

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	13
3.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	15
3.4 DUTY CYCLE	17
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TEST	ΓED 18
3.5 DESCRIPTION OF SUPPORT UNITS	18
4. EMC EMISSION TEST	19
4.1 CONDUCTED EMISSION MEASUREMENT	19 19
4.1.1 POWER LINE CONDUCTED EMISSION	19
4.1.2 TEST PROCEDURE	19
4.1.3 DEVIATION FROM TEST STANDARD	19
4.1.4 TEST SETUP	20
4.1.5 EUT OPERATING CONDITIONS 4.1.6 EUT TEST CONDITIONS	20 20
4.1.7 TEST RESULTS	20
4.2 RADIATED EMISSION MEASUREMENT	21
4.2.1 RADIATED EMISSION LIMITS	21
4.2.2 TEST PROCEDURE	22
4.2.3 DEVIATION FROM TEST STANDARD	22
4.2.4 TEST SETUP	22
4.2.5 EUT OPERATING CONDITIONS 4.2.6 EUT TEST CONDITIONS	23 23
4.2.7 TEST RESULTS (9K TO 30MHz)	23 24
4.2.8 TEST RESULTS (BETWEEN 30 TO 1000 MHz)	24
4.2.9 TEST RESULTS (ABOVE 1000 MHz)	24
5 . 26dB SPECTRUM BANDWIDTH	25
5.1 APPLIED PROCEDURES / LIMIT	25
5.1.1 TEST PROCEDURE	25
5.1.2 DEVIATION FROM STANDARD	25
5.1.3 TEST SETUP	25
5.1.4 EUT OPERATION CONDITIONS	25
5.1.5 EUT TEST CONDITIONS 5.1.6 TEST RESULTS	26 26
5.1.6 TEST RESULTS	26

Table of Contents	Page
6 . MAXIMUM CONDUCTED OUTPUT POWER	27
6.1 APPLIED PROCEDURES / LIMIT	27
6.1.1 TEST PROCEDURE	27
6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP	28 28
6.1.4 EUT OPERATION CONDITIONS	28
6.1.5 EUT TEST CONDITIONS	28
6.1.6 TEST RESULTS	28
7 . POWER SPECTRAL DENSITY TEST	29
7.1 APPLIED PROCEDURES / LIMIT	29
8.1.1 TEST PROCEDURE 7.1.1 DEVIATION FROM STANDARD	29 30
7.1.2 TEST SETUP	30
7.1.3 EUT OPERATION CONDITIONS	30
7.1.4 EUT TEST CONDITIONS	30
7.1.5 TEST RESULTS	30
8. FREQUENCY STABILITY MEASUREMENT	31
8.1 APPLIED PROCEDURES / LIMIT	31
8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD	31 31
8.1.3 TEST SETUP	32
8.1.4 EUT OPERATION CONDITIONS	32
8.1.5 EUT TEST CONDITIONS	32
8.1.6 TEST RESULTS	32
9. MEASUREMENT INSTRUMENTS LIST	33
10 . EUT TEST PHOTO	36
APPENDIX A - CONDUCTED EMISSION	51
APPENDIX B - RADIATED EMISSION (9KHZ TO 30MHZ)	84
APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)	133
APPENDIX D - RADIATED EMISSION (ABOVE 1000MHZ)	162
APPENDIX E - BANDWIDTH	358
APPENDIX F - MAXIMUM OUTPUT POWER	371
APPENDIX G - POWER SPECTRAL DENSITY	396
APPENDIX H - FREQUENCY STABILITY	433

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-4-1710T083D	R00	Original Report.	2021/4/27
BTL-FCCP-4-1710T083D		Revised report to address TCB's comments.	2021/9/8
BTL-FCCP-4-1710T083D	R02	Revised typo.	2021/10/15

1. CERTIFICATION

Equipment : Brand Name : Test Model :	ADVANTECH
Series Model :	AIM-58, AIM-58XXXXXXXXXXXXXXXX, AIM 10WXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Applicant :	Advantech Co., Ltd.
	Advantech Co., Ltd.
Address :	No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 11491, Taiwan, R.O.C.
Factory :	N/A
Address :	
Date of Test :	2017/11/13 ~ 2018/2/27
	2020/12/16 ~ 2021/4/16
Test Sample :	Production Unit
	FCC Part15, Subpart E(15.407) ANSI C63.10-2013

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-4-1710T083D) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the 5GHz RLAN part.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart E(15.407)				
Standard(s) Section			Remark	
15.207	AC Power Line Conducted Emissions	PASS		
15.407(a)	26dB Spectrum Bandwidth	PASS		
15.407(a)	Maximum Conducted Output Power	PASS		
15.407(a)	Power Spectral Density	PASS		
15.407(a)	Radiated Emissions	PASS		
15.407(b)	Band Edge Emissions	PASS		
15.407(g)	Frequency Stability	PASS		
15.203	Antenna Requirements	PASS		
15.407(c)	15.407(c) Automatically Discontinue Transmission		NOTE (2)	

NOTE:

- (1)" N/A" denotes test is not applicable in this test report.
- (2) During no any information transmission, the EUT can automatically discontinue transmission and becom standby mode for power saving.
 The EUT can detect the controlling signal of ACK message transmitting from remote

The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

\boxtimes	C05	CB08	CB11	\boxtimes	CB15	CB16
	-					

⊠ SR05

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
CB15	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

Test Item	U,(dB)
Number of Hopping Frequency	0.00
Average Time of Occupancy	1.20
Hopping Channel Separation	1.20
Bandwidth	1.13
Peak Output Power	1.06
Antenna conducted Spurious Emission	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Computer				
Brand Name	ADVANTECH				
Test Model	AIM 10W				
Series Model		AIM-58, AIM-58XXXXXXXXXXXXXXXX, AIM 10WXXXXXXXXXXXXXXXXXXXXXXXX, and alphanumeric character, blank or "-".)			
Model Difference	The market distribution is differen	The market distribution is different only.			
Product Description	Operation Frequency	UNII-1: 5150-5250MHz UNII-2A: 5250-5350MHz UNII-2C: 5470-5725MHz UNII-3: 5725-5850MHz			
	Modulation Type	OFDM			
	Bit Rate of Transmitter	866.7Mbps			
	Output Power (Max.)for UNII-1 (2TX)	802.11a: 15.35dBm 802.11n (20M): 14.36dBm 802.11ac (80M): 12.02dBm			
	Output Power (Max.)for UNII-2A (2TX)	802.11a: 15.08dBm 802.11n (20M): 14.22dBm 802.11ac (80M): 12.74dBm			
	Output Power (Max.)for UNII-2C (2TX)	802.11a: 15.38dBm 802.11n (20M): 14.51dBm 802.11ac (80M): 12.42dBm			
	Output Power (Max.)for UNII-3 (2TX)	802.11a: 15.01dBm 802.11n (20M): 14.04dBm 802.11ac (80M): 11.54dBm			
Output Power	Output Power (Max.)for UNII-1 (2TX) Spot check test	802.11a: 14.72dBm 802.11n (20M): 13.84dBm 802.11ac (80M): 11.67dBm			
	Output Power (Max.)for UNII-2A (2TX) Spot check test	802.11a: 14.85dBm 802.11n (20M): 12.94dBm 802.11ac (80M): 11.93dBm			
	Output Power (Max.)for UNII-2C (2TX) Spot check test	802.11a: 11.69dBm 802.11n (20M): 12.58dBm 802.11ac (80M): 12.32dBm			
	Output Power (Max.)for UNII-3 (2TX) Spot check test	802.11a: 14.57dBm 802.11n (20M): 13.73dBm 802.11ac (80M): 11.45dBm			
Power Source	DC Voltage supplied from AC/DC	adapter.			
Power Rating	I/P: AC 100-240V~, 1.5A, 50~60H O/P: DC 19V3.42A	I/P: AC 100-240V~, 1.5A, 50~60Hz, 1.5A			
Products Covered	2* AC Adapter: (1) TAMURA / XEW1934N (2) FSP / FSP065-DBCM1 2* Dock: (1) Desk Docking: ADVANTECH/AIM-OFD-0000				
	(2) VESA Docking: ADV	(2) VESA Docking: ADVANTECH/AIM-DOC-0001			

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) In this report, the test results of below items refer to BTL-FCCP-4-1710083 report due to the device is identical to the original device of the referencing report, except added series models and added an external power adapter.
 - a. AC Power Line Conducted Emissions
 - b. 26dB Spectrum Bandwidth
 - c. Maximum Conducted Output Power
 - d. Power Spectral Density
 - e. Radiated Emissions(30MHZ TO 1000MHZ & ABOVE 1000MHZ)
 - f. Frequency Stability

Spot checks are applied to below items:

- a. Maximum Conducted Output Power
- b. Radiated Emissions (ABOVE 1000MHZ)

After evaluated, the changes with respect to the original device below items are tested.

- a. AC Power Line Conducted Emissions
- b. Radiated Emissions (30MHZ TO 1000MHZ)

(3) Channel List:

۰.							
	UNI	I-1	UN	II-1			
	Channel Frequency (MHz)		Channel	Frequency (MHz)			
	36	5180	42	5210			
	40	5200					
	44	5220					
	48	5240					

UNII-2A		UNI	I-2A
Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	58	5290
56	5280		
60	5300		
64	5320		

UNII	-2C	UNII-2C		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
100	5500	106	5530	
104	5520	122	5610	
108	5540			
112	5560			
116	5580			
132	5660			
136	5680			
140	5700			

UNI	I-3	UNII-3		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
149	5745	155	5775	
153	5765			
157	5785			
165	5825			

(4) Antenna Specification:

Ant.	Brand	Model	Туре	Connector	Frequency Range (MHz)	Gain w/ Cable loss (dBi) (peak)	Gain w/o Cable Loss (dBi) (peak)	Cable Loss (dBi) (peak)
		IEC			2400-2500	0.65	1.32	0.67
MAIN		PIFA	l-pex	5150-5350	-0.69	0.32	1.01	
				5470-5725	-0.16	0.88	1.04	
		IEC			2400-2500	-1.9	-1.68	0.22
AUX	AUX INPAQ		PIFA	I-pex	5150-5350	-0.05	0.28	0.33
		WA-F-LB-03-080-			5470-5725	-0.3	0.04	0.34

Note:

The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (2T2R) and employs Cyclic Delay Diversity (CDD). In CDD mode,

5180 MHz to 5240 MHz : For power spectral density: Directional gain = 10*log{[10^(G1/20)+10^(G2/20)+...+10^(Gn/20)]^2/NANT} = 2.44 dBi < 6dBi.

For conducted power: For N_{ANT} = 2 < 5, Direction gain (dBi) = G_{ANT} + 0 = -0.05 + 0 = -0.05 The Direction gain is less than 6, so conducted power limits will not be reduced. 5260 MHz to 5320 MHz : For power spectral density: Directional gain = 10*log{[10^(G1/20)+10^(G2/20)+...+10^(Gn/20)]^2/NANT} = 2.52 dBi < 6dBi.

For conducted power: For N_{ANT} = 2 < 5, Direction gain (dBi) = G_{ANT} + 0 = -0.29 + 0 = -0.29 The Direction gain is less than 6, so conducted power limits will not be reduced. 5500 MHz to 5700 MHz : For power spectral density: Directional gain = 10*log{[10^(G1/20)+10^(G2/20)+...+10^(Gn/20)]^2/NANT} = 1.49 dBi < 6dBi.

For conducted power: For NANT = 2 < 5, Direction gain (dBi) = GANT + 0 = 0.3 + 0 = 0.3 The Direction gain is less than 6, so conducted power limits will not be reduced. 5745 MHz to 5825 MHz : For power spectral density: Directional gain = $10*\log\{[10^{(G1/20)+10^{(G2/20)+...+10^{(Gn/20)}]^2/NANT\} = 3.06 dBi < 6dBi.$

For conducted power: For $N_{ANT} = 2 < 5$, Direction gain (dBi) = $G_{ANT} + 0 = 0.13 + 0 = 0.13$ The Direction gain is less than 6, so conducted power limits will not be reduced.

Operating Mode TX Mode	2ТХ
802.11a	V (ANT 1+ANT 2)
802.11n(20MHz)	V (ANT 1+ANT 2)
802.11ac(80MHz)	V (ANT 1+ANT 2)

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)
Mode 3	TX AC80 Mode / CH42 (UNII-1)
Mode 4	TX A Mode / CH52, CH60, CH64 (UNII-2A)
Mode 5	TX N20 Mode / CH52, CH60, CH64 (UNII-2A)
Mode 6	TX AC80 Mode / CH58 (UNII-2A)
Mode 7	TX A Mode / CH100, CH116, CH140 (UNII-2C)
Mode 8	TX N20 Mode / CH100, CH116, CH140 (UNII-2C)
Mode 9	TX AC80 Mode / CH106, CH122 (UNII-2C)
Mode 10	TX A Mode / CH149,CH157,CH165 (UNII-3)
Mode 11	TX N20 Mode / CH149,CH157,CH165 (UNII-3)
Mode 12	TX AC80 Mode / CH155 (UNII-3)
Mode 13	TX Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test				
Final Test Mode	Description			
Mode 13 TX Mode				

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)			
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)			
Mode 3	TX AC80 Mode / CH42 (UNII-1)			
Mode 4	TX A Mode / CH52, CH60, CH64 (UNII-2A)			
Mode 5	TX N20 Mode / CH52, CH60, CH64 (UNII-2A)			
Mode 6	TX AC80 Mode / CH58 (UNII-2A)			
Mode 7	TX A Mode / CH100, CH116, CH140 (UNII-2C)			
Mode 8	TX N20 Mode / CH100, CH116, CH140 (UNII-2C)			
Mode 9	TX AC80 Mode / CH106, CH122 (UNII-2C)			
Mode 10	TX A Mode / CH149,CH157,CH165 (UNII-3)			
Mode 11	TX N20 Mode / CH149,CH157,CH165 (UNII-3)			
Mode 12	TX AC80 Mode / CH155 (UNII-3)			

Note:

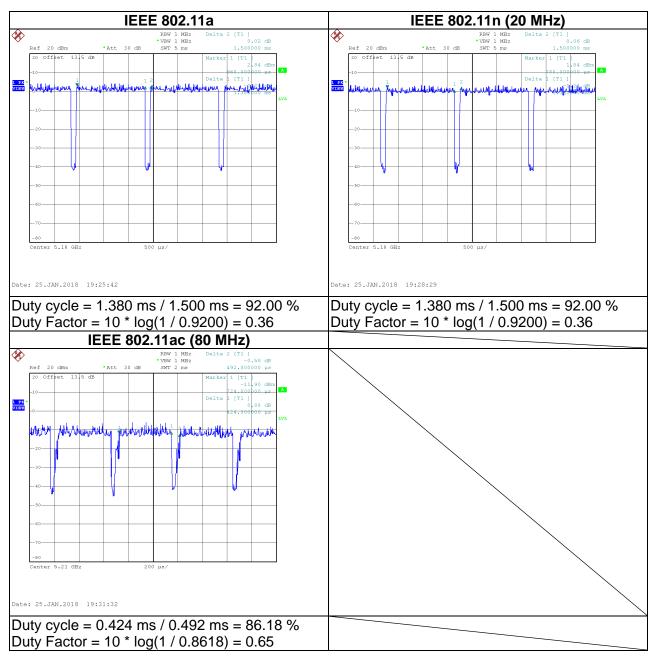
(1) For radiated below 1GHz test, the 802.11a and AC80 Mode mode is found to be the worst case and recorded.

3.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product

UNII-1 - 2TX				
Test Software Version		DOC		
Frequency (MHz)	5180	5200	5240	
A Mode	12	12	12	
Frequency (MHz)	5180	5200	5240	
N20 Mode	11	11	11	

UNII-2A - 2TX					
Test Software Version	DOC				
Frequency (MHz)	5260	5300	5320		
A Mode	12	12	12		
Frequency (MHz)	5260	5300	5320		
N20 Mode	11	11	11		

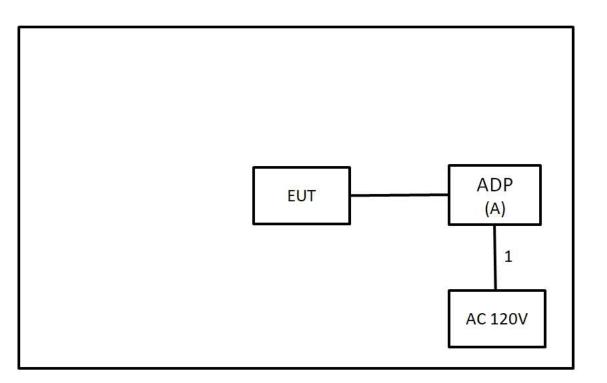

UNII-2C - 2TX					
Test Software Version	DOC				
Frequency (MHz)	5500	5580	5700		
A Mode	14	14	14		
Frequency (MHz)	5500	5580	5700		
N20 Mode	13	13	14		

	UNII-3 - 21	X	
Test Software Version		DOC	
Frequency (MHz)	5745	5785	5825
A Mode	15	15	15
Frequency (MHz)	5745	5785	5825
N20 Mode	14	14	15
	UNII-1 - 21	X	
Test Software Version		DOC	
Frequency (MHz)	5210		
AC80 Mode	8		
	UNII-2A - 2	тх	
Test Software Version		DOC	
Frequency (MHz)	5290		
AC80 Mode	10		
	UNII-2C - 2	тх	
Test Software Version		DOC	
Frequency (MHz)	5530	5610	
AC80 Mode	11	11	
	UNII-3 - 21	X	
Test Software Version		DOC	
Frequency (MHz)	5775		
AC80 Mode	12		

3.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Note:


For IEEE 802.11a and IEEE 802.11n (20 MHz):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz (Duty cycle < 98%).

For IEEE 802.11ac (80 MHz):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 kHz (Duty cycle < 98%).

