

FCC D: CC-MIReport No.: Teting Laboratory 1309

M82-AIM37AC T170919D06-A-RP5 Page: 1 / 31 Rev.: 02

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Computer

Model No.:

AIM-37ACxxxxxxxxxxxxxx; AIM37ACxxxxxxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)

Trade Name: ADVANTECH

Issued to

Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Wugu Laboratory No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: January 24, 2018

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues

format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2 / 31 Rev.: 02

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	January 24, 2018	Initial Issue	ALL	May Lin
01	May 14, 2018	Revised model discrepancy.	P.5	May Lin
02	July 31, 2018	Re-test AC Conducted Emissions and modify test setup photo.	P.26-27, P.30	May Lin

Page: 3 / 31 Rev.: 02

TABLE OF CONTENTS

1. 1	TES	T RESULT CERTIFICATION4
2. E	EUT	DESCRIPTION
3. 1	TES	T METHODOLOGY6
3.	1	EUT CONFIGURATION6
3.	2	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS
3.	3	DESCRIPTION OF TEST MODES7
4. I	NST	RUMENT CALIBRATION8
4.	1	MEASURING INSTRUMENT CALIBRATION8
4.	2	MEASUREMENT EQUIPMENT USED8
4.	3	MEASUREMENT UNCERTAINTY10
5. F	FAC	ILITIES AND ACCREDITATIONS11
5.	1	FACILITIES11
5.	2	EQUIPMENT11
6. \$	SET	UP OF EQUIPMENT UNDER TEST12
6.	1	SETUP CONFIGURATION OF EUT12
6.	2	SUPPORT EQUIPMENT12
7. F	FCC	PART 15.225 REQUIREMENTS REQUIREMENTS13
7.	1	OCCUPIED BANDWIDTH(99%) AND 20 DB BANDWIDTH13
7.	2	RADIATED EMISSIONS15
7.	3	FREQUENCY STABILITY23
7.	4	POWERLINE CONDUCTED EMISSIONS26
APP	PENI	DIX I PHOTOGRAPHS OF TEST SETUP29
APP	PENI	DIX 1 - PHOTOGRAPHS OF EUT

1. TEST RESULT CERTIFICATION

Applicant:	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.
Manufacturer:	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.
Equipment Under Test:	Computer
Trade Name:	ADVANTECH
Model No.:	AIM-37ACxxxxxxxxxxxxxx; AIM37ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Date of Test:	January 22 ~ July 27, 2018

APPLICABLE STANDARDS

STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.225.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Luan

Sam Chuang Manager Compliance Certification Services Inc.

Tested by:

Jerry Chuang Engineer Compliance Certification Services Inc.

Page: 4 / 31 Rev.: 02

2. EUT DESCRIPTION

Product	Computer					
Model No.	AIM-37ACxxxxxxxxxxxxxx; AIM37ACxxxxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)					
Model Name Model Discrepancy						
	-	-	Magnetic stripe reader	IC reader	Memory / Storage	Color
		SKU1 SKU2	V V	V V	4GB / 64GB	Orange
	AIM-37AC	SKU3 SKU4 SKU5	х	х	2GB / 32GB 4GB / 64GB	Grey
Model Discrepancy	AIM-37ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ļ	All the model numb	per was just fo	or marketing purpose of	nly.
Trade	ADVANTECH					
Received Date	September 19, 2017					
Power Supply	VDC from Power Adapter Brand: Asian Power Devices Inc. Model name: WA-15I05R Input: 100-240Vac, 50-60Hz, 0.5A Max Output: 5Vdc, 3A					
Frequency Range	13.56MHz					
Modulation Technique	ASK					
Number of Channels	1 Channel					

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

Page: 6 / 31 Rev.: 02

Report No.: T170919D06-A-RP5

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.225.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(2)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page: 7 / 31 Rev.: 02

3.3 DESCRIPTION OF TEST MODES

The EUT had been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

All modes and data rates were investigated and it was determined that ISO 14443A/B and ISO 18092 Type y, 106/212/424/848 kbps.

All data rates were investigated and it was determined that 106 Kbps was considered worst-case. Therefore, all testing was performed in 106 Kbps mode.

