

Page: 1 / 64 FCC ID: M82-AIM8IAC ISED: 9404A-AIM8IAC Rev.: 00

T180522D10-RP1 Report No.:

RADIO TEST REPORT

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard FCC Part 15.247

IC RSS-247 issue 2 and IC RSS-GEN issue 5

Product name Computer

Brand Name ADVANTECH

Model Name

AIM-x5ATxxxxxxxxxxxx (where "x" may be any

alphanumeric character, "-" or blank for marketing purpose

and no impact safety related critical components and

constructions) ISED: AIM8IAC

Test Result Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Tested by:

Sam Chuang Manager

Jerry Chuang Engineer

Jerry Chang

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic Inis occument is issued by the Company subject to its General Conditions of Service printed overlear, available on request of accessible at www.sgs.com/terms_e-documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law

Page: 2 / 64 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Revised By
00	October 30, 2018	Initial Issue	May Lin

Page: 3 / 64 Rev.: 00

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	6
1.3	ANTENNA INFORMATION	6
1.4	MEASUREMENT UNCERTAINTY	7
1.5	FACILITIES AND TEST LOCATION	8
1.6	INSTRUMENT CALIBRATION	9
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT 1	10
2.	TEST SUMMERY1	11
3.	DESCRIPTION OF TEST MODES	12
3.1	THE WORST MODE OF OPERATING CONDITION 1	12
3.2	THE WORST MODE OF MEASUREMENT 1	13
3.3	EUT DUTY CYCLE1	14
4.	TEST RESULT 1	15
4.1	AC POWER LINE CONDUCTED EMISSION 1	15
4.2	20dB BANDWIDTH AND OCCUPIED BANDWIDTH(99%) 1	18
4.3	OUTPUT POWER MEASUREMENT	24
4.4	FREQUENCY SEPARATION	26
4.5	NUMBER OF HOPPING	30
4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	32
4.7	TIME OF OCCUPANCY (DWELL TIME)	37
	RADIATION BANDEDGE AND SPURIOUS EMISSION	3 9

Page: 4 / 64 Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Advantech Co.Ltd. Applicant No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District Taiwan, R.O.C.				
Manufacturer	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.			
Equipment	Computer			
Model No.	FCC: AIM8IACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			
Model Discrepancy	FCC: All the above models are identical except for the designation of model numbers. The suffix of (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions) on model number is just for marketing purpose only.			
Received Date	May 22, 2018			
Date of Test	June 27 ~ 29, 2018			
Output Power(W)	GFSK: 0.0036 8DPSK: 0.0025			
Power Supply	1. VDC from Power Adapter Brand: Chicony Model name: A16-018N1A Input: 100-240Vac, 50-60Hz, 1A Output: 5.15Vdc, 3A / 9.1Vdc, 2A 2. Power from Battery: ADVANTECH / AIM-BAT-8 Rating: 3.8Vdc 4900mAh			

Page: 5 / 64
Report No.: T180522D10-RP1 Rev.: 00

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page: 6 / 64 Rev.: 00

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	1. GFSK for BR-1Mbps 2. 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested					
Frequency range in Number of Location in frequency which device operates frequencies range of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz 2 1 near top and 1 near bottom					
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.4 ANTENNA INFORMATION

Antenna Type	□ PIFA □ PCB □ Dipole □ Coils
Antenna Gain	Gain: 0.37dBi

Page: 7 / 64
Report No.: T180522D10-RP1 Rev.: 00

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 2.96
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509

Remark:

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 8 / 64
Report No.: T180522D10-RP1 Rev.: 00

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	-
Radiation	Jerry Chuang	-
RF Conducted	Jerry Chuang	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Page: 9 / 64 Rev.: 00

1.7 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Power Meter	Anritsu	ML2495A	1012009	09/18/2017	09/17/2018		
Power Sensor	Anritsu	MA2411B	917072	09/18/2017	09/17/2018		
Base Station	R&S	CMW 500	116875	04/20/2018	04/19/2019		
Spectrum Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018		
Directional Coupler	Agilent	87301D	MY44350252	07/25/2017	07/24/2018		
SUCOFLEX Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018		
Divider	Solvang Technology	2-18GHz 4Way	STI08-0015	07/26/2017	07/25/2018		

OM OCC Observation Took Oite								
3M 966 Chamber Test Site								
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due			
Band Reject Filters	MICRO TRONICS	BRM 50702	120	05/14/2018	05/13/2019			
Bilog Antenna	Sunol Sciences	JB3	A030105	06/19/2018	06/18/2019			
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018			
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	07/31/2017	07/30/2018			
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	02/08/2018	02/07/2019			
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/25/2017	08/24/2018			
Loop Ant	COM-POWER	AL-130	121051	03/21/2018	03/20/2019			
Pre-Amplifier	HP	8449B	3008A00965	06/28/2018	06/27/2019			
Pre-Amplifier	EMEC	EM330	060609	07/31/2017	07/30/2018			
Wideband Radio Communication Tester	R&S	CMW 500	116875	04/20/2018	04/19/2019			
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/31/2018	05/30/2019			
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R			
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R			
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R			

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 10 / 64 Rev.: 00

Report No.: T180522D10-RP1

AC Conducted Emissions Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
LISN	R&S	ENV216	101054	02/06/2018	02/05/2019	
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019	
EMI Test Receiver	R&S	ESCI	101203	11/02/2017	11/01/2018	

Remark: Each piece of equipment is scheduled for calibration once a year.

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

Support Equipment						
No. Equipment Brand Model Series No. FCC ID						
	N/A					

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5.

Page: 11 / 64

Rev.: 00

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.1)(a)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Spurious Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

Page: 12 / 64
Report No.: T180522D10-RP1 Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

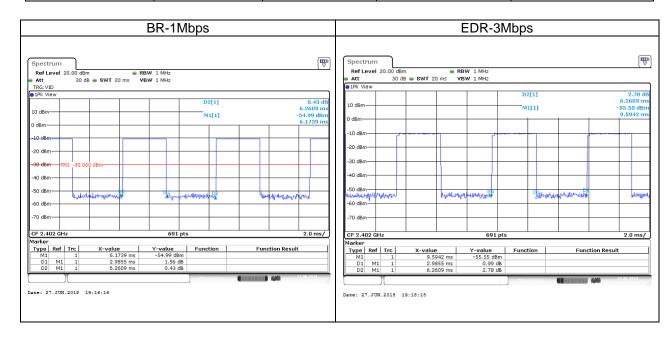
Page: 13 / 64 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission					
Test Condition	AC Power line conducted emission for line and neutral					
Power supply Mode	Mode 1: EUT power by AC adapter via power cable. Mode 2: EUT power by battery.					
Worst Mode						
F	Radiated Emission Measurement Above 1G					
Test Condition	Band edge, Emission for Unwanted and Fundamental					
Power supply Mode	Mode 1: EUT power by AC adapter via power cable. Mode 2: EUT power by battery.					
Worst Mode						
Worst Position	 □ Placed in fixed position. □ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) □ Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity						
F	Radiated Emission Measurement Below 1G					
Test Condition	Radiated Emission Below 1G					
Power supply Mode	Mode 1: EUT power by AC adapter via power cable. Mode 2: EUT power by battery.					
Worst Mode	Mode 1					

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane and Horizontal) were recorded in this report
- 3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.