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	FSP GROUP INC	FSP065-DBCM1	N/A	Supplied by test requester
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.1m	Power Cord	Supplied by test requester

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

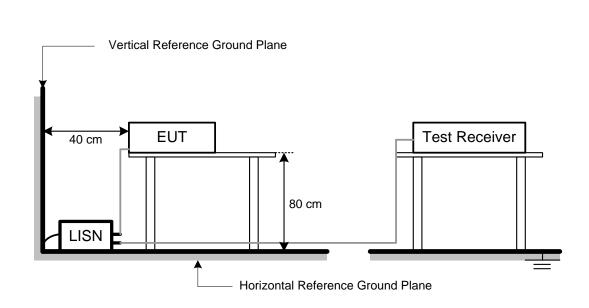
4.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150kHz-30MHz)

	Conducted Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 -0.50	66 to 56*	56 to 46*	
0. 0 -5.0	56	46	
5.0 -30.0	60	50	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/TX Mode mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C, 19°C Relative Humidity: 55%, 61% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Appendix A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note I. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform In this case, a "*" marked in AVG Mode column of Interference Voltage Measured •
- (2) Measuring frequency range from 150kHz to 30MHz ${\scriptstyle \circ}$

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

Frequencies (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.3
5250-5350	-27	68.3
5470-5725	-27	68.3
	-27(Note 2)	68.3
5725-5850	10(Note 2)	105.3
5725-5650	15.6(Note 2)	110.9
	27(Note 2)	122.3

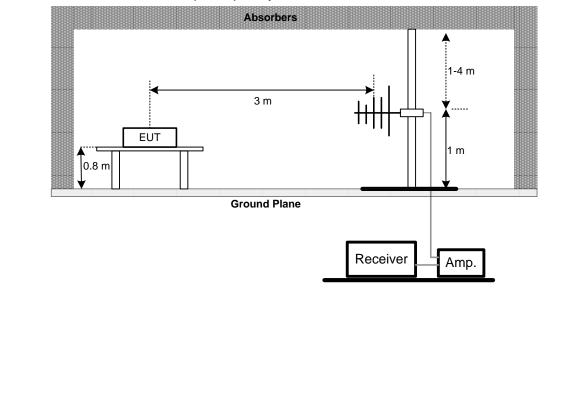
Note:

1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{1000000\sqrt{30P}}$

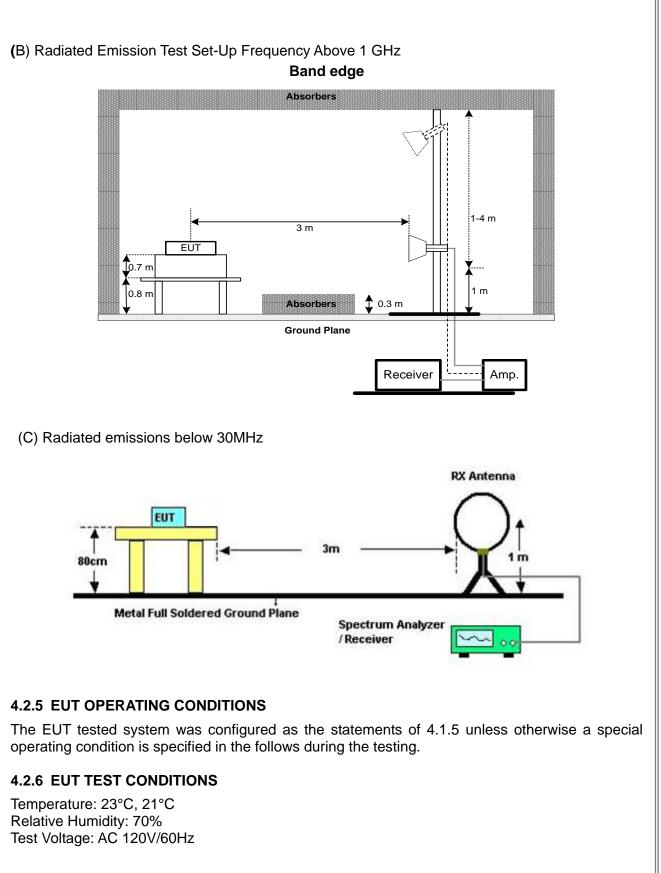
 μ V/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

4.2.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP

(A)Radiated Emission Test Set-Up Frequency Below 1GHz

4.2.7 TEST RESULTS (9K TO 30MHz)

Please refer to the Appendix B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (BETWEEN 30 TO 1000 MHz)

Please refer to the Appendix C.

4.2.9 TEST RESULTS (ABOVE 1000 MHz)

Please refer to the Appendix D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. 26dB SPECTRUM BANDWIDTH

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E			
Test Item Limit F		Frequency Range (MHz)	Result
	26 dB Bandwidth	5150-5250	PASS
	26 dB Bandwidth	5250-5350	PASS
Bandwidth	26 dB Bandwidth	5470-5725	PASS
	Minimum 500kHz 6dB	5725-5850	PASS
	Bandwidth	5725-5650	FA00

5.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameters	Setting
	Attenuation	Auto
	Span Frequency	> 26dB Bandwidth
	RBW	300 kHz(Bandwidth 20MHz)
	NBW	1MHz(Bandwidth 40MHz and 80MHz)
	VBW	1MHz(Bandwidth 20MHz)
	VBW	3MHz(Bandwidth 40MHz and 80MHz)
	Detector	Peak
	Trace	Max Hold
	Sweep Time	Auto

c. Measured the spectrum width with power higher than 26dB below carrier

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 23°C Relative Humidity: 70% Test Voltage: AC 120V/60Hz

5.1.6 TEST RESULTS

Please refer to the Appendix E.

6. MAXIMUM CONDUCTED OUTPUT POWER

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	Result
	Fixed:1 Watt (30dBm)		
	Mobile and portable:	5150-5250	PASS
Conducted Output	250mW (24dBm)		
Power	250mW (24dBm)	5250-5350	PASS
	250mW (24dBm)	5470-5725	PASS
	1 Watt (30dBm)	5725-5850	PASS
Note: The maximum e.i.r.p at anyelevation angle above 30 degrees as measured from the			

horizon must not exceed 125mW(21dBm)

6.1.1 TEST PROCEDURE

a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,

b.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	= 1MHz.
VBW	≥ 3MHz.
Detector	RMS
Trace	Max Hold
Sweep Time	auto

c. Test was performed in accordance with method of KDB 789033 D02.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

FUT		
EUT	Power Meter	

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 EUT TEST CONDITIONS

Temperature: 23°C, 22.5°C Relative Humidity: 70%, 51% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Please refer to the Appendix F.

7. POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	Result
Power Spectral	Other then Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz	5150-5250	PASS
Density	11dBm/MHz	5250-5350	PASS
	11dBm/MHz	5470-5725	PASS
	30dBm/500kHz	5725-5850	PASS

8.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameter	Setting
	Attenuation	Auto
	Span Fraguanay	Encompass the entire emissions bandwidth (EBW) of the
	Span Frequency	signal
	RBW	= 1MHz.
VBW		≥ 3MHz.
	Detector	RMS
Trace average 10		100 trace
	Sweep Time	Auto

Note:

- 1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v01r02, section II.F.5., it is acceptable to set RBW at 1MHz and VBW at 3MHz if the spectrum analyzer does not have 500kHz RBW.
- The value measured with RBW=1MHz is to be added with 10log(500kHz/1MHz) which is -3dB. For example, if the measured value is +10dBm using RBW=1MHz (that is +10dBm/MHz), then the converted value will be +7dBm/500kHz.

7.1.1 DEVIATION FROM STANDARD

No deviation.

7.1.2 TEST SETUP

7.1.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.1.4 EUT TEST CONDITIONS

Temperature: 23°C Relative Humidity: 70% Test Voltage: AC 120V/60Hz

7.1.5 TEST RESULTS

Please refer to the Appendix H.

8. FREQUENCY STABILITY MEASUREMENT

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)	Result	
	Frequency Stability Specified in the user's manual	5150-5250	PASS	
		5250-5350	PASS	
		5470-5725	PASS	
	5725-5850	PASS		

8.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,


b.	Spectrum Parameter	Setting
	Attenuation	Auto
	Span Frequency	Entire absence of modulation emissions bandwidth
	RBW	10 kHz
	VBW	10 kHz
	Sweep Time	Auto

- c. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- d. User manual temperature is -20°C~50°C.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

8.1.6 TEST RESULTS

Please refer to the Appendix I.

9. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Jan. 24, 2019	
2	Test Cable	TIMES	CFD300-NL	C02	Jun. 13, 2019	
3	EMI Test Receiver	R&S	ESR7	101433	Dec. 07, 2019	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A	

	Conducted Emission Measurement (For Adapter: FSP / FSP065-DBCM1)						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2021/6/10		
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2021/6/7		
3	EMI Test Receiver	R&S	ESCI	100080	2021/6/14		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A		

	Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Preamplifier	EMCI	012645B	980267	Feb. 28, 2018	
2	Preamplifier	EMCI	EMC02325	980217	Dec. 27, 2019	
3	Preamplifier	EMCI	EMC2654045	980030	Feb. 13, 2019	
4	Test Cable	EMCI	EMC104-SM-S M-8000	8m	Jan. 03, 2019	
5	Test Cable	EMCI	EMC104-SM-S M-800	150207	Jan. 03, 2019	
6	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	Jan. 03, 2019	
7	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 08, 2019	
8	Signal Analyzer	Agilent	N9010A	MY52220990	Feb. 21, 2019	
9	Loop Ant	EMCO	6502	42960	Nov. 23, 2018	
10	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	Feb. 28, 2018	
11	Horm Ant	Schwarzbeck	BBHA 9170	187	Dec. 05, 2019	
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 15, 2019	
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 15, 2019	

	Radiated Emission Measurement (For Spot check test)						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Preamplifier	EMCI	EMC001340	980555	2021/4/9		
2	Preamplifier	EMCI	EMC02325B	980217	2021/4/9		
3	Preamplifier	EMCI	EMC012645B	980267	2021/4/9		
4	Preamplifier	EMCI	EMC184045SE	980512	2021/5/31		
5	Test Cable	EMCI	EMC-SM-SM-10 00	180809	2021/4/9		
6	Test Cable	EMCI	EMC104-SM-S M-3000	151205	2021/4/9		
7	Test Cable	EMCI	EMC-SM-SM-70 00	180408	2021/4/9		
8	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/6/9		
9	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/24		
10	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/15		
11	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/11		
12	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/8		
13	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/7/23		
14	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/7/23		
15	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A		

	Spectrum Bandwidth Measurement					
I	ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	R&S/FSP30	100854	May 25, 2018

Maximum Conducted Output Power Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	R&S/FSP30	100854	May 25, 2018
2	Power Meter	Anritsu	ML2495A	1128008	Aug. 16, 2018
3	Power Sensor	Anritsu	MA2411B	1126001	Aug. 16, 2018

Maximum Conducted Output Power Measurement (For Spot check test)					eck test)
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	Anritsu	ML2495A	1128008	2021/6/10
2	Power Sensor	Anritsu	MA2411B	1126001	2021/6/10

Power Spectral Density Measurement						
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	R&S/FSP30	100854	May 25, 2018

Frequency Stability Measurement						
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	R&S/FSP30	100854	May 25, 2018

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

10. EUT TEST PHOTO

Conducted Measurement Photos

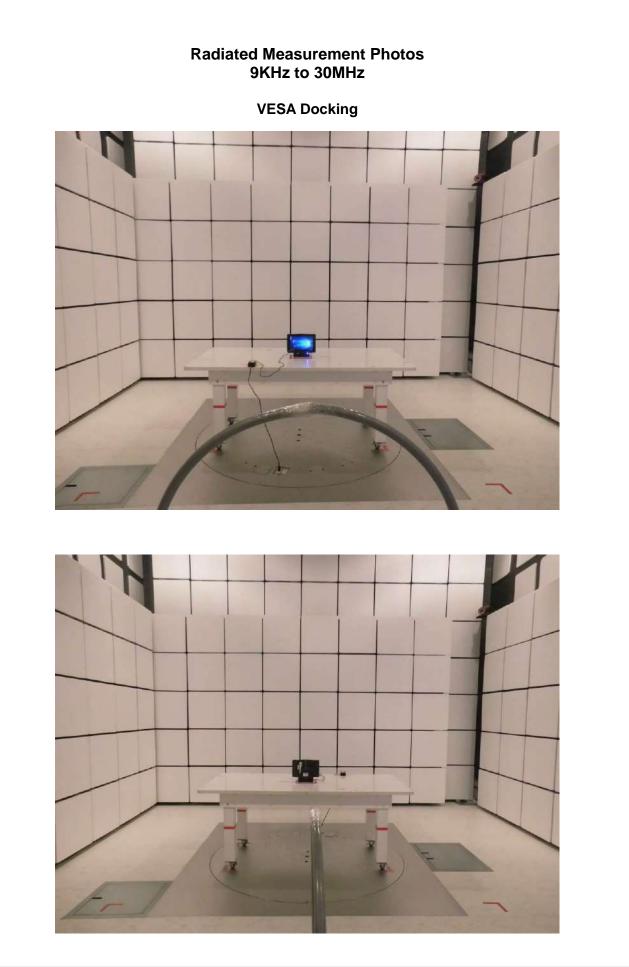
Conducted Measurement Photos Desk Docking

Conducted Measurement Photos VESA Docking

Report No.: BTL-FCCP-4-1710T083D

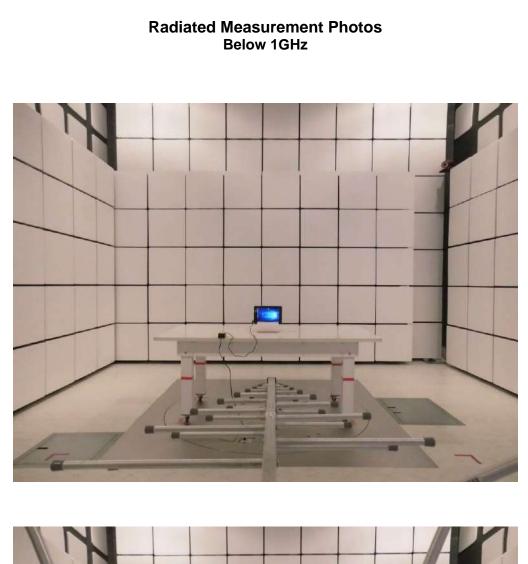
Conducted Measurement Photos Adapter: FSP / FSP065-DBCM1

