STARTUP GUIDE

LoRaWAN Node BB-WSW Series

Industrial LoRaWAN Node

Certification

CE

This product has passed the CE test for environmental specifications. Test conditions for passing included the equipment being operated within an industrial enclosure. In order to protect the product from being damaged by ESD (Electrostatic Discharge) and EMI leakage, we strongly recommend the use of CE-compliant industrial enclosure products.

FCC Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual. may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Package List

- 1 x Industrial LoRaWAN node
- 1 x Antenna
- 1 x Cable (BB-WSW2C42 with 2 x cable)

Overview

No	Item
1	Antenna slot
2	Status LED
3	Cable conduit
4	Status/Sleep/Reset button

Buttons and LED

The device includes a multifunction button. The various functions are described as follows:

- To display the status function, press the button for less than 3 seconds.
 - If LED blinks in 3 second intervals, the device is in sleep mode.
 - If LED lights solid in 3 second intervals, the device is in operations mode.
- To change modes from sleep to operation, press the button between 5 and 15 seconds.
- To reset to factory default settings, press the button for more than 15 seconds.

Configuring the LoRaWAN

It is recommended to configure the LoRaWAN before installing in a permanent location.

The following procedure is written for a Windows operating system.

- 1. Locate the screws securing the device cap and remove them.
- 2. Remove the cap to expose the internal connectors.
- A type A male to micro B USB cable is required for the following step. Connect the micro USB connector to the slot on the device.
- 4. Power up the target computer and allow it to boot up completely.
- 5. Connect the remaining end to a USB slot on a computer.

 Once the device and computer are connected, the computer detects the USB connection and a virtual COM port is created.

In the event that the USB connection is not detected by the operating system, use the following instructions to download and install the required driver:

- Open a browser and navigate to the following website: https://www.silabs. com/products/interface/usb-bridges/ classic-usb-bridges/device.cp2104.
- For Windows 7/8 operating systems, download the CP210x_Windows_ Driver.
- For Windows 10 operating systems, download the CP210x_Universal_ Windows_Driver
- After downloading, install the driver on the computer.
 NOTE: you may be required to obtain administrator privilege to install.

- Open the operating system's Device Manager. Go to Start > Control Panel > Device Manager and select COM & LPT port entry.
- 8. Click the drop-down menu to select the installed COM port and click **Apply**.

evice Port		×
COM1	Ŧ	
Apply		
	COM1	COM1 👻

The LoRa Wzzard Utility displays as shown in the following figure.

LoRa Wzzard Utility	Help Connect Setting About	-	×
System LoRaWAN Radio Senso			
Device Information			
Model Name	W5W2C42100-1		
Version	1.00.04		
Device Description	Advantech 4AI2DELDO LoRa Node, 915MHz		

For further information about the LoRa Wzzard Utility, refer to "Starting the LoRaWAN Node Utility".

Once the device is configured, it can be disconnected from the computer to prepare it for installation on the selected site. After the device is installed and connected to respective sensor, the LoRa Wzzard Utility is then used to customize system, device, and radio settings and connect it to the Internet/network.

- 9. Disconnect the USB cable from the slot on the device.
- 10. Replace the cap on the device and secure it with the screws if it is necessary at this time.

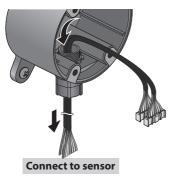
See "Hardware Installation" to continue.

Hardware Installation

Step one, wall mounting:

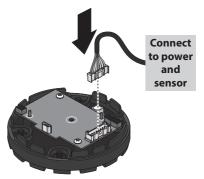
1. Locate the area to install and mark the four screw locations. If necessary, drill pilot holes.

If installing in concrete, it is recommended to use wall sinks.


2. Align the LoRaWAN to the holes on the location and secure with the screws.

Step two, routing data cables:

3. Insert the sensor cable through the channel on the device.


NOTE: Position the cable connector so that it can be connected to the board.

- 4. Connect the sensor cables to the connectors on the device.
 - Node with AI/DI/DO

Node with RS485

- Align the top cover with the base and install while gently pulling the data cable slack. If there is resistance when pulling, do not pull the cable further to avoid damaging the connector.
- 6. Secure the top cover with the screws.

Step three, installing the antenna:

7. Connect the antenna by rotating the antenna connector in a clockwise direction.

NOTE: Positioning of antenna is crucial for effective wireless connectivity.

