

FCC Radio Test Report
FCC ID: M82-DLV6210
This report concerns (check one): ⊠Original Grant □Class I Change □Class II Change
Project No.: 1608164Equipment: ComputerTest Model: DLT-V6210Series Model: DLTV6210XXXXXXXXXXXXXXXX (where X may be any alphanumeric character, blank or "-".)Applicant: Advantech Co., Ltd.Address: No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan, R.O.C.
Date of Receipt : Oct. 07, 2016 Date of Test : Oct. 07, 2016 ~ Nov. 22, 2016 Issued Date : Nov. 24, 2016 Tested by : BTL Inc.
Testing Engineer : <u>Rush</u> Kao
Technical Manager :
Authorized Signatory :(Andy Chiu)
BTL INC. B1, No.37, Lane 365, Yang Guang St., Nei-Hu District, Taipei City 114, Taiwan. TEL:+886-2-2657-3299 FAX: +886-2-2657-3331

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

ЗĨL

Table of Contents	Page
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	11
3.1 GENERAL DESCRIPTION OF EUT	11
3.2 DESCRIPTION OF TEST MODES	13
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	13
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TES	TED 14
3.5 DESCRIPTION OF SUPPORT UNITS	14
4. EMC EMISSION TEST	15
4.1 CONDUCTED EMISSION MEASUREMENT	15
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	15
4.1.2 TEST PROCEDURE	15
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	15 16
4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS	16
4.1.6 EUT TEST CONDITIONS	16
4.1.7 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	17
4.2.1 RADIATED EMISSION LIMITS	17
4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	18
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	18 19
4.2.5 EUT OPERATING CONDITIONS	20
4.2.6 EUT TEST CONDITIONS	20
4.2.7 TEST RESULTS (9KHZ TO 30MHZ)	20
4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ) 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	20 20
5. NUMBER OF HOPPING CHANNEL	20
5.1 APPLIED PROCEDURES	21
5.1.1 TEST PROCEDURE	21
5.1.2 DEVIATION FROM STANDARD	21
5.1.3 TEST SETUP	21
5.1.4 EUT OPERATION CONDITIONS	21
5.1.5 EUT TEST CONDITIONS 5.1.6 TEST RESULTS	21 21
	£ 1

Table of Contents	Page
6 . AVERAGE TIME OF OCCUPANCY	22
6.1 APPLIED PROCEDURES / LIMIT	22
6.1.1 TEST PROCEDURE	22
6.1.2 DEVIATION FROM STANDARD	22
6.1.3 TEST SETUP	22
6.1.4 EUT OPERATION CONDITIONS	23
6.1.5 EUT TEST CONDITIONS	23
6.1.6 TEST RESULTS	23
7 . HOPPING CHANNEL SEPARATION MEASUREMENT	24
7.1 APPLIED PROCEDURES / LIMIT	24
7.1.1 TEST PROCEDURE	24
7.1.2 DEVIATION FROM STANDARD	24
7.1.3 TEST SETUP	24
7.1.4 EUT TEST CONDITIONS	24
7.1.5 TEST RESULTS	24
8 . BANDWIDTH TEST	25
8.1 APPLIED PROCEDURES	25
8.1.1 TEST PROCEDURE	25
8.1.2 DEVIATION FROM STANDARD	25
8.1.3 TEST SETUP	25
8.1.4 EUT OPERATION CONDITIONS	25
8.1.5 EUT TEST CONDITIONS 8.1.6 TEST RESULTS	25 25
	-
9 . PEAK OUTPUT POWER TEST	26
9.1 APPLIED PROCEDURES / LIMIT	26
9.1.1 TEST PROCEDURE	26
9.1.2 DEVIATION FROM STANDARD	26
9.1.3 TEST SETUP 9.1.4 EUT OPERATION CONDITIONS	26 26
9.1.5 EUT TEST CONDITIONS	20
9.1.6 TEST RESULTS	26
10 . ANTENNA CONDUCTED SPURIOUS EMISSION	27
10.1 APPLIED PROCEDURES / LIMIT	27
10.1.1 TEST PROCEDURE	27
10.1.2 DEVIATION FROM STANDARD	27
10.1.3 TEST SETUP	27
10.1.4 EUT OPERATION CONDITIONS	27
10.1.5 EUT TEST CONDITIONS	27
10.1.6 TEST RESULTS	27
11 . MEASUREMENT INSTRUMENTS LIST	28

Table of Contents	Page
12 . EUT TEST PHOTO	30
ATTACHMENT A - CONDUCTED EMISSION	34
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)	37
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	42
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	45
ATTACHMENT E - NUMBER OF HOPPING CHANNEL	70
ATTACHMENT F - AVERAGE TIME OF OCCUPANCY	72
ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT	85
ATTACHMENT H - BANDWIDTH	90
ATTACHMENT I - PEAK OUTPUT POWER	95
ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION	100

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1608164	Original Issue.	Nov. 24, 2016

1. CERTIFICATION

Equipment : Brand Name :	
Test Model :	
	DLTV6210XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Applicant :	Advantech Co., Ltd.
Manufacturer :	Advantech Co., Ltd.
Address :	No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan, R.O.C.
Date of Test :	Oct. 07, 2016 ~ Nov. 22, 2016
	Engineering Sample
Standard(s) :	FCC Part15, Subpart C (15.247) / ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1608164) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test results included in this report is only for the Bluetooth EDR part.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15, Subpart C (15.247)				
Standard(s) Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247(d)	Antenna conducted Spurious Emission	PASS		
15.247 (a)(1)	Hopping Channel Separation	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (b)(1)	Peak Output Power	PASS		
15.247(d) 15.209	Radiated Spurious Emission	PASS		
15.247 (a)(1)(iii)	Number of Hopping Frequency	PASS		
15.247 (a)(1)(iii)	Dwell Time	PASS		
15.205	Restricted Bands	PASS		
15.203	Antenna Requirement	PASS		

Note:

(1)" N/A" denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C05: (VCCI RN: C-4742; FCC RN:965108; FCC DN:TW1082) No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Below 1 GHz):

CB15: (FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Above 1 GHz):

CB15: (FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
C05	CISPR	150 kHz ~ 30MHz	3.06

B. Radiated emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	9kHz ~ 150kHz	2.96
(3m)	CISEN	150kHz ~ 30MHz	2.74

Test Site	Method	Measurement Frequency Range	Ant.	U,(dB)
CB15 (3m) CISPR		30MHz ~ 200MHz	V	4.76
	5	30MHz ~ 200MHz	Н	4.28
	200MHz ~ 1,000MHz	V	5.08	
		200MHz ~ 1,000MHz	Н	4.50

Test Site	Method	Measurement Frequency Range	Ant.	U,(dB)
CB15		1GHz ~ 6GHz	V	4.48
	CISPR	1GHz ~ 6GHz	Н	4.50
(3m)	UISEN	6GHz ~ 18GHz	V	4.30
		6GHz ~ 18GHz	Н	4.14

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	18 ~ 26.5 GHz	4.72
(1m)	UISEN	26.5 ~ 40 GHz	5.20

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR} , as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz: 3.6 dB Radiated Disturbance (electric field strength on an open area test site or alternative test site) - 30 MHz - 1000 MHz: 5.2 dB

It can be seen that our U_{lab} values are smaller than U_{CISPR} .

Note: unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Computer		
Brand Name	ADVANTECH		
Test Model	DLT-V6210		
Series Model	DLTV6210XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
Model Difference	Different model distribute to different area.		
	Operation Frequency	2402~2480 MHz	
	Modulation Technology	GFSK(1Mbps) π /4-DQPSK(2Mbps)	
Output Power (Max.)	Bit Rate of Transmitter	8-DPSK(3Mbps)	
	Output Power Max. 5.65 dBm(1Mbps)		
Power Source	Supplied from DC power.		
Power Rating	EUT I/P: DC 9V-60V		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3 Table for Filed Antenna:

Ant.	Mfr/Brand	Test Model	Antenna Type	Connector	Gain (dBi)
1	ADVANTECH	Y6AGIK79376200	PCB	IPEX	6.5

Note:

(1) Direction gain (dBi) = 6.5

The reduced conducted power limits (dBm) = 30 - (6.5-6) = 29.5

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

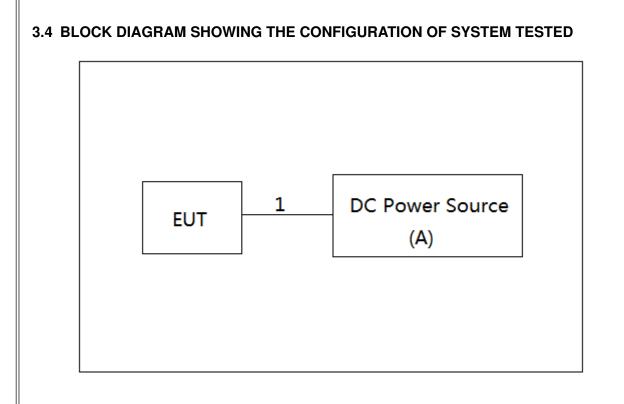
Pretest Mode	Description	
Mode 1 TX Mode Note (1)		

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Emission		
Final Test Mode	Description	
Mode 1	TX Mode	

For Radiated Emission		
Final Test Mode Description		
Mode 1	1 TX Mode Note (1)	

Note:


- (1) The measurements are performed at the high, middle, low available channels.
- (2) The measurements for Hopping Channel Separation, Bandwidth and Peak Output Power were tested during 1Mbps, 2Mbps and 3Mbps, the worst case are 1Mbps and 3Mbps, only worst case was documented.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software Version	BtUSB_V18.12		
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters(1Mbps)	7	7	7
Parameters(3Mbps)	7	7	7

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
A	Switch Mode Power Supply	Twintex	TDS-60-15	N/A	G27120155

Item	Shielded Type	Ferrite Core	Length	Note
1	NA	NA	1.5m	Power Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Li	mit (dBµV)
	Quasi-peak	Average
0.15 -0.50	66 to 56*	56 to 46*
0.50 -5.0	56	46
5.0 -30.0	60	50

Note:

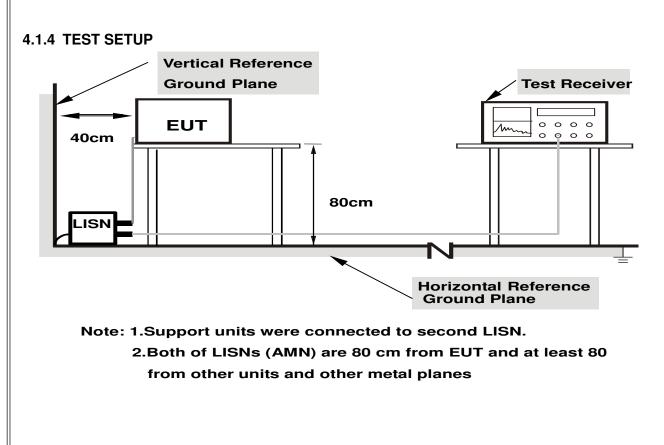
(1) The limit of " * " decreases with the logarithm of the frequency

 (2) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Attachment A.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz -1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

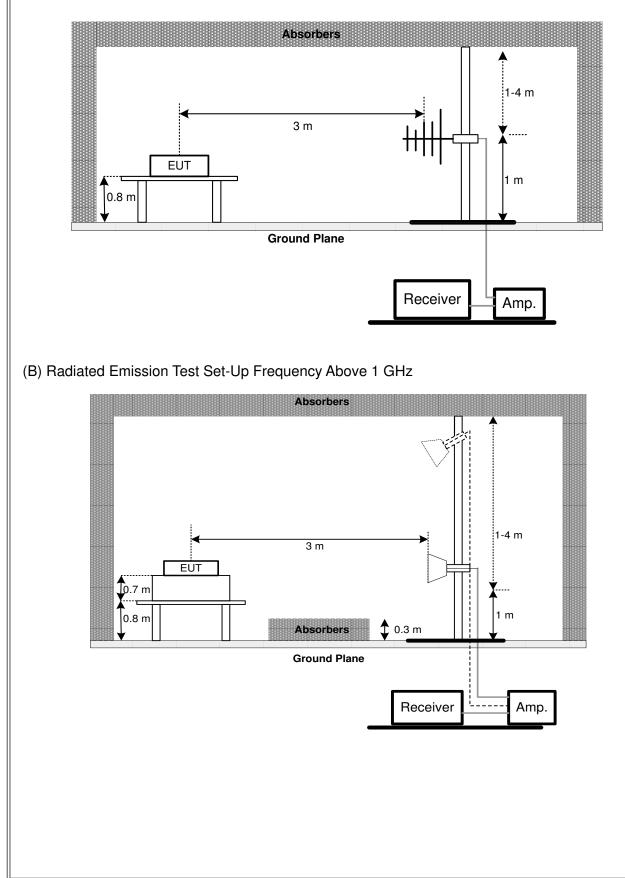
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1 MUT / 1 MUT for Dook 1 MUT / 10UT for Average	
(emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Spectrum Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency 9KHz ~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz ~110KHz for QP detector
Start ~ Stop Frequency	110KHz ~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz ~30MHz for QP detector
Start ~ Stop Frequency 30MHz~1000MHz for QP detector	

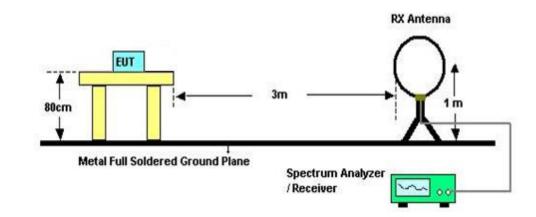
4.2.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(C) For Radiated Emissions Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)

Please refer to the Attachment C.

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

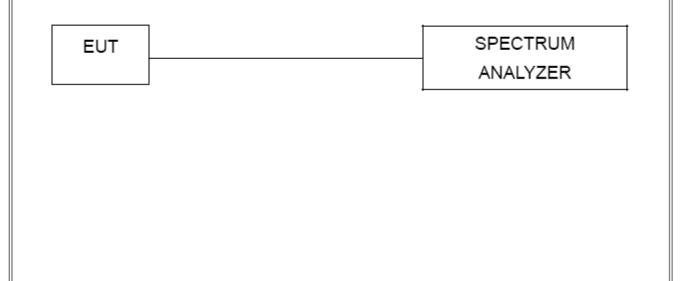
5.1.6 TEST RESULTS

Please refer to the Attachment E

6. AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS


6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Please refer to the Attachment F

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.1.1 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

Spectrum Analayzer

EUT

7.1.4 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

7.1.5 TEST RESULTS

Please refer to the Attachment G

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C			
Section	Test Item	Frequency Range	
Occuon		(MHz)	
15.247(a)(2) Bandwidth		2400-2483.5	

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

EUT	SPECTRUM	Ì
	ANALYZER	

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

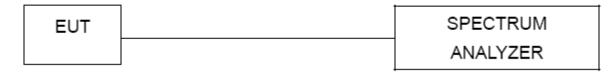
8.1.6 TEST RESULTS

Please refer to the Attachment H

9. PEAK OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	1 Watt or 30dBm (hopping channel >75) 0.125Watt or 21dBm	2400-2483.5	PASS
		(hopping channel <75		


9.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

9.1.2 DEVIATION FROM STANDARD

No deviation.

9.1.3 TEST SETUP

9.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

9.1.6 TEST RESULTS

Please refer to the Attachment I

10. ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.1.2 DEVIATION FROM STANDARD

No deviation.