3.3.1 The worst mode of measurement

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz	120V/60Hz			
Test Mode	Mode 1: EUT power by AC adapter via power cable.			
Worst Mode	🛛 🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (Y-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 8 / 31 Rev.: 02

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emissions Test Site								
Name of Equipment	Manufacturer	Model	S/N	Calibration Date	Calibration Due			
Power Meter	Anritsu	ML2495A	1033009	04/11/2017	04/10/2018			
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018			
Spectrum Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018			
Directional Coupler	Agilent	87301D	MY44350252	07/25/2017	07/24/2018			
SUCOFLEX Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018			
Divider	Solvang Technology	2-18GHz 4Way	STI08-0015	07/26/2017	07/25/2018			

Equipment Used for Emissions Measurement

Wugu 966 Chamber A							
Name of Equipment	Manufacturer	Model	S/N	Calibration Date	Calibration Due		
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018		
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018		
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018		
Spectrum Analyzer	Agilent	E4446A	US42510252	11/27/2017	11/26/2018		
Loop Ant	COM-POWER	AL-130	121051	03/02/2017	03/01/2018		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		
Pre-Amplifier	HP	8449B	3008A00965	06/27/2017	06/26/2018		
Filter	N/A	2400-2500	N/A	N/A	N/A		
Filter	N/A	0-6000	N/A	N/A	N/A		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	07/31/2017	07/30/2018		

Remark: Each piece of equipment is scheduled for calibration once a year

Page: 9 / 31 Rev.: 02

AC Conducted Emissions Test Site								
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due			
LISN	R&S	ENV216	101054	02/06/2018	02/05/2019			
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019			
EMI Test Receiver	R&S	ESCI	101203	11/02/2017	11/01/2018			

Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

2. N.C.R. = No Calibration Request.

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 2.96
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page: 10 / 31 Rev.: 02

Page: 11 / 31 Rev.: 02

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2013 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bucolical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page: 12 / 31 Rev.: 02

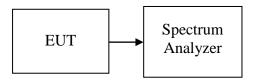
6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	NB(K)	Toshiba	voyager	ZD 154034s	N/A	N/A	N/A


Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

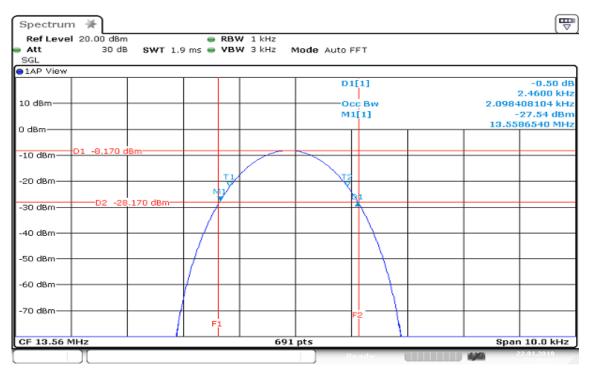
Page: 13 / 31 Rev.: 02

7. FCC PART 15.225 REQUIREMENTS REQUIREMENTS 7.1 OCCUPIED BANDWIDTH(99%) AND 20 DB BANDWIDTH <u>TEST CONFIGURATION</u>

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=1kHz, VBW = 3kHz, Span = 10kHz, Sweep = auto.
- 4. Record the max. reading.

TEST RESULTS


No non-compliance noted

Test Condition	Frequency(MHz)	Occupied Bandwidth 99% (kHz)	20 dB Bandwidth (kHz)		
NFC	13.56	2.0984	2.4600		

Page: 14 / 31 Rev.: 02

Test Plot

Date: 22.JAN.2018 13:46:42

Page: 15 / 31 Rev.: 02

7.2 RADIATED EMISSIONS

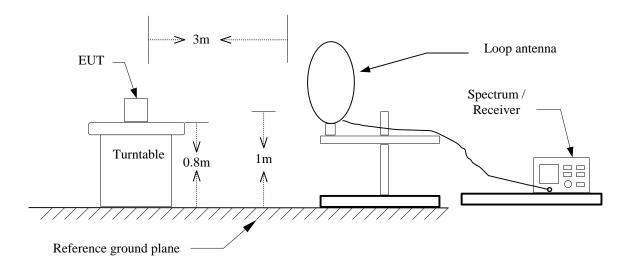
<u>LIMIT</u>

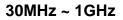
According to §15.225

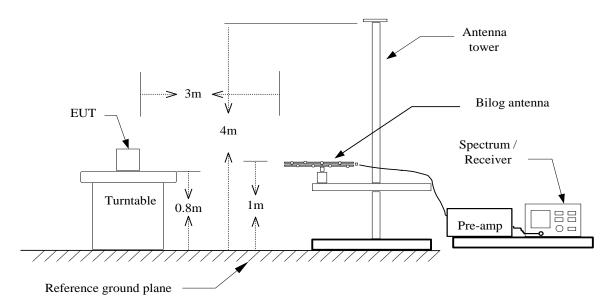
- (a) The field strength of any emissions within the band 13.553 13.567 MHz shall not exceed 15,848 microvolts / meter at 30 meters.
- (b) Within the bands 13.410 13.553 MHz and 13.567 -13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts / meter at 30 meters.
- (c) Within the bands 13.110 13.410 MHz and 13.710 14.010 MHz the field strength of any emissions shall not exceed 106 microvolts / meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 14.010 MHz and shall not exceed the general radiated emission limits in §15.209.