PIN Definition

The following pin definitions are for the cables supported by the listed LoRaWAN devices:

- Node with AI/DI/DO
 - BB-WSW2C42100-1 (915 MHz)
 - BB-WSW2C42100-2 (868 MHz)
 - BB-WSW2C42100-3 (923 MHz)

PIN	Color	Connector 1	Connector 2	
FIN	Color	Definition	Definition	
1	Grey	Al1	PWR	
2	White	GND	V-	
3	Blue	Al2	DI1	
4	Green	GND	GND	
5	Yellow	AI3	DI2	
6	Pink	GND	GND	
7	Red	Al4	DO	
8	Brown	GND	GND	

- Node with RS485
 - BB-WSW2C00015-1 (915 MHz)
 - BB-WSW2C00015-2 (868 MHz)
 - BB-WSW2C00015-3 (923 MHz)

PIN	Color	Definition
1	Grey	PWR
2	White	V-
3	Blue	NC
4	Green	NC
5	Yellow	NC
6	Pink	NC
7	Red	D+
8	Brown	D-

Starting the LoRaWAN Node Utility

System Page

The System page displays the BB-WSW node information.

Right click on the System page to select reboot the BB-WSW node, reset BB-WSW node or upgrade the firmware.

a Wzzard Utility		
tem LoRaWAN Radio Senso	(
Device Information		
Model Name	W5W2C42100-1	
Version	1.00.04	
Device Description	Advantech 4AI2DI1DO LoRa Node, 915MHz	

Item	Description
Model Name	Display the model name of the device.
Version	Display the current firmware version of the device.
Device Description	Display the description of the device.

LoRaWAN Page

The LoRaWAN page allows users to configuration the LoRaWAN settings.

a Wzzard Utility em LoRaWAN Radio Sensor	Help Connect Setting	About = 1
LoRaWAN Setting		
Join Mode	ABP -	
Device Address	FE2EE780	
Application Session Key	000000000000000000000000000000000000000	
Network Session Key	000000000000000000000000000000000000000	
ADR	🖲 On 💿 Off	
Tx Confirm	⊙ On ⊗ Off	
Tx Retry Number	0 💌	

Item	Description		
Join Mode	Click the drop-down menu to select the LoRaWAN join mode.		
ADR	Click the radio button to enable the mechanism for optimizing data rates, airtime and energy consumption in the network.		
Tx Confirm	Click the radio button to enable the function that confirm the transmission is success or not via a ACK frame from remote LoRaWAN receiver.		
Tx Retry Number	Click the drop-down menu to select the number of retransmission that LoRaWAN sender considers the transmission failed.		
Join Mode is ABP			
Device Address	Display the 4 bytes hexadecimal device address of end device.		
Application Session Key	Enter the key used for encryption and decryption of the LoRaWAN packet payload.		

Item	Description			
Network Session Key Enter the key used to check the validity of messages (MIC check).				
Join Mode is OTAA				
Device EUI Display the 8 bytes hexadecimal unique identifier of end device.				
Application EUI	Enter the 8 bytes hexadecimal unique identifier of the application provider of the end device.			
Application Key Enter the key used to derive the session keys.				

Radio

The Radio page allows users to configuration the LoRa Radio settings.

stem LoRaWAN	Radio Senso	r						
Radio Setti	ng							
Band		US915						
RF Power	(dBm)	20						
Data Rate		0: SF10 / 125	kHz / 980bps	Ŧ				
Channel Se	lection	CH2	🔽 СНЗ	CH4	CH5	CH6	CH7	
			-	-			-	
		CH10	CH11	CH12	CH13	CH14	CH15	
CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	
CH24	CH25	CH26	CH27	CH28	CH29	CH30	CH31	
CH32	🗌 CH33	🗌 CH34	CH35	CH36	CH37	CH38	CH39	
CH40	CH41	CH42	CH43	CH44	CH45	CH46	CH47	
CH48	CH49	CH50	CH51	CH52	🗌 СН53	CH54	CH55	
CH56	CH57	CH58	CH59	CH60	CH61	CH62	CH63	

Item	Description
Band	Display the LoRaWAN radio band for different region: AS923, EU868, or US915.
RF Power (dBm)	Display the output power of the radio.
Data Rate	Click the drop-down menu to select the settings of LoRa Spreading Factor (SF), Bandwidth and Data Rate. LoRa operates with SF from 7 to 12. SF7 is the shortest time on air, SF12 is the longest time.
Channel Frequency (Hz)	 Enter the LoRa channel frequency. The frequency range for the radio band is as following: AS923: 920,000,000 ~ 925,000,000 Hz. EU868: 863,000,000 ~ 870,000,000 Hz. US915: The frequency of channel is fixed. Each channel frequency needs to be separated by more than 200,000 Hz.
Channel Selection	Click the check box to select the LoRa channel to use.