10.1.3 TEST SETUP

10.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

10.1.6 TEST RESULTS

Please refer to the Attachment J

11. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Jan. 26, 2017		
2	Test Cable	TIMES	CFD300-NL	C02	Jun. 15, 2017		
3	EMI Test Receiver	R&S	ESR7	101433	Dec. 10, 2016		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A		

	Radiated Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Preamplifier	EMCI	012645B	980267	Mar. 01, 2017		
2	Preamplifier	EMCI	EMC02325	980217	Dec. 30, 2016		
3	Test Cable	EMCI	EMC104-SM-S M-8000	8m	Jan. 05, 2017		
4	Test Cable	EMCI	EMC104-SM-S M-800	150207	Jan. 05, 2017		
5	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	Jan. 05, 2017		
6	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 08, 2017		
7	Signal Analyzer	Agilent	N9010A	MY52220990	Feb. 23, 2017		
8	Loop Ant	EMCO	6502	42960	Nov. 24, 2017		
9	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	Mar. 01, 2017		
10	Horm Ant	Schwarzbeck	BBHA 9170	187	May 12, 2017		
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 17, 2017		
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 17, 2017		

Number of Hopping Channel						
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017

Average Time of Occupancy						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017	

Hopping Channel Separation Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017	

Bandwidth						
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017

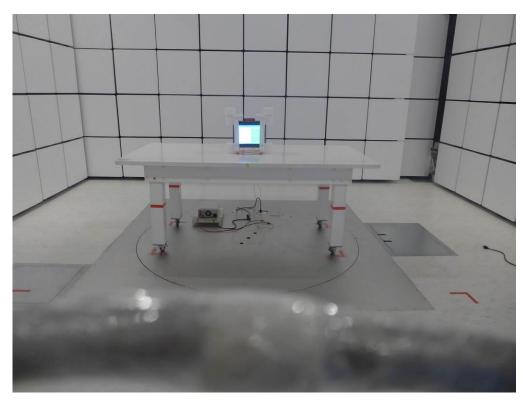
	Peak Output Power						
Iter	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017		

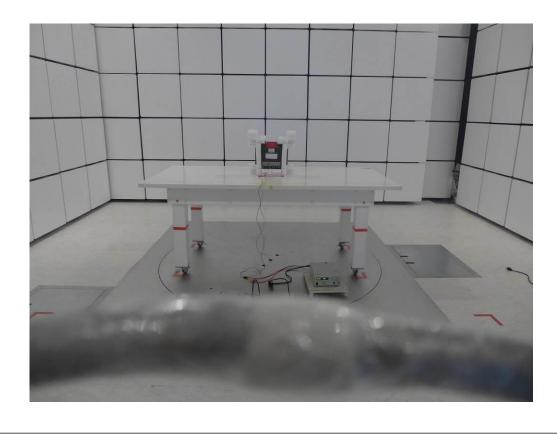
Antenna Conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017	

