



ISED No: 9404A-AIM8IEM

Page: 1 / 43 Rev.: 00

## FCC 47 CFR PART 27 SUBPART L & INDUSTRY CANADA RSS-139

# Computer

FCC Model No.: AIM8IEM; AIM8IEMxxxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)

IC Model No: AIM8IEM

# Trade Name: ADVANTECH

Issued to

Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Wugu Laboratory No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Issued Date: January 3, 2019

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms\_and\_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms\_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com



Page: 2/43 Rev.: 00

#### **Revision History**

| Rev. | Issue Date      | Revisions     | Effect Page | Revised By   |
|------|-----------------|---------------|-------------|--------------|
| 00   | January 3, 2019 | Initial Issue | ALL         | Allison Chen |



Page: 3/43 Rev.: 00

# TABLE OF CONTENTS

| 1 | TES                                                         |                                                                                                                                                                                                                                                                                                                 | 4           |
|---|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2 | EUT                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                     | 5           |
| 3 | TES                                                         | T SUMMARY                                                                                                                                                                                                                                                                                                       | 6           |
| 4 | TES                                                         | T METHODOLOGY                                                                                                                                                                                                                                                                                                   | 7           |
|   | 4.1<br>4.2<br>4.3                                           | EUT CONFIGURATION<br>DESCRIPTION OF TEST MODES<br>THE WORST MODE OF MEASUREMENT                                                                                                                                                                                                                                 | 7<br>7<br>8 |
| 5 | INS <sup>-</sup>                                            | TRUMENT CALIBRATION                                                                                                                                                                                                                                                                                             | 9           |
|   | 5.1<br>5.2<br>5.3                                           | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                | 9<br>9<br>0 |
| 6 | FAC                                                         | ILITIES AND ACCREDITATIONS1                                                                                                                                                                                                                                                                                     | 1           |
|   | 6.1<br>6.2                                                  | FACILITIES                                                                                                                                                                                                                                                                                                      | 1<br>1      |
| 7 | SET                                                         | UP OF EQUIPMENT UNDER TEST12                                                                                                                                                                                                                                                                                    | 2           |
|   | 7.1<br>7.2                                                  | SETUP CONFIGURATION OF EUT12<br>SUPPORT EQUIPMENT                                                                                                                                                                                                                                                               | 2<br>2      |
| 8 | FCC                                                         | PART 27 REQUIREMENTS                                                                                                                                                                                                                                                                                            | 3           |
|   | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>8.9 | AVERAGE POWER13EIRP MEASUREMENT14OCCUPIED BANDWIDTH MEASUREMENT17CONDUCTED BAND EDGE MEASUREMENT20CONDUCTED SPURIOUS EMISSIONS22PEAK TO AVERAGE POWER RATIO24FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT24FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT34FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT44 | 357025892   |
| A | PPEN                                                        | DIX -A PHOTOGRAPHS OF TEST SETUPA-                                                                                                                                                                                                                                                                              | 1           |
| Α | PPEN                                                        | DIX 1 - PHOTOGRAPHS OF EUT                                                                                                                                                                                                                                                                                      |             |



Page: 4 / 43 Rev.: 00

# **1 TEST RESULT CERTIFICATION**

| OT A                  |                                                                                             | TEST DESULT                                                                                               |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
|                       | APPLICABLE STANDAF                                                                          | RDS                                                                                                       |  |  |  |
| Date of Test:         | December 4 ~ 7, 2018                                                                        |                                                                                                           |  |  |  |
| IC Model No.:         | AIM8IEM                                                                                     |                                                                                                           |  |  |  |
| FCC Model No.:        | AIM8IEM; AIM8IEMxxxxxxx<br>alphanumeric character, "-" c<br>no impact safety related critic | xxxxxxxx (where "x" may be any<br>or blank for marketing purpose and<br>cal components and constructions) |  |  |  |
| Trade Name:           | ADVANTECH                                                                                   |                                                                                                           |  |  |  |
| Equipment Under Test: | Computer                                                                                    |                                                                                                           |  |  |  |
| Manufacturer:         | Advantech Co.Ltd.<br>No.1, Alley 20, Lane 26, Rue<br>Taipei 114, Taiwan, R.O.C.             | eiguang Road, Neihu District,                                                                             |  |  |  |
| Applicant:            | Advantech Co.Ltd.<br>No.1, Alley 20, Lane 26, Rue<br>Taipei 114, Taiwan, R.O.C.             | eiguang Road, Neihu District,                                                                             |  |  |  |

| STANDARD                     | TEST RESULT             |
|------------------------------|-------------------------|
| FCC 47 CFR PART 27 SUBPART L |                         |
| &                            | No non-compliance noted |
| RSS-139 Issue 3 July 2015    |                         |

## We hereby certify that:

The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA-603-E and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rule FCC PART 27 Subpart L.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

nem Cleang

Sam Chuang Manager Compliance Certification Services Inc.

Tested by:

erry Ching

Jerry Chuang Engineer Compliance Certification Services Inc.



# 2 EUT DESCRIPTION

| Product                        | Computer                                                                                                                                                                                                                                                                                                           |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Model No.                  | AIM8IEM; AIM8IEMxxxxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)                                                                                                                             |
| IC Model No.                   | AIM8IEM                                                                                                                                                                                                                                                                                                            |
| Model Discrepancy              | All the above models are identical except for the designation of<br>model numbers. The suffix of (where "x" may be any<br>alphanumeric character, "-" or blank for marketing purpose and no<br>impact safety related critical components and constructions) on<br>model number is just for marketing purpose only. |
| Trade Name                     | ADVANTECH                                                                                                                                                                                                                                                                                                          |
| Received Date                  | November 23, 2018                                                                                                                                                                                                                                                                                                  |
| Power Supply                   | <ol> <li>VDC from Power Adapter<br/>Chicony / A16-018N1A<br/>I/P: 100-240Vac, 1A, 50-60Hz<br/>O/P: 5.15Vdc, 3A, 9.1Vdc, 2A, 18W</li> <li>Battery<br/>ADVANTECH / AIM-BAT-8<br/>Rating: 3.8V, 4900, 18.62Wh</li> </ol>                                                                                              |
| Frequency Range                | WCDMA / HSDPA / HSUPA Band IV: 1712.4-1752.6 MHz                                                                                                                                                                                                                                                                   |
| Transmit Power<br>(EIRP Power) | WCDMA 12.2k RMC Band IV: 26.04dBm                                                                                                                                                                                                                                                                                  |
| Antenna Gain                   | Dipole Antenna<br>WCDMA band IV: 0.9dBi                                                                                                                                                                                                                                                                            |