Page: 14 / 64

Rev.: 00

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)		
BR-1Mbps	2.9855	6.2609	47.68%	3.22		
EDR-3Mbps	2.9855	6.2609	47.68%	3.22		

Page: 15 / 64
Report No.: T180522D10-RP1 Rev.: 00

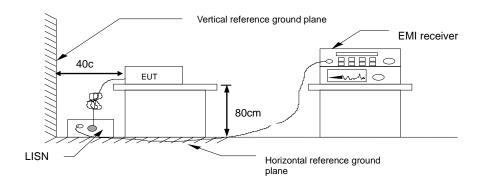
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		


^{*} Decreases with the logarithm of the frequency.

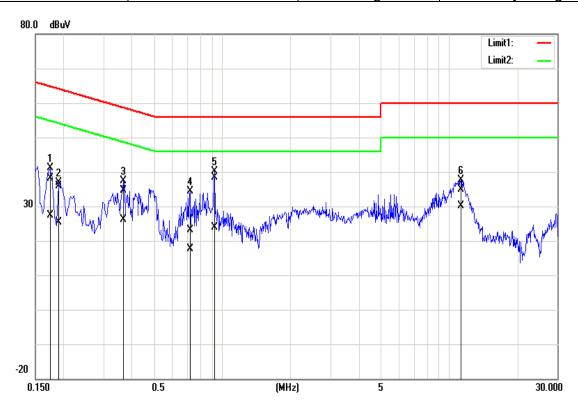
4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

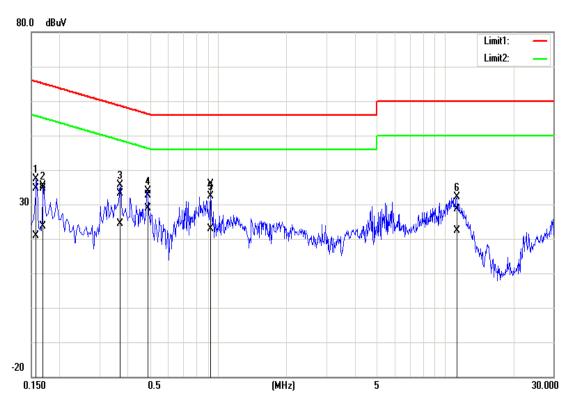
4.1.4 Test Result


Pass.

Page: 16 / 64 Rev.: 00

Test Data

Test Mode:	Test Mode: Mode 1		24(°C)/ 50%RH	
Test Voltage:	120Vac / 60Hz	Test Date	2018/06/29	
Phase:	Line	Test Engineer	Dally Hong	



No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1740	38.01	27.25	0.11	38.12	27.36	64.77	54.77	-26.65	-27.41	Pass
2	0.1900	35.72	25.38	0.11	35.83	25.49	64.04	54.04	-28.21	-28.55	Pass
3	0.3660	34.57	25.98	0.12	34.69	26.10	58.59	48.59	-23.90	-22.49	Pass
4	0.7220	23.06	17.51	0.13	23.19	17.64	56.00	46.00	-32.81	-28.36	Pass
5	0.9260	38.34	23.82	0.13	38.47	23.95	56.00	46.00	-17.53	-22.05	Pass
6	11.3060	34.59	29.69	0.32	34.91	30.01	60.00	50.00	-25.09	-19.99	Pass

Page: 17 / 64 Rev.: 00

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2018/06/29
Phase:	Neutral	Test Engineer	Dally Hong

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	34.49	20.72	0.14	34.63	20.86	65.57	55.57	-30.94	-34.71	Pass
2	0.1700	34.38	23.57	0.14	34.52	23.71	64.96	54.96	-30.44	-31.25	Pass
3	0.3700	33.05	24.26	0.13	33.18	24.39	58.50	48.50	-25.32	-24.11	Pass
4	0.4900	32.60	28.70	0.13	32.73	28.83	56.17	46.17	-23.44	-17.34	Pass
5	0.9260	35.85	22.65	0.14	35.99	22.79	56.00	46.00	-20.01	-23.21	Pass
6	11.2660	28.19	21.98	0.32	28.51	22.30	60.00	50.00	-31.49	-27.70	Pass

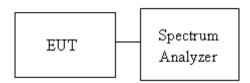
Page: 18 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.2 20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.7,

20 dB Bandwidth : For reporting purposes only.


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 11.8.1,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