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

12. EUT TEST PHOTO

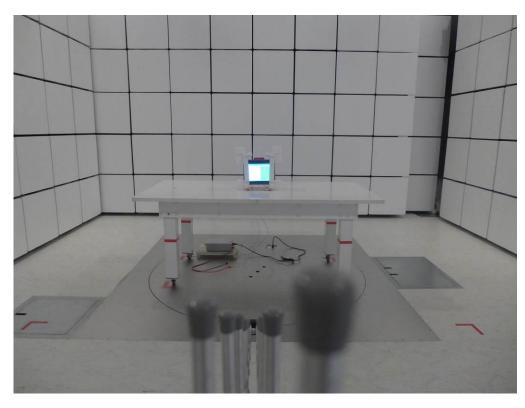
Conducted Measurement Photos

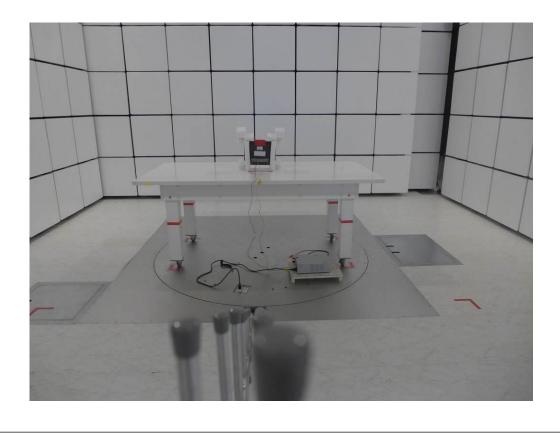



Report No.: BTL-FCCP-1-1608164

Radiated Measurement Photos

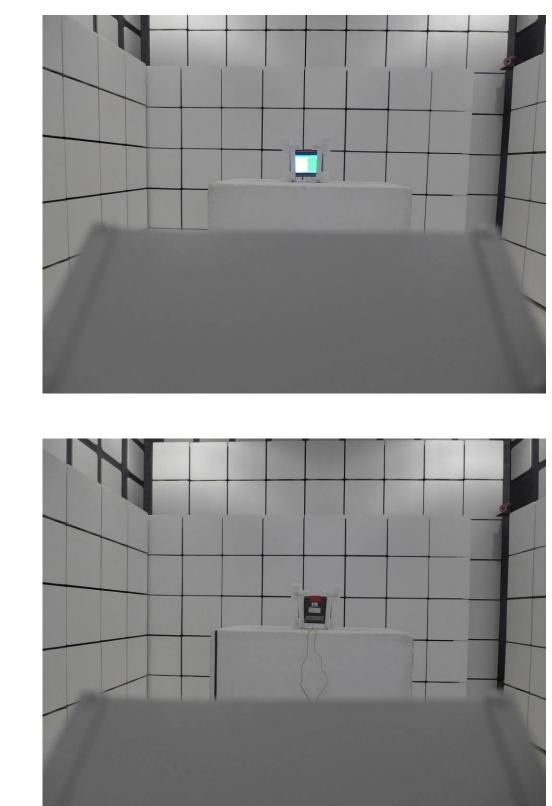
9KHz to 30MHz




Report No.: BTL-FCCP-1-1608164

Radiated Measurement Photos

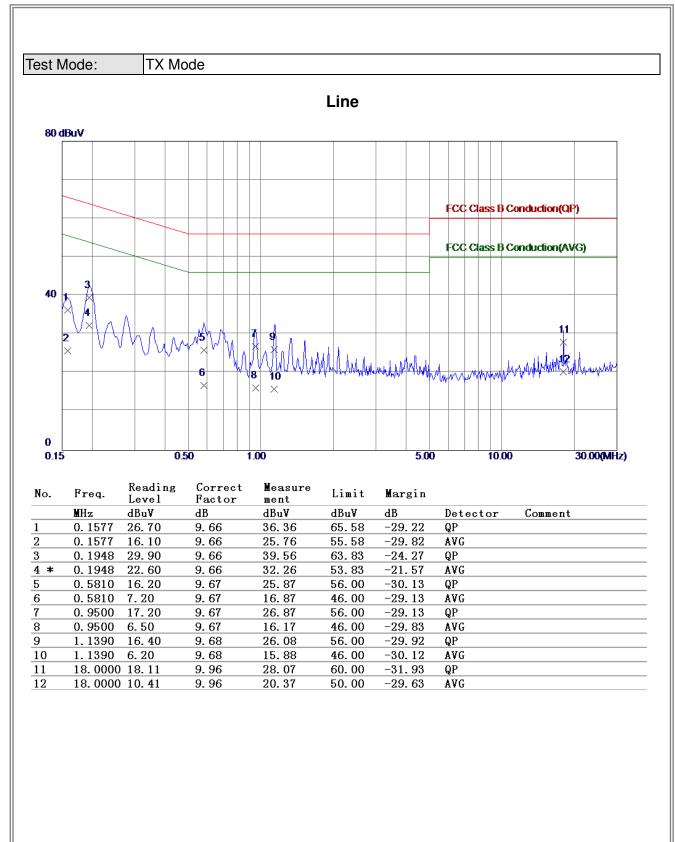
30MHz to 1000MHz



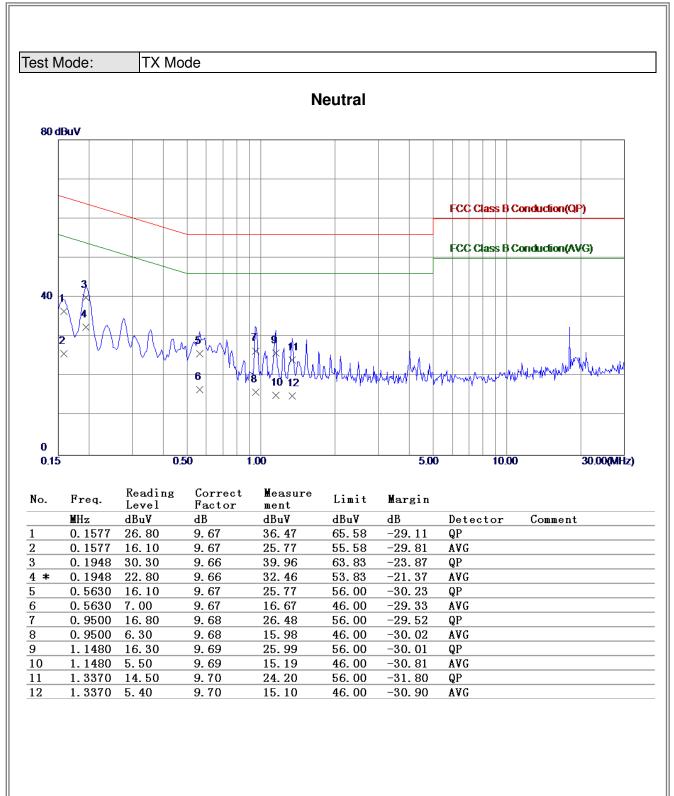
Report No.: BTL-FCCP-1-1608164

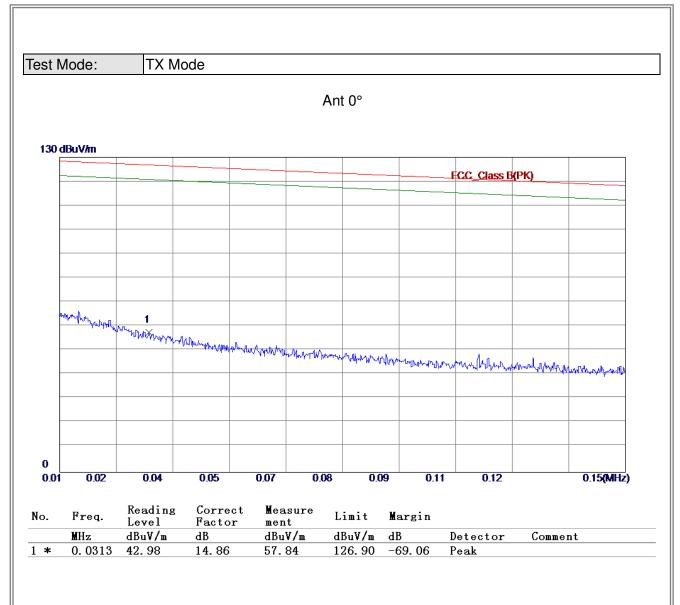
Radiated Measurement Photos

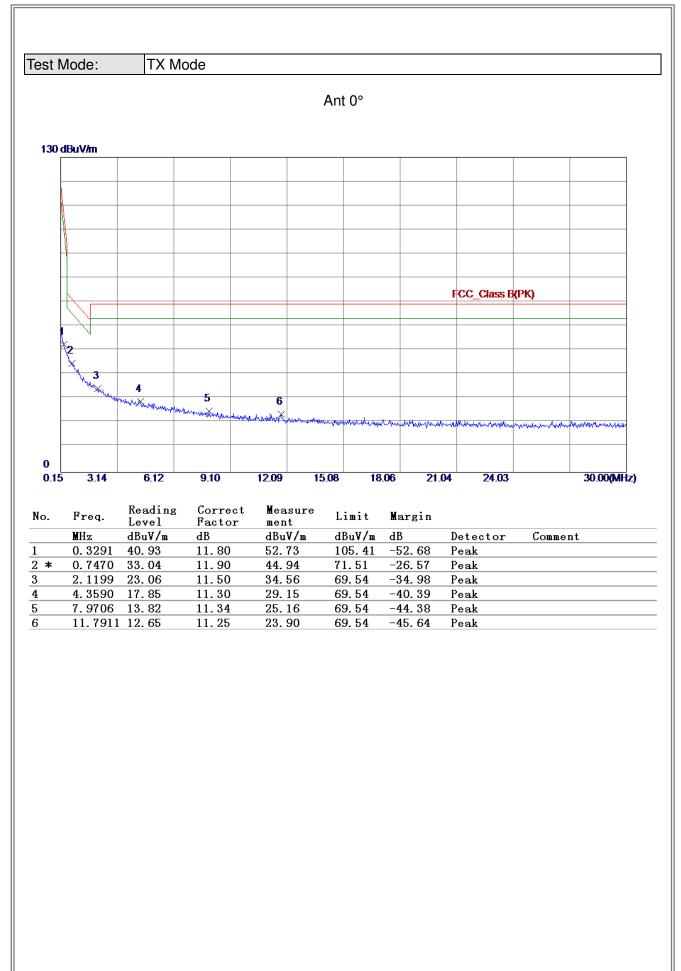
Above 1000MHz



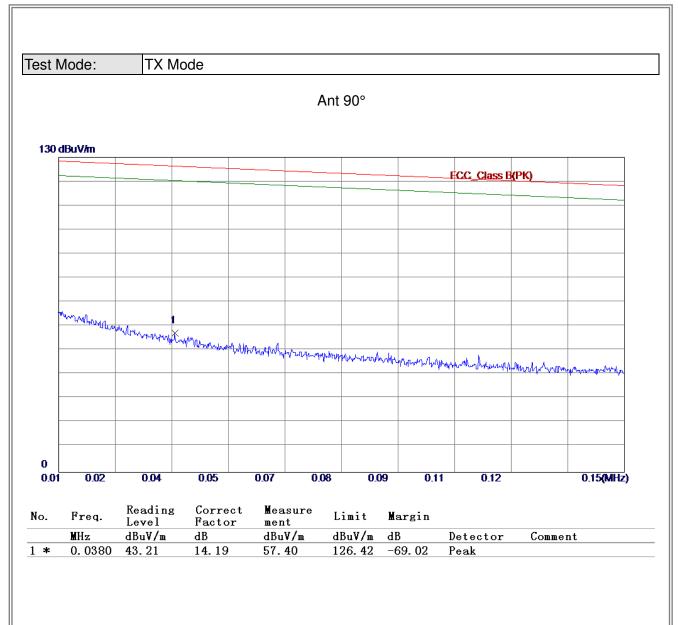
ATTACHMENT A - CONDUCTED EMISSION

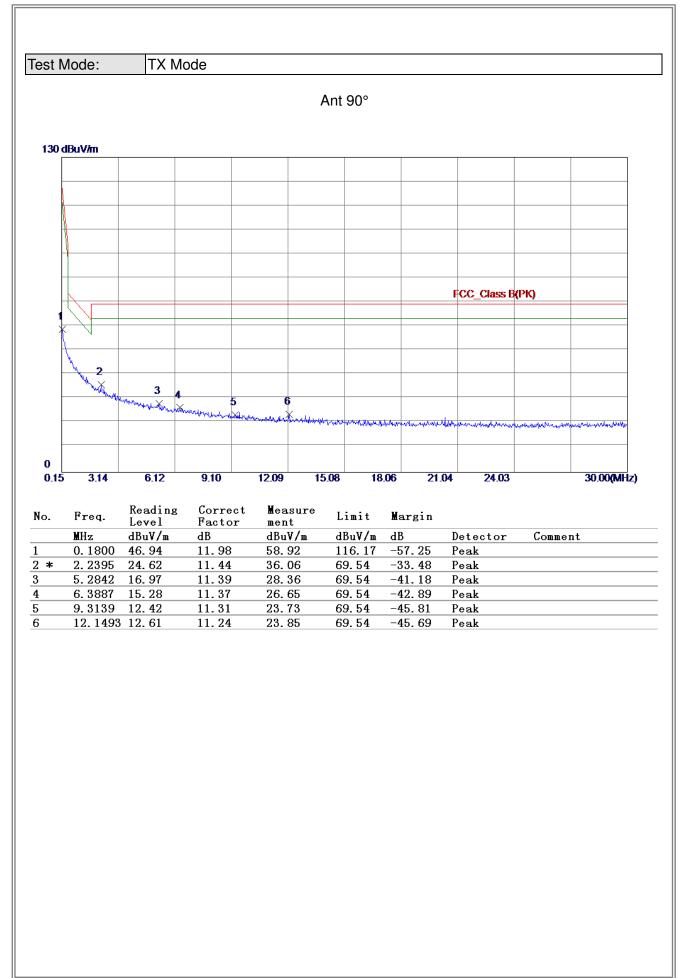

3TL



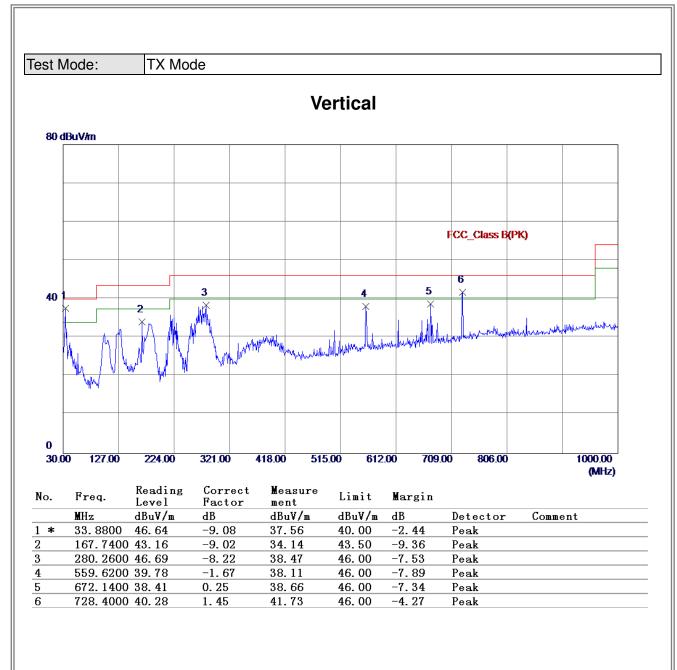


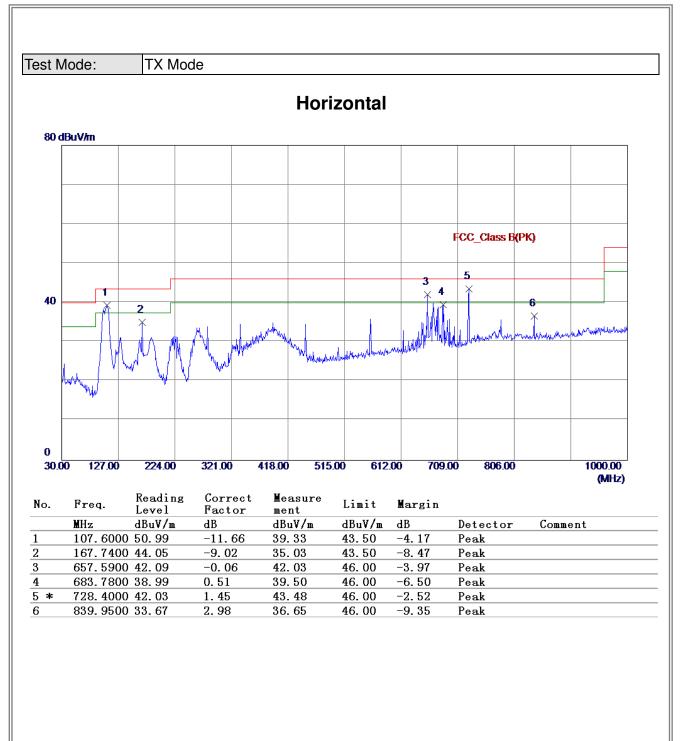
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)



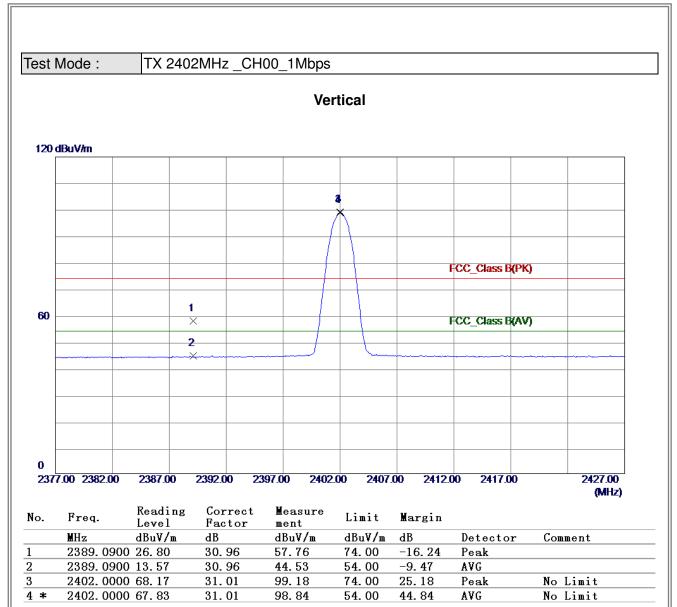


3TL

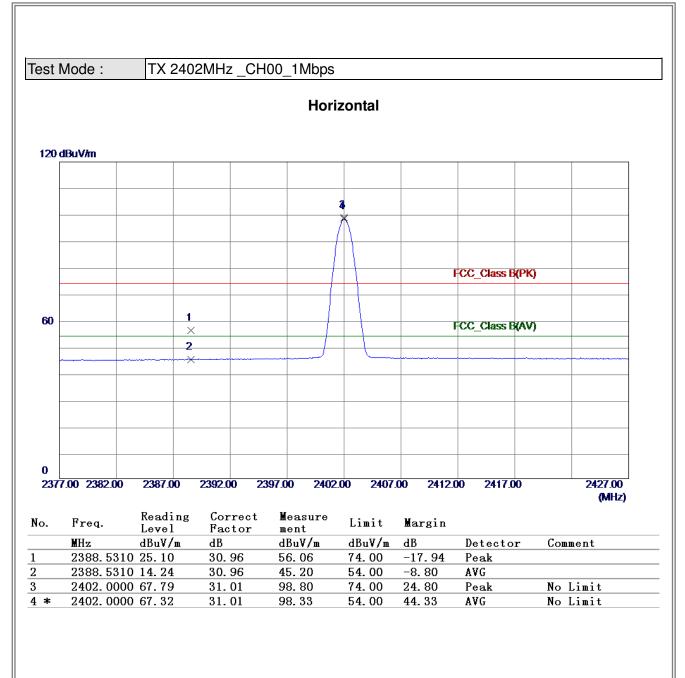


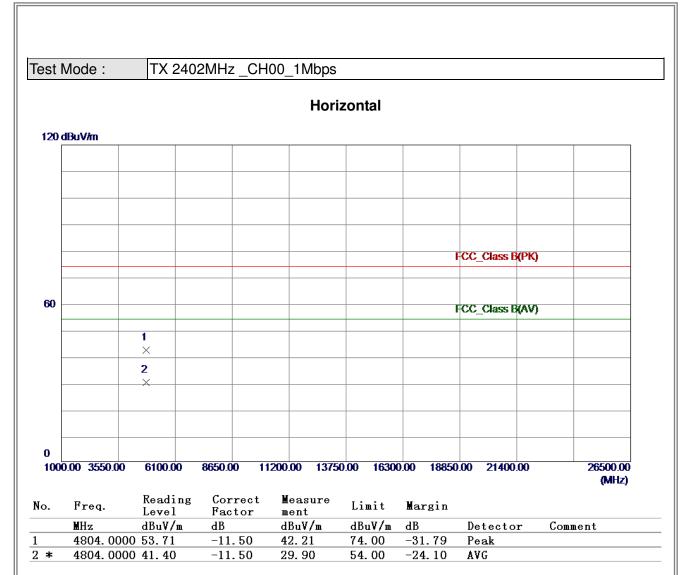


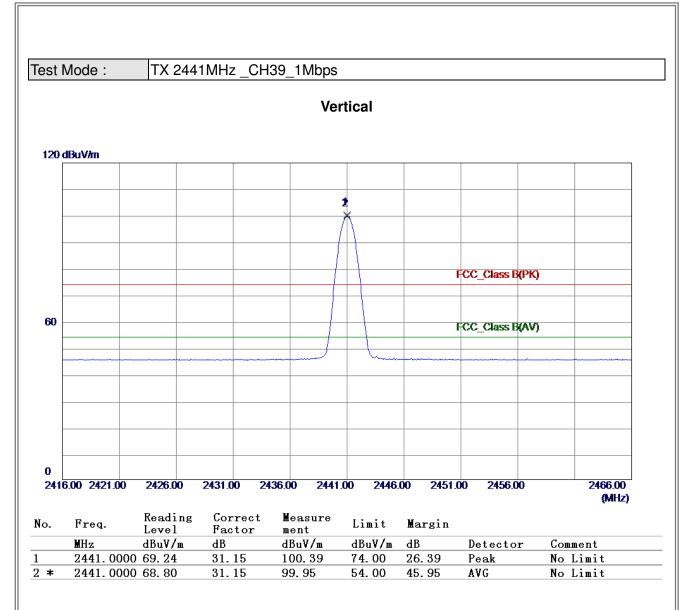
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

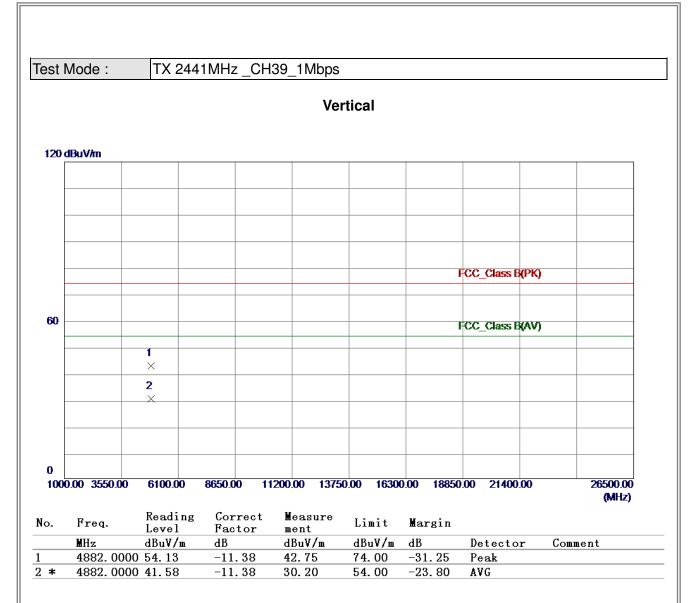


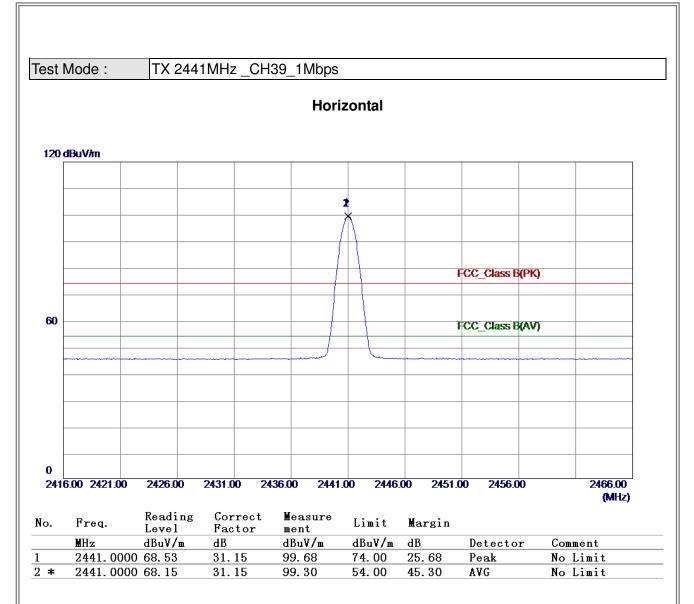
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