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For test mode WCDMA, HSUPA and HSDPA were pretest. The worst case was WCDMA in this test report



Page: 6 / 43 Rev.: 00

# **3 TEST SUMMARY**

| FCC<br>Standard<br>Section | IC<br>Standard<br>Section | Report<br>Section | Test Item                                        | Result |
|----------------------------|---------------------------|-------------------|--------------------------------------------------|--------|
| -                          | -                         | 2                 | Antenna Requirement                              | Pass   |
| 2.1046                     | RSS-GEN<br>6.12           | 8.1               | Average Power                                    | Pass   |
| 27.50(d)                   | RSS-139<br>section 6.5    | 8.2               | EIRP Measurement                                 | Pass   |
| 2.1049                     | RSS-GEN<br>6.7            | 8.3               | Occupied Bandwidth Measurement                   | Pass   |
| 27.53(h)                   | RSS-139<br>section 6.6    | 8.4               | Conducted Band Edge                              | Pass   |
| 27.53(h)                   | RSS-139<br>section 6.5    | 8.5               | Conducted Spurious Emission                      | Pass   |
| 27.50(a)                   | RSS-139<br>section 6.6    | 8.6               | Peak to Average Ratio                            | Pass   |
| 27.53(h)                   | RSS-139<br>section 6.6    | 8.7               | Spurious Radiation Measurement                   | Pass   |
| 2.1055,<br>27.54           | RSS-139<br>section 6.4    | 8.8               | Frequency Stability v.s. temperature measurement | Pass   |



Page: 7 / 43 Rev.: 00

Report No.: T181123D04-RP3

# **4 TEST METHODOLOGY**

Both conducted and radiated testing were performed according to the procedures document on TIA-603-E and FCC CFR 47, Part 27 Subpart L, KDB 971168 D01 Power Meas License Digital Systems.

Both conducted and radiated testing were performed according to the procedures document on ANSI C63.26: 2016 and RSS-139.

# 4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

## **4.2 DESCRIPTION OF TEST MODES**

The EUT (model: AIM8IEM) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed.

After verification, all tests carried out are with the worst-case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode and receiving radiated spurious emission above 1GHz, which worst case was in CH Mid mode only.

WCDMA Band IV: Channel Low (CH1312), Channel Mid (CH1413) and Channel High (CH1513) were chosen for full testing.

HSDPA Band IV: Channel Low (CH1312), Channel Mid (CH1413) and Channel High (CH1513) were chosen for full testing.

HSUPA Band IV: Channel Low (CH1312), Channel Mid (CH1413) and Channel High (CH1513) were chosen for full testing.



Page: 8 / 43 Rev.: 00

## 4.3 THE WORST MODE OF MEASUREMENT

| Radiated Emission Measurement                                                    |                                                                                                                                                                                                                      |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Condition                                                                   | Emission for Unwanted and Fundamental                                                                                                                                                                                |  |  |  |  |  |  |
| Power supply Mode 1: EUT Power by Power Adapter<br>Mode 2: EUT Power by battery. |                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Worst Mode                                                                       | 🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4                                                                                                                                                                                  |  |  |  |  |  |  |
| Position                                                                         | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |  |  |  |

Remark:

1. The worst mode was record in this test report.

2. The EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane) were recorded in this report.



# **5 INSTRUMENT CALIBRATION**

# 5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 5.2 MEASUREMENT EQUIPMENT USED

#### Equipment Used for Emissions Measurement

| Wugu fully Chamber                     |                   |                    |               |                         |                        |  |  |  |
|----------------------------------------|-------------------|--------------------|---------------|-------------------------|------------------------|--|--|--|
| Name of Equipment                      | Manufacturer      | Model              | Serial Number | <b>Calibration Date</b> | <b>Calibration Due</b> |  |  |  |
| Bilog Antenna                          | Sunol<br>Sciences | JB1                | A052609       | 03/14/2018              | 03/13/2019             |  |  |  |
| Cable                                  | HUBER<br>SUHNER   | SUCOFLEX<br>104PEA | 23452         | 06/29/2018              | 06/28/2019             |  |  |  |
| Cable                                  | HUBER<br>SUHNER   | SUCOFLEX<br>104PEA | 33960         | 06/29/2018              | 06/28/2019             |  |  |  |
| Digital Radio<br>Communication Tester  | R&S               | CMU200             | 116604        | 07/19/2018              | 07/18/2019             |  |  |  |
| Digital Thermo-Hygro<br>Meter          | WISEWIND          | 1110               | D06           | 02/08/2018              | 02/07/2019             |  |  |  |
| Horn Antenna                           | SCHWARZBE<br>CK   | BBHA 9120D         | 779           | 03/14/2018              | 03/13/2019             |  |  |  |
| Pre-Amplifier                          | Anritsu           | MH648A             | M89145        | 06/29/2018              | 06/28/2019             |  |  |  |
| Pre-Amplifier                          | EMEC              | EM01G26G           | 060570        | 06/29/2018              | 06/28/2019             |  |  |  |
| Signal Analyzer                        | Agilent           | N9010A             | MY52220817    | 03/22/2018              | 03/21/2019             |  |  |  |
| Wideband Radio<br>Communication Tester | R&S               | CMW 500            | 116875        | 04/20/2018              | 04/19/2019             |  |  |  |
| Antenna Tower                          | CCS               | CC-A-1F            | N/A           | N.C.R                   | N.C.R                  |  |  |  |
| Controller                             | CCS               | CC-C-1F            | N/A           | N.C.R                   | N.C.R                  |  |  |  |
| Turn Table                             | CCS               | CC-T-1F            | N/A           | N.C.R                   | N.C.R                  |  |  |  |