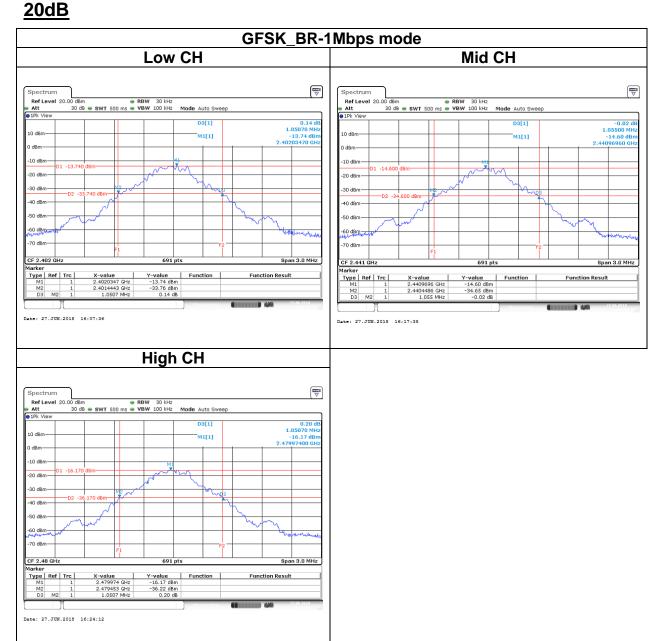
Page: 19 / 64

Rev.: 00

4.2.4 Test Result

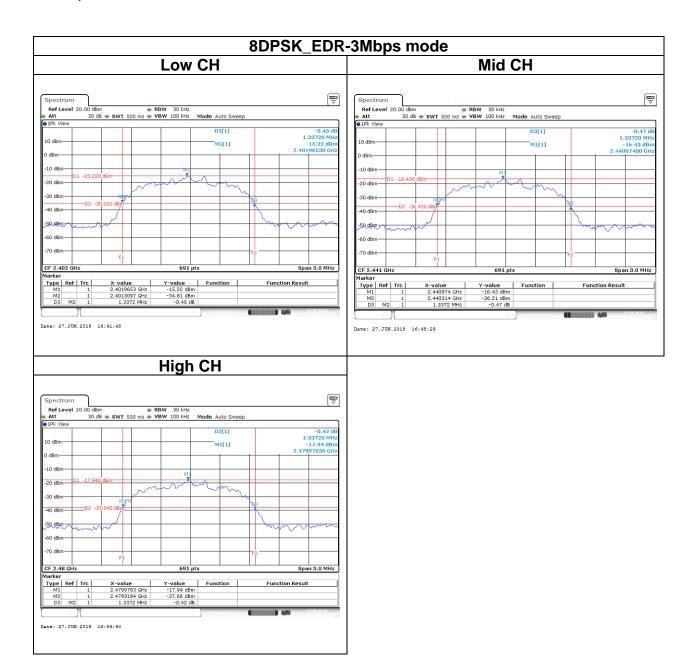
Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz							
Channel Frequency OBW(99%) 20dB B (MHz) (MHz) (MHz)							
Low	2402	0.9030	1.0507				
Mid	2441	0.8986	1.055				
High	2480	0.9030	1.0507				

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz							
Channel Frequency OBW(99%) 20dB BW (MHz) (MHz)							
Low	2402	1.2243	1.3372				
Mid	2441	1.2286	1.3372				
High	2480	1.2243	1.3372				



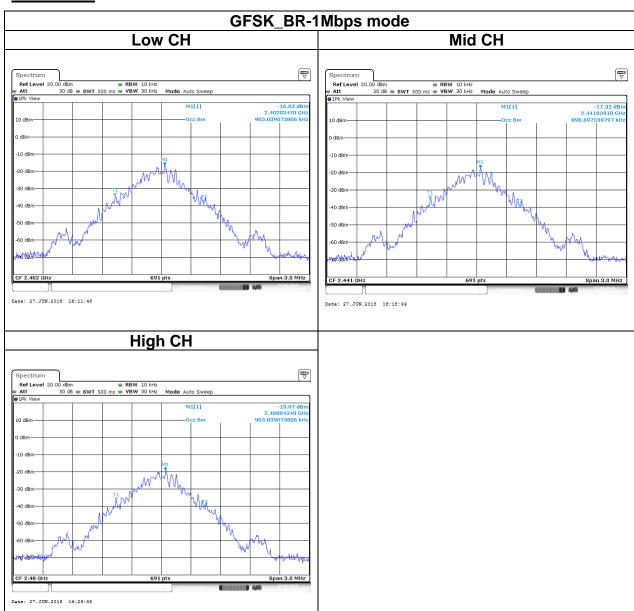
Page: 20 / 64

Rev.: 00

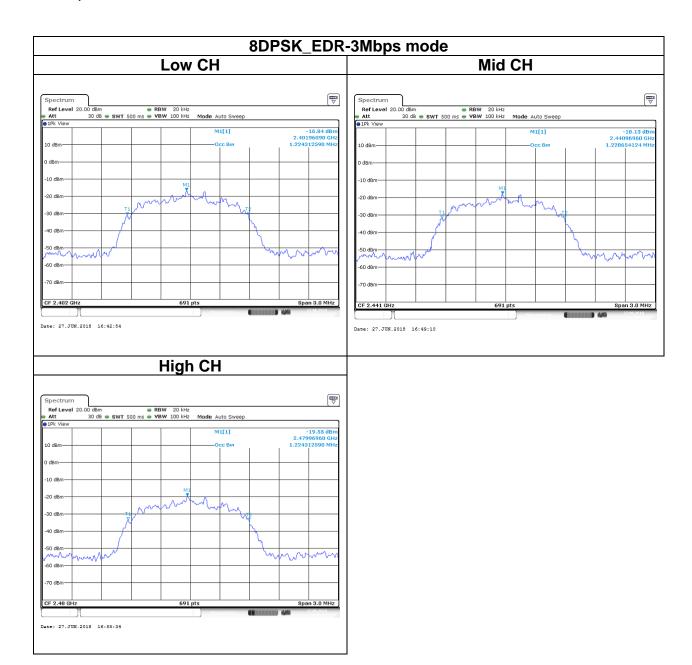

Report No.: T180522D10-RP1

Test Data

Page: 21 / 64 Rev.: 00



Page: 22 / 64


Rev.: 00

99%OBW

Page: 23 / 64 Rev.: 00

Page: 24 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(b)

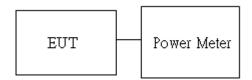
Peak output power:

FCC

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

IC

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


✓ Antenna not exceed 6 dBi : 21dBm✓ Antenna with DG greater than 6 dBi : 21dBm
[Limit = 30 - (DG - 6)]

Average output power: For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 25 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.3.4 Test Result

Peak output power:

	ВТ							
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)
GFSK	0	2402	5.52	5.89	0.0036	0.0039		
BR-1Mbps (DH5) 8DPSK EDR- 3Mbps (DH5)	39	2441	5.07	5.44	0.0032	0.0035		
	78	2480	3.15	3.52	0.0021	0.0022	21	36
	0	2402	3.92	4.29	0.0025	0.0027	21	30
	39	2441	3.02	3.39	0.0020	0.0022		
	78	2480	1.14	1.51	0.0013	0.0014		

Average output power:

ВТ				
Config.	СН	Freq. (MHz)	AV Power (dBm)	
GFSK	0	2402	5.09	
BR-1Mbps (DH5)	39	2441	4.66	
	78	2480	2.76	
8DPSK EDR- 3Mbps (DH5)	0	2402	3.76	
	39	2441	2.80	
	78	2480	0.90	