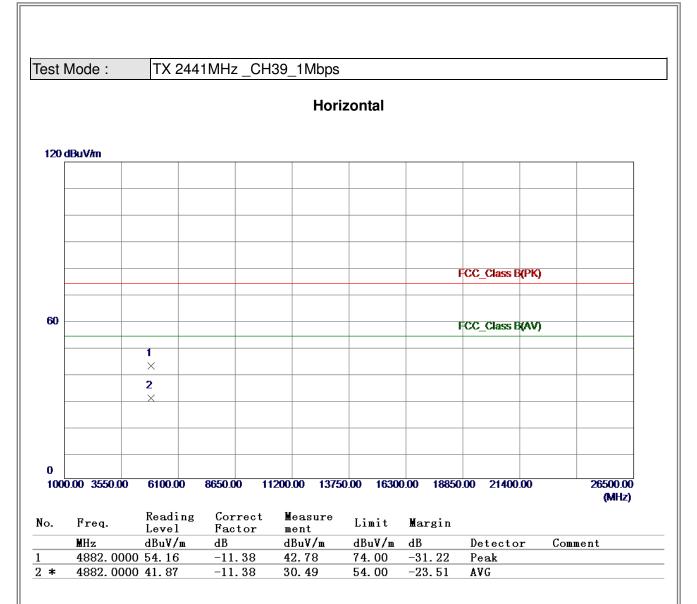


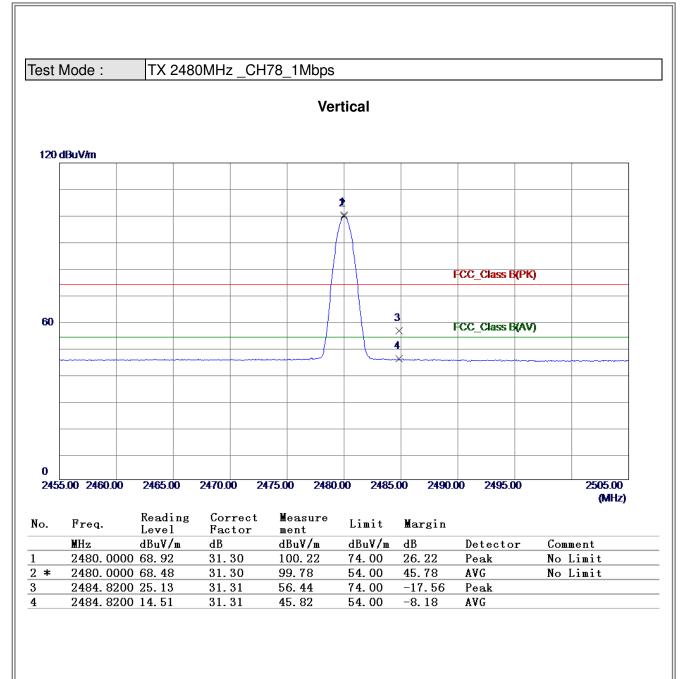


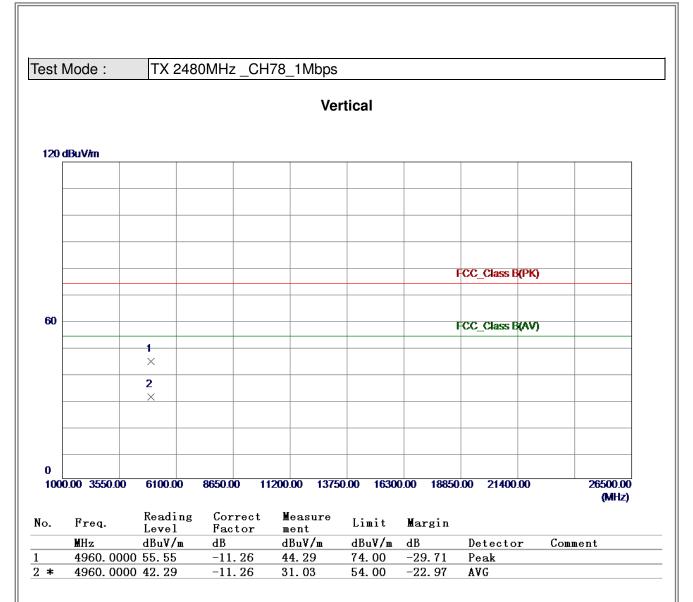


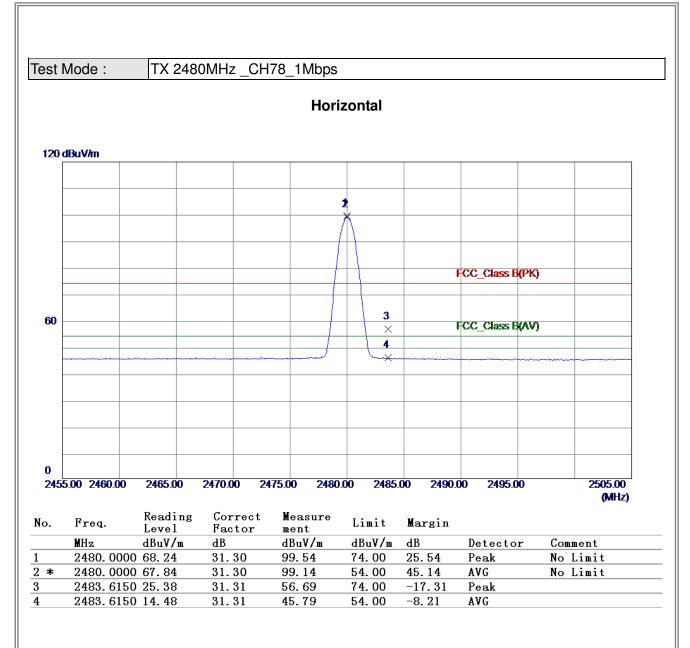


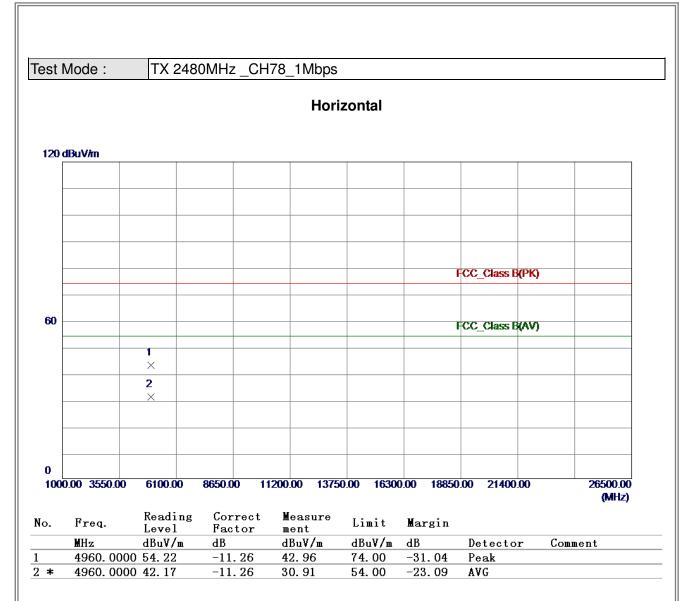


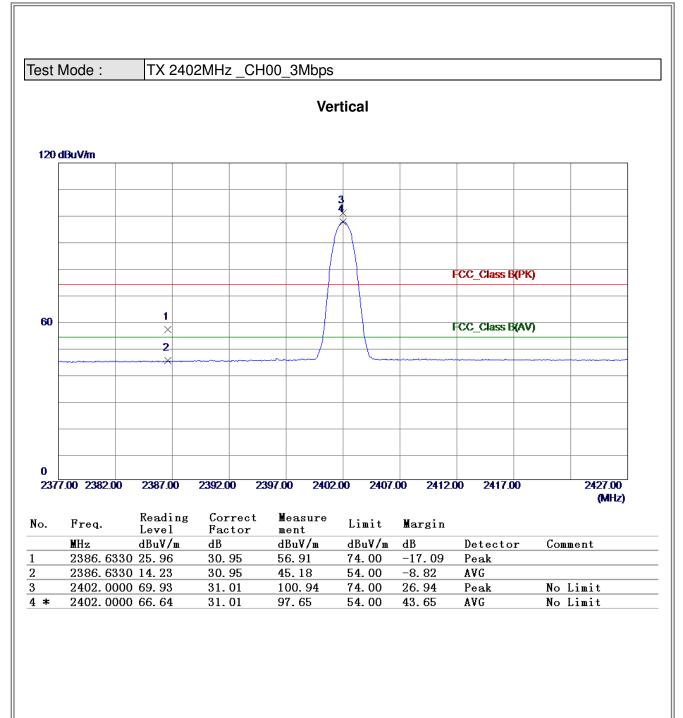


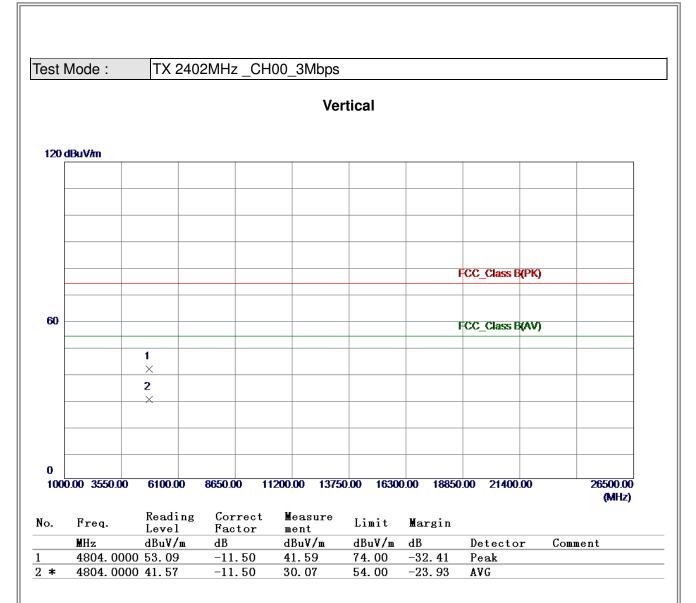


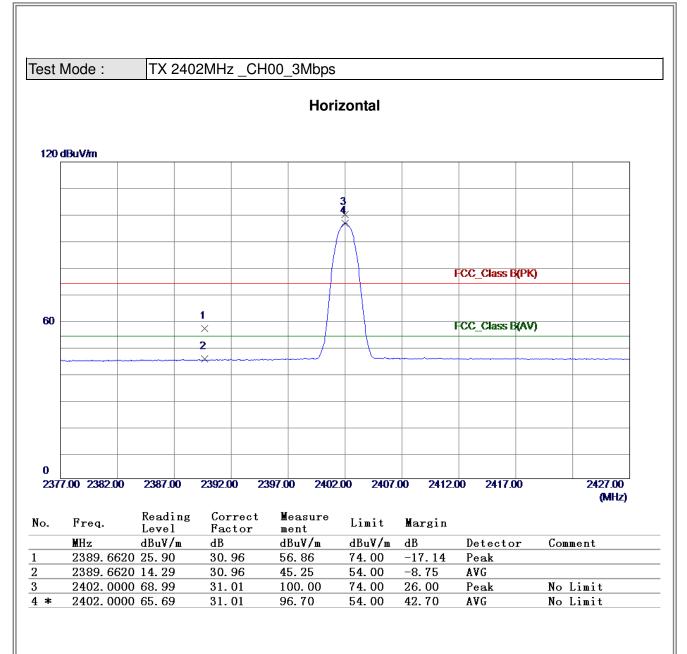


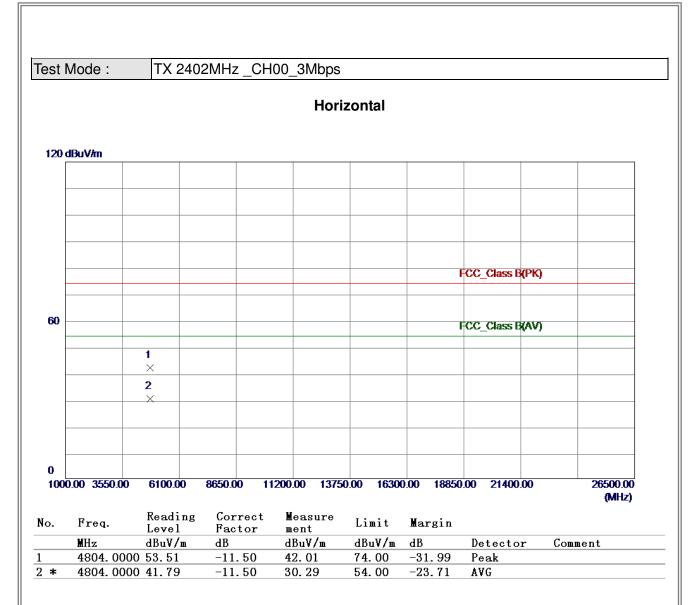


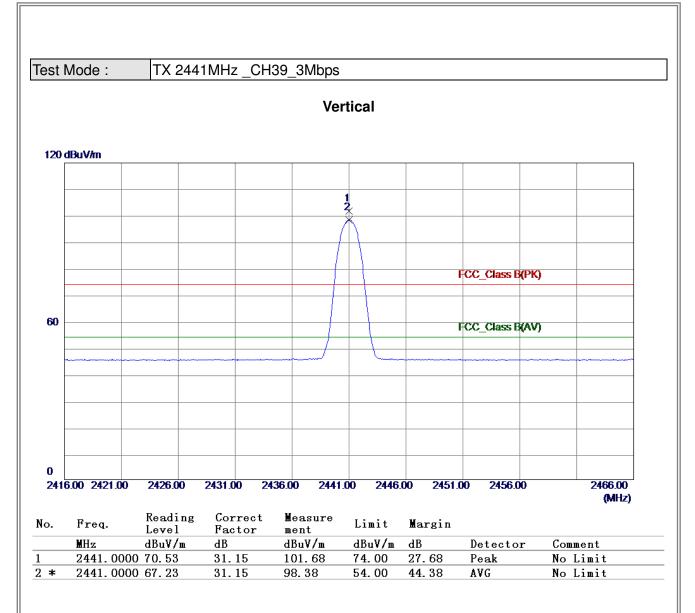


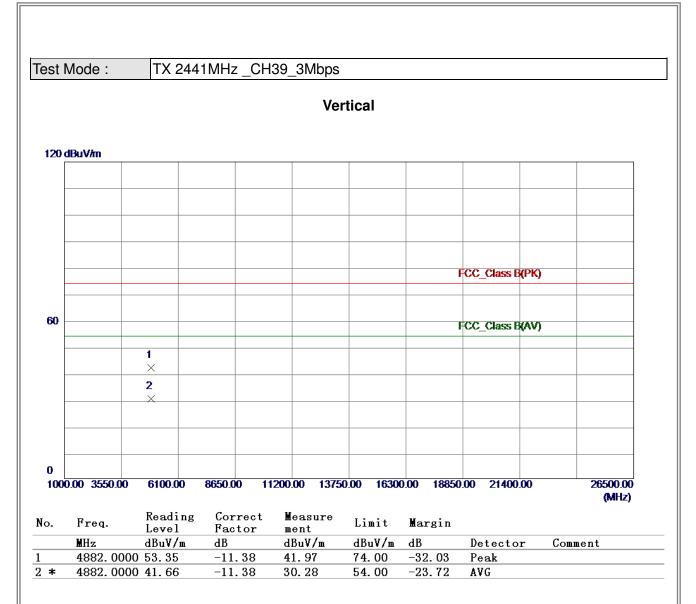


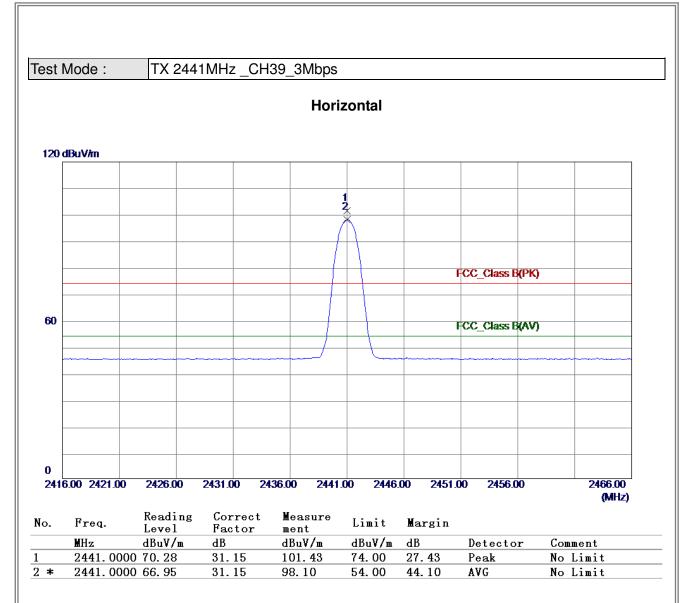


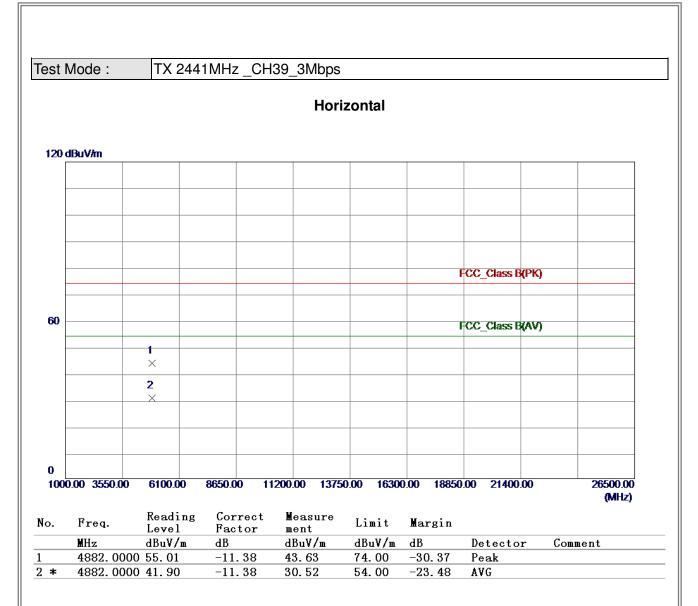


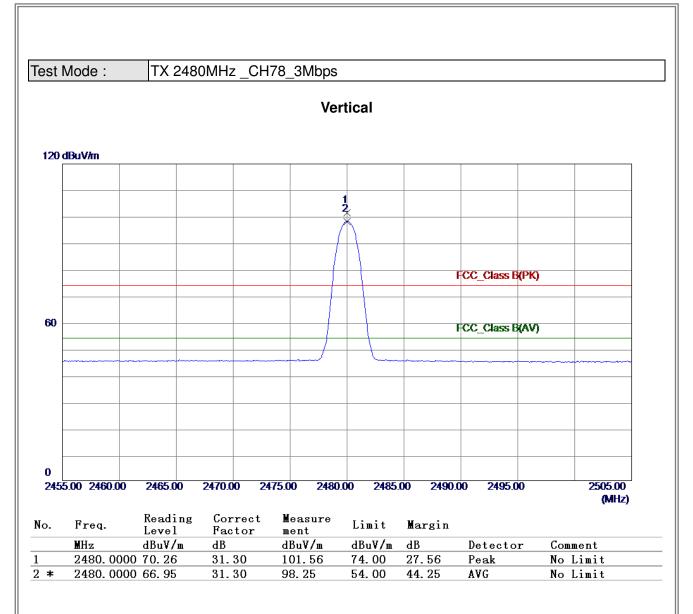


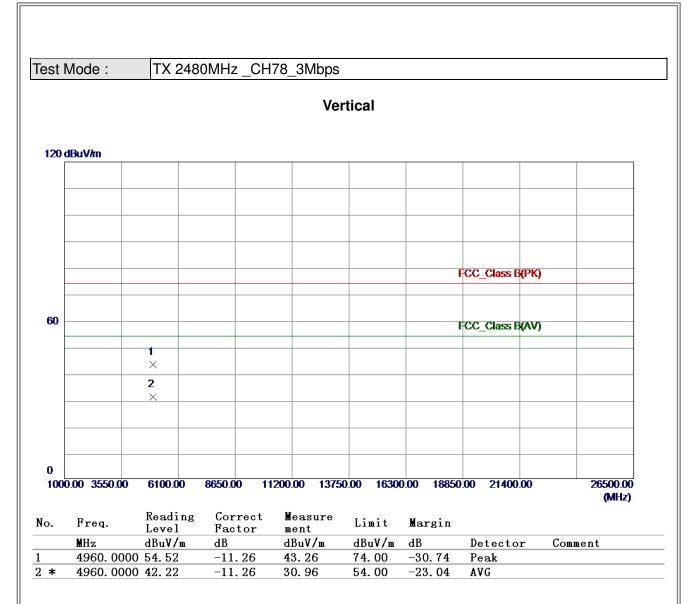


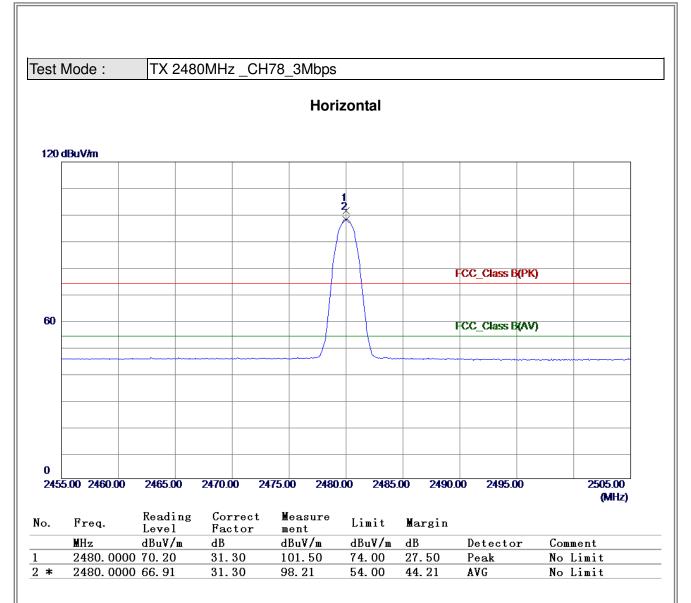


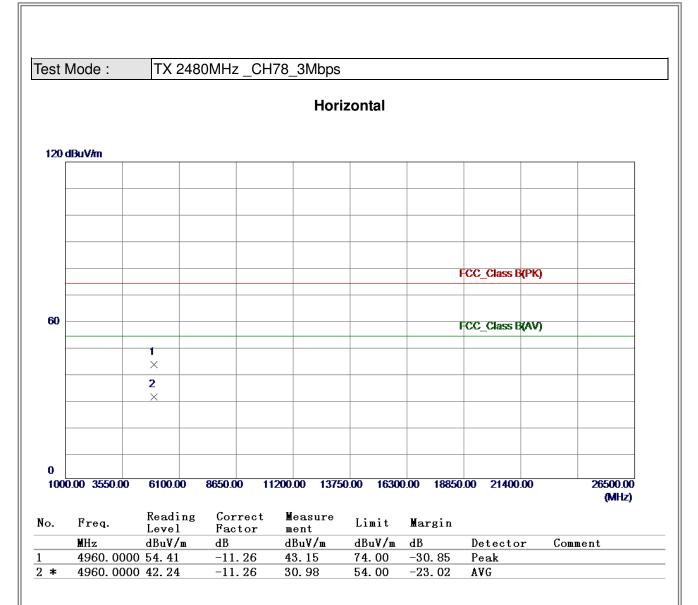












ATTACHMENT E - NUMBER OF HOPPING CHANNEL

	est Mode	Hopping Mode_	1Mbps
Number of	of Hopping Channel	79	
Keysight Spectrum Analyzer		INT SOURCE OFF ALIGN AUTO 05:34:20 PM Oct 28, 2016	Frequency
Ref Offse 10 dB/div Ref 20.0	t 2.52 dB 00 dBm	Mkr2 2.480 130 0 GHz -2.81 dBm	
10.0			Auto Tu
	งกิจกิจกิจกิจกิจกิจกิจกิจกิจกิจกิจกิจกิจก	2	Center Fi
-10.0	VITA E A COLA VITA VITA VITA VITA VITA VITA VITA VIT	ADADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2.441750000 G
-30.0			Start Fr
-40.0			2.40000000 G
-60.0			Stop Fr
-70.0			2.483500000 G
Start 2.40000 GHz #Res BW 100 kHz	#VBW 100 kHz	Stop 2.48350 GHz Sweep 10.13 ms (1001 pts)	CF St
MKR MODE TRC SCL 1 N 1 f 2 N 1 f	X Y 2.401 800 0 GHz -2.48 dBm	FUNCTION FUNCTION WIDTH FUNCTION VALUE	8.350000 M <u>Auto</u> N
2 N 1 f 3 4	2.480 130 0 GHz -2.81 dBm		Freq Offs
5 6 7			0
8			
10			
11 12			
		STATUS	
12	W	STATUS	
12 · · · · · · · · · · · · · · · · · · ·	π.	STATUS	
12 · · · · · · · · · · · · · · · · · · ·	est Mode	status Hopping Mode_	3Mbps
12 · · · · · · · · · · · · · · · · · · ·	est Mode	, , ,	3Mbps
12 · · · · · · · · · · · · · · · · · · ·		Hopping Mode_	_3Mbps
12 * MSG To Number c Keysight Spectrum Analyzer	of Hopping Channel	Hopping Mode_ 79	0
12 * [MSG MS	- Swept SA 50 Q AC SENSE: t2.54 dB	Hopping Mode_ 79	
12 * [MSG SG Number (MRL RL RF 10 dB/div Ref Offset 10 dB/div A1	- Swept SA 50 Q AC SENSE: t2.54 dB	Hopping Mode_ 79 INT ALIGN AUTO (05:25:17 PM 0ct 31, 2016 Mkr2 2.479 965 0 GHz	
12 * MSG Number c Mission Keysight Spectrum Analyzer Keysight Spectrum Analyzer Keysight Spectrum Analyzer Mark RF SG 10 cB/cliv Ref Offset 10 cB/cliv	Swept SA 50 Q AC SENSE: 12 54 dB	Hopping Mode_ 79 NT ALGN AUTO 05:25:17 PHORT31, 2016 Mkr2 2.479 9655 0 GHz 0.66 dBm	Frequency Auto Tu