| Conducted Emissions Test Site         |                       |             |               |            |            |  |  |
|---------------------------------------|-----------------------|-------------|---------------|------------|------------|--|--|
| Name of Equipment                     | Manufacturer          | Model       | Serial Number | Cal Date   | Cal Due    |  |  |
| Coaxial Cable                         | Woken                 | WC12        | CC001         | 06/29/2018 | 06/28/2019 |  |  |
| Coaxial Cable                         | Woken                 | WC12        | CC002         | 06/29/2018 | 06/28/2019 |  |  |
| Power Divider                         | Solvang<br>Technology | STI08-0015  | 008           | 07/27/2018 | 07/26/2019 |  |  |
| Signal Analyzer                       | R&S                   | FSV 40      | 101073        | 09/27/2018 | 09/26/2019 |  |  |
| Wireless<br>Communication Test<br>Set | Agilent               | 8960/E5515C | MY48363204    | 07/23/2018 | 07/22/2019 |  |  |



Page: 10 / 43 Rev.: 00

# 5.3 MEASUREMENT UNCERTAINTY

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| 3M Semi Anechoic Chamber / 30M~200M   | +/-4.0138   |
| 3M Semi Anechoic Chamber / 200M~1000M | +/-3.9483   |
| 3M Semi Anechoic Chamber / 1G~8G      | +/-2.5975   |
| 3M Semi Anechoic Chamber / 8G~18G     | +/-2.6112   |
| 3M Semi Anechoic Chamber / 18G~26G    | +/-2.7389   |
| 3M Semi Anechoic Chamber / 26G~40G    | +/-2.9683   |

**Remark**: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



Page: 11 / 43 Rev.: 00

# 6 FACILITIES AND ACCREDITATIONS

# 6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan, R.O.C

## 6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."



Page: 12/43 Rev.: 00

# **7 SETUP OF EQUIPMENT UNDER TEST**

# 7.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix A for the actual connections between EUT and support equipment.

## 7.2 SUPPORT EQUIPMENT

| No | Equipment | Brand | Model | Series No. | FCC ID | Data Cable |
|----|-----------|-------|-------|------------|--------|------------|
|    | N/A       |       |       |            |        |            |
|    |           |       |       |            |        |            |

#### Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.



Page: 13 / 43 Rev.: 00

# 8 FCC PART 27 REQUIREMENTS INDUSTRY CANADA RSS-139

## 8.1 AVERAGE POWER

## <u>LIMIT</u>

For reporting purposes only.

## **Test Procedures**

### **CONDUCTED POWER MEASUREMENT:**

- 1. The transmitter output power was connected to the call box.
- 2. Set EUT at maximum output power via call box.
- 3. Set Call box at lowest, middle and highest channels for each band and modulation.

## Test results

No non-compliance noted.

## TEST DATA

#### WCDMA 12.2K RMC

| Band               | Data Rate<br>or<br>Sub-test | UL/DL<br>Channel No. | Frequency(MHz) | Average<br>power(dBm) | Output Power<br>(W) |
|--------------------|-----------------------------|----------------------|----------------|-----------------------|---------------------|
|                    | DMC                         | 1312/1537            | 1712.4         | 22.9                  | 0.19498             |
| WCDIVIA<br>Band IV | RIVIC<br>12 2Khns           | 1413/1638            | 1732.6         | 22.9                  | 0.19454             |
| Danu IV            | 12.20005                    | 1513/1738            | 1752.6         | 23.0                  | 0.19724             |



Page: 14 / 43 Rev.: 00

### <u>HSUPA</u>

| Band     | Data Rate<br>or<br>Sub-test | UL/DL<br>Channel No. | Frequency(MHz) | Average<br>power(dBm) | Output Power<br>(W) |
|----------|-----------------------------|----------------------|----------------|-----------------------|---------------------|
|          |                             | 1312/1537            | 1712.4         | 20.7                  | 0.11776             |
|          | 1                           | 1413/1638            | 1732.6         | 20.7                  | 0.11668             |
|          |                             | 1513/1738            | 1752.6         | 20.6                  | 0.11508             |
|          |                             | 1312/1537            | 1712.4         | 18.8                  | 0.07568             |
|          | 2                           | 1413/1638            | 1732.6         | 18.7                  | 0.07447             |
|          |                             | 1513/1738            | 1752.6         | 18.7                  | 0.07362             |
|          | 3                           | 1312/1537            | 1712.4         | 20.6                  | 0.11455             |
| HSUPA IV |                             | 1413/1638            | 1732.6         | 20.5                  | 0.11324             |
|          |                             | 1513/1738            | 1752.6         | 25.5                  | 0.35645             |
|          |                             | 1312/1537            | 1712.4         | 18.9                  | 0.07674             |
|          | 4                           | 1413/1638            | 1732.6         | 18.8                  | 0.07534             |
|          |                             | 1513/1738            | 1752.6         | 18.8                  | 0.07516             |
|          |                             | 1312/1537            | 1712.4         | 21.4                  | 0.13868             |
|          | 5                           | 1413/1638            | 1732.6         | 21.4                  | 0.13804             |
|          |                             | 1513/1738            | 1752.6         | 21.5                  | 0.14028             |



Page: 15 / 43 Rev.: 00

## **8.2 EIRP MEASUREMENT**

### <u>LIMIT</u>

#### FCC Part 27.50(d)(4)

Fixed, mobile, and portable (handheld) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

#### RSS-139 section 6.5

The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt. The e.i.r.p. for fixed and base stations in the band 1710-1780 MHz shall not exceed 1 watt.