Conducted Measurement Photos Adapter: FSP / FSP065-DBCM1+ VESA Docking



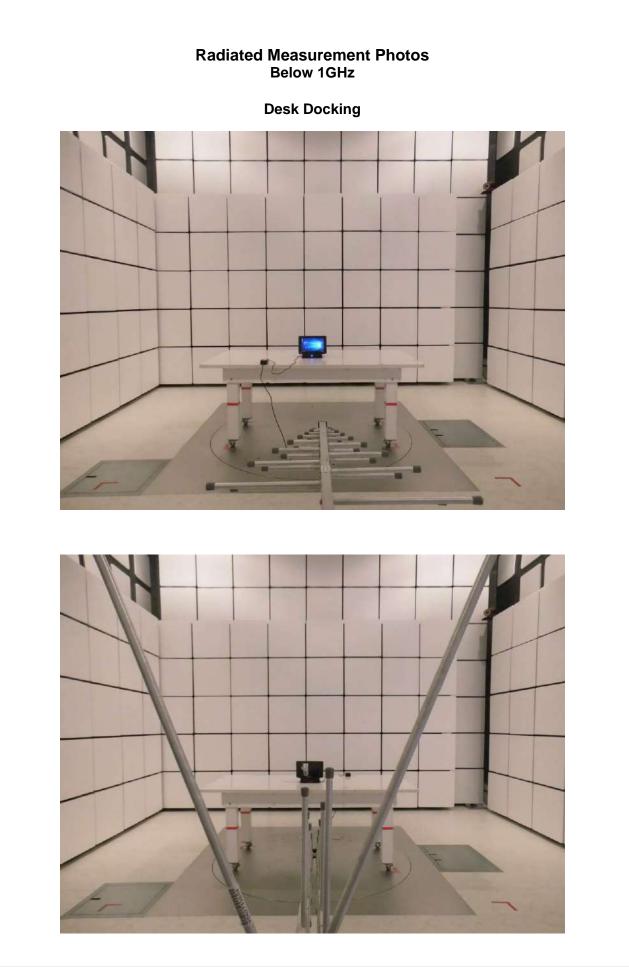
Report No.: BTL-FCCP-4-1710T083D

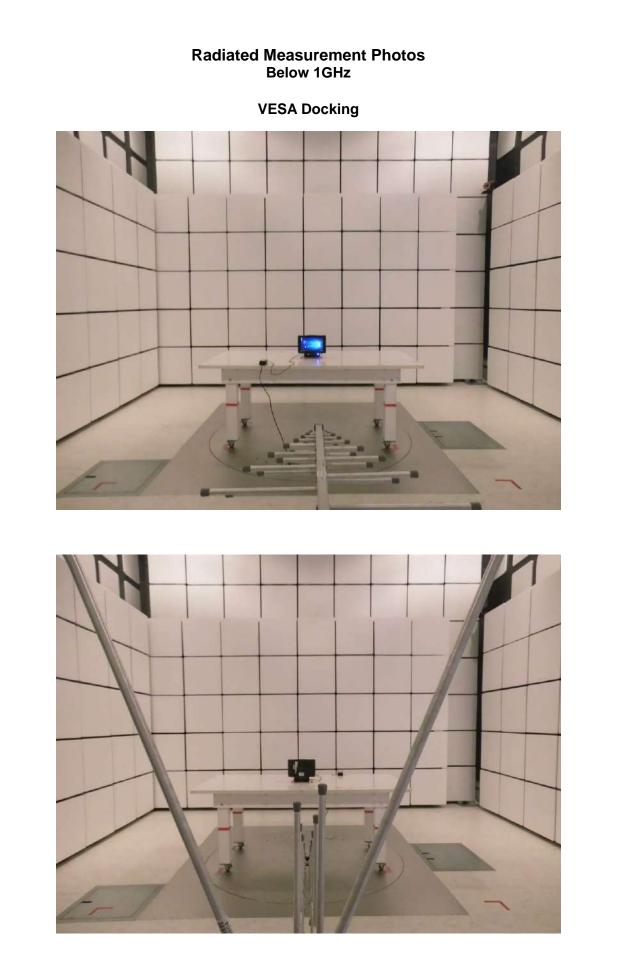
Report No.: BTL-FCCP-4-1710T083D


Page 42 of 437 Report Version: R02

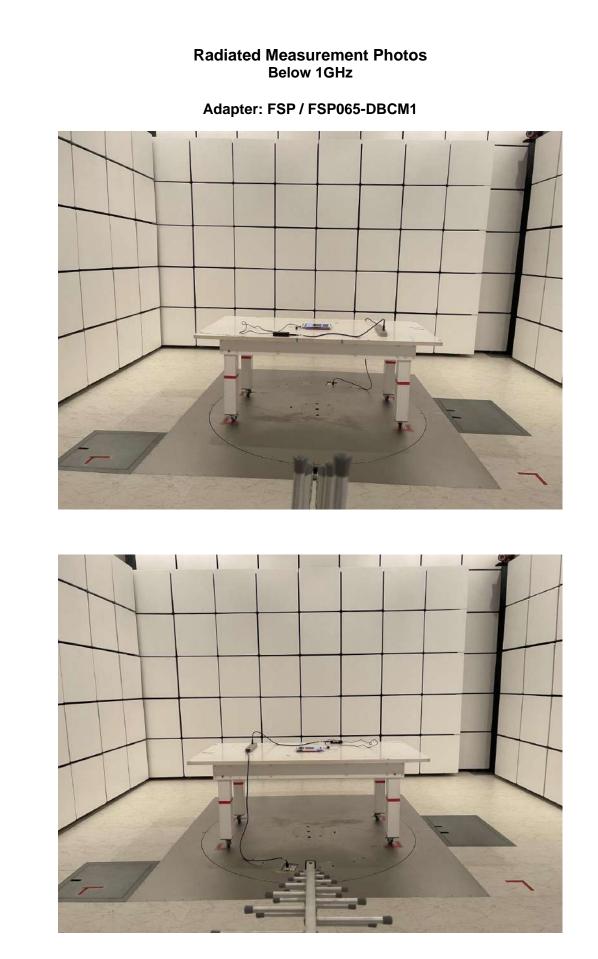
Report No.: BTL-FCCP-4-1710T083D

Page 43 of 437 Report Version: R02



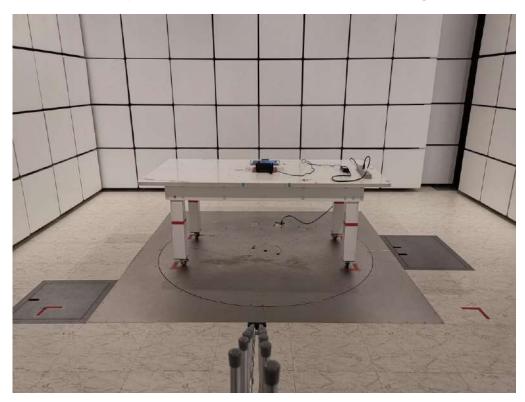


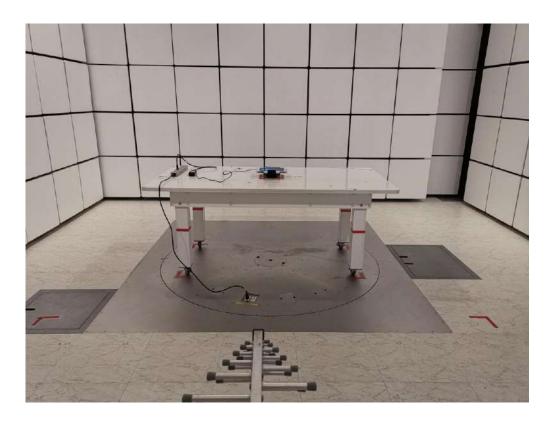
Report No.: BTL-FCCP-4-1710T083D


Page 44 of 437 Report Version: R02

Report No.: BTL-FCCP-4-1710T083D

Report No.: BTL-FCCP-4-1710T083D

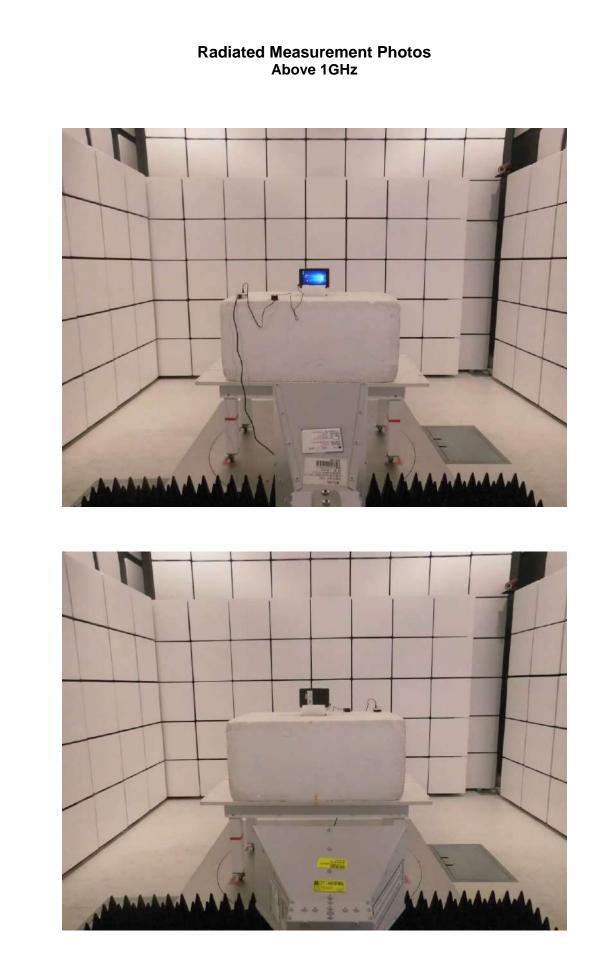



Report No.: BTL-FCCP-4-1710T083D

Page 47 of 437 Report Version: R02

Radiated Measurement Photos Below 1GHz

Adapter: FSP / FSP065-DBCM1+ VESA Docking



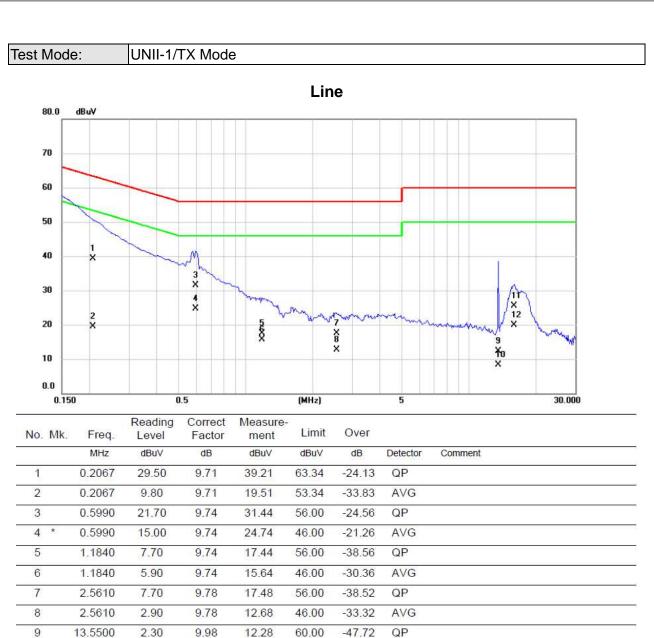
Report No.: BTL-FCCP-4-1710T083D

Page 48 of 437 Report Version: R02

Report No.: BTL-FCCP-4-1710T083D

Page 49 of 437 Report Version: R02

Radiated Measurement Photos Above 1GHz Spot check test



Report No.: BTL-FCCP-4-1710T083D

Page 50 of 437 Report Version: R02

<u>3ĩL</u>

-41.72

-34.42

50.00

60.00

AVG

QP

AVG

12 15.9000 10.00 9.98 19.98 50.00 -30.02

9.98

9.98

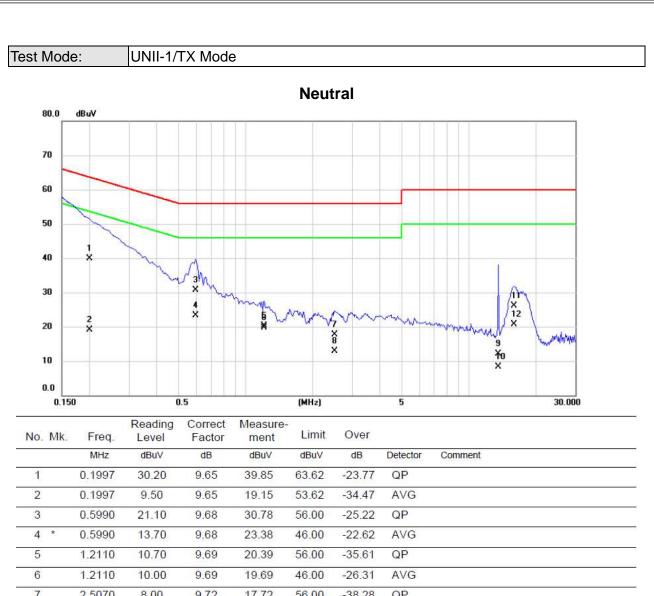
8.28

25.58

Note : The test result has included the cable loss.

-1.70

15.60


13.5500

15.9000

10

11

<u>3</u>[L

			100000				
2	0.1997	9.50	9.65	1 <mark>9</mark> .15	53.62	-34.47	AVG
3	0.5990	21.10	9.68	30.78	56.00	-25.22	QP
4 *	0.5990	13.70	9.68	23.38	46.00	-22.62	AVG
5	1.2110	10.70	9.69	20.39	56.00	-35.61	QP
6	1.2110	10.00	9.69	19.69	46.00	-26.31	AVG
7	2.5070	8.00	9.72	17.72	56.00	-38.28	QP
8	2.5070	3. <mark>2</mark> 0	9.72	12.92	46.00	-33.08	AVG
9	13.5500	2.20	9.98	12.18	60.00	- <mark>4</mark> 7.82	QP
10	13.5500	-1.60	9.98	8.38	50.00	-41.62	AVG
11	15.9000	16.10	9.99	26.09	60.00	-33.91	QP
12	15.9000	10.80	9.99	20.79	50.00	-29.21	AVG

<u>3TL</u>

est Mod	e:	UNII-2A	VTX Mo	de					
					Lin	е			
80.0 dBuV									
70									
60							_		
50									
40	1 X		A						
30			- Shin	2				A	
20	2 X			www	mun	~~~~	maynon		
10				5 × 6	×			9 Yo	and the second
0.0				×				×	
0.15	50	0.5		(MHz)			5		30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1780	32.60	9.72	42.32	64.58	-22.26	QP		
2	0.1780	<mark>11.9</mark> 0	9.72	21.62	54.58	-32.96	AVG		
3	0.5810	25.50	9.74	35.24	5 <mark>6.00</mark>	-20.76	QP		
4 *	0.5810	24.30	9.74	34.04	46.00	-11.96	AVG		
5	1.1750	5.90	9.74	15.64	56.00	-40.36	QP		
6	1.1750	-1.80	9.74	7.94	46.00	-38.06	AVG		
7	1.7150	6.40	9.76	16.16	56.00	-39.84	QP		
8	1.7150	3.00	9.76	12.76	46.00	-33.24	AVG		
9	13.5500	2.40	9.98	12.38	60.00	- <mark>4</mark> 7.62	QP		
10	13.5500	-1.70	9.98	8.28	50.00	-41.7 <mark>2</mark>	AVG		
11	15.9000	15.60	9.98	25.58	60.00	-34.42	QP		

19.88 50.00 -30.12 AVG

Note : The test result has included the cable loss.

9.98

9.90

12

15.9000

<u>3ĩL</u>

Note : The test result has included the cable loss.

9.99

20.39

50.00

-29.61

AVG

10.40

15.8000

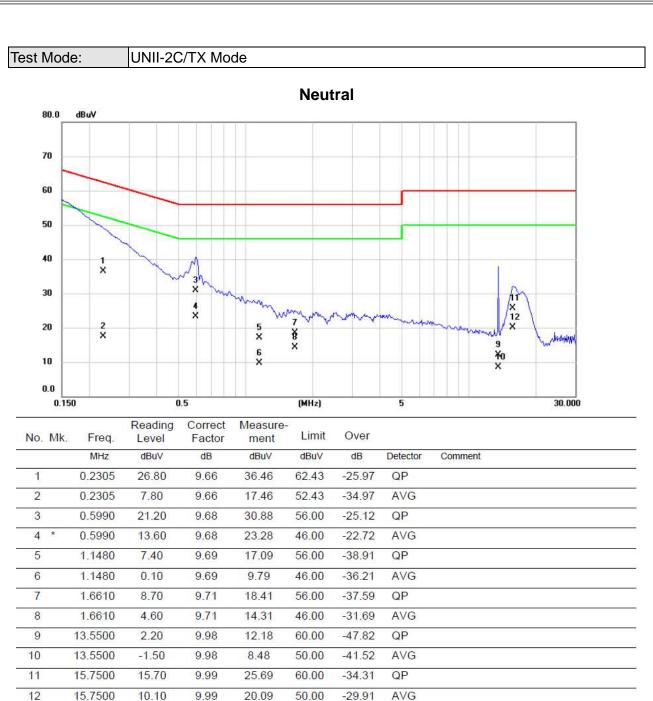
12

st Mo	ode:	UNII-20	C/TX Mo	de				
					Lin	е		
80.0) dBuV							
70								
60								
50							_	
40	×		M					
30			3 ×	man				
20	2 X		4 ×	w	you	n	mm	MARCHAN X
10				5 £ X	×			s fo X
0.0								
C).150	2	0.5	Mecouro	(MHz)		5	30.000
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1010	35.00	9.73	<mark>44</mark> .73	65.62	-20.89	QP	
2	0.1570	13.20	9.73	22.93	55.62	-32.69	AVG	
3	0.5990	21.70	9.74	31.44	56.00	-24.56	QP	
4	0.5990	14.30	9.74	24.04	46.00	-21.96	AVG	
5	1.1840	7.80	9.74	17.54	56.00	-38.46	QP	
5	The second second	5.50	9.74	15.24	46.00	-30.76	AVG	
6	1.1840			1 - Contractor - Contractor	EC 00	-39.33	QP	
1000	1.7960	6.90	9.77	16.67	56.00			
6	1.7960 1.7960	3.70	9.77 9.77	16.67 13.47	46.00	-32.53	AVG	
6 7	1.7960							
6 7 8	1.7960 1.7960	3.70	9.77	13.47	46.00	-32.53	AVG	

Note : The test result has included the cable loss.

9.98

19.48


50.00 -30.52 AVG

9.50

12

15.7500

<u>3ĩL</u>

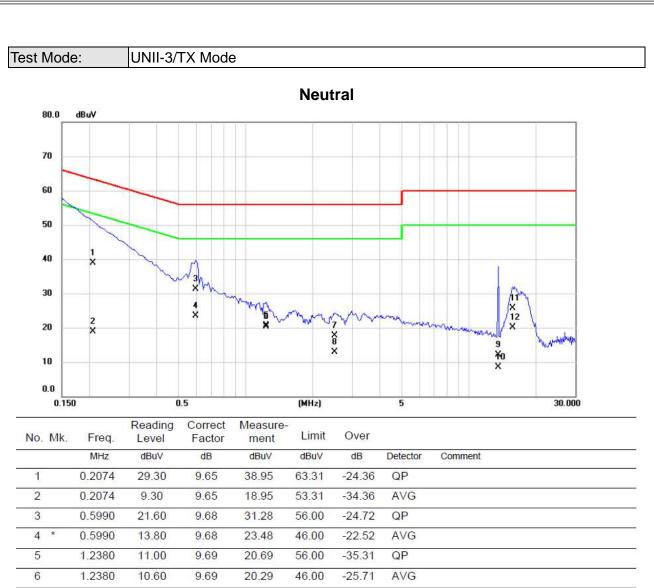
BTL

est Mod	le:	UNII-3/	TX Mode	9						
					Lin	e				
80.0	80.0 dBuV								Ĩ	
70										
60							_			
50										
40	1 X		M							
30			3 X	~						
20	2 X		4 ×	war	m	to prover	mine		11 X 12 X	
				5 X	2	7 < 3		Marden barry	9 Yo	and a second
10				6 X	,	<			×	
0.0 0.1	50	0	.5		(MHz)		5			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1 *	0.1780	32.50	9.72	42.22	64.58	-22.36	QP			
2	0.1780	<mark>11.90</mark>	9.72	21.62	54.58	-32.96	AVG			
3	0.5720	21.20	9.74	30.94	56.00	-25.06	QP			
4	0.5720	12.80	9.74	22.54	46.00	-23.46	AVG			
5	1.2560	3.30	9.75	13.05	56.00	-42.95	QP			
6	1.2560	-2.70	9.75	7.05	46.00	-38.95	AVG			
7	2.4710	4.90	9.78	14.68	56.00	- <mark>4</mark> 1.32	QP			
8	2.4710	-0.70	9.78	9.08	46.00	-36.92	AVG			
9	13.5500	2.30	9.98	12.28	60.00	- <mark>47.7</mark> 2	QP			
10	13.5500	-1.70	9.98	8.28	50.00	-41.7 <mark>2</mark>	AVG			
11	15.8500	15.70	9.98	25.68	60.00	-34.32	QP			

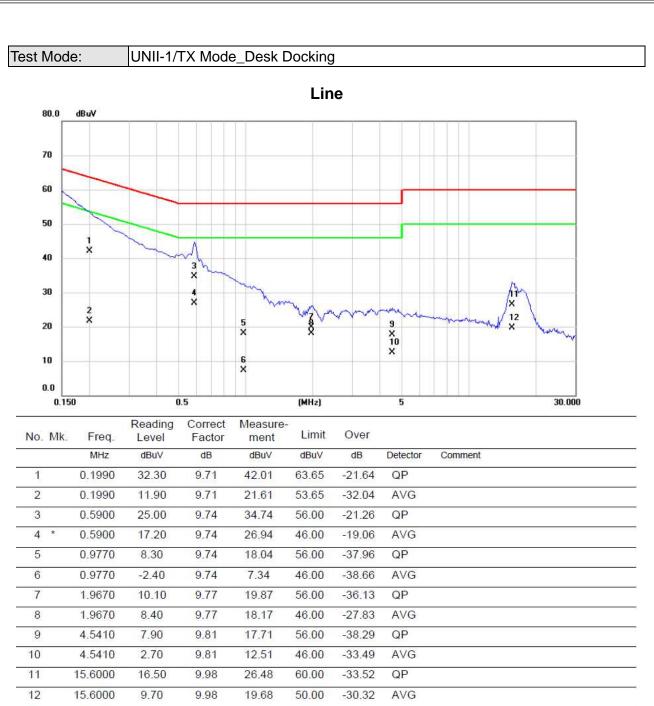
Note : The test result has included the cable loss.