12 * [MSG MSG Number (MR Ref Offset 10.0 11.0	Swept SA 50 Q AC SENSE: 12 54 dB	Hopping Mode_ 79 INT ALIGN AUTO (05:25:17 PM 0ct 31, 2016 Mkr2 2.479 965 0 GHz	Frequency Auto Tu Center F
12 * [MSG SG Number (Number (Keysight Spectrum Analyzer Ref Offset 10 dB/div 10 dB/div 10 dB/div 10 dB/div	Swept SA 50 Q AC SENSE: 12 54 dB	Hopping Mode_ 79 NT ALGN AUTO 05:25:17 PHORT31, 2016 Mkr2 2.479 9655 0 GHz 0.66 dBm	Auto Tu Center F 2.441750000 (
12 Image: Constraint of the section of th	Swept SA 50 Q AC SENSE: 12 54 dB	Hopping Mode_ 79 NT ALGN AUTO 05:25:17 PHORT31, 2016 Mkr2 2.479 9655 0 GHz 0.66 dBm	Frequency Auto Tu Center F 2.441750000 (Start F
12 * [Msc Sc Number c It Keysight Spectrum Analyzer Mc RL RF 10 dB/div Ref Offset 10.00 10.00 10.00	Swept SA 50 Q AC SENSE: 12 54 dB	Hopping Mode_ 79 NT ALGN AUTO 05:25:17 PHORT31, 2016 Mkr2 2.479 9655 0 GHz 0.66 dBm	Frequency Auto Tu Center F 2.441750000 (Start F
12 Image: Constraint of the section of th	Swept SA 50 Q AC SENSE: 12 54 dB 10 dBm	Hopping Mode_ 79 NT ALGN AUTO 05:25:17 PHORT31, 2016 Mkr2 2.479 9655 0 GHz 0.66 dBm	Frequency

× 2.401 800 0 GHz 2.479 965 0 GHz

N 1 f N 1 f

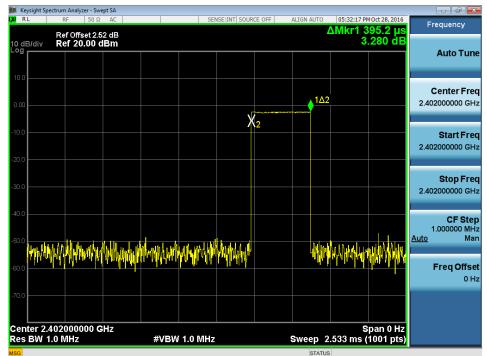
Alignment Completed

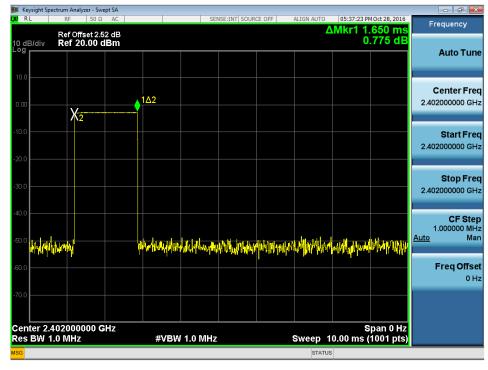
2.56 dBm 0.66 dBm

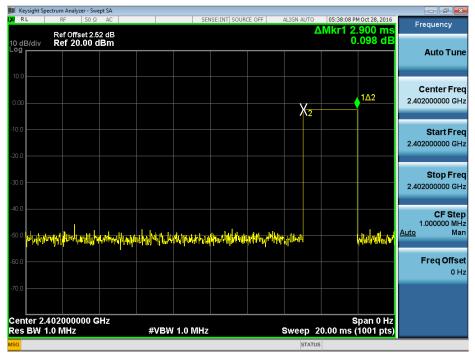
STATUS

Freq Offset 0 Hz

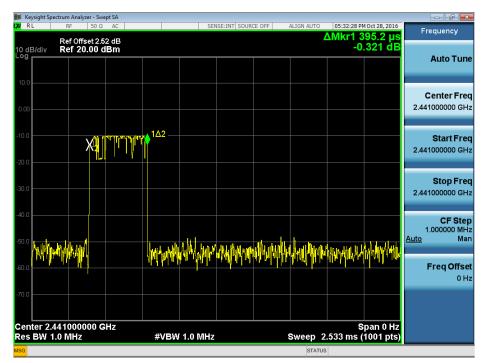
ATTACHMENT F - AVERAGE TIME OF OCCUPANCY




Test Mode :	TX Mode_1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9000	0.3093	0.4000	Pass
DH3	2402	1.6500	0.2640	0.4000	Pass
DH1	2402	0.3952	0.1265	0.4000	Pass
DH5	2441	2.9000	0.3093	0.4000	Pass
DH3	2441	1.6500	0.2640	0.4000	Pass
DH1	2441	0.3952	0.1265	0.4000	Pass
DH5	2480	2.9000	0.3093	0.4000	Pass
DH3	2480	1.6500	0.2640	0.4000	Pass
DH1	2480	0.3927	0.1257	0.4000	Pass



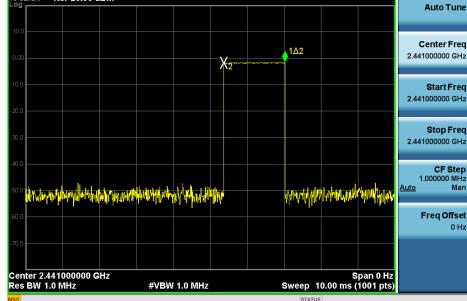
CH00-DH3



CH39-DH1

Frequency

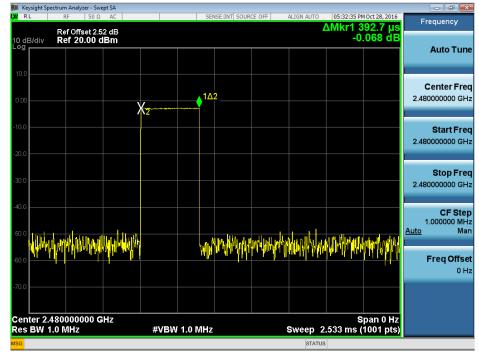
 Keysight Spectrum Analyzer - Swept SA


 RL
 RF
 50 O
 AC

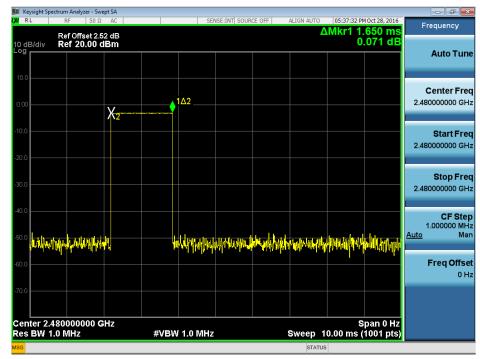
0 dB/di

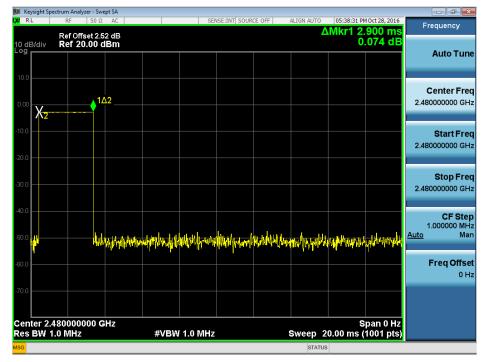
Ref Offset 2.52 dB Ref 20.00 dBm

CH39-DH3



CH39-DH5





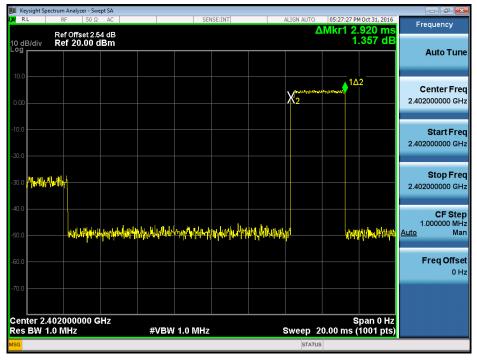
CH78-DH3

CH78-DH5

Test Mode :	TX Mode_3Mbps				
		_	-	-	
Data Packet	Fraguanay	Pulse	Dwell	Limits(s)	Tost Posult
Dala Fackel	Frequency	Duration(ms)	Time(s)	LIIIIIS(S)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH1	2402	0.4003	0.1281	0.4000	Pass
DH5	2441	2.9000	0.3093	0.4000	Pass
DH3	2441	1.6200	0.2592	0.4000	Pass
DH1	2441	0.4003	0.1281	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass
DH3	2480	1.6200	0.2592	0.4000	Pass
DH1	2480	0.3724	0.1192	0.4000	Pass