#### Test Configuration Below 1 GHz





Page: 16 / 43 Rev.: 00

### For Substituted Method Test Set-UP



## TEST PROCEDURE

1. The EUT was placed on a non-conductive rotating platform (0.8m for below 1G and above 1G) in a semi-chamber. The radiated emission at the fundamental frequency was measured at 3m and SA with RMS detector per section 5, KDB 971168 D01 Power Meas License Digital Systems.

2. During the measurement, the call box parameters were set to get the maximum output power of the EUT. The maximum emission was recorded from spectrum analyzer power level (LVL) from 360 degrees rotation of turntable and the test antenna raised and lowered over a range from 1m to 4m in both horizontally and vertically polarized orientations.

3. EIRP was measured method according to TIA/EIA-603-E. The EUT was replaced by the substitution antenna at same location, and then record the maximum Analyzer reading through raised and lowered the test antenna.

ERP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB) - 2.15

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

## TEST RESULTS

No non-compliance noted.

## TEST DATA WCDMA 12.2K RMC

| Test Mede                       | Channel | Ver       | tical   | Horizontal |         |  |
|---------------------------------|---------|-----------|---------|------------|---------|--|
| Test Mode                       | Channel | EIRP(dBm) | EIRP(W) | EIRP(dBm)  | EIRP(W) |  |
| WCDMA 12.2K<br>RMC<br>(Band IV) | Lowest  | 11.68     | 0.0147  | 25.15      | 0.3273  |  |
|                                 | Middle  | 11.23     | 0.0133  | 25.32      | 0.3404  |  |
|                                 | Highest | 12.99     | 0.0199  | 26.04      | 0.4018  |  |

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 17 / 43 Rev.: 00

# 8.3 OCCUPIED BANDWIDTH MEASUREMENT

## <u>LIMIT</u>

For Reporting purpose only.

## **TEST PROCEDURE**

KDB 971168 D01.

- 1. The occupied bandwidth was measured with the spectrum analyzer at the lowest, middle and highest channels in each band and different modulation. The 99% and -26dB bandwidth was measured and recorded.
- 2. RBW = 1-5% of the expected OBW
- 3. VBW  $\ge$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max. hold

## **TEST RESULTS**

No non-compliance noted

#### Test Data

| Test Mode                       | СН      | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) | 26 dB Bandwidth<br>(MHz) |
|---------------------------------|---------|--------------------|------------------------|--------------------------|
| WCDMA 12.2k<br>RMC<br>(Band IV) | Lowest  | 1712.4             | 4.1389                 | 4.732                    |
|                                 | Middle  | 1732.6             | 4.1244                 | 4.703                    |
|                                 | Highest | 1752.6             | 4.1389                 | 4.689                    |



Page: 18 / 43 Rev.: 00

#### Test Plot WCDMA 12.2k RMC (Band IV) Low CH

.0w\_011

| Spect         | rum   | )       |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | [₩          |
|---------------|-------|---------|-----------|-------|----------|----------|--------|----------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Ref L         | evel  | 36.40   | dBm O     | ffset | 16.40 dB | 👄 RBW 10 | )O kHz |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Att           |       | 3       | 0 dB 👄 S  | WT    | 500 ms   | 👄 VBW 30 | 10 kHz | Mode           | : Auto S | Sweep    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ⊖1Pk V        | iew   |         |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 20 d8m        |       |         |           |       |          |          |        | D              | 3[1]     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1.54 dB     |
| 30 ubm        | · — T |         |           |       |          | 411      |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4           | 1.7320 MHz  |
| 20 180        | _     | 01 20.6 | 500 dBm   |       |          | T.       |        | 0              | CC BW    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1389      | 29088 MHz   |
| 20 0.0        | ·     |         |           | T 1   | ward     | manna    | man a  | dal and a last | 1/19~~~  | ~_T2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 20.60 dBm   |
| 10 dBm        |       |         |           | - 7   | <b>r</b> | _        | _      |                |          | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1./1        | 15030 GHZ   |
|               |       |         |           | 17    |          |          |        |                |          | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 0 dBm-        |       |         |           | мź    |          | _        | _      |                |          | - 6      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <u> </u>    |
|               |       | D2      | -5.400 de | 3mj   |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u>    |
| -10 dBn       | n—†   |         |           | 1     |          |          |        |                |          |          | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |
| -20 d8a       |       | maneral | m         |       |          |          |        |                |          |          | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |
| Valena        | -040  |         |           |       |          |          |        |                |          |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mandul      | handredayes |
| -30 dBr       | n—    |         |           | _     |          |          | -      |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L           | • • •       |
|               |       |         |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| -40 dBn       | n—+   |         | _         |       |          |          | _      |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|               |       |         |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| -50 dBr       | n—†   |         |           | +     |          |          | _      |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| -60 dBa       | _     |         |           | Fi    |          |          |        |                |          | F        | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
| -00 UBI       |       |         |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 10.0.111    |
| <u>UF 1.7</u> | 124   | GHZ     |           |       |          | 0        | at bes |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | span        | 10.0 MHZ    |
| Marker        | -     | 1 - 1   |           |       |          |          |        | -              |          |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
| Type          | Ref   | Trc     | X.        | value |          | Y-value  | ;<br>  | Func           | tion     |          | Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion Result |             |
| M1<br>T1      |       | 1       | 1         | 71022 | 03 GHZ   | 20.60    | dBm    | 0              | DO BW    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1290      | 20099 MH-   |
| T2            |       | 1       | 1.        | 71446 | 95 GHz   | 10.92    | dBm    | 0              | LC BW    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1309.     | 29000 MH2   |
| M2            |       | 1       | 1         | .7100 | 27 GHz   | -6,18    | dBm    |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| D3            | M2    | 2 1     |           | 4.73  | 32 MHz   | 1.5      | 4 dB   |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| <u> </u>      |       | 71      |           |       |          |          | _      | )              |          | -        | Concernence in the local distance in the loc | -0.465      | 04.12.2018  |
| ι             |       |         |           |       |          |          |        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay to       |             |