9.98

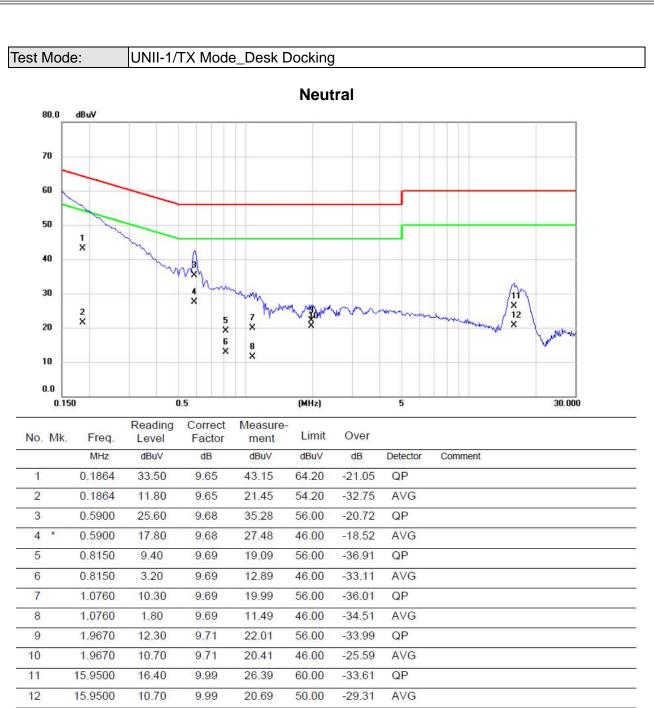
19.88

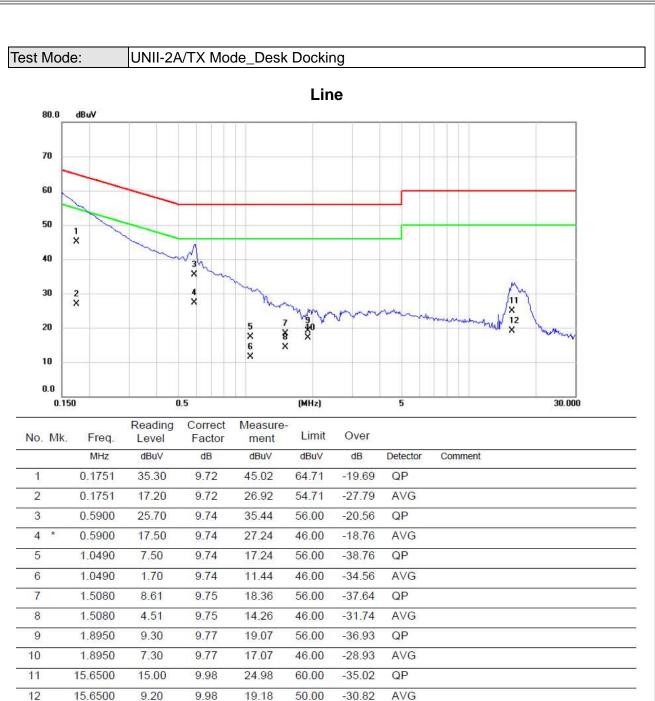

50.00 -30.12 AVG

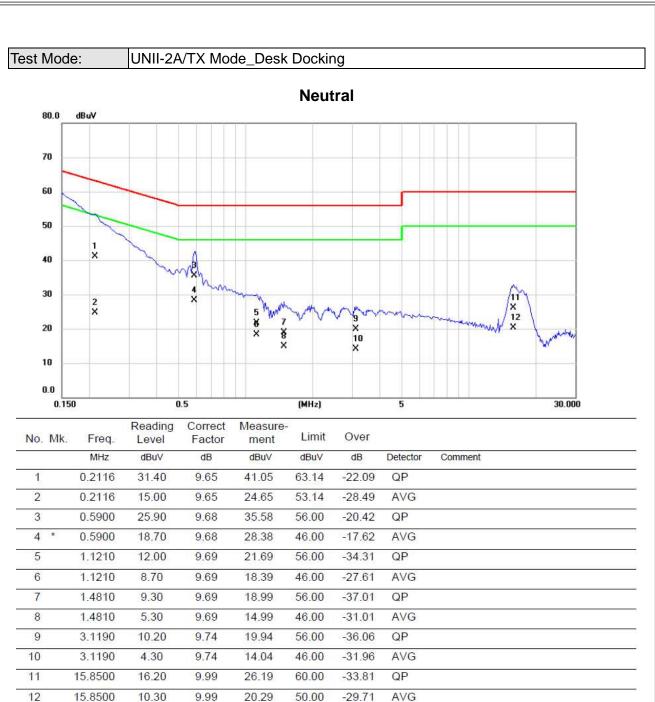
9.90

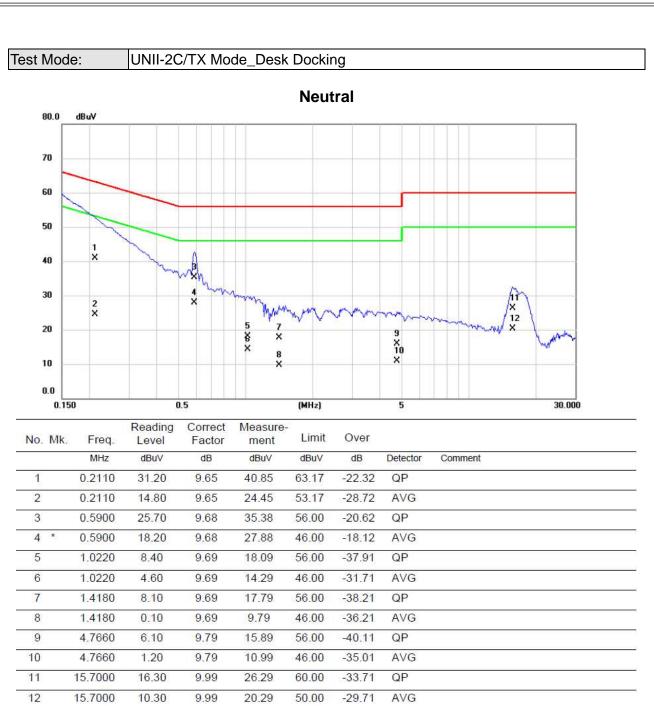

12

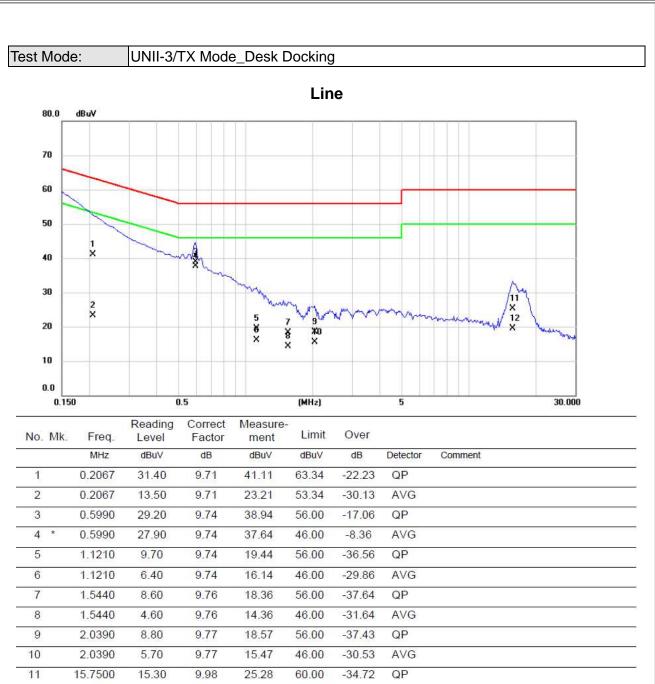
15.8500


<u>3TL</u>




5	1.2000	11.00	3.03	20.05	50.00	-55.51	Q
6	1.2380	10.60	9.69	20.29	46.00	-25.71	AVG
7	2.5070	7.90	9.72	17.62	56.00	-38.38	QP
8	2.5070	3.10	9.72	12.82	46.00	-33. <mark>1</mark> 8	AVG
9	13.5500	2.20	<mark>9.98</mark>	12.18	60.00	- <mark>47</mark> .82	QP
10	13.5500	-1.50	9.98	8.48	50.00	-41.52	AVG
11	15.7500	15.70	9.99	25.69	60.00	-34.31	QP
12	15.7500	10.10	9.99	20.09	50.00	-29.91	AVG


<u>3TL</u>

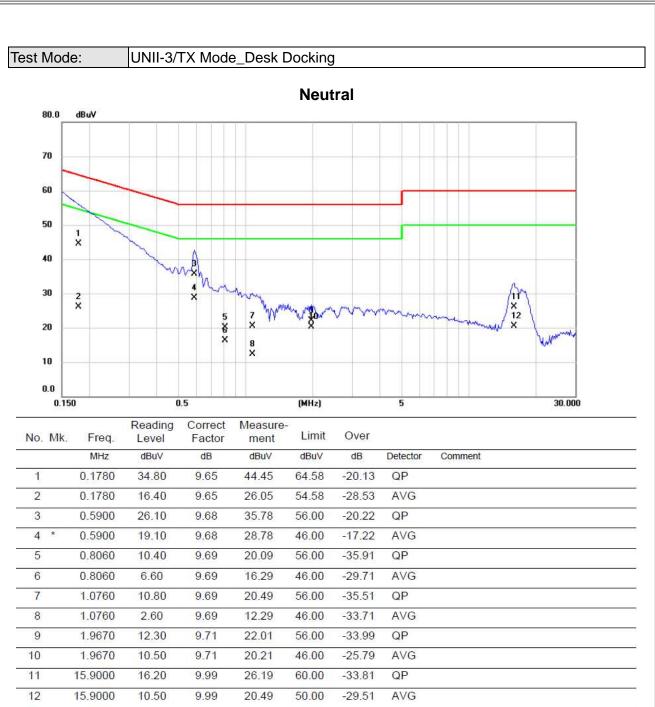


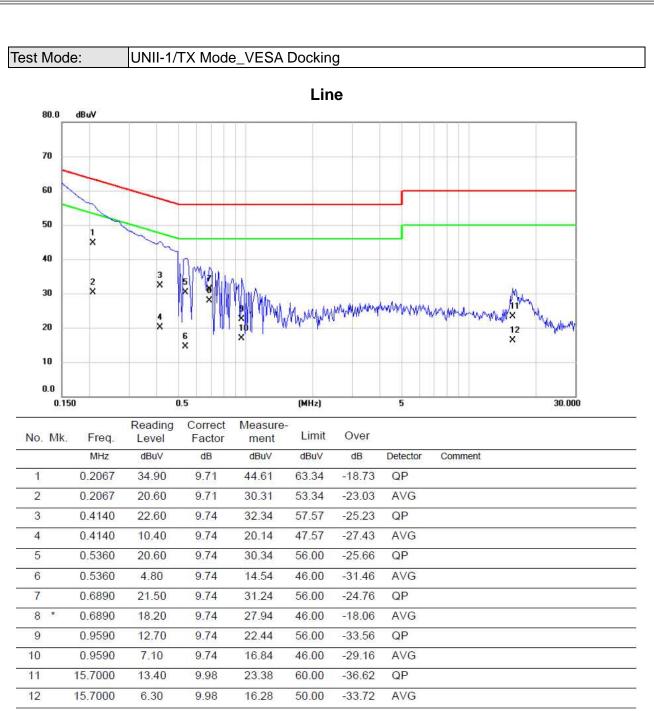
Note : The test result has included the cable loss.