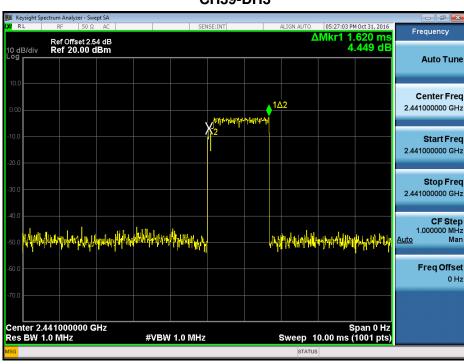
CH00-DH1 alyzer - Swept SA 05:23:20 PM Oct 31, 2016 RI Frequency ΔMkr1 400.3 μs 0.884 dB Ref Offset 2.54 dB Ref 20.00 dBm 10 dB/div Log Auto Tune $1\Delta 2$ **Center Freq** el de la partir a 2.402000000 GHz Start Freq 2.402000000 GHz Stop Freq 2.402000000 GHz CF Step 1.000000 MHz Man hiteen herrestaal betaan konstansisse taste van verker van de kerker provinse of the bestaan verker van de ser Auto MUM Freq Offset 0 Hz Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 2.533 ms (1001 pts)

CH00-DH3

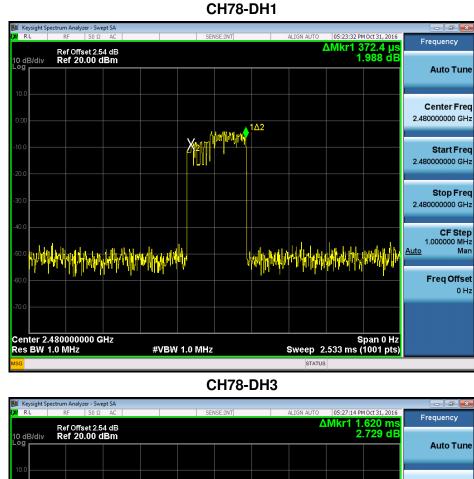

STATUS

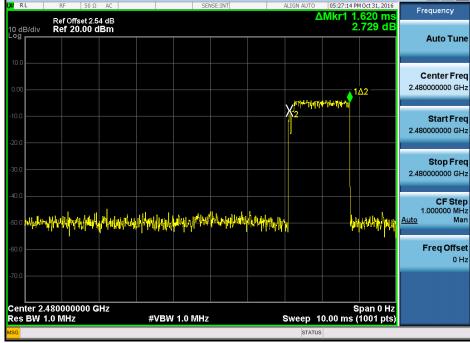
#VBW 1.0 MHz

	ectrum Analyzer - Swept S									
LXU RL	RF 50 Ω 4			SEI	ISE:INT		ALIGN AUTO		MOct 31, 2016	Frequency
10 dB/div Log	Ref Offset 2.54 c Ref 20.00 dB	iB m						0	.790 dB	Auto Tune
10.0 0.00				X2	เป็นหมูกสารสารการ	1Δ2				Center Fre 2.402000000 GH
-10.0										Start Fre 2.402000000 GH
-30.0										Stop Fre 2.402000000 G⊦
-40.0 -50.0 <mark>m/////</mark>	yddyddarlafurglangu ar	uhhundundu	wellenterter	i ^r h		₽ a y ku¹k a nta	AN WARK	hatal yilar	allanan da an	CF Ste 1.000000 MH <u>Auto</u> Ma
-60.0										Freq Offse 0 H
-70.0										
Center 2. Res BW 1	402000000 GHz 1.0 MHz	Z	#VBW	1.0 MHz			Sweep 1	s 0.00 ms (pan 0 Hz 1001 pts)	
MSG							STATUS			



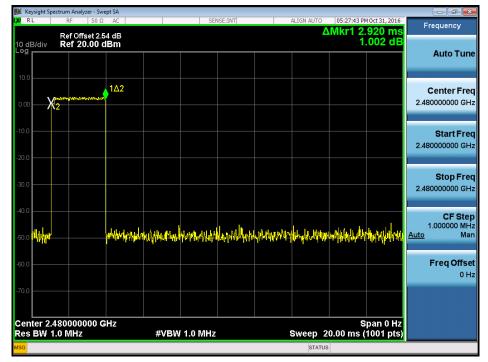
CH39-DH1




CH39-DH3

CH39-DH5

🎉 Keysight Spectrum Analyzer - S						
LXI RL RF 50	Ω AC	SENSE:INT		ALIGN AUTO	05:27:35 PM Oct 31, 2016	Frequency
Ref Offset 2 10 dB/div Ref 20.00	:.54 dB dBm			Δ	Mkr1 2.900 ms 1.048 dB	Auto Tune
10.0					162	
0.00						2.441000000 GHz
-10.0						Start Freq 2.441000000 GHz
-30.0						Stop Fred 2.441000000 GHz
<0.0 -50.0 printry it play here for a	nyekkistali alimetra interpertation	herityaballopatelah <mark>e</mark> tika	philipping in the	champerciple	hū ^{ya} ,	CF Step 1.000000 MH <u>Auto</u> Mar
-60.0						Freq Offset 0 Hz
Center 2.441000000	GHz				Span 0 Hz	
Res BW 1.0 MHz		/ 1.0 MHz		Sweep 20	0.00 ms (1001 pts)	
MSG				STATUS		



CH78-DH5


ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT

Mode : H	lopping on _1Mbps		
Frequency	Channel Separation	2/3 of 20dB Bandwidth	Test Result
(MHz)	(MHz)	(MHz)	Test Result
2402	1.002	0.630	Pass
2441	1.002	0.629	Pass
2480	0.998	0.631	Pass
10.0 0.00 -10.0 -20.0 -30.0 -40.0	X2 X2 X2 X2 X2 X2 X2 X2 X2 X2		Center Freq 2.402500000 GHz Start Freq 2.401000000 GHz Stop Freq 2.404000000 GHz
-50.0 -60.0 -70.0 Center 2.40	2500 GHz	Span 3.000 MHz Sweep 3.200 ms (1001 pts)	300.000 kHz <u>ato</u> Man Freq Offset 0 Hz

est Mode : H	lopping on _3Mbps		
Frequency	Channel Separation	2/3 of 20dB Bandwidth	Test Result
(MHz)	(MHz)	(MHz)	
2402	0.998	0.863	Pass
2441	0.999	0.866	Pass
2480	1.003	0.863	Pass
LXI RL	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT	H00 ALIGN AUTO 05:16:17 PM Oct 31, 2016 A Mikr 1 998 kH 7	Frequency
III. Kevsight Spect		H00	
LX RL	um Analyzer - Swept SA		
10 dB/div	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT Ref Offset 2,54 dB	ALIGN AUTO 05:16:17 PM Oct 31, 2016	Frequency Auto Tune
10 dB/div	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT Ref Offset 2,54 dB	ALIGN AUTO 05:16:17 PM Oct 31, 2016 ΔMkr1 998 kHz -0.03 dB	Frequency
10.0 0.00 -10.0	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT Ref Offset 2.54 dB Ref 20.00 dBm	ALIGN AUTO 05:16:17 PM Oct 31, 2016 ΔMkr1 998 kHz -0.03 dB -0.03 db -0.04 db -0.04 db -0.05 db -0	Frequency Auto Tune Center Freq
10 dB/div	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT Ref Offset 2.54 dB Ref 20.00 dBm	ALIGN AUTO 05:16:17 PM Oct 31, 2016 AMkr1 998 kHz -0.03 dB	Frequency Auto Tune Center Freq 2.402500000 GHz Start Freq 2.401000000 GHz
10.0 -10.0 -20.0	um Analyzer - Swept SA RF 50 Ω AC SENSE:INT Ref Offset 2.54 dB Ref 20.00 dBm	ALIGN AUTO 05:16:17 PM Oct 31, 2016 AMkr1 998 kHz -0.03 dB	Frequency Auto Tune Center Freq 2.402500000 GHz Start Freq 2.401000000 GHz

Span 3.000 MHz Sweep 3.200 ms (1001 pts)

STATUS

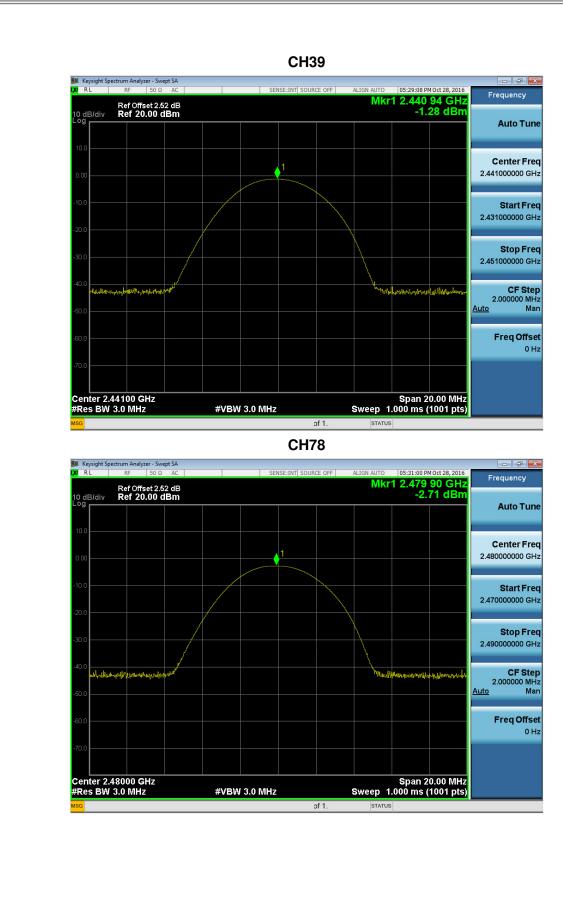
Freq Offset 0 Hz

ATTACHMENT H - BANDWIDTH


Test Mode :	TX Mode _1Mbps								
Frequency	20dB Bandwidth	99% Occupied BW	Test Result						
(MHz)	(MHz)	(MHz)	Test nesult						
2402	0.945	0.868	Pass						
2441	0.943	0.875	Pass						
2480	0.947	0.879	Pass						

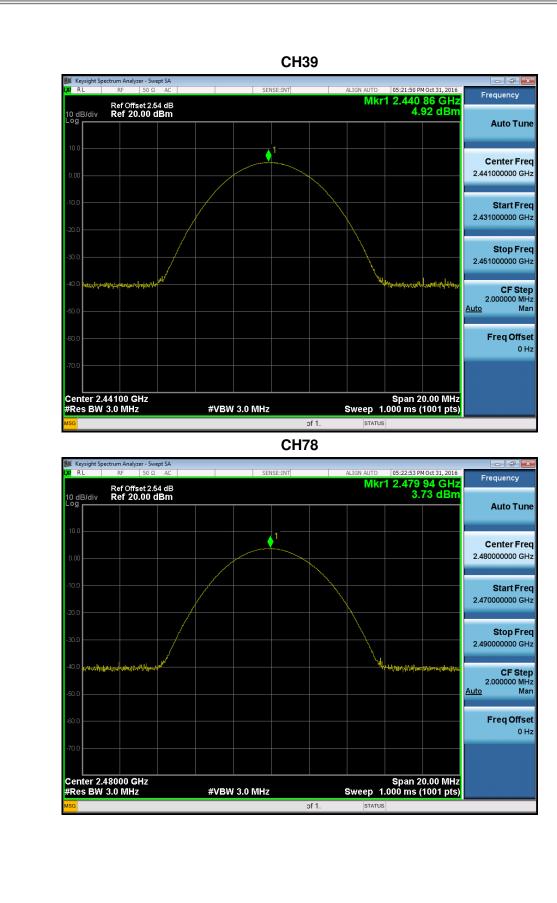
Test Mode :	TX Mode _3Mbps		
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.295	1.175	Pass
2441	1.299	1.177	Pass
2480	1.294	1.174	Pass

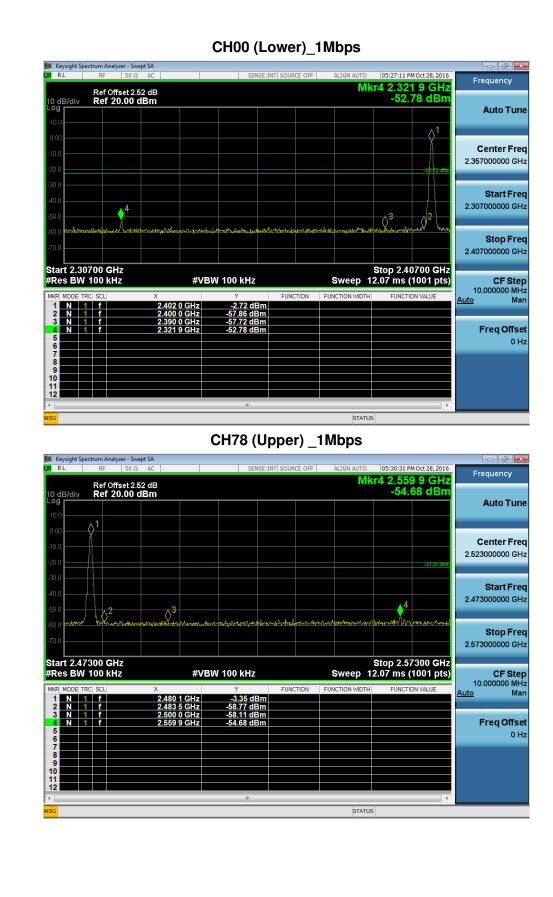

ATTACHMENT I - PEAK OUTPUT POWER

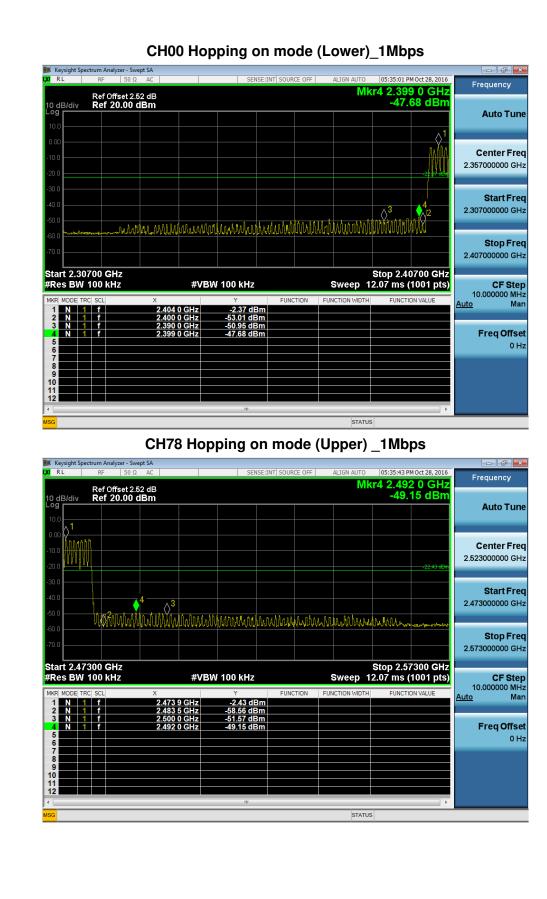

Test Mode :	TX Mode _1Mb	OS			
Frequency	Conducted Power	Conducted Power	Max. Limit	Max. Limit	Test Result
(MHz) 2402	(dBm) -2.32	(W) 0.0006	(dBm) 29.50	(W) 0.89	Pass
2441	-1.28	0.0007	29.50	0.89	Pass
2480	-2.71	0.0005	29.50	0.89	Pass