Date: 4 DEC 2018 13:09:12

#### Mid CH

|           |            |                |                |                |                                                                         |          |        |      |      |                 | _              |
|-----------|------------|----------------|----------------|----------------|-------------------------------------------------------------------------|----------|--------|------|------|-----------------|----------------|
| Spectrum  | , J        |                |                |                |                                                                         |          |        |      |      |                 | (₩             |
| Ref Level | 36.40      | dBm Offs       | et 16.40 d     | 18 👄 RBW 100   | <hz< th=""><th></th><th></th><th></th><th></th><th></th><th></th></hz<> |          |        |      |      |                 |                |
| 👄 Att     | 30         | ) dB 👄 SW      | <b>F</b> 500 m | ns 👄 VBW 300 k | kHz                                                                     | Mode Au  | ito Sv | weep |      |                 |                |
| ●1Pk View |            |                |                |                |                                                                         |          |        |      |      |                 |                |
|           |            |                |                |                |                                                                         | D3[1]    |        |      |      |                 | 1.07 dB        |
| 30 dBm    |            |                |                |                |                                                                         |          |        |      |      |                 | 4.7030 MHz     |
|           |            |                |                |                |                                                                         | M1 Occ B | w      |      |      | 4.1244          | 57308 MHz      |
| 20 d8m-   | D1 20.1    | 60 dBm         | T1 ~~~~~       | man            | mallin                                                                  | WWW MET  | non    | ~ T2 |      |                 | 20.16 dBm      |
| 10 d8m    |            |                | 2 Mar          |                |                                                                         |          |        | wy.  |      | 1.73            | 32080 GHz      |
| 10 0000   |            |                | 1              |                |                                                                         |          |        |      |      |                 |                |
| 0 dBm     |            | 19             | <i>(</i>       |                |                                                                         |          |        |      |      | L               | l              |
|           | D2         | -5.840 dBm     | r –            |                |                                                                         |          |        | - 4  | 3    |                 |                |
| -10 dBm   |            |                |                |                |                                                                         |          |        | _    | 1    |                 |                |
|           |            | M              |                |                |                                                                         |          |        |      | Much |                 |                |
| -20 dBm   | Aubrohan . | and the second |                |                |                                                                         |          |        |      |      | ally the second | al contraction |
| -30 dBm   |            |                |                |                |                                                                         |          |        |      |      |                 |                |
| -50 abiii |            |                |                |                |                                                                         |          |        |      |      |                 |                |
| -40 dBm   |            |                |                |                |                                                                         |          |        | _    |      | L               | l              |
|           |            |                |                |                |                                                                         |          |        |      |      |                 |                |
| -50 dBm   |            |                |                |                |                                                                         |          |        | _    |      |                 |                |
|           |            | F              |                |                |                                                                         |          |        | E    | 2    |                 |                |
| -60 dBm   |            | 1              |                |                |                                                                         |          |        |      |      |                 |                |
| CF 1.7326 | GHz        |                |                | 691            | pts                                                                     |          |        |      |      | Span            | 10.0 MHz       |
| Marker    |            |                |                | -              | _                                                                       |          |        |      |      |                 |                |
| Type Ref  | Trc        | X-Ve           | alue           | Y-value        |                                                                         | Function |        |      | Fund | tion Result     |                |
| M1        | 1          | 1.7            | 33208 GHz      | 20.16 dB       | m                                                                       |          | _      |      |      |                 |                |
| T1<br>T0  | 1          | 1.73           | 05305 GHz      | 11.37 dB       | m                                                                       | Occ B    | w      |      |      | 4.1244          | 57308 MHz      |
| 12<br>M2  | 1          | 1.7            | 20241 CH2      | -6.02 dB       | m                                                                       |          |        |      |      |                 |                |
| D3 M      | 2 1        | 1.7            | 4.703 MHz      | 1.07 c         | iB.                                                                     |          |        |      |      |                 |                |
|           | 70         |                | 11100 14112    | 1.070          |                                                                         | _        | _      |      |      |                 | 04.42.2010     |
|           |            |                |                |                |                                                                         |          |        |      |      | a fa            | 13120128       |

Date: 4DEC 2018 13:26:28



Н

Page: 19/43 Rev.: 00

| Spectrum          |                  |                |                         |                |       | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|------------------|----------------|-------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level         | 36.40 dBr        | m Offset 16.40 | dB 👄 RBW 100 kH;        | z              |       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Att               | 30 d             | IB 👄 SWT 🛛 500 | ms 👄 <b>VBW</b> 300 kH: | Z Mode Auto St | weep  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∋1Pk View         |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00.40-            |                  |                |                         | D3[1]          |       | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30 dBm            |                  |                | M1                      |                |       | 4.6890 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 01 21.020        | ) dBm          | ¥.                      | Occ Bw         |       | 4.138929088 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                  | T1 washin      | www.www.www.            | mannasefeyma   | ₩T2   | 21.02 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 dBm            |                  | - Y            |                         |                | N N   | 1.7517320 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I                 |                  | 1              |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm — 🕂         |                  | - M#           |                         |                | da da |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 40             |                  | 1.980 dBm      |                         |                | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 aBm           |                  | m              |                         |                | 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm           | - and the second | - Malala       |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| White participant |                  |                |                         |                | 144   | House and the start of the star |
| -30 dBm           |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm           |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm           |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 abiii         |                  |                |                         |                | F2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm           |                  | F1             |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 1.7526         | GHz              |                | 691 pt                  | s              |       | Span 10.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Marker            |                  |                |                         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type   Ref        | Trc              | X-value        | Y-value                 | Function       | Fund  | tion Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M1                | 1                | 1.751732 GH    | 21.02 dBm               |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T1                | 1                | 1.7505305 GH   | : 11.23 dBm             | Occ Bw         |       | 4.138929088 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12                | 1                | 1.7546695 GH:  | 10.55 dBm               |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D3 M3             | 2 1              | 1.750250 GH    | -4.07 dBm               |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Date: 4 DEC 2018 13:35:56



Page: 20 / 43 Rev.: 00

# 8.4 CONDUCTED BAND EDGE MEASUREMENT

## <u>Limit</u>

### FCC §27.53 (h)

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log 10$  (P) dB.