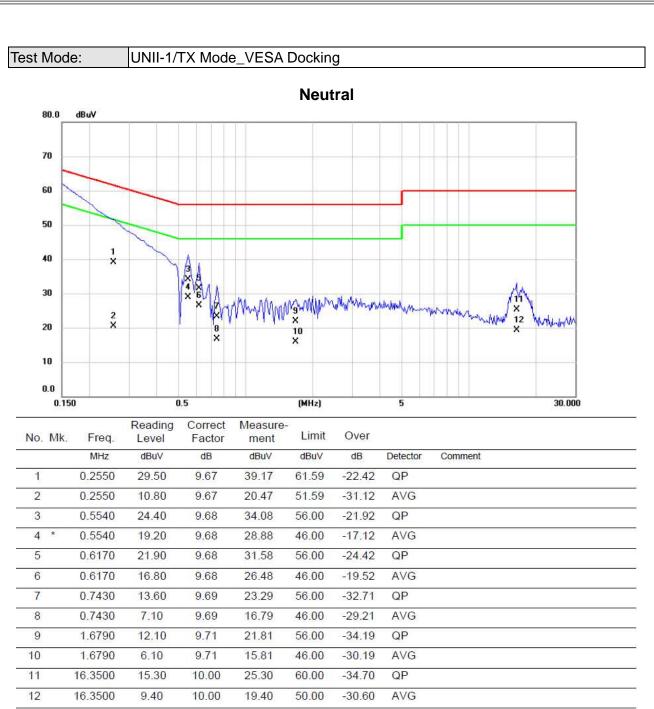
9.98

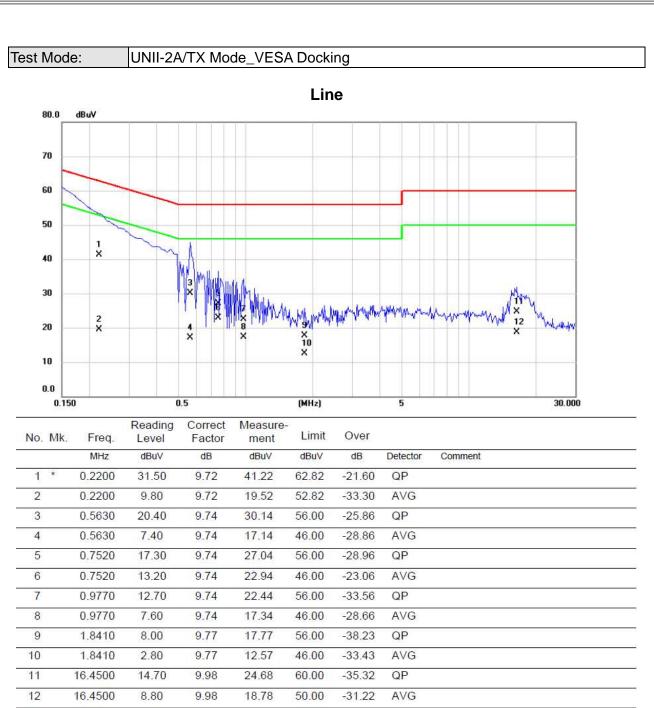
19.48

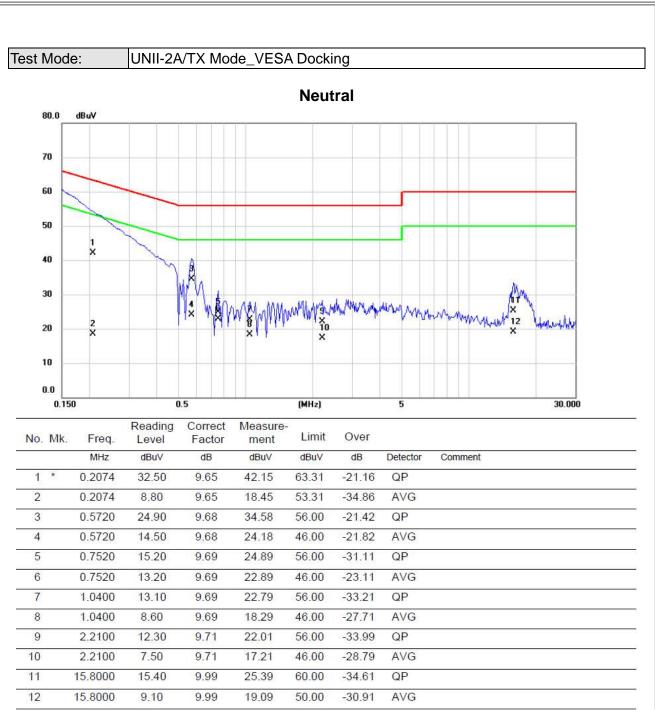
50.00

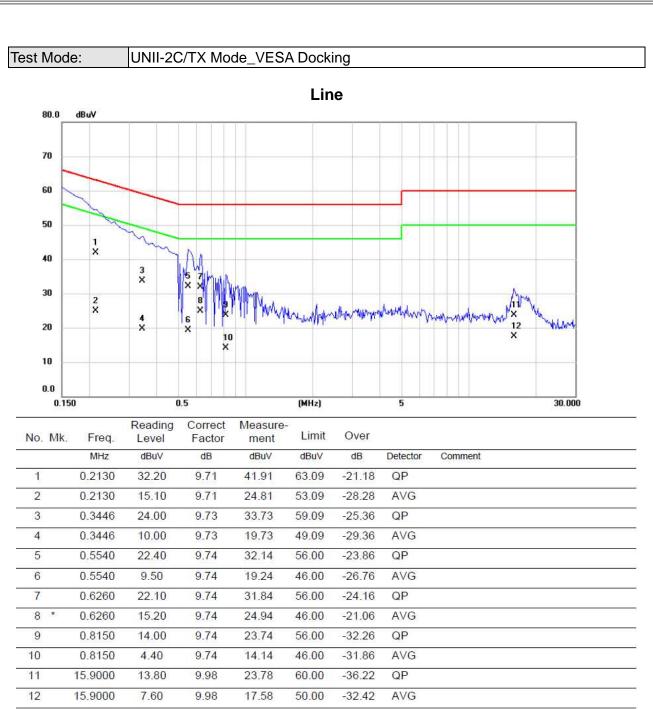

-30.52

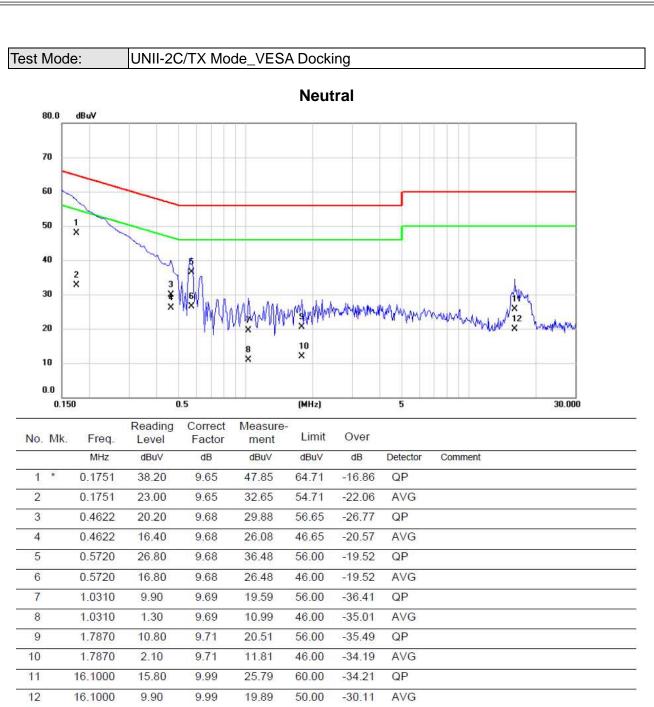

AVG

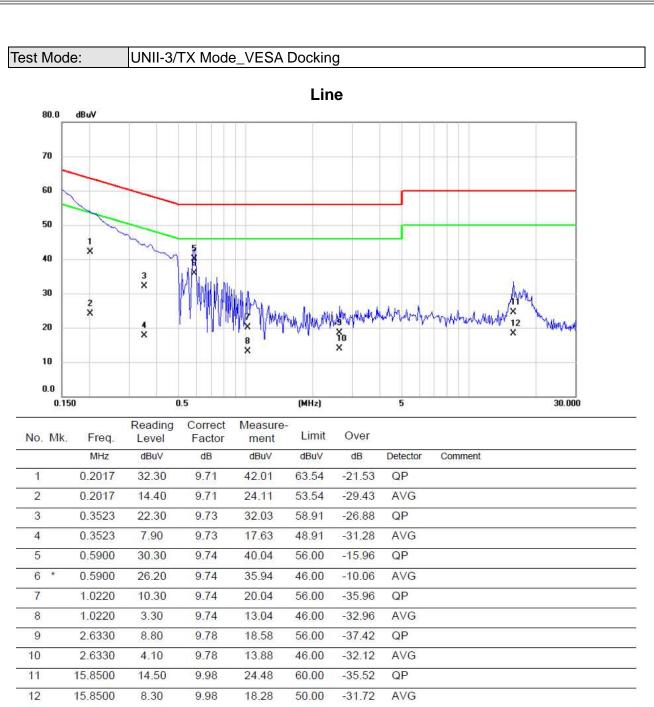

9.50


15.7500

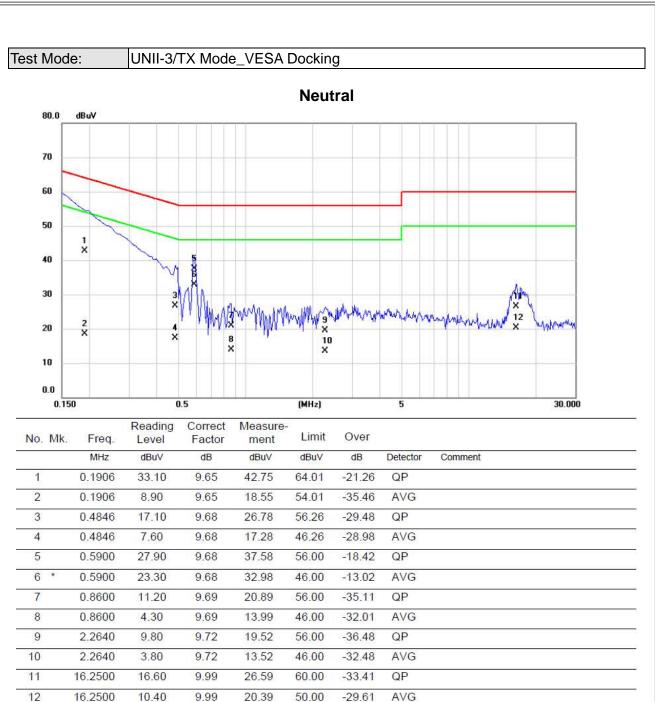

12



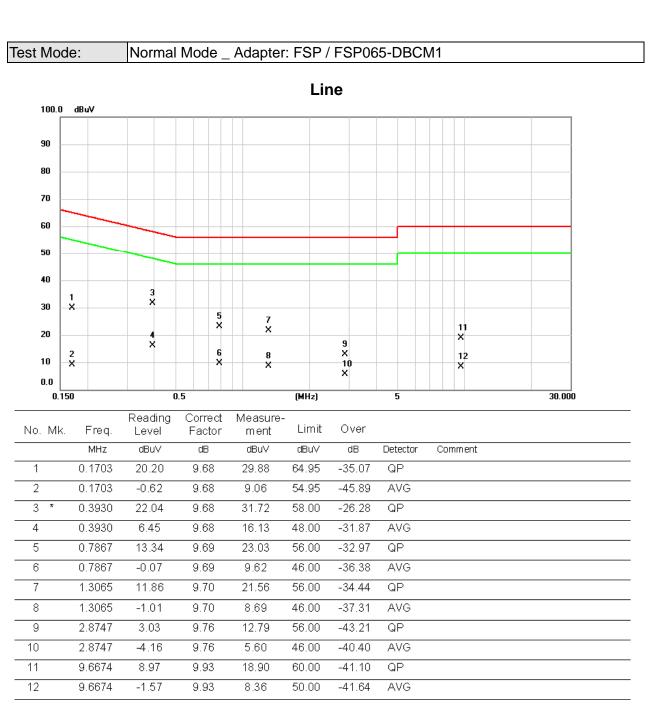




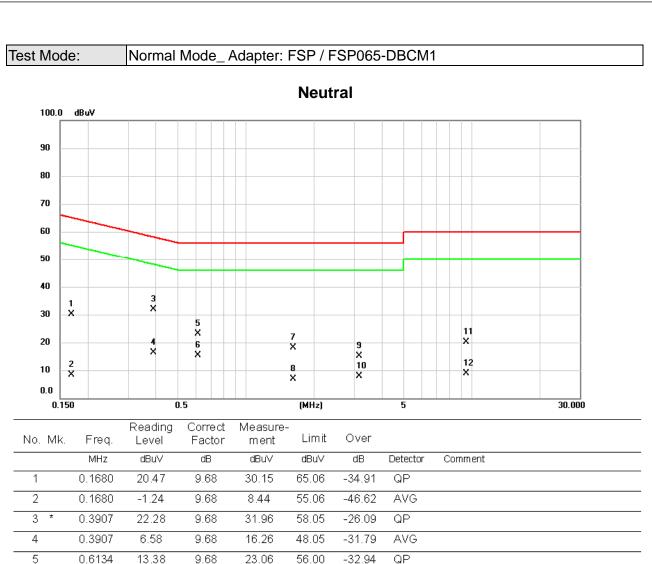
3TL


Note : The test result has included the cable loss.

3TL



Note : The test result has included the cable loss.


3TL

Note : The test result has included the cable loss.

3โL

0.6134

1.6125

1.6125

3.1514

3.1514

9.4290

9.4290

6

8

9

10

11

12

5.61

8.37

-2.91

5.38

-1.96

10.21

-1.07

9.68

9.72

9.72

9.76

9.76

9.92

9.92

15.29

18.09

6.81

15.14

7.80

20.13

8.85

46.00

56.00

46.00

56.00

46.00

60.00

50.00

-30.71

-37.91

-39.19

-40.86

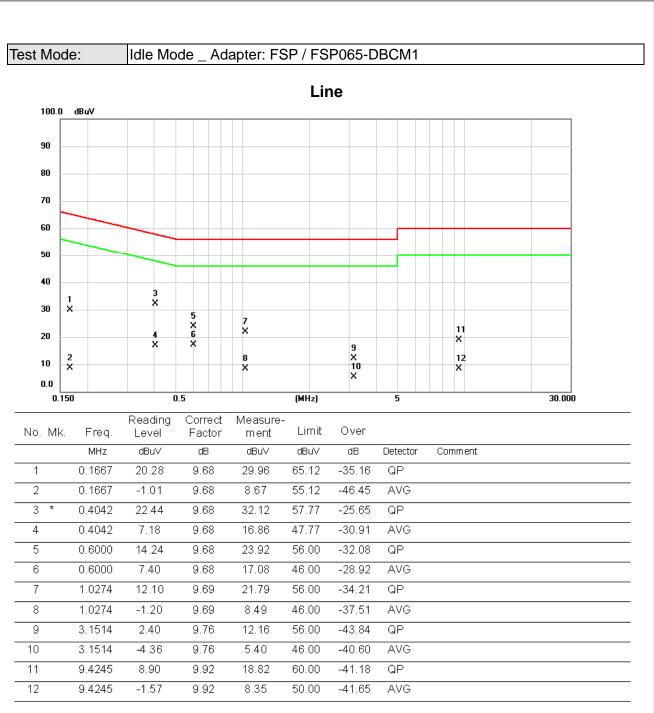
-38.20

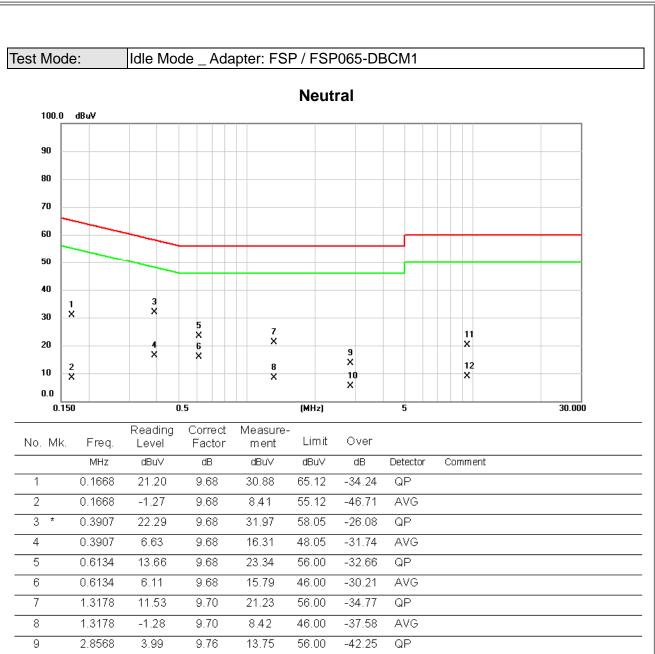
-39.87

-41.15

AVG

QΡ


AVG


QΡ

AVG

QP

AVG

-40.69

-39.92

-41.11

AVG

QP

AVG

46.00

60.00

50.00

10

11

12

2.8568

9.4290

9.4290

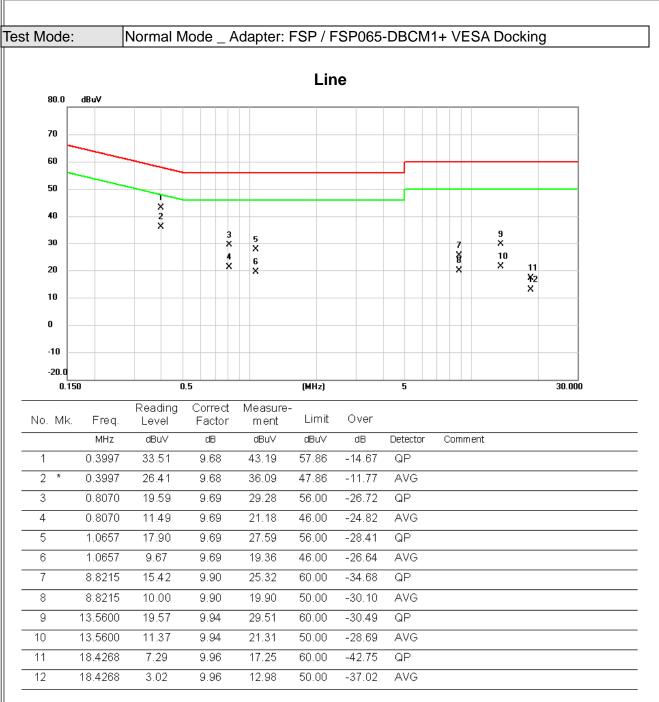
-4.45

10.16

-1.03

9.76

9.92


9.92

5.31

20.08

8.89

8

9

10

11

12

8.9925

13.5600

13.5600

18.3435

18.3435

9.41

19.54

11.69

6.42

2.27

9.91

9.94

9.94

9.96

9.96

19.32

29.48

21.63

16.38

12.23

50.00

60.00

50.00

60.00

50.00

-30.68

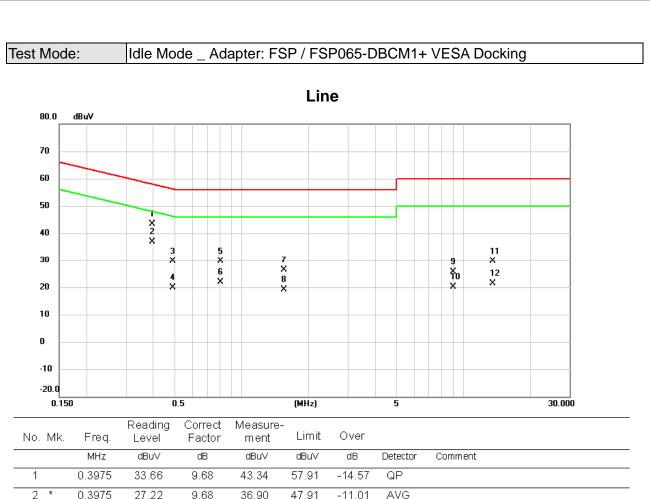
-30.52

-28.37

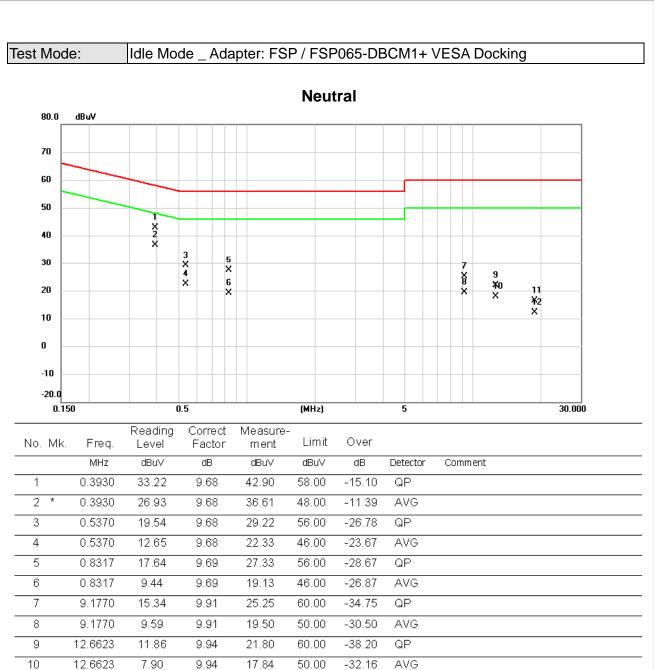
-43.62

-37.77

AVG


QP

AVG


QP

AVG

I	0.5975	33.00	9.00	43.34	57.91	-14.57	QP
 2 *	0.3975	27.22	9.68	36.90	47.91	-11.01	AVG
 3	0.4897	19.85	9.68	29.53	56.17	-26.64	QP
 4	0.4897	10.12	9.68	19.80	46.17	-26.37	AVG
 5	0.8025	19.94	9.69	29.63	56.00	-26.37	QP
6	0.8025	12.28	9.69	21.97	46.00	-24.03	AVG
7	1.5494	16.69	9.72	26.41	56.00	-29.59	QP
 8	1.5494	9.34	9.72	19.06	46.00	-26.94	AVG
 9	9.0218	15.76	9.91	25.67	60.00	-34.33	QP
10	9.0218	10.15	9.91	20.06	50.00	-29.94	AVG
11	13.5600	19.66	9.94	29.60	60.00	-30.40	QP
12	13.5600	11.39	9.94	21.33	50.00	-28.67	AVG