BTL



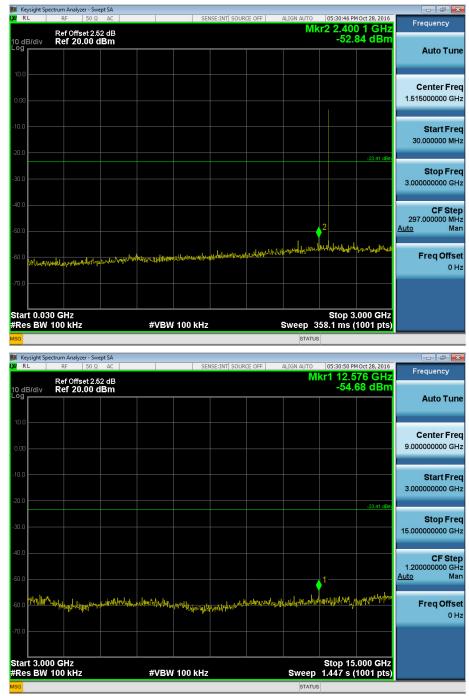

Test Mode :	TX Mode _3Mb	os			
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	5.65	0.0037	29.50	0.89	Pass
2441	4.92	0.0031	29.50	0.89	Pass
2480	3.73	0.0024	29.50	0.89	Pass




ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION

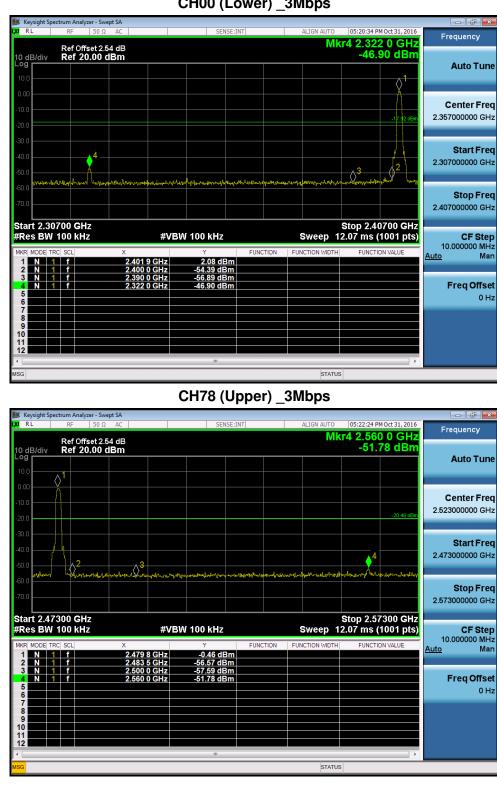
Keysight Spo RL	RF 50Ω A	IC		SE	ENSE:INT SOUR	CE OFF	ALIGN AUTO			Frequency
	Ref Offset 2.52 of	IB					Mł	r2 2.48	3 2 GHz 05 dBm	Troquerrey
0 dB/div . ^{og} r	Ref 20.00 dBi	m						-45.	US UBIII	Auto Tu
										71410 14
10.0										
										Center Fr
0.00										1.515000000 G
10.0										Start Fr
										30.000000 N
20.0									-22.67 dBm	
										Oton F
30.0										Stop Fr 3.00000000 G
										3.000000000
40.0										05.00
								2		CF St 297.000000 M
50.0										<u>Auto</u> N
								like date	فالمحاف والله	
50.0	win for the shirt with	www.hhly	helm developed	ale de la contraction	all marken and	defnal the	181 March 18. all wells	Wahnam	and the fall that have a fall	Freq Off
- And	HAMART And manufactures									0
70.0										
tart 0.03								Stop 7	.000 GHz	
Res BW			#VBW	100 kHz			Sweep 3			
					4					
SG	100 KH2				<u> </u>		STATUS			
<mark>SG</mark>										
SG Keysight Spi	ectrum Analyzer - Swept S RF 50 Ω A					CE OFF	STATUS		M Oct 28, 2016	
SG Keysight Spi	ectrum Analyzer - Swept S RF 50 Ω A	IC .				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency
SG I Keysight Sp RL	ectrum Analyzer - Swept S	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency
SG I Keysight Sp RL	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency
G Keysight Sp RL 0 dB/div	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency
SG Keysight Sp RL 0 dB/div 0 g	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu
SG Keysight Spi RL O dB/div O dB/div	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu Center F
SG Keysight Spi RL O dB/div O dB/div	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu Center F
C dB/div	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu Center Fr 9.000000000 0
C dB/div	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu Center F 9.000000000 Start F
G Keysight Spid R L 0 O dB/div 9 10.0 0 10.0 0	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu Center Fr 9.00000000 0 Start Fr
G Keysight Spid R L 0 O dB/div 9 10.0 0 10.0 0	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B				CE OFF	STATUS ALIGN AUTO	05:27:29 P kr1 14.1	M Oct 28, 2016	Frequency Auto Tu Center Fr 9.000000000 C Start Fr 3.000000000 C
G Keysight Spip RL Image: Comparison of the spin of the s	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu Center Fr 9.00000000 C Start Fr 3.00000000 C
G Keysight Spip RL Image: Comparison of the spin of the s	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu Center Fr 9.00000000 C Start Fr 3.00000000 C
SG Keysight Spin RL RL 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu <u>Center Fr</u> 9.000000000 0 Start Fr 3.000000000 0 Stop Fr 15.000000000 0
SG Keysight Spin RL RL 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu Center Fi 9.00000000 0 Start Fi 3.000000000 0 Stop Fi 15.000000000 0
SG Keysight Spin RL RL O dB/div 0 0.00 0 10.0 0 20.0 0 30.0 0	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c	B					STATUS ALIGN AUTO	05:27:29 P kr1 14.1	Mott 28, 2016 148 GHz 45 dBm	Frequency Auto Tu Center Fr 9.00000000 c Start Fr 3.000000000 c Stop Fr 15.000000000 c
SG Keysight Spring RL RL O dB/div 0 0.00	ectrum Analyzer - Swept 3 RF 50 Ω A Ref Offfset 2.52 c Ref 20.00 dB1			SE			ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fr 9.00000000 c Start Fr 3.000000000 c Stop Fr 15.000000000 c
SG Keysight Spring RL RL O dB/div 0 0.00	ectrum Analyzer - Swept 3 RF 50 Ω A Ref Offfset 2.52 c Ref 20.00 dB1			SE			ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fr 9.000000000 C Start Fr 3.000000000 C Stop Fr 15.00000000 C CF St 1.200000000 C
SG Keysight Spring RL RL O dB/div 0 0.00	ectrum Analyzer - Swept S RF 50 Ω A Ref Offset 2.52 c			SE			STATUS ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fil 9.000000000 c Start Fil 3.000000000 c Stop Fil 15.000000000 c Auto Tu CF St 1.200000000 c Auto Tu Freq Offs
SG Keysight Spi RL RL I OdB/div I 10.0 I	ectrum Analyzer - Swept 3 RF 50 Ω A Ref Offfset 2.52 c Ref 20.00 dB1			SE			ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fil 9.000000000 c Start Fil 3.000000000 c Stop Fil 15.000000000 c Auto Tu CF St 1.200000000 c Auto Tu Freq Offs
SG Keysight Spr RL RL O dB/div 0 0.00	ectrum Analyzer - Swept 3 RF 50 Ω A Ref Offfset 2.52 c Ref 20.00 dB1			SE			ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fil 9.000000000 c Start Fil 3.000000000 c Stop Fil 15.000000000 c Auto Tu CF St 1.200000000 c Auto Tu Freq Offs
SG Keysight Spi RL RL I OdB/div I 10.0 I	ectrum Analyzer - Swept 3 RF 50 Ω A Ref Offfset 2.52 c Ref 20.00 dB1			SE			ALIGN AUTO	05:27:29 P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fil 9.000000000 c Start Fil 3.000000000 c Stop Fil 15.000000000 c Auto Tu CF St 1.200000000 c Auto Tu Freq Offs
SG Keysight Spi I Keysight Spi R I O O IO O <	ectrum Analyzer - Swept S RF 50 0 # Ref Offset 2.52 c Ref 20.00 dB1			SE				05:27:29P kr1 14.1 -54.	MOCT 28, 2016 148 GHz 45 dBm -22.67 dBm -22.67 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF St 1.200000000 G

CH00 (10 Harmonic of the frequency) _1Mbps

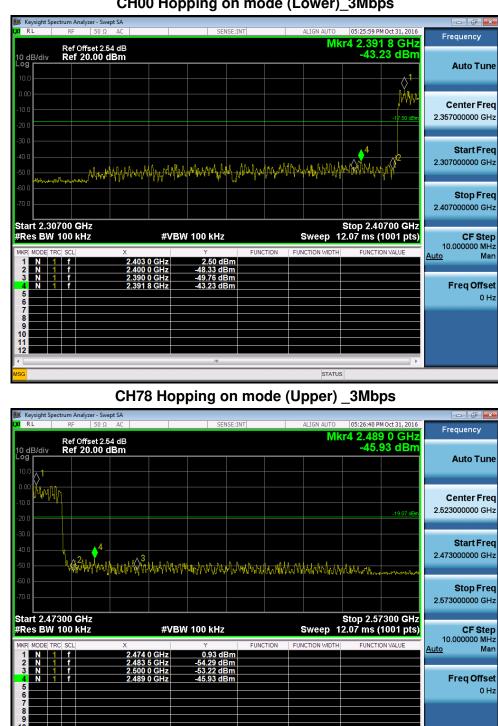

R L	ectrum Analyzer - RF 50	Swept SA Ω AC		SEN	ISE:INT SOUR	CE OFF	ALIGN AUTO	05:27:34 P	M Oct 28, 2016	
) dB/div	Ref Offset: Ref 20.00	2.52 dB						kr1 25.5	592 GHz 58 dBm	Frequency
g										Auto Tu
0.0										Center Fr 20.750000000 G
).0 ———).0 ———									-22.67 dBm	Start Fr 15.000000000 G
D.O										Stop Fr 26.50000000 G
).0).0					المراد	Mit 1449 ^{lu} u sellastu	on the new Wy	and the second states of the s	1 hunthelapope	CF St 1.150000000 G <u>Auto</u> N
	ajilan sihan di kanadahan	gelfter gegeldet og det	pholodiumic philodowick	.kn/Matheway.es	an adulta da					Freq Off 0
	000 GHz							Stop 26	.500 GHz	
es BW	100 kHz		#VBW	100 kHz			Sweep	1.387 s	(1001 pts)	

CH39 (10 Harmonic of the frequency) _1Mbps

R L	ectrum Analyzer - Swep RF 50 Ω	AC		SEI	NSE:INT SOUR	CE OFF	ALIGN AUTO		M Oct 28, 2016	
	Ref Offset 2.52	2 dB					N		600 GHz	Frequency
0 dB/div og	Ref 20.00 dl	Bm						-55.	14 dBm	Auto T
										Auton
10.0										
										Center F
0.00										9.000000000
10.0										Start F
										3.000000000
20.0									22.07 dBm	0.000000000
									-22.07 dbm	
30.0										Stop F
										15.000000000
40.0										
										CF S 1.200000000
50.0	1									Auto
50.0 14441	AL AND	el. Hillion	Matherita	alater (and use	a dala John Market	4 May August	if a she had	at Mary May	harmontalida	Freq Of
				. Han Med	WH-Donie and L					
70.0										
itart 3.00								Stop 15	.000 GHz	
			-40 (1914)	400 1.11-						
	100 kHz		#VBW	100 kHz					(1001 pts)	
			#VBW	100 kHz			Sweep Status		(1001 pts)	
Res BW SG	100 kHz		#VBW				STATUS			
Res BW ^{sg}	100 kHz ectrum Analyzer - Swep RF 50 Ω	AC	#VBW		NSE:INT SOUR	CE OFF	STATUS ALIGN AUTO	05:29:00 P	M Oct 28, 2016	Frequency
Res BW SG Keysight Sp RL	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	
Res BW SG Keysight Sp RL	100 kHz ectrum Analyzer - Swep RF 50 Ω	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency
Res BW SG Keysight Sp RL	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency
Res BW	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency
Res BW SG	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F
Res BW	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F
Res BW	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS ALIGN AUTO	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F
Res BW SG RL O dB/div O dB/div	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F 20.75000000 Start F
Res BW	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F 20.75000000 Start F
Res BW	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW			CE OFF	STATUS	05:29:00 P kr1 25.6	M Oct 28, 2016	Frequency Auto T Center F 20.75000000 Start F
Res BW so It Keysight Sp It Keysight Sp It RL	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW				STATUS	05:29:00 P kr1 25.6	MOCT 28, 2016 338 GHz 55 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000
Res BW SG C Keysight Sp RL O dB/div O G C MB/div O G C MB	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW				STATUS	05:29:00 P kr1 25.6	MOCT 28, 2016 338 GHz 55 dBm	
Res BW sci 6 RL 0	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW				STATUS	05:29:00 P kr1 25.6	MOCT 28, 2016 338 GHz 55 dBm	Frequency Auto T Center F 20.750000000 Start F 15.000000000
Res BW so It Keysight Sp It Keysight Sp It RL	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW				STATUS	05:29:00 P kr1 25.6	MOCT 28, 2016 338 GHz 55 dBm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S
Res BW sci Image: science state	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB	#VBW				ALIGN AUTO M	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.00000000 Stop F 26.500000000 CF S 1.150000000
Res BW 50 51 6 6 7 7 8 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0	100 kHz ectrum Analyzer - Swee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S
Res BW sci It Reysight Spint Sp	100 kHz ectrum Analyzer - Swee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR	CE OFF	ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.150000000 Auto
Res BW sci It Reysight Spint Sp	T 100 kHz ectrum Analyzer - Swep RF 50 Ω Ref Offset 2.52	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Freq Of
Res BW 50 51 6 6 7 7 8 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0 9 10.0	100 kHz ectrum Analyzer - Swee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Freq Of
Res BW sci It Reysight Spint Sp	100 kHz ectrum Analyzer - Swee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Freq Of
Res BW 50 50 6 6 7 8 10.0	100 kHz ectrum Analyzer - Swee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Freq Of
Res BW 30 6 6 7 7	100 kHz ectrum Analyzer - Siwee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR		ALIGN AUTO MI	05:29:00 P kr1 25.6 -46.	Mott 28, 2016 338 GHz 55 dBm 	Frequency Auto T Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Freq Of
Res BW 50 50 6 6 7<	100 kHz ectrum Analyzer - Siwee RF 50 Ω Ref Offset 2.52 Ref 20.00 d	AC 2 dB BM		SEP	NSE:INT SOUR			05:29:00 P kr1 25.6 -46.	MOCT 28, 2016 338 GHz 55 dBm -22 07 dbm	Frequency Auto T Center F 20.750000000 Start F 15.00000000 Stop F 26.500000000 CF S 1.150000000


CH78 (10 Harmonic of the frequency) _1Mbps

RL RL	ectrum Analyzer	- Swept SA 50 Ω AC		SEN	SE:INT SOUR	CE OFE	ALIGN AUTO	05:30:55 P	M Oct 28, 2016	
) dB/div	Ref Offse Ref 20.0	t 2.52 dB		JL	SEAN SOOK			kr1 25.3	339 GHz 99 dBm	Frequency
°g	Rel 20.0									Auto Tui
0.0										Center Fr 20.750000000 G
0.0										Start Fr 15.000000000 G
0.0									-23.41 dBm	Stop Fr 26.50000000 G
0.0								اللغريد الجلع	1	CF St 1.150000000 G <u>Auto</u> M
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NHH HAN HANNA	mumunuhu	had had a start and had had had had had had had had had ha	philippineteet	htru#Weitengry	nykyenlypet ^{yr v}	φ <i>σ</i> ' ' ' '		Freq Offs
0.0										
tart 15.0	00 GHz 100 kHz		#\/B\M	100 kHz			Sweep).500 GHz (1001 pts)	