Digital/Analog Input

The Digital/Analog Input page allows users to configuration the DI/AI settings.

ts/Analog Input Dight Output 3asic Setting Interval of Svnc. Sensor Data (sec.) 10
-
Interval of Sync. Sensor Data (sec.) 10
Analog Input
Index Mode Negative Value
1 10V - 0.000000 V
2 10V V 0.000000 V
3 10V - 0.000000 V
4 20V V 0.000000 V

Refresh	Undo	Apply
---------	------	-------

Item	Description					
Interval of Sync. Sensor Data (sec.)	Enter the value to define the interval defines how often the LRPv2 node reads DI/AI data.					
	Set the setting for the analog inputs:					
	Mode: Click the drop-down menu to select AI measure mode.					
Analog Input	 Negative: Click the check box to set enable if the analog input may be negative value possibly. 					
	 Value: Display the analog input value. 					
	Set the setting for the digital inputs:					
Digital Input	Enable: Click the check box to enable to read DI data or not.					
	Value: Display the digital input value.					

Digital Output

The Digital Output page allows users to configuration the DO settings.

LoRa Wzzard Utilit	у	Help Conne	ect Setting	About	,
System LoRaWAN Radio	Sensor				
Digital/Analog Input Digital	I Output				
Digital Output Output Value	High 🖲 Low				

Item	Description
Digital Output	Click the radio button to write a High or Low value to a digital pin.

Apply Output

Modbus

UART

The UART page allows users to configuration the UART settings. The UART settings must to match with the settings on the attached Modbus RTU device.

JART Modbus RT	TU Read Modbus F	RTU Write			
UART Setting	g				
Baud Rate	2400	Ŧ			
Parity	None	v			
Data Bits		Ŧ			
Stop Bits		v			

Item	Description
Baud Rate	Click the drop-down menu to select the transmission speeds of the connected devices.
Parity	Click the drop-down menu to select the method of detecting errors in transmission.
Data Bits	Click the drop-down menu to select the number of data bits in each character.
Stop Bits	Click the drop-down menu to select the end of every character allows the receiving signal hardware to detect the end of a character.

Modbus RTU Read

The Modbus RTU Read page allows users to configuration the Modbus Read settings.

i M	/zzard Util	ity			Help	Conr	ect Setting	About -
m I	oRaWAN Radio	Modbus						
RT	Modbus RTU Re	ad Modbus RTU Write						
40d	bus RTU							
n	Enable Slave ID	Function Code	Address	Quantity	Polling Time (ms)		Modbus Timeout (ms)	
1		•	ad	qty	poll	set	timeout	5
			ad	qty	poll	set	timeout	3
		•	ed	qty	poll	set	timeout	1
	1		ed	qty	poll	set	timeout	1
3						1st	timenet	les.
			ad	qty	poll	141		

Item	Description
Enable	Click the check box to enable the Modbus Read command function.
Slave ID	Enter the value to define the unique unit address of Modbus slave.

Item	Description
Function Code	Click the drop-down menu to select the master device delivers packets to the slave device containing instructions as defined in the function code fields.
Address	Enter to designate the read from starting address for the Modbus registry.
Quantity	 Enter to designate the number of read cycles. Each function code has different quantity range. 01: 1 ~ 32 02: 1 ~ 32 03: 1 ~ 23 04: 1 ~ 23
Polling Time (ms)	Enter the value to specify the frequency with which the Modbus command is re-issued.
Modbus Timeout (ms)	Enter the value to specify the time duration in milliseconds for the LRPv2 node to wait for a response after it has issued a command.

Modbus RTU Write

The Modbus RTU Write page allows users to configuration the Modbus Write settings.