16.38

12.18

60.00

50.00

9.96

9.96

QP

AVG

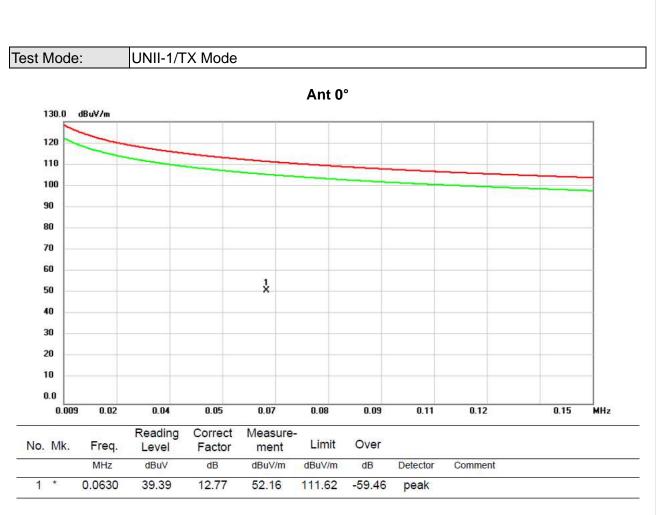
-43.62

-37.82

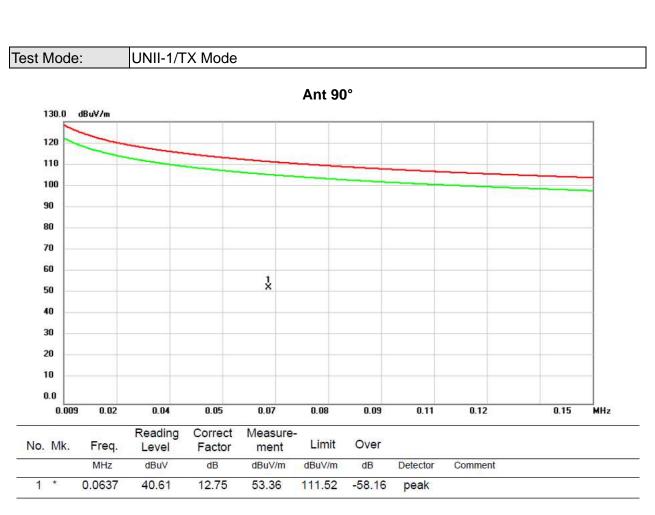
18.7215

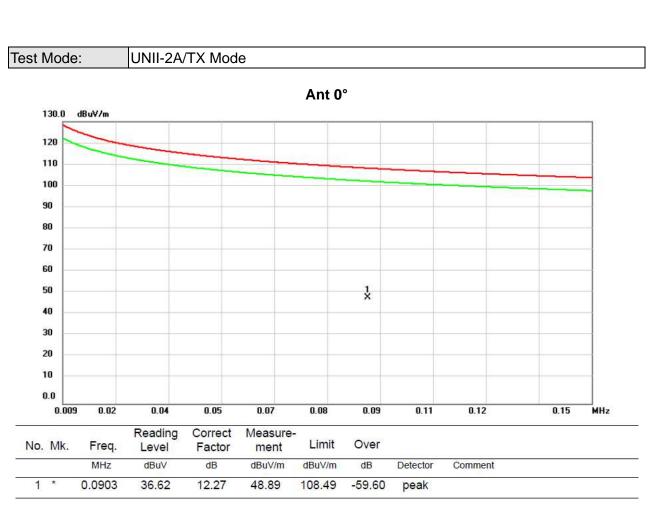
18.7215

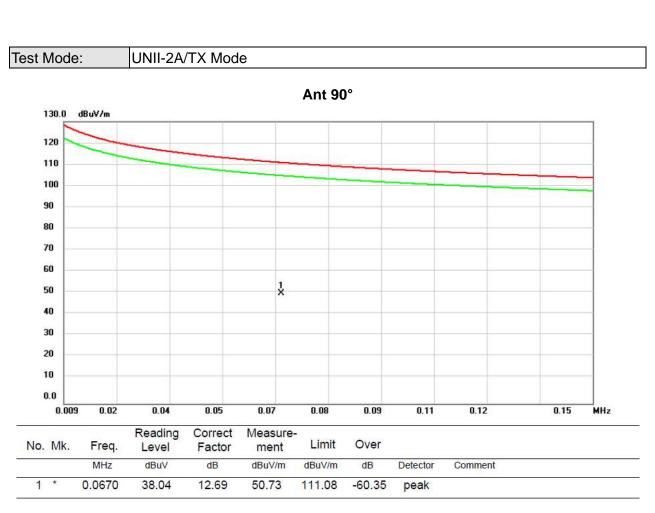
11

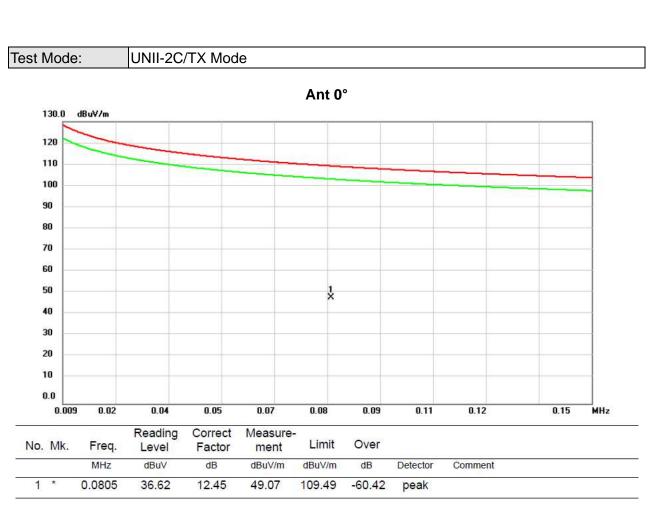

12

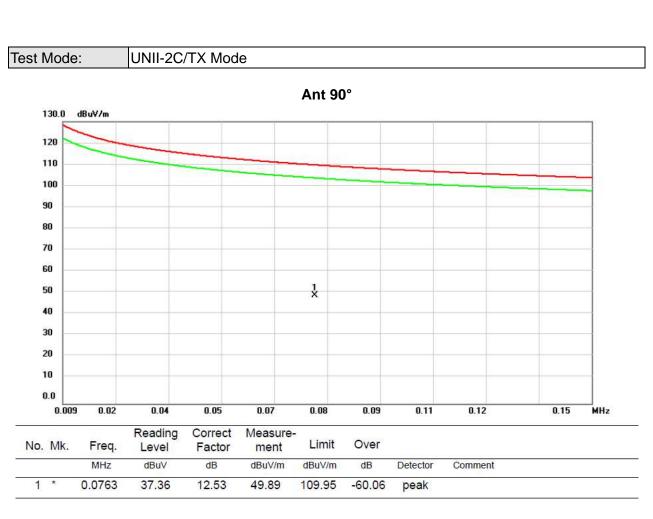
6.42

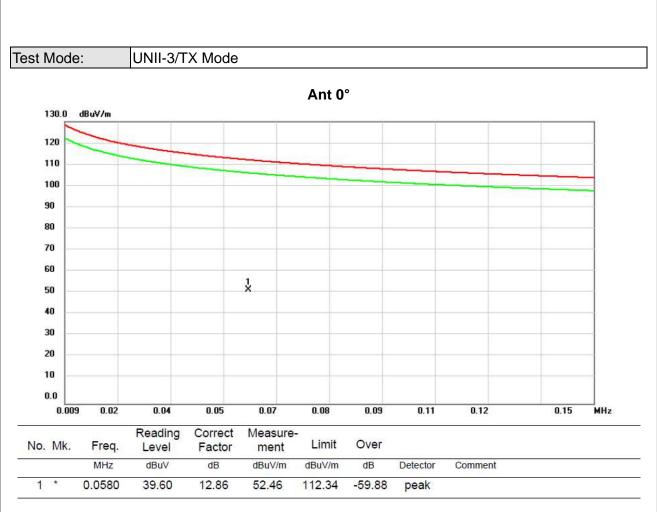

2.22

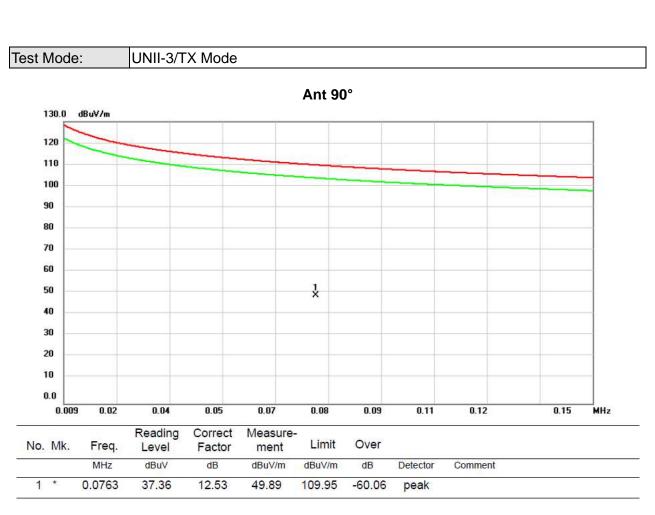

APPENDIX B - RADIATED EMISSION (9KHZ TO 30MHZ)