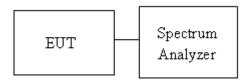
Page: 26 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

|--|

4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

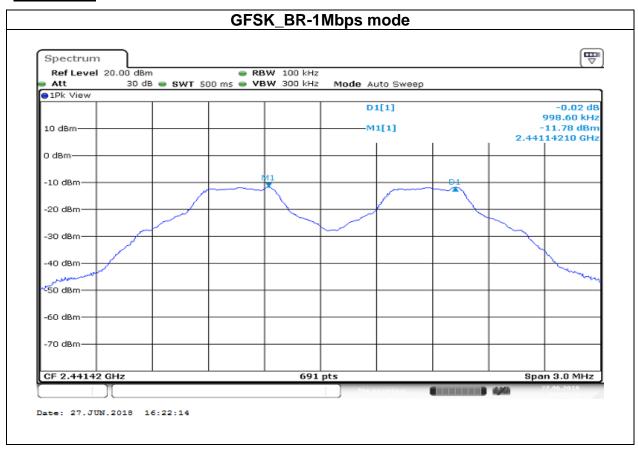
4.4.3 Test Setup

Page: 27 / 64

Rev.: 00

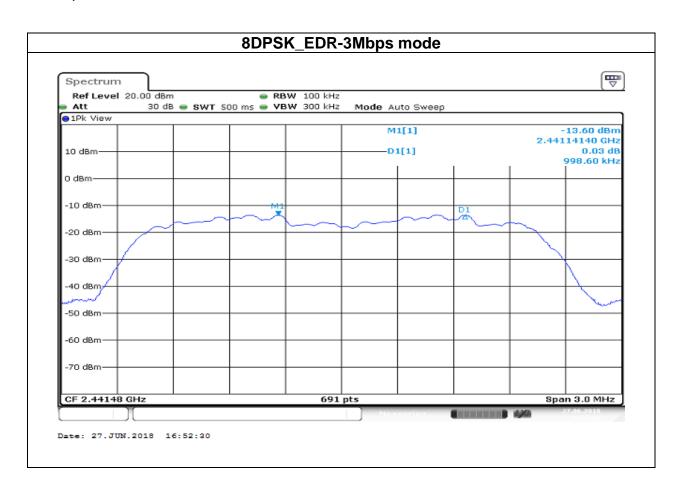
4.4.4 Test Result

Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result
Low	2402	0.9986	0.700	PASS
Mid	2441	0.9986	0.703	PASS
High	2480	0.9986	0.700	PASS


	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	0.9986	0.891	PASS	
Mid	2441	0.9986	0.891	PASS	
High	2480	0.9986	0.891	PASS	

Page: 28 / 64 Rev.: 00

Report No.: T180522D10-RP1


Test Data

Page: 29 / 64

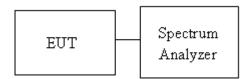
Rev.: 00

Page: 30 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)


Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 channels.

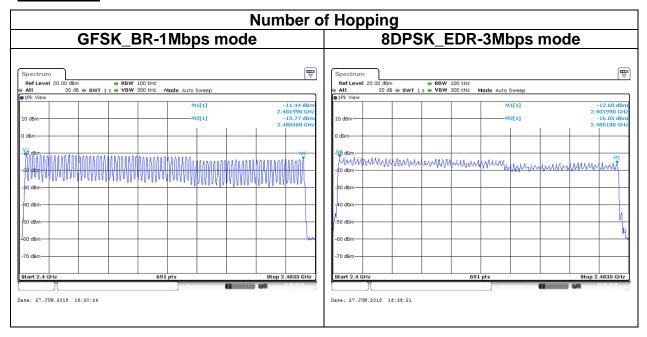
4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

4.5.4 Test Result


Number of Hopping					
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result	
BR-1Mbps	2402-2480	79	15	Pass	
EDR-3Mbps	2402-2480	79	15	rass	

Page: 31 / 64

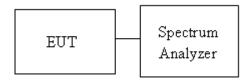
Rev.: 00

Test Data

Page: 32 / 64 Rev.: 00

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

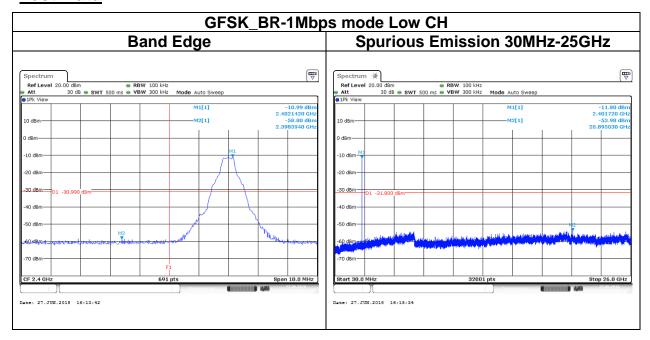

According to §15.247(d) and RSS-247 section 5.5

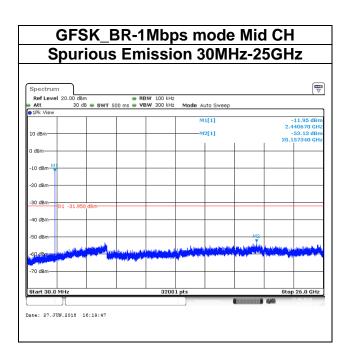
Limit	-20 dBc

4.6.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with both hopping "ON" and "OFF" modes ".