υ	.oRa Wzzard Utility						Help	Connect	ng About	About - 🗆 🛪	
	System LoRal	WAN Radio Modb	us								
	UART Mos	dous RTU Read Mode	us RTU Write								
	Modbus	RTU									
	Slave	Function Code	Address	Quartity	Value	Write	11				
			▼ addr	¢ty	0	Apply					

Item	Description
Slave ID	Enter the value to define the unique unit address of Modbus slave.
Function Code	Click the drop-down menu to select the master device delivers packets to the slave device containing instructions as defined in the function code fields.
Address	Enter to designate the write from starting address for the Modbus registry.
Quantity	 Enter to designate the number of write cycles. Each function code has different quantity range. 05: 1 06: 1
Value	Enter the value to specify the value written to Modbus Slave.
Write	Click Apply to write the settings to Modbus RTU.

Device Payload

Common

Common Uplink

ACK

When device receive setting frame from LoRaWAN network server, the device will send ACK frame to network server, representing the device has set setting frame.

FPort: 64

Bytes	1	1	2	
	Sport	Ret	Checksum	

- · Sport: Previous setting frame FPort
- Ret: 0x0 is successful and 0x1 is unsuccessful
- · Checksum: Previous setting frame checksum

Common Downlink

System Set

System set frame can set system command to device include reboot or reset to default.

FPort: 9

Bytes	1
	cmd

· cmd: 0x1 is reboot and 0x2 is reset to default

BB-WSW2C00015

Uplink

Modbus Uplink Data

Modbus uplink data length is not fixed, it depend on Modbus payload, can be 6 to 51 bytes. FPort: 5

Bytes	1	2	1	1	Not Fixed (1-46)
	ID	Addr	FL	TR	Payload

- · ID: Modbus slave ID
- · Addr: Modbus address
- · FL: Function code and payload length
- TR: Transactions and return code
- · Payload: Modbus payload from Modbus sensor

bits	5	3
	Function	Length

- · Function: Modbus function code
- · Length: this frame payload length, unit is words or bits depend on function code

bits	4	4
	Transactions	Return

- · Transactions: device transactions index
- · Return: if return is 1, representing Modbus protocol is timeout

Downlink

Modbus Transactions Set

WSW2C00015 can set Modbus transaction from remote.

Bytes	1	1	1	2	2	1
	Tran	En	ID	Addr	Poll	FL

- Tran: A number representing index of Modbus transactions, can be 1 ~ 6
- En: Representing whether Modbus transactions is enable or disable, can be 1 or 0
- ID: Representing slave ID used for Modbus transactions, can be 1 ~ 247 or 255
- Addr: Representing slave address used for Modbus transactions, can be 1 ~ 65535
- · Poll: Representing polling interval time, can be 1 ~ 65535, unit is 10 secs
- FL: Function code and payload length

bits	5	3
	Function	Length

- Modbus function code, can be 1 ~ 4
- Length: Representing read length used for Modbus transactions , can be 1 ~ 32 (FC is 1 or 2) and 1 ~ 23 (FC is 3 or 4)

Modbus Write

Bytes	1	1	2	Not Fixed (1-46)
	ID	FC	Addr	Payload

- · ID: Modbus slave ID
- FC: Function code, can be 5 or 6
- Addr: Modbus slave address
- · Payload: Write Data

BB-WSW2C42100

Uplink

Sensor Uplink Data

FPort: 6

Bytes	2	2	2	2	2	1
	AI1_R	AI2_R	AI3_R	Al4_R	AIM	DIDO

- · AI[N]_R: Analog input [N] Raw data, can be 0 to 65535
- AIM: Analog input mode
- · DIDO: Digital input and digital output

Bytes	3	1	3	1
	AI1_MODE	AI1_NEG	AI2_MODE	AI2_NEG
Bytes	3	1	3	1
	AI3_MODE	AI3_NEG	AI4_MODE	AI4_NEG

- · AI[N]_MODE: Representing analog input [N] operate mode
 - AI0_MODE: Disable
 - AI1_MODE: 10V
 - AI2_MODE: 5V
 - AI3_MODE: 1V
 - AI4_MODE: 20mA
- · AI[N]_ENG: Representing analog input [N] whether support negative value, can be 0 or 1