CH00 (Lower) _3Mbps

STATUS

CH00 Hopping on mode (Lower)_3Mbps

Keysight Spo KIRL	RF 50 Ω AC		SENSE:INT	A			4 Oct 31, 2016	Frequency
	Ref Offset 2.54 dB				Mk		3 2 GHz	requercy
0 dB/div .og	Ref 20.00 dBm					-47.	72 dBm	Auto Tu
								Auto Tu
10.0								
10.0								Center Fr
								1.515000000 G
0.00								1.515000000 G
10.0								Start Fr
							-17.80 dBm	30.000000 M
20.0								
30.0								Stop Fr
								3.00000000 G
40.0								
40.0						<u>^</u> 2		CF St
								297.000000 M Auto M
50.0	routfoordbegungelkodoblid		and the second of all these	And all and the second	HINGHANDARY	where the second second	hout the patients	<u>Nato</u> W
	www. Monorth upon and hard reader	and the state of the second	All and a start of the second s					
60.0								Freq Offs
								0
70.0		_						
							.000 GHz	
Start 30 N		#\/P\A	100 kHz		woon 2	50 1 mc /		
≉Res BW		#VBW	100 kHz	s			1001 pts)	
		#VBW	100 kHz	S	status			
# Res BW ISG	100 kHz ectrum Analyzer - Swept SA	#VBW			STATUS		1001 pts)	
FRes BW	100 kHz	#VBW	100 kHz		STATUS	05:20:53 PI	1001 pts)	Frequency
FRes BW	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	
FRes BW	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC	#VBW			STATUS	05:20:53 Pi	1001 pts)	Frequency
Res BW sg Keysight Sp RL	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency
SG Keysight Spo RL 0 dB/div	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency
SG Keysight Spo RL 0 dB/div	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency Auto Tu
Res BW sg Keysight Spr RL 0 dB/div og	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency Auto Tu Center Fr
Res BW sg Keysight Spr RL 0 dB/div og	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency Auto Tu Center Fr
Res BW sg C keysight Sp R R C dB/div	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	
Res BW sg Keysight Sp RL O dB/div	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency Auto Tu Center Fr 9.000000000 G
Res BW sg Keysight Sp RL O dB/div	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) ^{40ct 31, 2016} 40 GHz	Frequency Auto Tu Center Fr 9.00000000 G Start Fr
Res BW sc keysight Spig keysight Spig a RL 0 dB/div 0 dB/div 0 00 10.0	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr
Res BW sc keysight Spig keysight Spig a RL 0 dB/div 0 dB/div 0 00 10.0	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.000000000 G
Res BW SG	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G
Res BW SG	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr
Res BW S0 Resident Spin RL I O dB/div O 10.0 I 10.0 I 20.0 I 30.0 I	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G
Res BW S0 Resident Spin RL I O dB/div O 10.0 I 10.0 I 20.0 I 30.0 I	100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB	#VBW			STATUS	05:20:53 Pi	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Str
Keysight Spin 0 Closed Science 0	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.000000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Sta 1.200000000 G
Res BW SG Reysight Spin RL I O O IO O <	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF St 1.200000000 G
Res BW S0 Image: Constraint Spin (Constraint Spin (ConstraintSpin (Constraint Spin (Constraint Spin (ConstraintSpin (100 kHz ectrum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2,54 dB		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.000000000 G Start Fr 3.000000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto M
Res BW SG RL RL RL 0 0 10 0 20 0 10 0 20 0 10 0 20 0 30 0 50 0 WHANG 0	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF St 1.200000000 G Auto Tu Freq Offs
Res BW S0 Image: Constraint Spin Spin Spin Spin Spin Spin Spin Spin	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
Res BW SG RL RL RL 0 0 0.00	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF St 1.200000000 G Auto Tu Freq Offs
Res BW SG RL RL RL 0 0 0.00	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF St 1.200000000 G Auto Tu Freq Offs
Res BW SG Image: Constraint Spin Spin Spin Spin Spin Spin Spin Spin	100 kHz ctrum Analyzer - Swept SA RF S0 Q AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT		STATUS	05:20:53 PI kr1 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
Res BW SG Image: Constraint Spin Spin Spin Spin Spin Spin Spin Spin	100 kHz		SENSE:INT			05:20:53 PT در ۲۱ 13.4 -49.	1001 pts) 40ct 31, 2016 40 GHz 05 dBm	Frequency Auto Tu Center Fr 9.000000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Sta 1.200000000 G

CH00 (10 Harmonic of the frequency) _3Mbps

RL	RF	Analyzer - Swe 50 Ω			SEI	NSE:INT		ALIGN AUTO	05:20:59 P	M Oct 31, 2016	
0 dB/div	Ref Ref	Offset 2.5 20.00 d	4 dB Bm					М		119 GHz 21 dBm	Frequency
og											Auto Tu
).00											Center Fr 20.750000000 G
0.0										-17.80 dBm	Start Fr 15.000000000 G
0.0										▲1	Stop Fr 26.50000000 G
0.0 0.0	under franzischer die	herman	hilispeixadat	h Marine hundra	A.M. W. W.	phanam	Wetchiphasphashi	frankirt Marina	p Musel Mary	hilline nurder blef hat	CF St 1.150000000 G <u>Auto</u> M
0.0											Freq Offs 0
10.0	.000 G	Hz							Stop 26	.500 GHz	

CH39 (10 Harmonic of the frequency) _3Mbps

📕 Keysight Spe 📈 R L	ctrum Analyzer - Swo RF 50 Ω			< EI	NSE:INT		ALIGN AUTO	05:21:36 P	MOct 31 2016	
N KL				SEI	NSE:INT				88 GHz	Frequency
10 dB/div	Ref Offset 2.5 Ref 20.00 c	i4 dB IBm							69 dBm	
- ^{og}										Auto Tur
10.0										
										Center Fre
0.00										9.00000000 GI
-10.0										Start Fr
									-19.89 dBm	3.00000000 G
-20.0									10,00 40.0	
										Stop Fre
-30.0										15.00000000 GI
-40.0										CF Ste
-50.0									ľ	1.20000000 G Auto M
	and an Internet	W44 martin	Worldsteinkeltungerkikere	k and when the set	John Jum	a substitution	houtenerthal	Alun Lateral	mannahin	
-60.0	L'AND AND A CONTRACT			and the second sheet by	No. Hereit	all and differ ye	144 PT 11			Freq Offs
-00.0										0
-70.0										
-70.0										
Start 3.00								Stop 15	.000 GHz	
				400 1.11-			•			
#Res BW			#VBW	100 kHz				1.447 s (1001 pts)	
			#VBW	100 kHz			Sweep	1.447 s (
#Res BW ⁻ ^{ISG} Keysight Spec	100 kHz ctrum Analyzer - Swe		#VBW				STATUS	1.447 s (1001 pts)	
#Res BW ⁻ ^{ISG} Keysight Spec	100 kHz ctrum Analyzer - Swr RF 50 Ω	AC	#VBW		NSE:INT		STATUS ALIGN AUTO	1.447 s (1001 pts)	Energy
#Res BW /ISG Keysight Spec X/ RL	100 kHz ctrum Analyzer - Swe	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts)	Energy
#Res BW ⁻ ^{ISG} Keysight Spec	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency
#Res BW	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency
#Res BW /ISG Keysight Spec X/ RL	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tu
#Res BW *	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tur Center Fre
#Res BW	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tur Center Fre
#Res BW 1 15 15 15 15 15 15 15 15 15 15 15 15 15	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tur Center Fre 20.750000000 G
#Res BW *	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tur Center Fre 20.75000000 G Start Fre
#Res BW Keysight Spectrum III Keysight Spectrum III AB/div Og 10 dB/div Og 10 0 10 0	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) MOct 31, 2016	Frequency Auto Tur Center Fre 20.75000000 G Start Fre
#Res BW Keysight Spectrum III Keysight Spectrum III AB/div Og 10 dB/div Og 10 0 10 0	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) Mott 31, 2016 57 GHz 25 dBm	Auto Tur Center Fr 20.75000000 G Start Fr 15.00000000 G
#Res BW 1 15 15 15 15 15 15 15 15 15 15 15 15 15	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) Mott 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr
#Res BW Kcg If Keysight Spectry M RL 10 dB/div og 10 0.00	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				STATUS ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5	1001 pts) Mott 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr
#Res BW Kcg If Keysight Spectry M RL 10 dB/div og 10 0.00	100 kHz ctrum Analyzer - Swu RF 50 Ω Ref Offset 2.5	AC	#VBW				ALIGN AUTO	1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.500000000 G
#Res BW Kcg III Keysight Spectra III Coll IIII Coll III Coll	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Sta
#Res BW Kcg III Keysight Spectra III Coll IIII Coll III Coll	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tui Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.500000000 G CF Sta 1.150000000 G
#Res BW Kcg III Keysight Spectra III Relation IIII Relation III Relation IIII Relation III Relation	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tur Center Frr 20.750000000 Gi Start Frr 15.000000000 Gi Stop Frr 26.500000000 Gi CF Ste 1.150000000 Gi
#Res BW Kcg III Keysight Spectra III Relation IIII Relation III Relation IIII Relation III Relation	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tur Center Frr 20.750000000 Gi Start Frr 15.000000000 Gi Stop Frr 26.500000000 Gi CF Ste 1.150000000 Gi
#Res BW Keysight Spectra III Keysight Spectra III R	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tur Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L15000000 G Auto Tur
#Res BW Keysight Spectra III Keysight Spectra III R	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Stt 1.150000000 G Auto Tu Preq Offs
#Res BW 453 It Reysight Spectry It Reysight Spectry It Rule	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Stt 1.150000000 G Auto Tu Preq Offs
Kess BW Keysight Spectrum II. Keysight Spectrum II. Cog III. Cog IIII. Cog	100 kHz ctrum Analyzer - Sw RF 50 Ω Ref Offset 2.5 Ref 20.00 c	AC		SE	INSE:INT			1.447 s (05:21:41 P kr1 25.5 -38.	1001 pts)	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Stt 1.150000000 G Auto Tu Preq Offs
#Res BW 453 It Reysight Spectry It Reysight Spectry It Rule	100 kHz	AC		SE	NSE:INT			1.447 s (1001 pts) Moct 31, 2016 57 GHz 25 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF Stt 1.150000000 G Auto Tu Preq Offs

Keysight Spect	RF 50 Ω AC		SENSE:INT	ALIGN	N AUTO	05:22:38 PI	4 Oct 31, 2016	Fraguanay
	Ref Offset 2.54 dB				Mkr		0 4 GHz	Frequency
0 dB/div og	Ref 20.00 dBm					-48.	37 dBm	
°¶								Auto Tu
10.0								
10.0								Contor En
								Center Fre 1.515000000 GI
0.00								1.515000000 G
-10.0								Start Fre
								30.000000 M
20.0							-21.92 dBm	
								Stop Fr
30.0								3.000000000 GI
-40.0								CF Ste
						▲ 2		297.000000 MI
-50.0				I should be be	والمح طائد الد	Allenn	mappinet	Auto M
Human	wele wet the ship of the part of the second	worklown	molennoplastrationely	(Nyrah) #1.14 w spanichal	A Contraction of the local sector		HAND AND AND AND AND AND AND AND AND AND	
-60.0								Freq Offs
								01
-70.0								
Start 30 Mi		<i>(</i>) () () ()		_			.000 GHz 1001 pts)	
						xımsı		
#Res BW 1	00 kHz	#VBW	100 kHz	Swe			roor pis)	
#Res BW 1 <mark>Isg</mark>	00 kHz	#VBW	100 KHZ	Swe	STATUS	0.1 mo (roor pisy	
<mark>ISG</mark> I Keysight Spect	trum Analyzer - Swept SA	#VBW			STATUS			
<mark>ISG</mark>		#VBW	SENSE:INT		STATUS N AUTO	05:22:43 PI	4 Oct 31, 2016	Frequency
ISG Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	
ISG Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC	#VBW			STATUS N AUTO	05:22:43 P	4 Oct 31, 2016	
ISG Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency
ISG Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency
Keysight Spect RL 0 dB/div	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur
ISG Keysight Spect RL O dB/div -09	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fre
ISG Keysight Spect RL O dB/div -09	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fre
ISG III Keysight Spect XI RL 10 dB/div -99	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fre 9.000000000 Gt
ISG Keysight Spect Keysight Spect RL 10 dB/div 0 g 10.0 0.00	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB	#VBW			STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fro 9.00000000 G Start Fro
SG Keysight Spect M RL O dB/div O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fre 9.000000000 G
Image: Second	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fr 9.00000000 G Start Fr 3.000000000 G
Image: Section of the sectio	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur 9.00000000 G Start Fro 3.00000000 G Stop Fro
Image: Second	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fro 9.00000000 G Start Fro
Image: Solution of the sector of th	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur 9.00000000 G Start Fro 3.00000000 G Stop Fro
Image: Section of the sectio	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB				STATUS N AUTO	05:22:43 P	40ct 31, 2016	Frequency Auto Tur Center Fro 9.00000000 Gi Start Fro 3.00000000 Gi Stop Fro 15.00000000 Gi
S0 Keysight Spect 0 RL 0 0 Bl/div 0 0 0 0 10 0 0 20 0 0 30 0 0 40 0 0	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tui Center Fr 9.00000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Sta 1.200000000 G
SG Keysight Spect III Keysight Spect 0 dEJ/div	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tui Center Fr 9.00000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Sta 1.200000000 G
SG Keysight Spect RL RL OdB/div OdB/div 000 000 1000 000 2000 000 3000 000 3000 000 3000 000	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm			ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tui Center Fr 9.000000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Stt 1.200000000 G Auto Tui
SG Keysight Spect RL RL OdB/div OdB/div 000 000 1000 000 2000 000 3000 000 3000 000 3000 000	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
S0 Keysight Spect Keysight Spect RL OdB/div 0 000 0	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
S0 Keysight Spect 0 BL I 0 C I 10 I	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
SG Keysight Spect Keysight Spect RL Od B/div Od B/div 1000 Od B/div 2000 Od B/div 3000 Od B/div	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG	AUTO	05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
S0 Keysight Spect R RL 0 O dB/div 0 10.0 0 0.00 0	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT	ALIG		05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm	Frequency Auto Tu Center Fr 9.00000000 G Start Fr 3.00000000 G Stop Fr 15.00000000 G CF Stt 1.20000000 G Auto Tu Freq Offs
SO Keysight Spect 0 CB/div	trum Analyzer - Swept SA RF 50 Ω AC Ref Offset 2.54 dB Ref 20.00 dBm		SENSE:INT			05:22:43 PI r1 14.4 -50.	40ct 31, 2016 100 GHz 09 dBm -21 92 dBm	Frequency Auto Tui Center Fr 9.00000000 G Start Fr 3.000000000 G Stop Fr 15.000000000 G CF Sta 1.200000000 G

CH78 (10 Harmonic of the frequency) _3Mbps

RL	R	Analyzer - Swi 50 Ω	AC		SEI	NSE:INT		ALIGN AUTO	05:22:47 P	M Oct 31, 2016	
	Rei	f Offset 2.5	i4 dB					М	kr1 25.	523 GHz	Frequency
) dB/div og	Re	f 20.00 c	lBm						-38.	60 dBm	Auto Tur
											Autoru
0.0											
											Center Fr
1.00											20.750000000 G
0.0											
0.0											Start Fr 15.00000000 G
20.0										-21.92 dBm	13.000000000
											Stop Fr
0.0											26.500000000 G
										♦ ¹	
10.0									the state of the s	Allow alwhy	CF St
io.o web 4	allerand	when the	human	ester Weltonby	dup hangely a	aline and a state	woodelala	Web MAR IN			1.15000000 G Auto M
.0.0	4	ι γ.	and so is barren								
io.o											Freq Offs
											0
0.0											
tart 15		SHz kHz			100 kHz			Sweep	Stop 26	.500 GHz (1001 pts)	