## **TEST PROCEDURE**

According to KDB 971168 D01.

- 1. The EUT was connected to spectrum analyzer and call box.
- 2. The RF output of EUT was connected to the spectrum analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 4. Span was set large enough so as to capture all out of band emissions near the band edge
- 5. Set the spectrum analyzer, RBW=100kHz, VBW=300kHz.
- 6. Record the Band edge emission.

## TEST RESULTS

No non-compliance noted.



Page: 21 / 43 Rev.: 00

#### Test Plot

# WCDMA 12.2K RMC (BAND IV)

#### **CH** Low



Date: 4.DEC 2018 13:12:47

#### **CH High**



Date: 4 DEC 2018 13:39:07

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 22 / 43 Rev.: 00

## **8.5 CONDUCTED SPURIOUS EMISSIONS**

## <u>LIMIT</u>

FCC §27.53 (h)

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log 10$  (P) dB.

## **TEST PROCEDURE**

According to KDB 971168 D01.

- 1. The EUT was connected to spectrum analyzer and call box.
- 2. The RF output of EUT was connected to the spectrum analyzer.
- 3. Set the spectrum analyzer, RBW=1MHz, VBW=3MHz.
- 4. Record the maximum spurious emission.
- 5. The fundamental frequency should be excluded against the limit in operating band.

## TEST RESULTS

No non-compliance noted.



Page: 23 / 43 Rev.: 00

#### Test Data WCDMA 12.2K RMC (BAND IV) CH Low

**B** Spectrum Ref Level 36.40 dBm Offset 16.40 dB 
RBW 1 MHz Att 30 dB 👄 SWT 500 ms 👄 VBW 3 MHz Mode Auto Sweep o 1Pk View M2[1] -24.11 dBm 30 dBm M1 19.156610 GHz M1[1] 24.81 dBm 1.711480 GHz 20 dBm 10 dBm· 0 dBm--10 dBm -D1 -13.000 dBm -20 dBm T. -30 dBm-. . . 40 dBm--50 dBm--60 dBm-Stop 20.0 GHz 32001 pts Start 30.0 MHz

Date: 4 DEC 2018 13:15:07

#### **CH Mid**



Date: 4 DEC 2018 13:30:29

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 24 / 43 Rev.: 00



Date: 4 DEC 2018 13:41:20



Page: 25 / 43 Rev.: 00

## 8.6 PEAK TO AVERAGE POWER RATIO

## <u>Limit</u>

### FCC §27.50(a)

In measuring transmissions in this band using an average power technique, peak-to-average power ratio (PAPR) of the transmission may not exceed 13 dB.

## **Test Procedures**

- 1. According to KDB 971168 D01.
- 2. The EUT was connect to spectrum analyzer and call box.
- 3. Set the CCDF function in spectrum analyzer.
- 4. The highest RF output power were measured and recorded the maximum PAPR level associated with a probability of 0.1%.
- 5. Record the Peak to Average Power Ratio.

## **Test Results**

#### WCDMA 12.2K RMC (BAND IV)

| Channel | FREQUENCY<br>(MHz) | PEAK TO AVERAGE RATIO (dB) |
|---------|--------------------|----------------------------|
| Low CH  | 1712.4             | 3.25                       |
| Mid CH  | 1732.6             | 1.97                       |
| High CH | 1752.6             | 3.33                       |



#### Page: 26 / 43 Rev.: 00

#### Test Data WCDMA 12.2K RMC (BAND IV) CH Low



Date: 4 DEC 2018 15:33:31

#### CH Mid



Date: 4 DEC 2018 15:40:47



Page: 27 / 43 Rev.: 00



Date: 4.DEC 2018 15:42:28



Page: 28 / 43 Rev.: 00

## 8.7 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

## <u>LIMIT</u>

### FCC §27.53 (h)

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

#### **Test Configuration**

#### **Below 1 GHz**





Page: 29 / 43 Rev.: 00

### Above 1 GHz



### Substituted Method Test Set-up





# **TEST PROCEDURE**

- 1. According to KDB 971168 D01.
- 2. The EUT was placed on a turntable
  - (1) Below 1G : 0.8m
  - (2) Above 1G : 1.5m
  - (3) EUT set 3m from the receiving antenna
  - (4) The table was rotated 360 degrees of the highest spurious emission to determine the position.
- 3. Set the spectrum analyzer , RBW=1MHz, VBW=3MHz.
- 4. A horn antenna was driven by a signal generator.
- 5. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission

ERP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB) - 2.15

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

For test result, the S.G. value is including antenna gain and cable loss.

Limit Line: -13dBm

## TEST RESULTS

Refer to the attached tabular data sheets.

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 30 / 43 Rev.: 00



#### Page: 31 / 43 Rev.: 00

## **Below 1GHz**

**Temperature**: 22°C

Humidity: 48 % RH

Test Date:December 6, 2018Tested by:Jerry ChuangPolarity:Ver.

