5 640.1300 -68.33	No. Mk. Freq. Level Factor MHz dBm dB 1 134.7600 -59.52 0.46 2 257.9500 -58.17 -3.36 3 * 324.8800 -54.75 -0.10 4 462.6200 -65.73 3.17 5 640.1300 -68.33 5.25	No. Mk. Freq. Level Factor ment MHz dBm dB dBm 1 134.7600 -59.52 0.46 -59.06 2 257.9500 -58.17 -3.36 -61.53 3 * 324.8800 -54.75 -0.10 -54.85 4 462.6200 -65.73 3.17 -62.56 5 640.1300 -68.33 5.25 -63.08	No. Mk. Freq. Level Factor ment Limit MHz dBm dB dBm dBm 1 134.7600 -59.52 0.46 -59.06 -13.00 2 257.9500 -58.17 -3.36 -61.53 -13.00 3 * 324.8800 -54.75 -0.10 -54.85 -13.00 4 462.6200 -65.73 3.17 -62.56 -13.00 5 640.1300 -68.33 5.25 -63.08 -13.00	No. Mk. Freq. Level Factor ment Limit Over MHz dBm dB dB dBm dB dB <td< th=""><th>No. Mk. Freq. Level Factor ment Limit Over MHz dBm dB dBm dBm dB Detector 1 134.7600 -59.52 0.46 -59.06 -13.00 -46.06 peak 2 257.9500 -58.17 -3.36 -61.53 -13.00 -48.53 peak 3 * 324.8800 -54.75 -0.10 -54.85 -13.00 -41.85 peak 4 462.6200 -65.73 3.17 -62.56 -13.00 -49.56 peak 5 640.1300 -68.33 5.25 -63.08 -13.00 -50.08 peak</th></td<>	No. Mk. Freq. Level Factor ment Limit Over MHz dBm dB dBm dBm dB Detector 1 134.7600 -59.52 0.46 -59.06 -13.00 -46.06 peak 2 257.9500 -58.17 -3.36 -61.53 -13.00 -48.53 peak 3 * 324.8800 -54.75 -0.10 -54.85 -13.00 -41.85 peak 4 462.6200 -65.73 3.17 -62.56 -13.00 -49.56 peak 5 640.1300 -68.33 5.25 -63.08 -13.00 -50.08 peak

Test Mode	LTE Band 5_Channel Bandwidth 10 MHz_QPSK_1RB0	Polarization	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	1664.200	-28.53	0.00	-28.53	-13.00	-15.53	peak	
2		2496.300	-48.49	0.00	-48.49	-13.00	-35.49	peak	
3		3328.400	-43.94	0.00	-43.94	-13.00	-30.94	peak	
4		4160.500	-40.82	0.00	-40.82	-13.00	-27.82	peak	
5		4992.600	-50.46	0.00	-50.46	-13.00	-37.46	peak	
6		5824.700	-47.99	0.00	-47.99	-13.00	-34.99	peak	

Report No.: BTL-FCCP-3-1807T071 Page 55 of 58

APPENDIX F FREQUENCY STABILITY

CONTINUE ON NEXT PAGE

Report No.: BTL-FCCP-3-1807T071 Page 56 of 58

	Band	WCDMA Band V							
	Temperature vs. Frequency Stability								
Temperature (°C)	•	uency Error (ppm)	Limit (ppm)						
55	(0.0008	± 2.5						
50	(0.0003	± 2.5						
40	(± 2.5							
30	(± 2.5							
20	ī	± 2.5							
10	(0.0006	± 2.5						
0	(0.0010	± 2.5						
Maximum Deviation (ppm)	(0.0010	± 2.5						

	Band	WCDMA Band V					
Voltage vs. Frequency Stability							
Voltage (V)	•	Frequency Error (ppm)					
138.00	-(± 2.5					
120.00	-(0.0002	± 2.5				
102.00	-(-0.0005					
Maximum Deviation (ppm)	-(0.0002	± 2.5				

Report No.: BTL-FCCP-3-1807T071 Page 57 of 58

	Band		LTE Band 5				
Channel Bandwidth (MHz)		•	ency Error opm)	· ·			
Temperature (°C)	1.4	3	5	10	(ppm)		
55	0.0002	0.0005	0.0011	-0.0011	± 2.5		
50	0.0000	0.0001	0.0004	-0.0001	± 2.5		
40	0.0005	-0.0005	-0.0008	0.0011	± 2.5		
30	0.0005	-0.0007	0.0009	0.0010	± 2.5		
20	-0.0012	0.0000	0.0010	0.0005	± 2.5		
10	0.0000	0.0003	0.0003	-0.0001	± 2.5		
0	-0.0011	0.0000	-0.0006	-0.0001	± 2.5		
Maximum Deviation (ppm)	Maximum Deviation -0.0012						

Band			LTE Band 5		
Voltage vs. Frequency Stability					
Channel Bandwidth (MHz)	Frequency Error (ppm)				Limit
Voltage (V)	1.4	3	5	10	(ppm)
138.00	-0.0008	0.0000	0.0005	0.0008	± 2.5
120.00	-0.0012	0.0000	0.0010	0.0005	± 2.5
102.00	-0.0012	-0.0007	0.0003	-0.0007	± 2.5
Maximum Deviation (ppm)	0.0010				± 2.5

Report No.: BTL-FCCP-3-1807T071 Page 58 of 58