According to §15.225, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m at meter)	Measurement Distance (meter)
0.009 - 0.490	2400 / F (kHz)	300
0.490 – 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 - 88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3


** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.




Page: 16 / 31 Rev.: 02

Test Configuration

9kHz ~ 30MHz

Page: 17 / 31 Rev.: 02

TEST PROCEDURE

For 9kHz ~ 30MHz

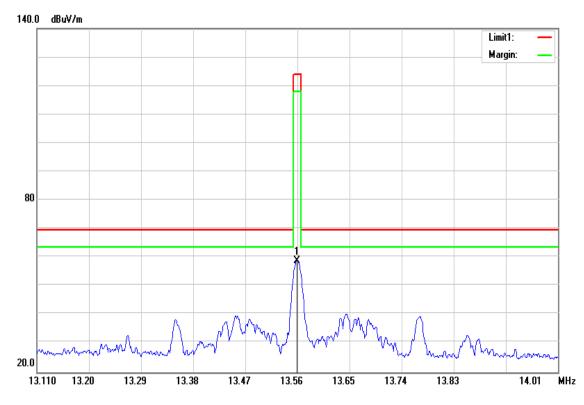
- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, The center of the loop shall be 1 m above the ground then to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Set the spectrum analyzer in the following setting as: 9KHz-490KHz : RBW=200Hz / VBW=1kHz / Sweep=AUTO 490KHz-30MHz : RBW=10kHz / VBW=30kHz / Sweep=AUTO
- 6. Repeat above procedures until the measurements for all frequencies are complete.

For 30MHz ~ 1GHz

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving

antenna both horizontal and vertical.

- 6. Set the spectrum analyzer in the following setting as: RBW=100kHz / VBW=300kHz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.


Remark :

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Page: 18 / 31 Rev.: 02

Operation Mode:	TX mode	Test Date:	January 22, 2018
Temperature:	24°C	Tested by:	Jerry Chuang
Humidity:	33 % RH	Polarity:	Ver. / Hor.

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m) (dBuV/m)		(dB)	
1	13.5595	43.78	15.21	58.99	124.00	-65.01	peak

Remark:

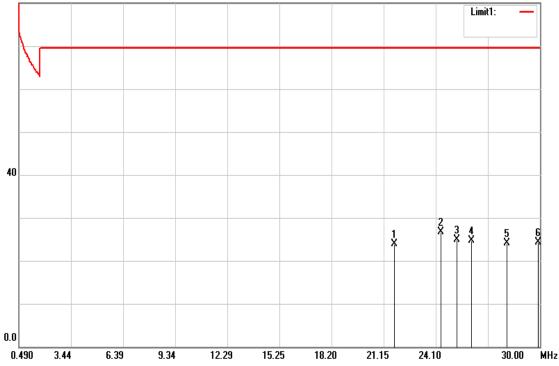
- 1. Radiated emissions measured were made with an instrument using peak/quasi-peak/average detector mode.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

Page: 19 / 31 Rev.: 02

9kHz ~ 490kHz

peration Mode:	TX mode 24°C			Test Date:			January 22, 201			
mperature:			Τε	sted b	y:	JE	Jerry Chuang			
umidity:	33 % RH									
140.0 dBu∀/m										
							Limit1: —			
	•••									
90										
50										
				1 2						
				1 2 X X			3 X 4 56 X X X			
40.0 0.009 0.06 0	.11 0.15	0.20	0.25	0.30	0.35	0.39	0.49 MH			

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Mode (PK/QP/AVG)
0.2827	43.32	14.23	57.55	98.57	-41.02	peak
0.2925	42.93	14.22	57.15	98.25	-41.10	peak
0.4300	40.72	14.34	55.06	94.93	-39.87	peak
0.4410	38.34	14.35	52.69	94.70	-42.01	peak
0.4681	38.04	14.37	52.41	94.19	-41.78	peak
0.4770	37.69	14.38	52.07	94.03	-41.96	peak



Page: 20 / 31 Rev.: 02

490kHz ~ 30MHz

Operation Mode:	TX mode	Test Date:	January 22, 2018
Temperature:	24°C	Tested by:	Jerry Chuang
Humidity:	33 % RH		