-10.0 dBm



| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 124.0900           | -86.64        | 1.11              | -89.90                  | -13.00         | -76.90         | V                                |
| 199.2650           | -85.94        | 1.4               | -89.49                  | -13.00         | -76.49         | V                                |
| 371.9250           | -85.78        | 1.93              | -89.86                  | -13.00         | -76.86         | V                                |
| 471.8350           | -79.92        | 2.18              | -84.25                  | -13.00         | -71.25         | V                                |
| 680.3850           | -77.63        | 2.64              | -82.42                  | -13.00         | -69.42         | V                                |
| 873.9000           | -75.73        | 3.01              | -80.89                  | -13.00         | -67.89         | V                                |



Page: 32 / 43 Rev.: 00

| Operation Mode: | WCDMA 12.2k RMC Band IV / TX /Mid CH | Test Date: | December 6, 2018 |
|-----------------|--------------------------------------|------------|------------------|
| Temperature:    | 22℃                                  | Tested by: | Jerry Chuang     |
| Humidity:       | 48 % RH                              | Polarity:  | Hor.             |

-10.0 dBm



| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 134.7600           | -87.31        | 1.15              | -90.61                  | -13.00         | -77.61         | Н                                |
| 281.7150           | -85.4         | 1.67              | -89.22                  | -13.00         | -76.22         | Н                                |
| 469.4100           | -79.21        | 2.18              | -83.54                  | -13.00         | -70.54         | Н                                |
| 583.8700           | -83.15        | 2.43              | -87.73                  | -13.00         | -74.73         | Н                                |
| 678.9300           | -77.53        | 2.63              | -82.31                  | -13.00         | -69.31         | Н                                |
| 870.5050           | -75.86        | 3.01              | -81.02                  | -13.00         | -68.02         | Н                                |



Page: 33 / 43 Rev.: 00

Above 1GHz

| Operation Mode: | WCDMA 12.2k RMC B | and IV / TX /Low CH <b>Test Date:</b> | December 6, 2018 |
|-----------------|-------------------|---------------------------------------|------------------|
| Temperature:    | 21°C              | Tested by:                            | Jerry Chuang     |

Humidity: 48 % RH

Polarity: Ver.



| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3429.000           | -59.35        | 6.36              | -65.71                  | -13.00         | -52.71         | V                                |
| 5133.500           | -56.84        | 7.92              | -64.76                  | -13.00         | -51.76         | V                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

Remark:



Page: 34 / 43 Rev.: 00

| Operation Mode: | WCDMA 12.2k RMC Band IV / TX /Low CH | Test Date: | December 6, 2018 |
|-----------------|--------------------------------------|------------|------------------|
| Temperature:    | 21°C                                 | Tested by: | Jerry Chuang     |
| Humidity:       | 48 % RH                              | Polarity:  | Hor.             |
|                 |                                      |            |                  |



| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3425.500           | -54.48        | 6.35              | -60.83                  | -13.00         | -47.83         | Н                                |
| 5133.500           | -58.16        | 7.92              | -66.08                  | -13.00         | -53.08         | Н                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

#### Remark:



1 X

2 X

4800.00

6700.00

8600.00

Page: 35 / 43 Rev.: 00

| Dperation Mode: WCDMA 12.2k RMC Band IV / TX/Mid C⊢ |                   | Test Date: | December 6, 2018 |            |                        |  |
|-----------------------------------------------------|-------------------|------------|------------------|------------|------------------------|--|
| Temperature:                                        | Temperature: 21°C |            |                  | Tested by: | Jerry Chuang           |  |
| Humidity: 48 % RH                                   |                   |            | Polarity:        | Ver.       |                        |  |
| 0.0 dBm                                             |                   |            |                  |            |                        |  |
|                                                     |                   |            |                  |            | Limit1: —<br>Margin: — |  |
|                                                     |                   |            |                  |            |                        |  |
|                                                     |                   |            |                  |            |                        |  |
|                                                     |                   |            |                  |            |                        |  |
| -45                                                 |                   |            |                  |            |                        |  |
|                                                     |                   |            |                  |            |                        |  |

| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3464.000           | -59.18        | 6.39              | -65.57                  | -13.00         | -52.57         | V                                |
| 5200.000           | -60.32        | 7.98              | -68.30                  | -13.00         | -55.30         | V                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

10500.00

12400.00

14300.00

16200.00

20000.00 MHz

Remark:

-90

1000.000 2900.00



Page: 36 / 43 Rev.: 00

| Operation Mode: WCDMA 12.2k RMC Band IV / TX/Mid CH Te |      |         |  |  | peration Mode: WCDMA 12.2k RMC Band IV / TX/Mid CH |  |            | Band IV / TX/Mid CH <b>Test Date</b> |    | Test Date: | December 6, 20 |  |
|--------------------------------------------------------|------|---------|--|--|----------------------------------------------------|--|------------|--------------------------------------|----|------------|----------------|--|
| Temperat                                               | ure: | 21°C    |  |  |                                                    |  | Tested by: | Jerry Chuar                          | ıg |            |                |  |
| Humidity                                               | :    | 48 % RH |  |  |                                                    |  | Polarity:  | Hor.                                 |    |            |                |  |
| 0.0                                                    | dBm  |         |  |  |                                                    |  |            |                                      |    |            |                |  |
|                                                        |      |         |  |  |                                                    |  |            | Limit1: —<br>Margin: —               |    |            |                |  |
|                                                        |      |         |  |  |                                                    |  |            |                                      | 1  |            |                |  |
|                                                        |      |         |  |  |                                                    |  |            |                                      | 1  |            |                |  |



| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3464.000           | -51.18        | 6.39              | -57.57                  | -13.00         | -44.57         | Н                                |
| 5200.000           | -59.83        | 7.98              | -67.81                  | -13.00         | -54.81         | Н                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

#### Remark:



Page: 37 / 43 Rev.: 00





| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3502.500           | -57.24        | 6.43              | -63.67                  | -13.00         | -50.67         | V                                |
| 5256.000           | -58.67        | 8.03              | -66.70                  | -13.00         | -53.70         | V                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

#### Remark:



Page: 38 / 43 Rev.: 00





| Frequency<br>(MHz) | S.G.<br>(dBm) | Ant.Gain<br>(dBi) | Emission level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Polarization<br>(V/H) |
|--------------------|---------------|-------------------|-------------------------|----------------|----------------|----------------------------------|
| 3502.500           | -56.8         | 6.43              | -63.23                  | -13.00         | -50.23         | Н                                |
| 5256.000           | -55.52        | 8.03              | -63.55                  | -13.00         | -50.55         | Н                                |
| N/A                |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |
|                    |               |                   |                         |                |                |                                  |

#### Remark:



Page: 39 / 43 Rev.: 00

# 8.8 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

## <u>LIMIT</u>

According to FCC §2.1055, FCC §22.355, FCC §24.235.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### **Test Configuration**



Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

## **TEST PROCEDURE**

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to  $-20^{\circ}$ C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.