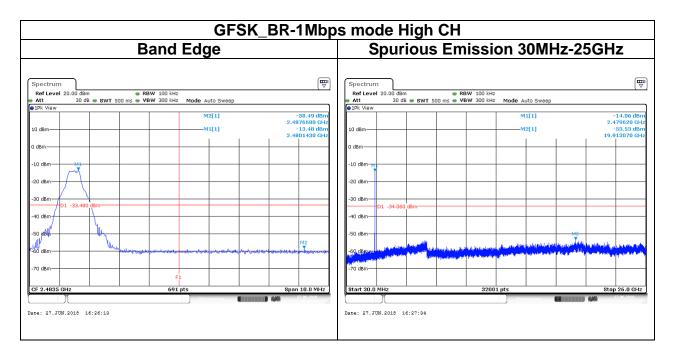
4.6.3 Test Setup

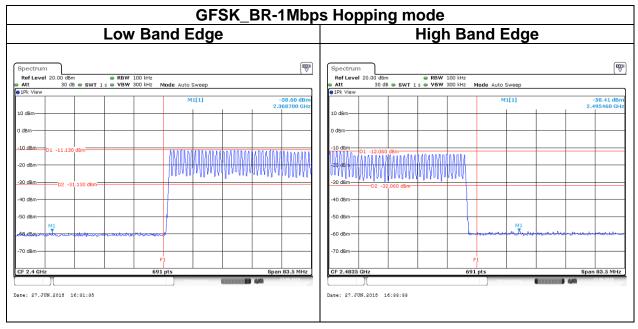

Page: 33 / 64

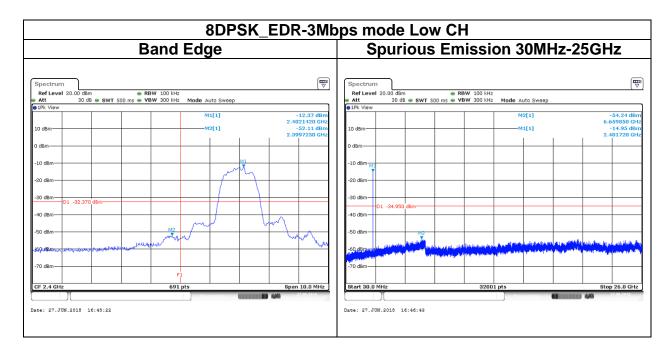

Rev.: 00

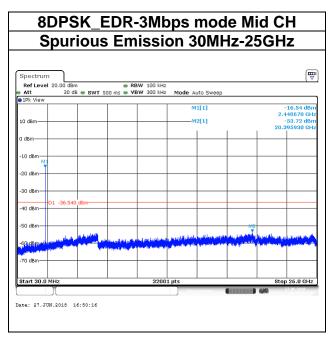
Report No.: T180522D10-RP1

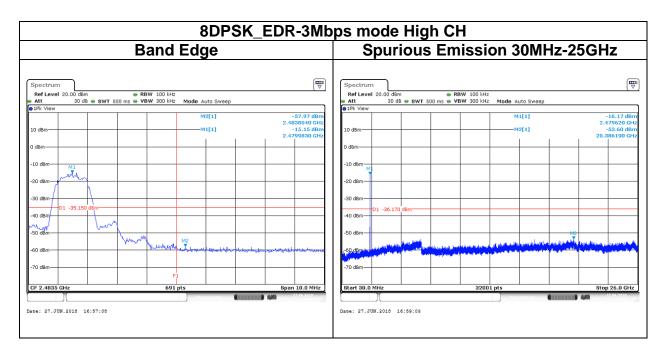
Test Data


4.6.4 Test Result




Page: 34 / 64 Rev.: 00




Page: 35 / 64 Rev.: 00

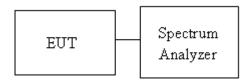


Page: 36 / 64
Report No.: T180522D10-RP1 Rev.: 00

Page: 37 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit


According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d).

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

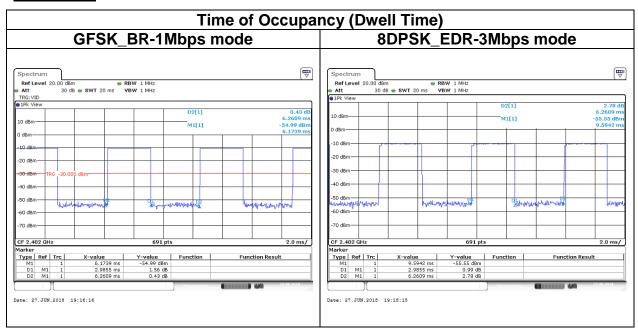
- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup

4.7.4 Test Result

Time of Occupancy (Dwell Time)									
Mode	Frequency	Pulse Time Minimum Per Hopping Number of		Number of pulse in	Dwell Time IN	Dwell Time	Result		
	(MHz)	(ms)	Hopping Freq.	(0.4 * N sec)	(0.4 * N sec)	Limits (s)			
BR-1Mbps	2441	2.9855	79	106.67	0.3185	0.4	Daga		
EDR-3Mbps	2441	2.9855	79	106.67	0.3185	0.4	Pass		

Non-AFH: DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6


AFH: DH5 Packet permit maximum 800/20/6 = 6.666 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 6.666*0.4*20 = 53.33

Page: 38 / 64

Rev.: 00

Test Data

Page: 39 / 64
Report No.: T180522D10-RP1 Rev.: 00

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 40 / 64 Report No.: T180522D10-RP1 Rev.: 00

4.8.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

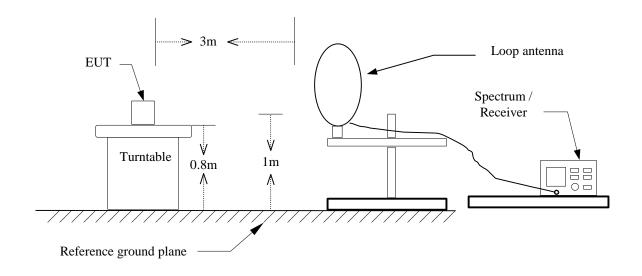
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

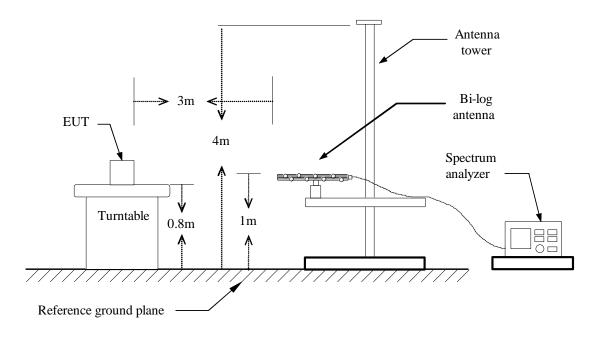
Remark:

- 1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 4. The SA setting following:
 - (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle ≥ 98%, VBW=10Hz.

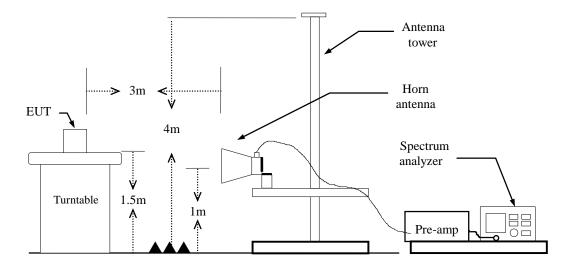
If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW setting
GFSK_BR-1Mbps	48%	2.9855	0.335	360Hz
8DPSK_EDR-3Mbps	48%	2.9855	0.335	360Hz


Page: 41 / 64 Rev.: 00

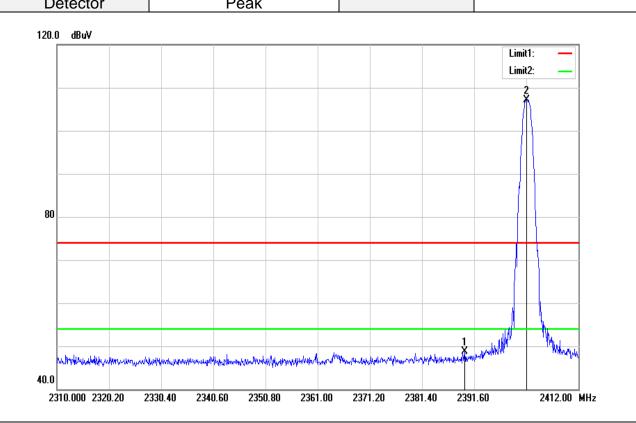
4.8.3 Test Setup

9kHz ~ 30MHz


30MHz ~ 1GHz

Page: 42 / 64
Report No.: T180522D10-RP1 Rev.: 00

Above 1 GHz


Page: 43 / 64

Rev.: 00

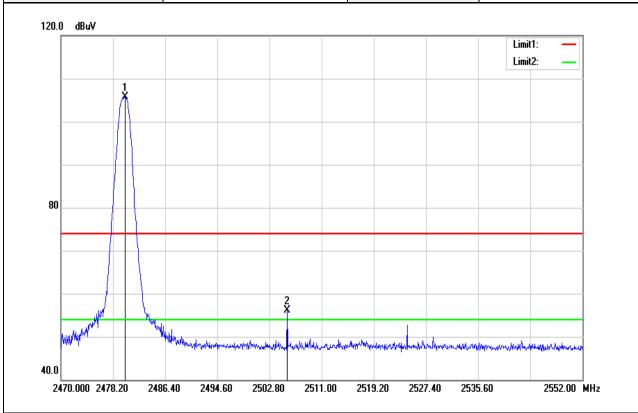
Report No.: T180522D10-RP1

4.8.4 Test Result Band Edge Test Data

Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22(°ℂ)/ 34%RH
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.764	51.63	-2.98	48.65	74.00	-25.35	peak
2	2401.800	110.06	-2.95	107.11	-	-	peak