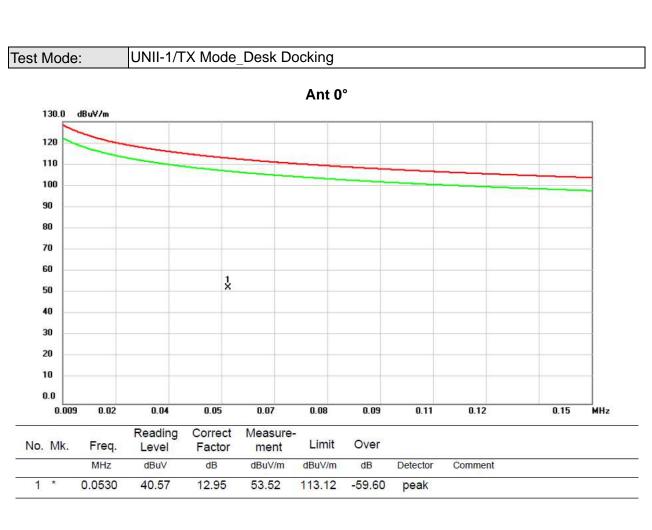


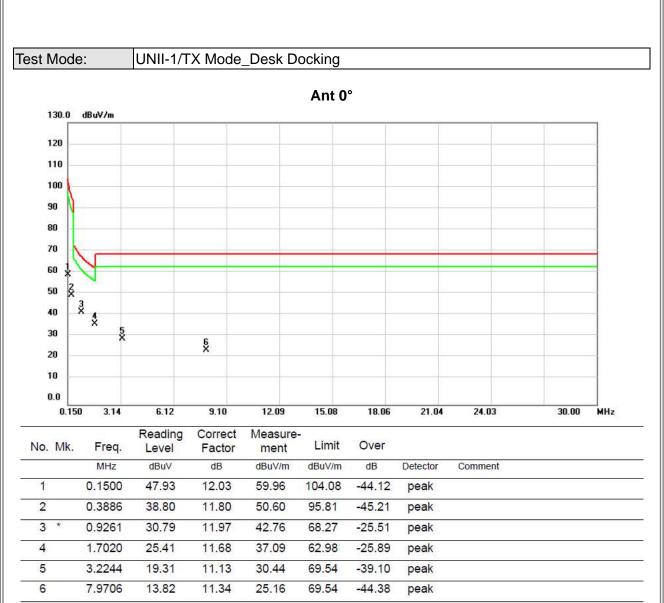


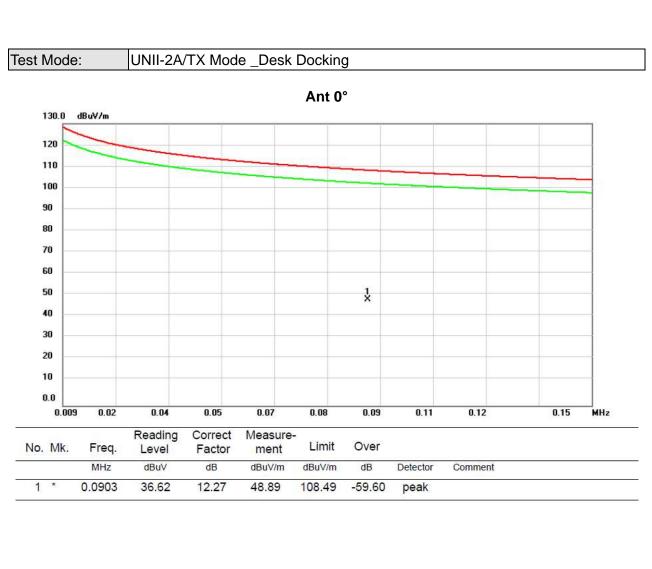


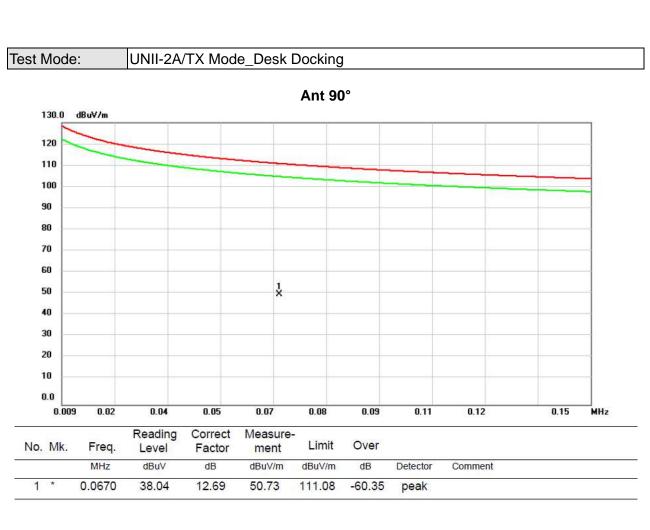


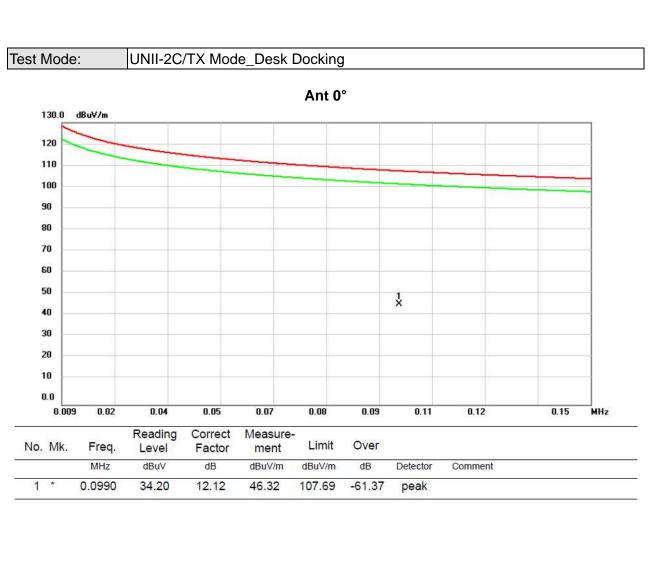


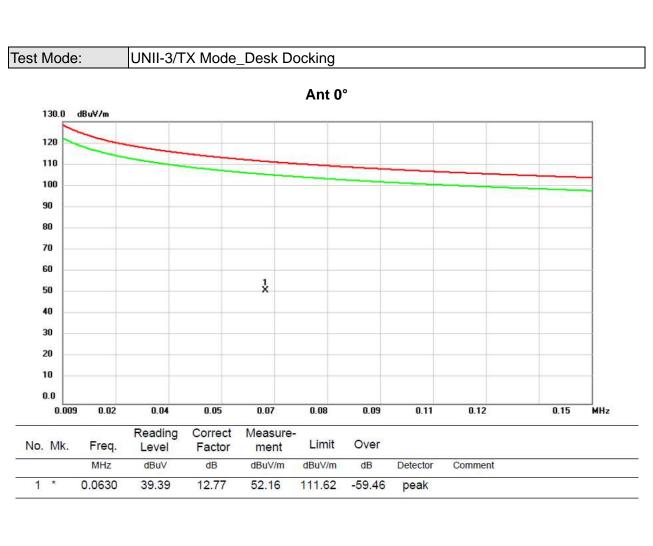


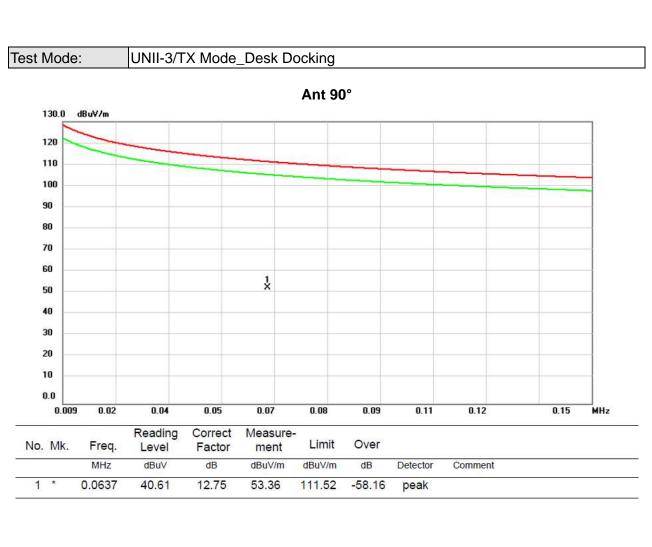


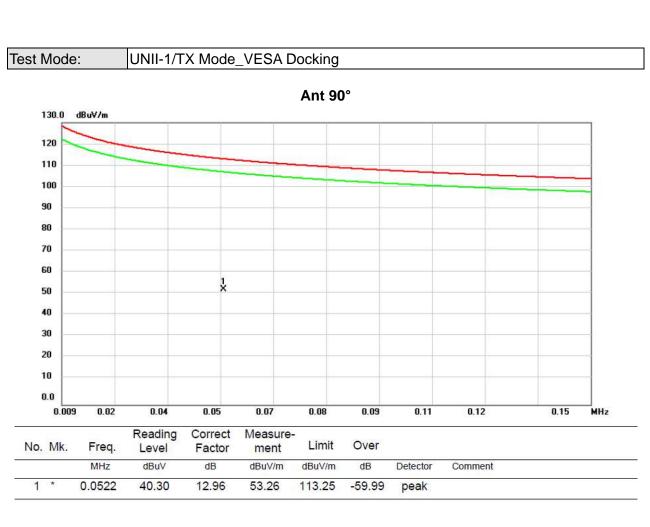


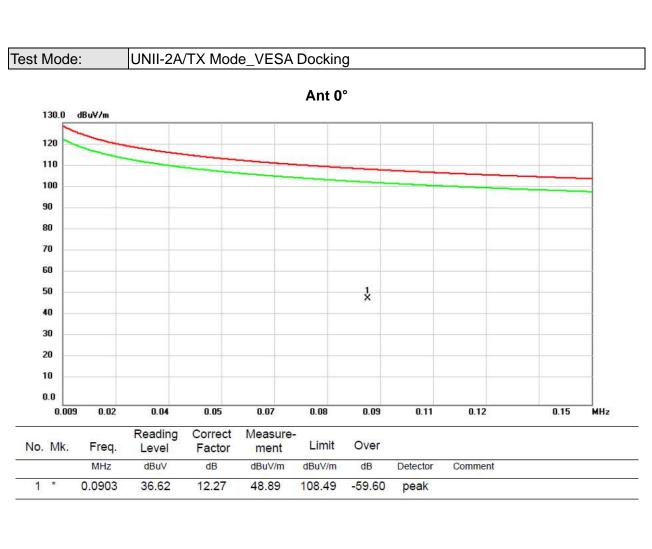


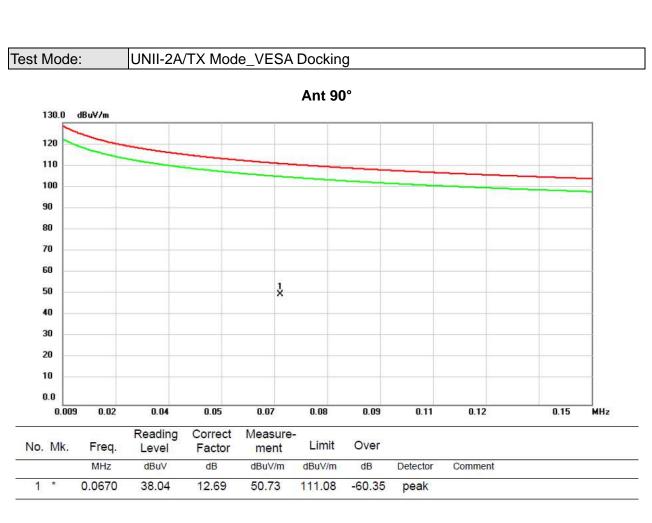


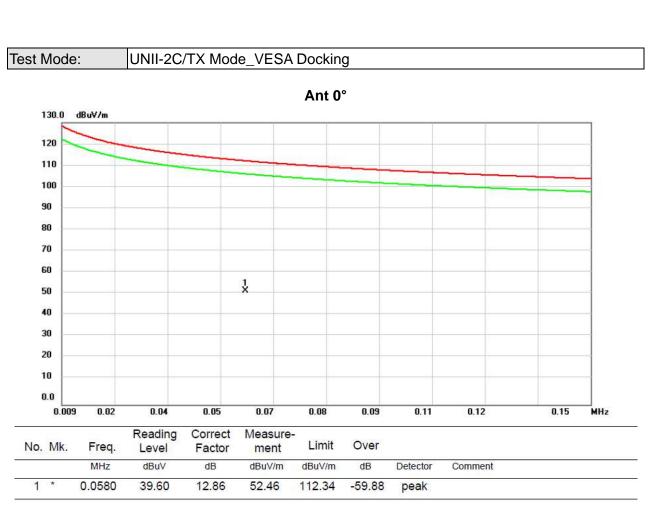


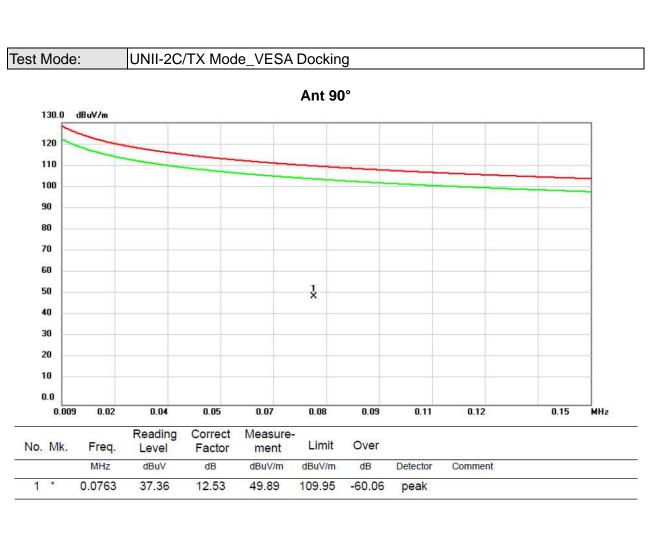


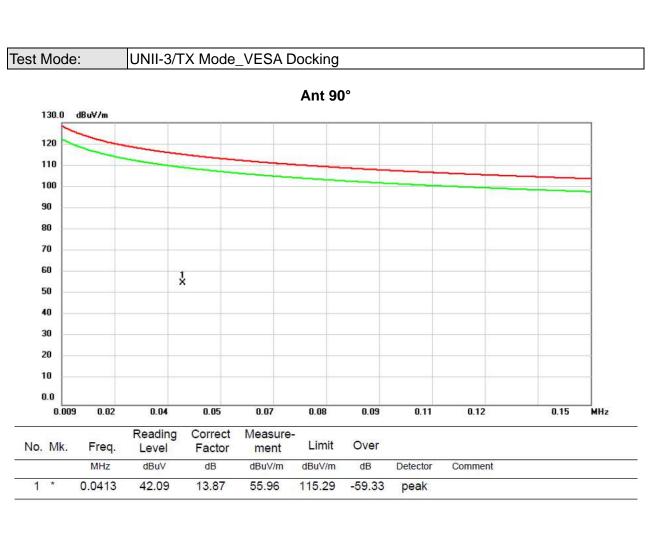


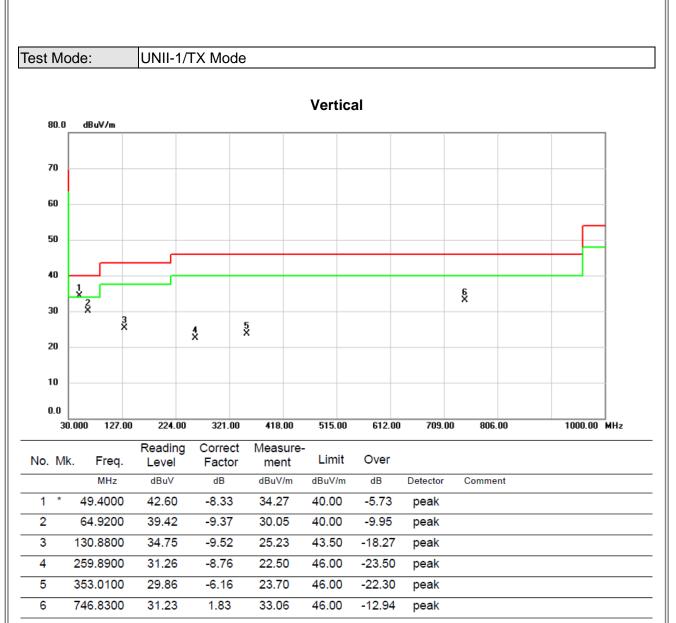


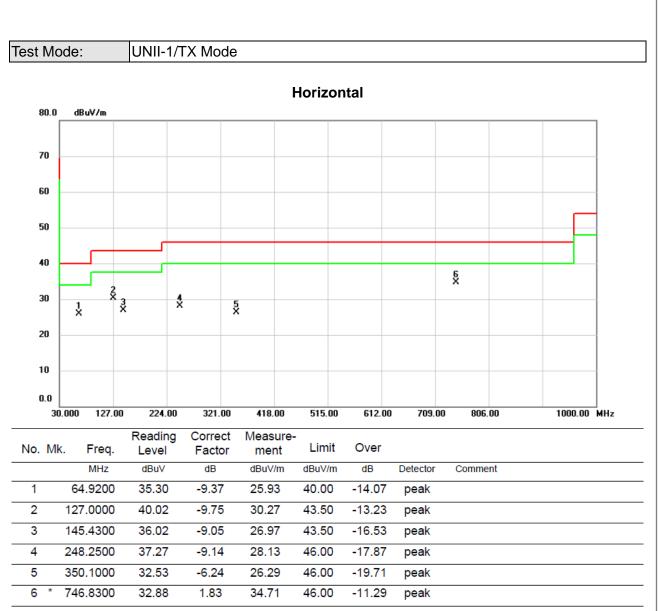


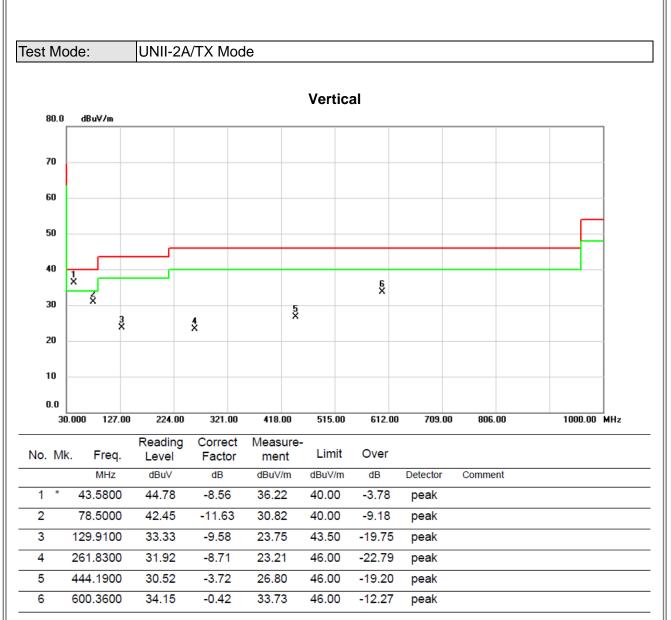


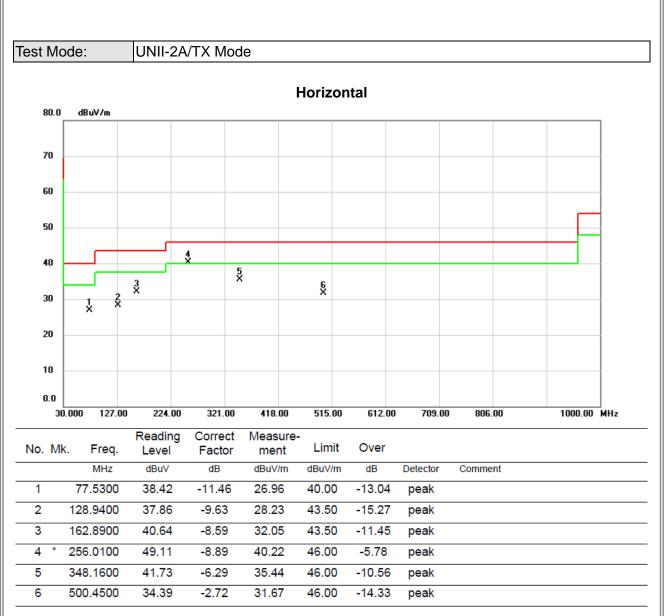


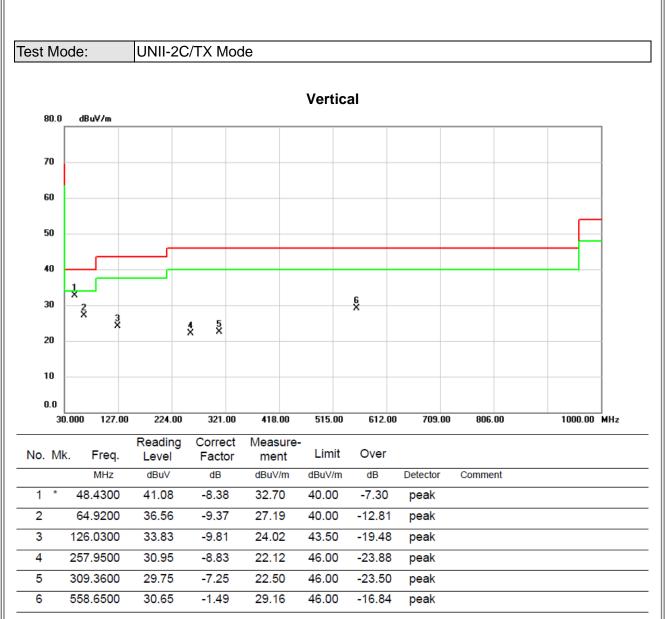


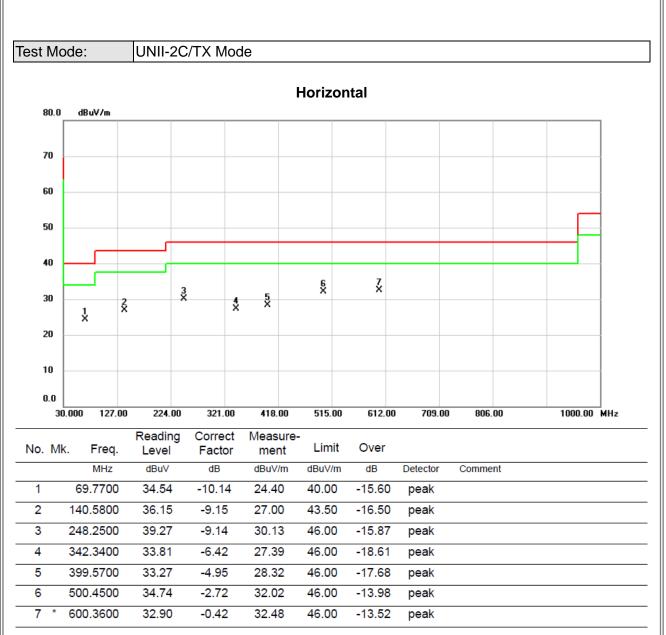


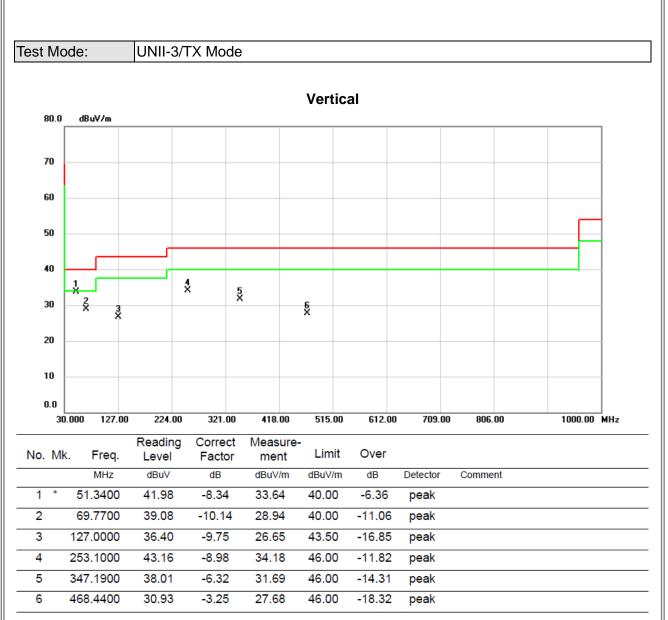


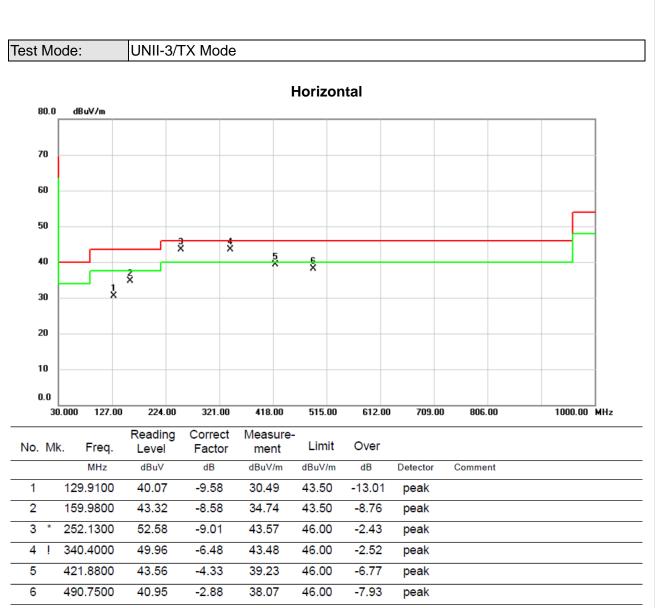


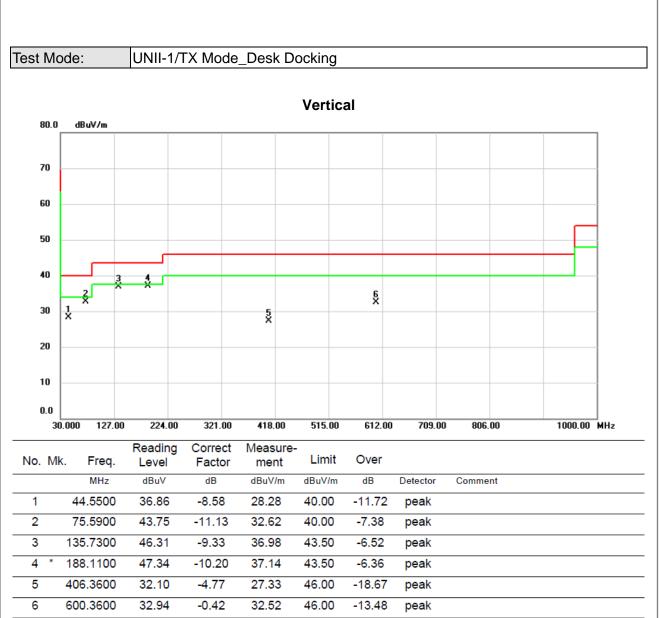


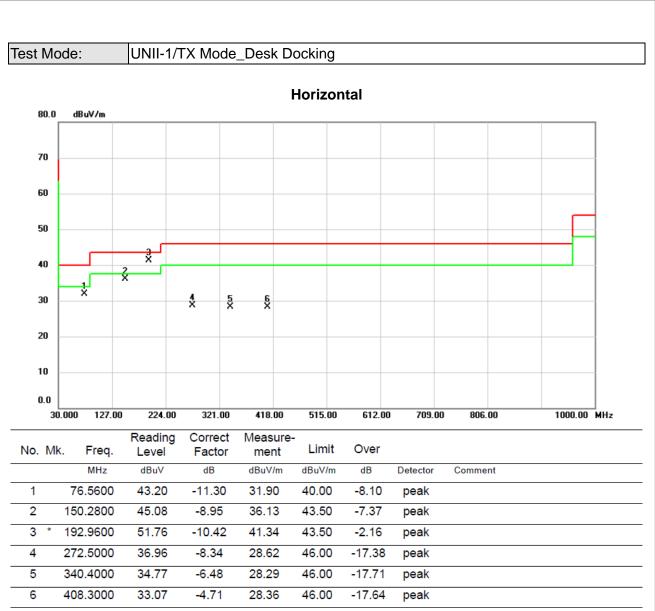

APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)