Page: 40 / 43 Rev.: 00

# TEST RESULTS

No non-compliance noted.

| Reference Frequency: WCDMA 12.2k RMC Band IV Low Channel 1712.4 MHz |                              |                     |  |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------------|---------------------|--|--|--|--|--|--|
|                                                                     | Limit: 1712.4-1752.6 MHz     |                     |  |  |  |  |  |  |
| Power Supply<br>(Vdc)                                               | Environment Temperature (°C) | Frequency Error(Hz) |  |  |  |  |  |  |
| 120                                                                 | 50                           | 3.00                |  |  |  |  |  |  |
| 120                                                                 | 40                           | -1.00               |  |  |  |  |  |  |
| 120                                                                 | 30                           | 0.00                |  |  |  |  |  |  |
| 120                                                                 | 20                           | -2.00               |  |  |  |  |  |  |
| 120                                                                 | 10                           | 1.00                |  |  |  |  |  |  |
| 120                                                                 | 0                            | 0.00                |  |  |  |  |  |  |
| 120                                                                 | -10                          | -1.00               |  |  |  |  |  |  |
| 120                                                                 | -20                          | 2.00                |  |  |  |  |  |  |

| Reference Frequency: WCDMA 12.2k RMC Band IV Mid Channel 1732.6 MHz |                              |                     |  |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------------|---------------------|--|--|--|--|--|--|
|                                                                     | Limit: 1712.4-1752.6 MHz     |                     |  |  |  |  |  |  |
| Power Supply<br>(Vdc)                                               | Environment Temperature (°C) | Frequency Error(Hz) |  |  |  |  |  |  |
| 120                                                                 | 50                           | 2.00                |  |  |  |  |  |  |
| 120                                                                 | 40                           | -2.00               |  |  |  |  |  |  |
| 120                                                                 | 30                           | 0.00                |  |  |  |  |  |  |
| 120                                                                 | 20                           | 1.00                |  |  |  |  |  |  |
| 120                                                                 | 10                           | 1.00                |  |  |  |  |  |  |
| 120                                                                 | 0                            | -2.00               |  |  |  |  |  |  |
| 120                                                                 | -10                          | -3.00               |  |  |  |  |  |  |
| 120                                                                 | -20                          | -4.00               |  |  |  |  |  |  |



Page: 41 / 43 Rev.: 00

| Reference Frequency: WCDMA 12.2k RMC Band IV High Channel 1752.6 MHz |                              |                     |  |  |  |  |  |
|----------------------------------------------------------------------|------------------------------|---------------------|--|--|--|--|--|
| Limit: 1712.4-1752.6 MHz                                             |                              |                     |  |  |  |  |  |
| Power Supply<br>(Vdc)                                                | Environment Temperature (°C) | Frequency Error(Hz) |  |  |  |  |  |
| 120                                                                  | 50                           | -3.00               |  |  |  |  |  |
| 120                                                                  | 40                           | 1.00                |  |  |  |  |  |
| 120                                                                  | 30                           | -2.00               |  |  |  |  |  |
| 120                                                                  | 20                           | 0.00                |  |  |  |  |  |
| 120                                                                  | 10                           | 2.00                |  |  |  |  |  |
| 120                                                                  | 0                            | -3.00               |  |  |  |  |  |
| 120                                                                  | -10                          | -1.00               |  |  |  |  |  |
| 120                                                                  | -20                          | -3.00               |  |  |  |  |  |

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 42/43 Rev.: 00

# 8.9 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

## <u>LIMIT</u>

According to FCC §2.1055, FCC§27.54.

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

### **Test Configuration**

Spectrum analyzer



Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

## **TEST PROCEDURE**

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ( $\pm$  15%) and endpoint, record the maximum frequency change.



## TEST RESULTS

No non-compliance noted.

| Reference Frequency: WCDMA 12.2k RMC Band IV Low Channel 1712.4 MHz |                              |                     |  |  |
|---------------------------------------------------------------------|------------------------------|---------------------|--|--|
| Limit: 1712.4-1752.6 MHz                                            |                              |                     |  |  |
| Power Supply<br>(Vdc)                                               | Environment Temperature (°C) | Frequency Error(Hz) |  |  |
| 108                                                                 | 20                           | -1.00               |  |  |
| 120                                                                 |                              | -2.00               |  |  |
| 132                                                                 |                              | -3.00               |  |  |

| Reference Frequency: WCDMA 12.2k RMC Band IV Mid Channel 1732.6 MHz |                              |                     |  |  |
|---------------------------------------------------------------------|------------------------------|---------------------|--|--|
| Limit: 1712.4-1752.6 MHz                                            |                              |                     |  |  |
| Power Supply<br>(Vdc)                                               | Environment Temperature (°C) | Frequency Error(Hz) |  |  |
| 108                                                                 | 20                           | -1.00               |  |  |
| 120                                                                 |                              | 1.00                |  |  |
| 132                                                                 |                              | 0.00                |  |  |

| Reference Frequency: WCDMA 12.2k RMC Band IV High Channel 1752.6 MHz |                              |                     |  |  |
|----------------------------------------------------------------------|------------------------------|---------------------|--|--|
| Limit: 1712.4-1752.6 MHz                                             |                              |                     |  |  |
| Power Supply<br>(Vdc)                                                | Environment Temperature (°C) | Frequency Error(Hz) |  |  |
| 108                                                                  | 20                           | -1.00               |  |  |
| 120                                                                  |                              | 0.00                |  |  |
| 132                                                                  |                              | 2.00                |  |  |

-- End of Test Report --

Page: 43 / 43 Rev.: 00