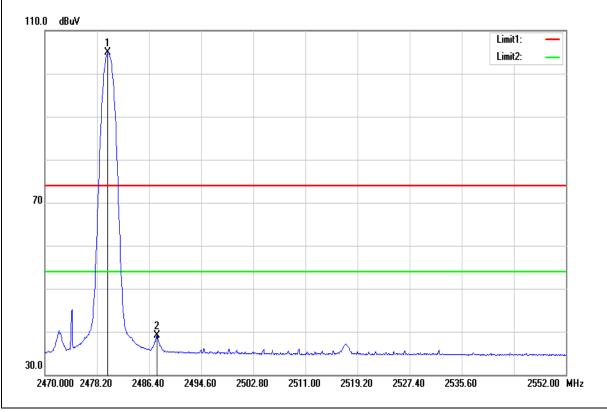
Page: 44 / 64 Rev.: 00


Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	22(°ℂ)/ 34%RI
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average	_	
110.0 dBuV			
			Limit1: —
			Limit2: —
70			
	<u>, </u>		
30.0			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.570	40.04	-3.07	36.97	54.00	-17.03	AVG
2	2402.004	109.66	-2.95	106.71	-	-	AVG

Page: 45 / 64 Rev.: 00

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22(°C)/ 34%RH
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak		



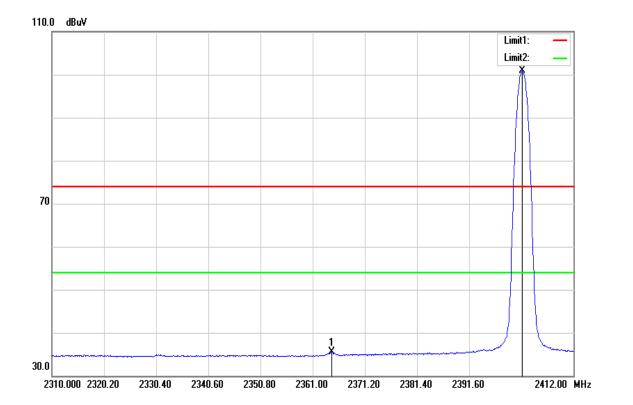
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.086	108.44	-2.70	105.74	-	-	peak
2	2505.588	58.79	-2.63	56.16	74.00	-17.84	peak

Page: 46 / 64 Rev.: 00

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	22(°C)/ 34%RH
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.922	107.53	-2.70	104.83	-	-	AVG
2	2487.630	41.71	-2.67	39.04	54.00	-14.96	AVG

Page: 47 / 64 Rev.: 00


Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	22(°C)/ 34%RH	
Test Item	Band Edge	Test Date	June 28, 2018	
Polarize	Horizontal	Test Engineer	Jerry Chuang	
Detector	Peak			
120.0 dBuV				
			Limit1: —	
			Limit2: —	
			2	
			<u> </u>	
80				
	1		 	
White Miller to whom with all bunder	the distribution of the second	mally and have marked and make the control of the c	when the the	
10.0	and the many later than the technical section of the medical section of the section of	A STATE OF THE STA		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2351.412	52.12	-3.11	49.01	74.00	-24.99	peak
2	2401.902	107.59	-2.95	104.64	-	-	peak

Page: 48 / 64 Rev.: 00

Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	22(°C)/ 34%RH
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.774	38.56	-3.07	35.49	54.00	-18.51	AVG
2	2402.004	103.81	-2.95	100.86	-	-	AVG

40.0

2470.000 2478.20

2486.40

2494.60

Page: 49 / 64 Rev.: 00

Test Mode:		8DPSK_EDR-3Mbps High CH		T	Temp/Hum		22(°ℂ)/ 34%Rŀ		%RH
Test Item		Ba	Band Edge Test D		Test Da	ite	Jur	ne 28, 2	2018
Polarize		H	orizontal	Te	st Engi	neer	Je	Jerry Chuan	
Detector			Peak						
120.0 dBuV									
							Limit	1: —	
							Limit	2: —	
1									
	}								
	}								
80									

traffic proportion or productive discourse for the contraction of the first productive p

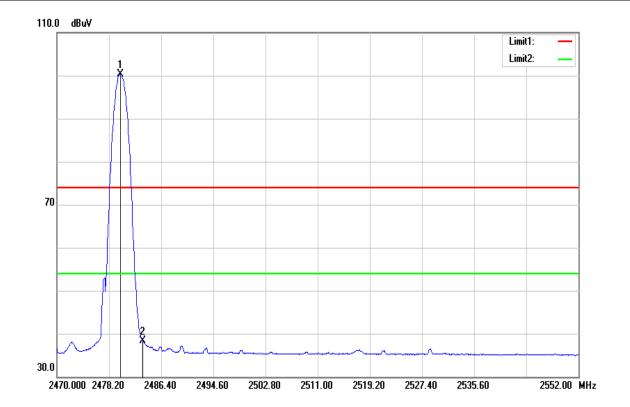
2519.20

2527.40

2535.60

2552.00 MHz

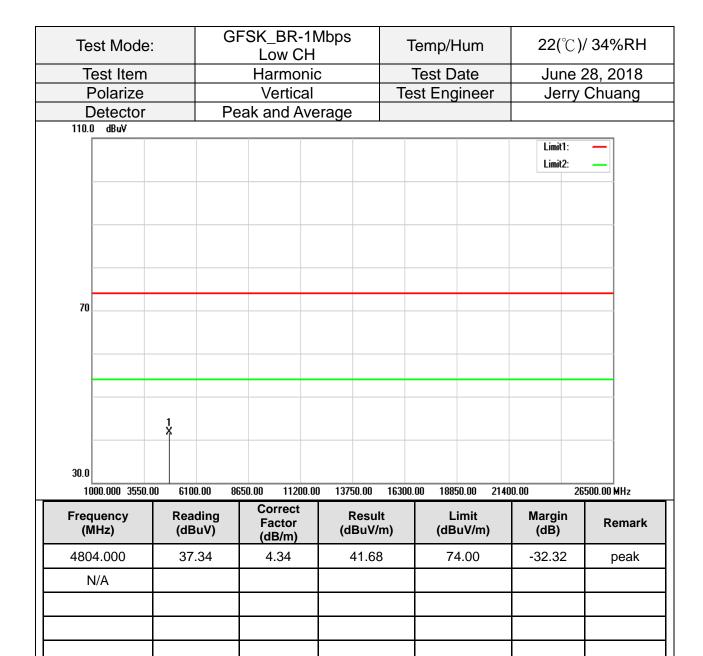
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.922	106.53	-2.70	103.83	-	-	peak
2	2483.612	54.88	-2.69	52.19	74.00	-21.81	peak