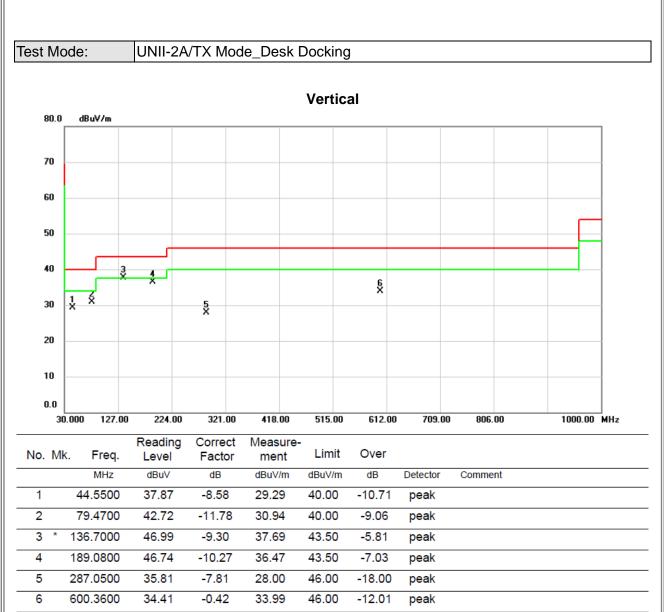


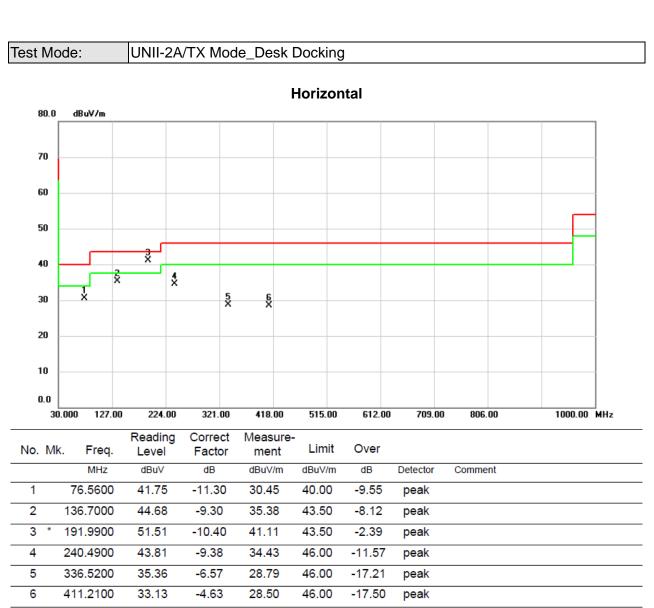


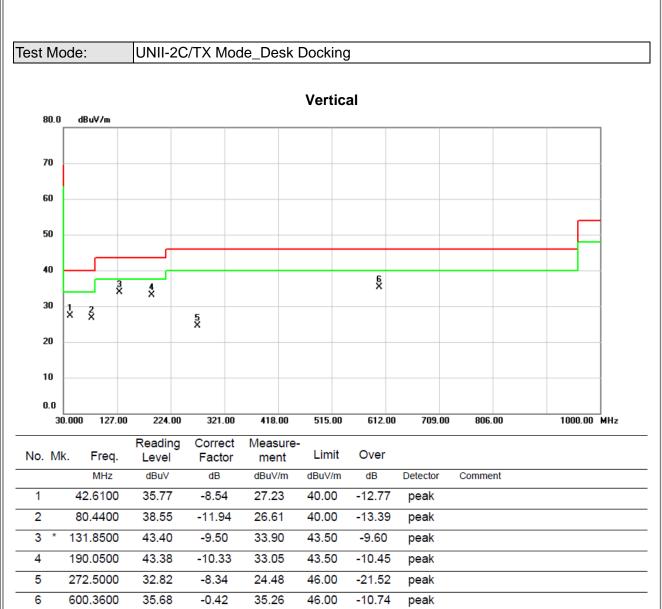


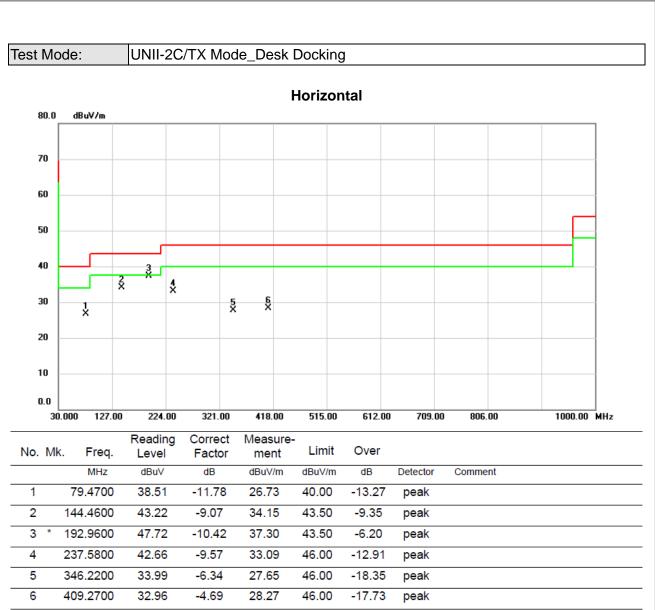


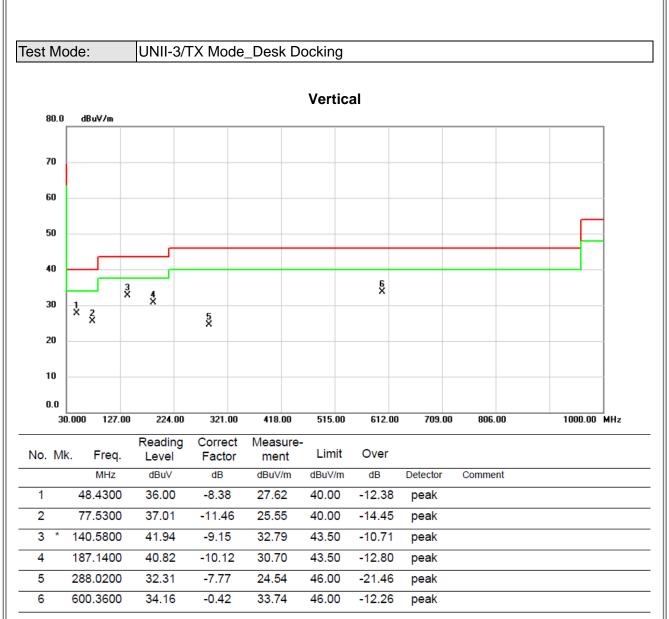


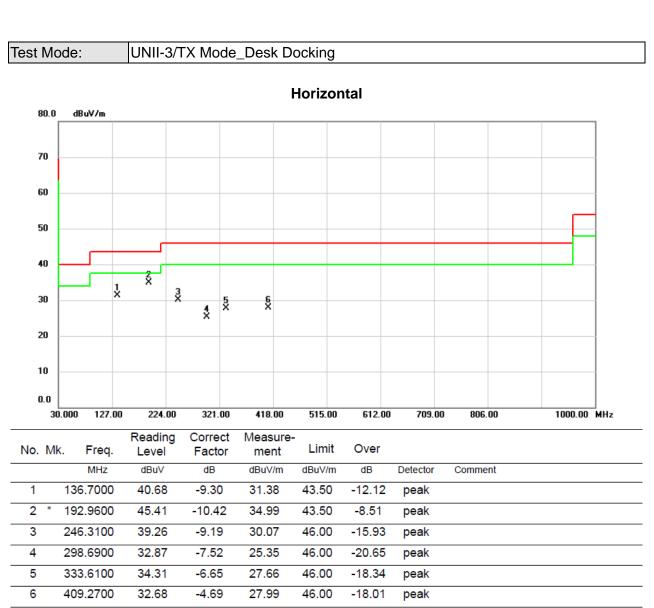


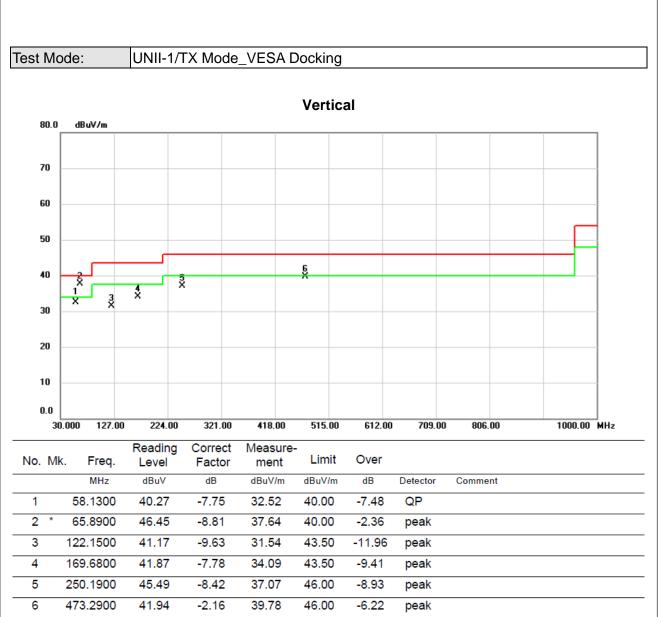


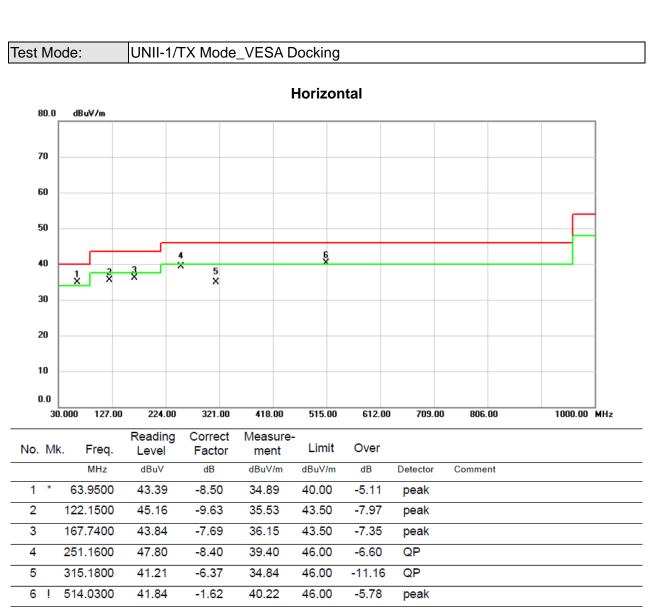

3TL



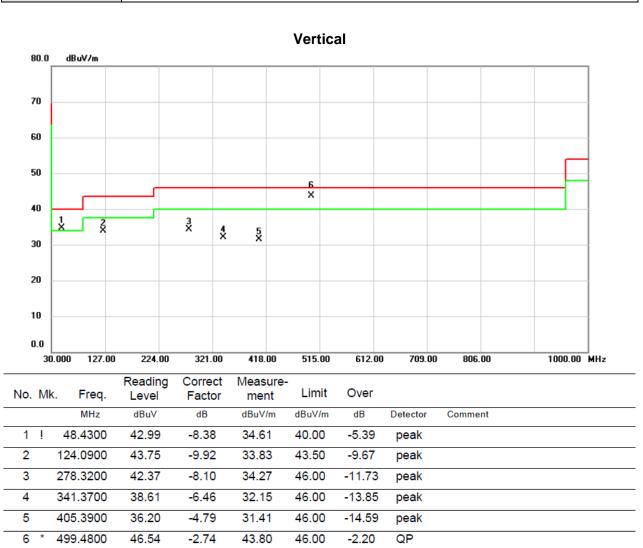

3TL

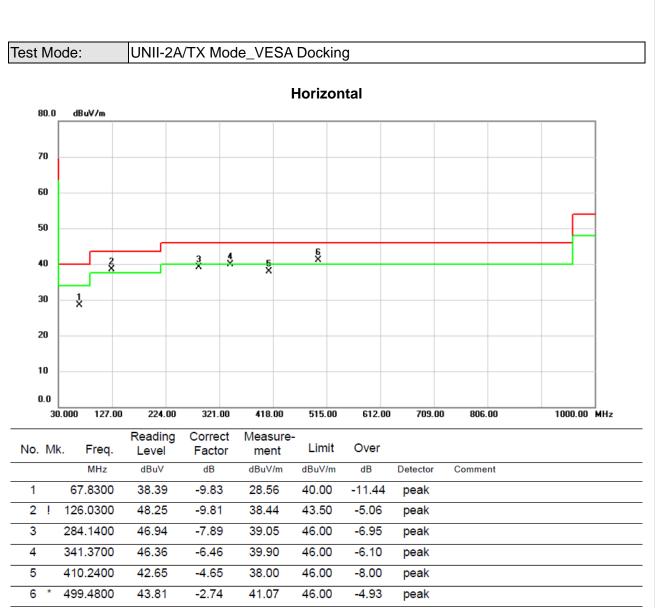


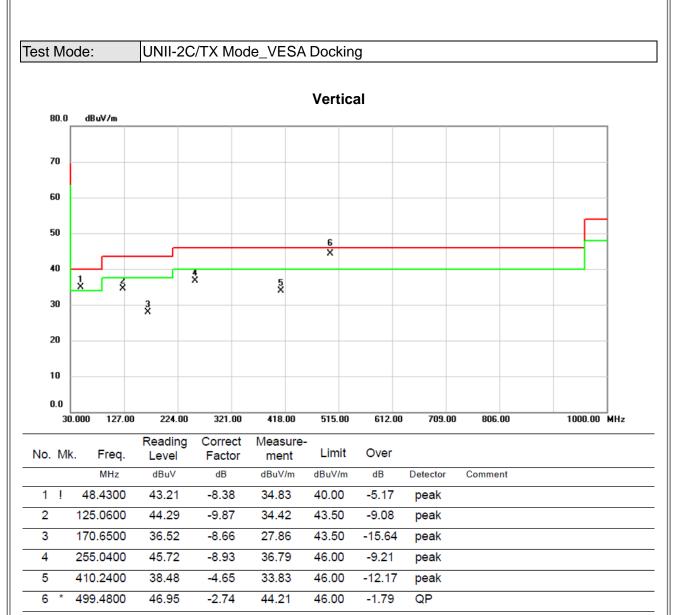


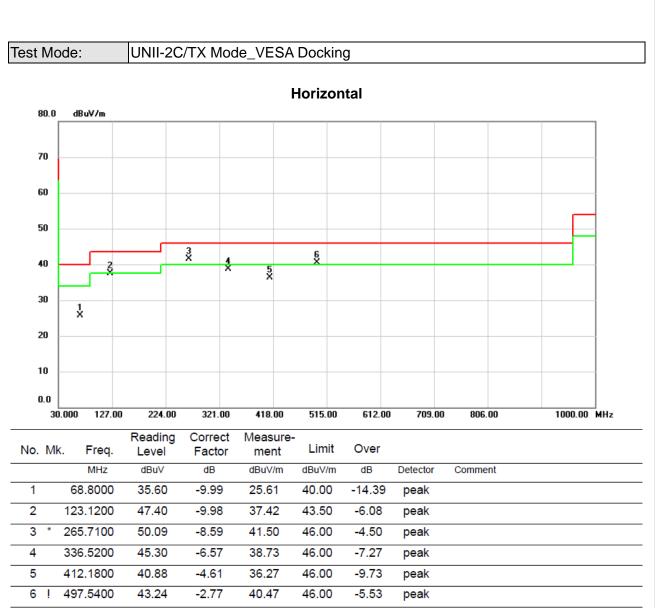


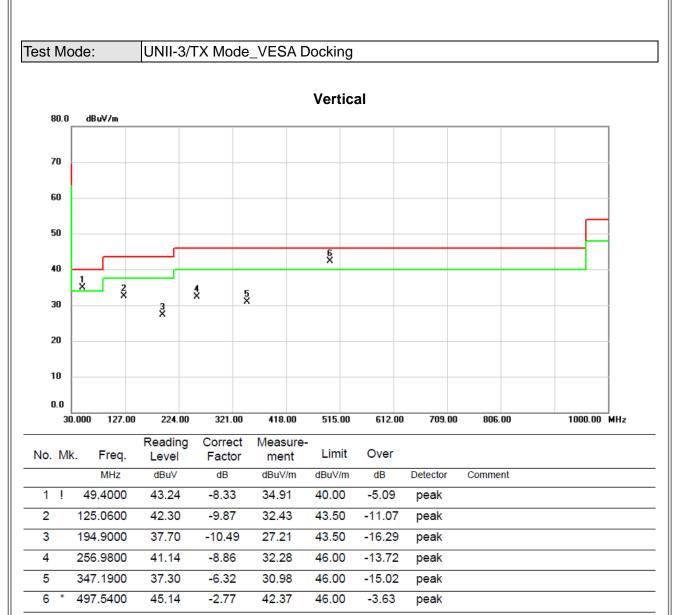
<u>3TL</u>

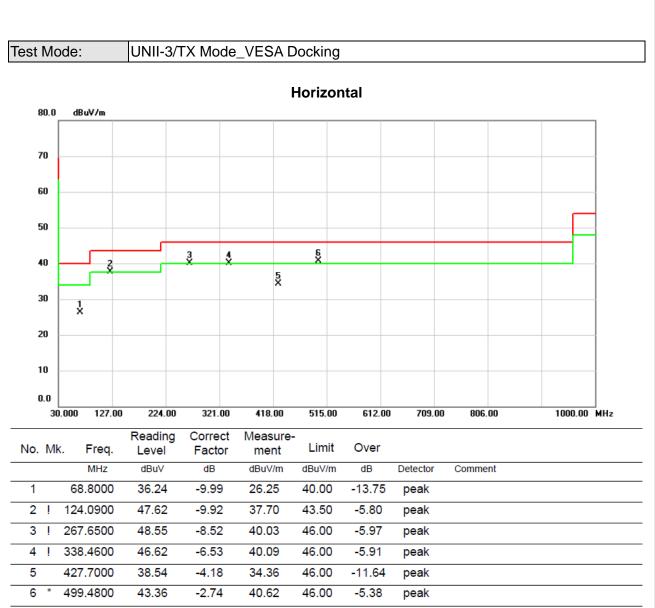



<u>3ĩL</u>






UNII-2A/TX Mode_VESA Docking



Test Mode:

5 *

6

600.0043

880.2050

40.00

29.08

-0.63

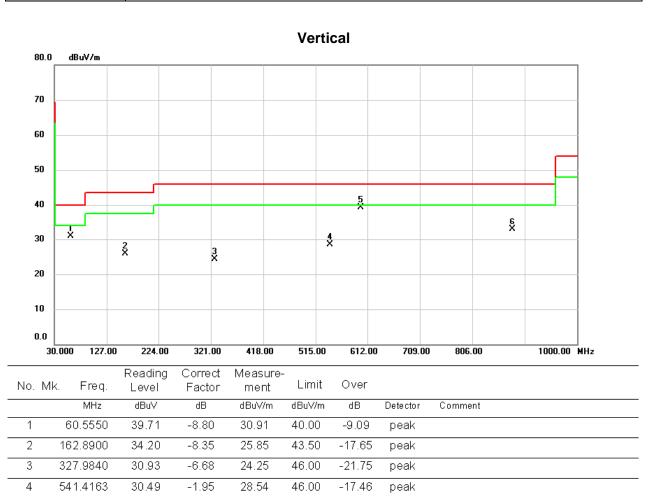
3.85

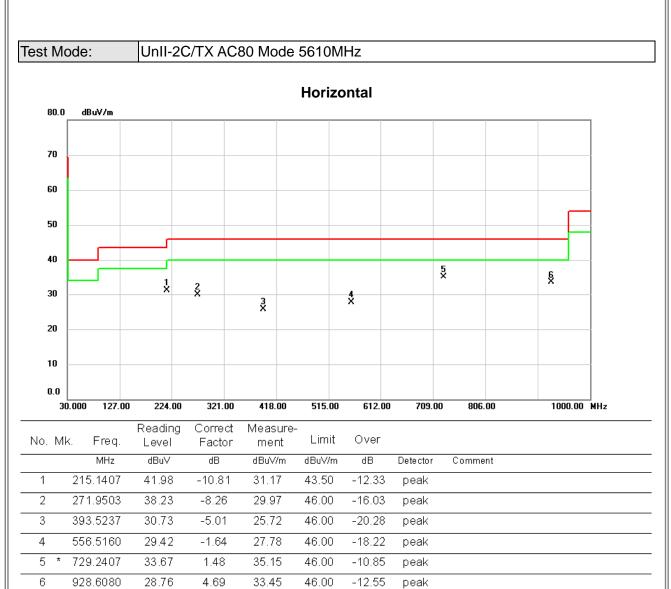
39.37

32.93

46.00

46.00


-6.63


-13.07

peak

peak

Unll-2C/TX AC80 Mode 5610MHz

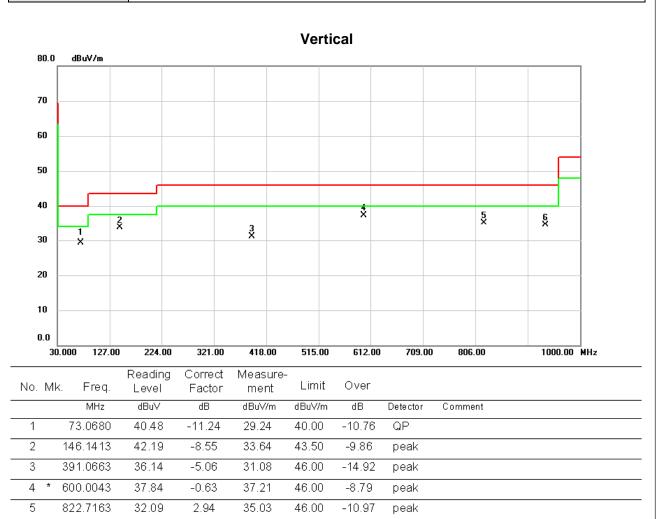
Test Mode:

6

936.4003

29.73

4.82


34.55

46.00

-11.45

peak

UnII-2C/TX AC80 Mode 5610MHz+ VESA Docking