Bytes	1	1	1	1	1	1	2
	DI1_V	DI1_E	DI2_V	DI2_E	DO1_A	DO1_E	reserve

- DI[N]_V: Digital input [N] data, can be 0 or 1
- DI[N]_E: Digital input [N] enable or disable, can be 0 or 1
- DO1_A: Digital output 1 on or off, can be 0 or 1
- DO1_E: Digital output 1 enable or disable, can be 0 or 1

```
Example: FF010000ABCD0201C4013C Al1
Raw Data: 0xFF01 (65281)
Al2 Raw Data: 0x0000(0)
Al3 Raw Data: 0xABCD (43981)
Al4 Raw Data:0x0201 (513)
Al mode: 0xC401
Al4 Eng: 1
```

```
Al4 Eng. 1
Al4 mode: 4 (100b)
Al4 Rang -20 mA ~ 20 mA
Al4 = -20 + ((20 - (-20)) / 65535) * 513 = -19.6868 mA
Al3 Eng: 0
Al3 mode: 4 (100b)
```

```
AI3 Rang 0 mA ~ 20 mA
    AI3 = 0 + ((20 - (0)) / 65535) * 43981 = 13.4221 mA
    AI2 Eng: 0
    Al2 mode: 0 (0b)
    Al2 is disable
    AI1 Eng: 0
   Al1 mode: 1(1b)
    Al1 Rang 0 V ~ 10 V
    AI1 = 0 + ((10 - (0)) / 65535) * 65281 = 9.9612 V
DIDO: 0x3C
    DI1_V: 0
    DI1_E: 0 disable
    DI2 V: 1
    DI2_E: 1
    DO1 A: 1 ON
    DO1 E: 1
```

Downlink

Interval Set

Bytes	1	2
	reserve	Interval

· Interval: Representing polling interval time, 1 ~ 65535, 10 sec. units

Digital Output Set

Bytes	1	2	
	Action	reserve	

· Action: Signifies if digital output is on or off

Specifications

Power

External Input: 9 ~ 36 V_{DC}

Mechanical

- Physical Connection: 12.7 mm (0.5") conduit, sensor interface cable included; 8-wire, 26-gage, 1.8 m (70.87")
- · Sensor Inputs:
 - Analog input (±10 V_{DC}, ±5 V_{DC}, ±1 V_{DC}, 0 ~ 20 mA)
 - Digital input (0 ~ 48 V_{DC})
 - Digital output (0 ~ 30 V_{DC})
- Optional External Antenna:

Antenna Type	Antenna Connector	Frequency	Gain
Dipole SMA Male Reverse	SMA Male	EU868	1.7 dBi
	US915	2.01 dBi	
		AS923	2.01 dBi

- Mounting: Magnetic mounting via an internal magnet Holding force, 2.13 kg (4.7 lbs); four mounting ears, M5 (#10)
- Enclosure: IP66-rated, fiber-reinforced polyester PBT
- Weight: 0.4 kg (0.88 lbs)

Technology

- Wireless: LoRaWAN 868/915/923 MHz
- LED: Network connectivity

Environmental

- · Installation: Indoor or outdoor
- Operating Temperature: -40°C ~ 75°C (-40°F ~ 167°F)
- Storage Temperature: -40°C ~ 85°C (-40°F ~ 185°F)
- Operating Humidity: 10 ~ 95% noncondensing

Digital Inputs

- Voltage Range: 0 ~ 48 V_{DC}
- V_{II}: 0.8 V (max)
- V_{III}: 2 V (min)
- Pull-Up Current: 32 μA
- Type: Source/Sink (PNP/NPN) softwareselectable input
- · Isolation: None

Analog Inputs

- Input Range: ±10 V_{DC}, ±5 V_{DC}, ±1 V_{DC}, 0 ~ 20 mA
- · Resolution: 16 bit
- Input Load Resistance: 100 MΩ (0 ~ 5 V_{DC}), 120 Ω, (0 ~ 20 mA)
- · Accuracy:
 - ±1% (Voltage) at 25°C
 - ±1% (Current) at 25°C

Serial Communication

- Port Type: RS485
- No. of Ports: 1
- Protocol: Modbus RTU
- · Data Bits: 8
- Stop Bits: 1, 2
- · Parity: None, odd, even, space, mark
- Baud Rate: 2400 ~ 115200 bps
- · Serial Signals: Data+, Data-
- Protection: Built-in 15 kV ESD protection for all signals

Console for Configuration

- Port Type: Micro USB
- · No. of Ports: 1
- Data Bits: 8
- · Stop Bits: 1
- · Parity: None
- Baud Rate: 115200 bps
- · Serial Signals: TxD, RxD

Regulatory Approvals

- Shock: IEC60068-2-27
- Free Fall: IEC60068-2-32
- Vibration: IEC60068-2-6

For more information on this and other Advantech products, please visit our website at:

http://www.advantech.com/products/

For technical support and service:

http://www.advantech.com/support/

© 2019 Advantech Co., Ltd.