2511.00

2502.80

Page: 50 / 64 Rev.: 00

Test Mode:	8DPSK_EDR-3Mbps High CH	Temp/Hum	22(°C)/ 34%RH
Test Item	Band Edge	Test Date	June 28, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average		



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	103.05	-2.70	100.35	-	-	AVG
2	2483.530	40.92	-2.69	38.23	54.00	-15.77	AVG

Page: 51 / 64 Rev.: 00

Above 1G Test Data

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 52 / 64 Rev.: 00

Test Mode	e:	GF	SK_BR- Low C	·1Mbps ፡H		Temp/l	Hum	22(°C	C)/ 34%RH
Test Item	ſ		Harmo	nic		Test D	ate	June	28, 2018
Polarize	•	Horizontal		Т	est Eng	jineer		y Chuang	
Detector	r	Pea	ık and A	verage					
110.0 dBuV									
								Limit1: Limit2:	
70									
	1								
30.0									
1000.000 355	0.00 6100).00 86 50).00 1120	0.00 1375	60.00 1630	00.00 188	50.00 214	00.00	26500.00 MHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	39.96	4.34	44.30	74.00	-29.70	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 53 / 64 Rev.: 00

Test Mode:	GFSK_BR-1Mbp: Mid CH	Temp/Hum	22(°C)/ 34%RH	
Test Item	Harmonic	Test Date	June 28, 2018	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Peak and Average	e		
110.0 dBuV				
			Limit1: — Limit2: —	
70				
*				
30.0				
1000.000 3550.00	100.00 8650.00 11200.00 13	750.00 16300.00 18850.00 214	00.00 26500.00 MHz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	37.25	4.49	41.74	74.00	-32.26	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 54 / 64 Rev.: 00

Test Mode:	GFSK_BR Mid C		Temp/Hum	22(℃)/ 34%RH
Test Item	Harmo	onic	Test Date	June 28, 2018
Polarize	Horizo	ntal	Test Engineer	Jerry Chuang
Detector	Peak and A	√verage		
110.0 dBuV				
				Limit1: — Limit2: —
				LIMICZ: —
70				
70				
1				
30.0				
1000.000 3550.00	100.00 8650.00 112	00.00 13750.00	16300.00 18850.00 2140	00.00 26500.00 MHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	39.63	4.49	44.12	74.00	-29.88	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 55 / 64 Rev.: 00

Test Mode:	GF	SK_BR-1 High Ch		Temp	o/Hum	22(℃)/ 34%RH	
Test Item		Harmoni	С	Test	Date	June 28, 2018	
Polarize		Vertical		Test E	ngineer	Jerry Chuang	
Detector	Pea	Peak and Average					
110.0 dBuV			<u> </u>				
						Limit1: — Limit2: —	
70							
	l K						
30.0							
1000.000 3550.00	6100.00 865	50.00 11200.0	00 13750.00	16300.00	18850.00 2140	00.00 26500.00 MHz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	36.85	4.61	41.46	74.00	-32.54	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 56 / 64 Rev.: 00

Test I	Mode:		GF	SK_BR High (bps		1	Temp/H	Hum	22(°C)/	4 34%	6RH
Test	Item			Harmo	nic			Test Date			Jui	ne 2	28, 2	018
Pola	arize			Horizontal				Te	st Eng	jineer	Je	rry	Chua	ang
	ector		Pe	ak and A	\ ver	age								
110.0 dl	3uV										Limit Limit			
70		1												
30.0 1000.00 Frequen (MHz)		0 6100 Read (dB	ding	50.00 112 Correct Factor (dB/m)			60.00 Result BuV/r		L	50.00 2140 imit uV/m)	00.00 Margi (dB)	n	500.00 N	MHz emark

Remark:

4960.000

N/A

40.67

4.61

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

45.28

74.00

-28.72

peak

Page: 57 / 64 Rev.: 00

Test Mo	ode	8DP	SK_EDR- Low CH		Т	emp/H	lum	22(°ℂ)	/ 34%RH
Test Ite			Harmoni		Test Date				28, 2018
Polariz			Vertical		Test Engineer		Jerry	Chuang	
Detect	or	Pe	ak and Av	erage					
110.0 dBuV								11.114	
								Limit1: Limit2:	_
70									
	1 X								
30.0 1000.000 3	550.00 610	0.00 86	50.00 11200.0	00 13750.00	16300.	00 1885	0.00 2140	0.00 20	6500.00 MHz
Frequency (MHz)		ding BuV)	Correct Factor (dB/m)	Resu (dBuV/			mit uV/m)	Margin (dB)	Remark
4804.000	37	.69	4.34	42.03	3	74	.00.	-31.97	peak
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 58 / 64 Rev.: 00

Test Mode		8DPSK_EDR-3Mbps Low CH			emp/Hum	22(℃)	/ 34%RH
Test Item		Harmo	nic	Т	est Date	June 28, 2018	
Polarize		Horizoi	ntal	Test Engineer		Jerry	Chuang
Detector		Peak and A	Average				
110.0 dBuV							
						Limit1: Limit2:	
70							
30.0	1 X						
1000.000 3550.0	00 6100.00	8650.00 1120	0.00 13750.00	16300.0	0 18850.00 214	100.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)		Resul (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
4804.000	37.11	4.34	41.45	5	74.00	-32.55	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 59 / 64 Rev.: 00

Test Mode	8DP	SK_EDR-3	BMbps	Temp/Hum	22(°ℂ)/	/ 34%RH	
Test Item		Harmonio)	Test Date	June 28, 2018		
Polarize		Vertical	Te	est Engineer	Jerry	Chuang	
Detector	Pe	ak and Ave	erage				
110.0 dBuV							
					Limit1: Limit2:		
70							
1							
1							
30.0							
1000.000 3550.00 6	100.00 86	50.00 11200.00) 13750.00 1630	0.00 18850.00 2140	0.00 26	500.00 MHz	
	eading BuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
4882.000 3	6.31	4.49	40.80	74.00	-33.20	peak	

Remark:

N/A

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

(dBuV)

36.99

Factor

(dB/m)

4.49

Page: 60 / 64 Rev.: 00

Te	est Mode)	8DP	SK_EDI Mid C		bps	Te	emp/l	Hum		22(°ℂ)/ 34%RH	
Т	est Item			Harmo	nic		Т	est D	ate		June	28, 2018	
F	Polarize		Horizontal				Tes	st Eng	ginee	r	Jerry	Chuang	
	Detector		Pea	ak and A	\vera	ge							
110.0	0 dBuV												
											Limit1: Limit2:		
											LIIII(Z.		
70													
10													
		1 *											
		1											
30.0													
	000.000 3550.	00 6100).00 865	0.00 112	00.00	13750.00	16300.0	00 188	50.00	21400.00) 2	26500.00 MHz	
Fred	quency	Read	ding	Correct		Resul	t	L	imit		Margin	Remark	,

Remark:

(MHz)

4882.000

N/A

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

(dBuV/m)

41.48

(dB)

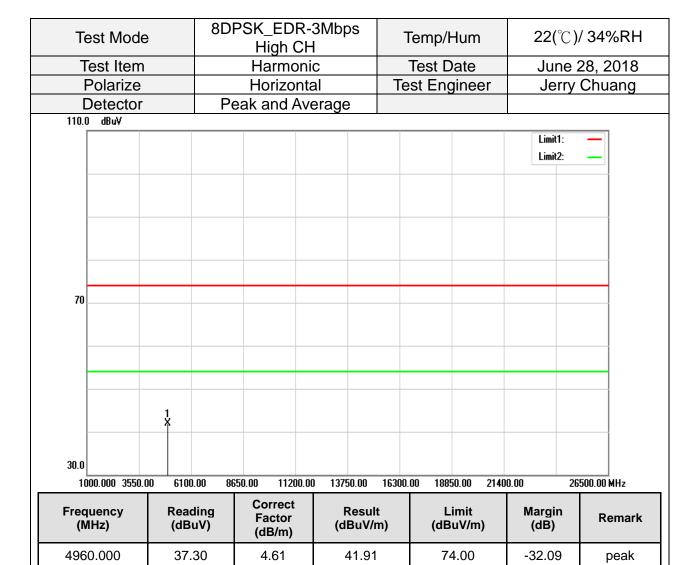
-32.52

(dBuV/m)

74.00

Remark

peak


Page: 61 / 64 Rev.: 00

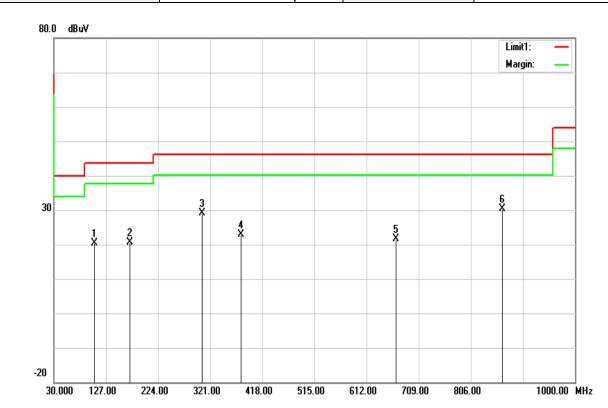
Tes	t Mode		8DP	SK_EDF High (Mbps		Tem	p/Hum	1	22(°C)/ 34	·%RH
Tes	st Item			Harmo		;		Test	Date		June 28, 2018		2018
Po	olarize			Vertic	al		7	Test Engineer			Je	rry Chi	uang
	etector		Pe	ak and A	٧e	rage							
110.0	dBuV												a .
											Limit Limit		
70													-
													_
		* *											-
30.0													
1000	0.000 3550.0	0 6100	0.00 86	50.00 1120	00.00	13750.0	D 163	00.00	18850.00	2140	0.00	26500.0	D MHz
Freque (MH	ency Iz)	Read (dB	ding uV)	Correct Factor (dB/m)		Res (dBu			Limit (dBuV/m	1)	Margii (dB)	n F	Remark
4960.		36.	.94	4.61		41.	55		74.00		-32.4	5	peak
N/A	A				-								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 62 / 64 Rev.: 00

Remark:

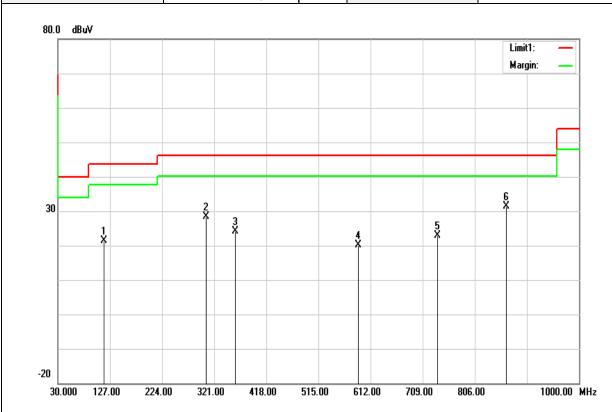
N/A


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 63 / 64 Rev.: 00

Below 1G Test Data

Test Mode:	Mode 1	Temp/Hum	22(°ℂ)/ 34%RH
Test Item	30MHz-1GHz	Test Date	June 27, 2018
Polarize	Vertical	Test Engineer	Jerry Chuang
Detector	Peak and Quasi-peak		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
105.6600	38.06	-17.56	20.50	43.52	-23.02	peak
171.6200	37.21	-16.66	20.55	43.52	-22.97	peak
306.4500	43.04	-13.93	29.11	46.02	-16.91	peak
378.2300	35.02	-12.08	22.94	46.02	-23.08	peak
666.3200	26.93	-5.34	21.59	46.02	-24.43	peak
864.2000	33.04	-2.62	30.42	46.02	-15.60	peak

Page: 64 / 64 Rev.: 00

	Test Mode:	Mode 1	Temp/Hum	22(°ℂ)/ 34%RH
Test Item		30MHz-1GHz	Test Date	June 27, 2018
	Polarize	Horizontal	Test Engineer	Jerry Chuang
	Detector	Peak and Quasi-peak		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
115.3600	37.17	-15.82	21.35	43.52	-22.17	peak
305.4800	42.42	-13.94	28.48	46.02	-17.54	peak
359.8000	36.70	-12.67	24.03	46.02	-21.99	peak
588.7200	27.08	-7.07	20.01	46.02	-26.01	peak
737.1300	27.26	-4.44	22.82	46.02	-23.20	peak
864.2000	34.01	-2.62	31.39	46.02	-14.63	peak