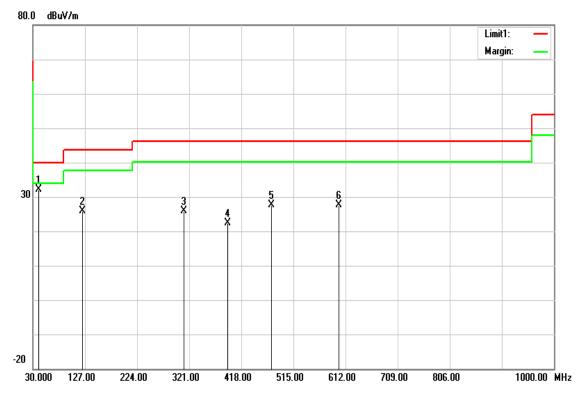
80.0 dBuV/m

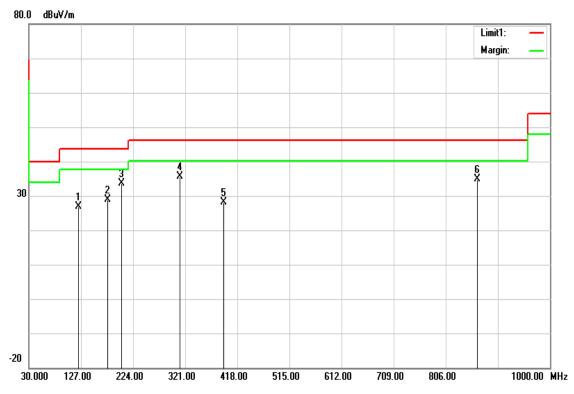
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Factor Result Li		Margin (dB)	Detector Mode (PK/QP/AVG)
21.7667	8.81	15.02	23.83	69.54	-45.71	peak
24.3931	12.08	14.53	26.61	69.54	-42.93	peak
25.2932	10.60	14.36	24.96	69.54	-44.58	peak
26.1342	10.55	14.20	24.75	69.54	-44.79	peak
28.1114	10.20	13.84	24.04	69.54	-45.50	peak
29.8967	10.89	13.51	24.40	69.54	-45.14	peak

Page: 21 / 31 Rev.: 02

30MHz ~ 1GHz

Operation Mode:	TX mode	Test Date:	January 22, 2018
Temperature:	24°C	Tested by:	Jerry Chuang
Humidity:	33 % RH		


Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)	Detector Mode (PK/QP/AVG)	
40.6700	48.49	-16.25	32.24	40.00	-7.76	peak	
122.1500	40.98	-15.06	25.92	43.52	-17.60	peak	
311.7850	39.63	-13.82	25.81	46.02	-20.21	peak	
393.2650	33.96	-11.61	22.35	46.02	-23.67	peak	
474.7450	36.63	-9.05	27.58	46.02	-18.44	peak	
599.8750	34.49	-6.93	27.56	46.02	-18.46	peak	
122.1500	41.96	-15.06	26.90	43.52	-16.62	peak	
176.4700	45.78	-16.94	28.84	43.52	-14.68	peak	
203.1450	49.17	-15.62	33.55	43.52	-9.97	peak	
311.7850	49.33	-13.82	35.51	46.02	-10.51	peak	
393.2650	39.79	-11.61	28.18	46.02	-17.84	peak	
864.2000	37.49	-2.62	34.87	46.02	i6.02 -11.15 p		


Report No.:	T170919D06-A-RP5

Page: 22 / 31 Rev.: 02

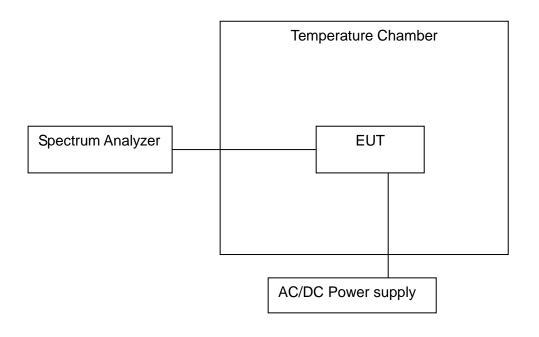
Vertical

Horizontal

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 23 / 31 Rev.: 02

Report No.: T170919D06-A-RP5


7.3 FREQUENCY STABILITY

<u>LIMIT</u>

According to §15.225(e), the frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Configuration

Temperature and Voltage Measurement (under normal and extreme test conditions)

Page: 24 / 31 Rev.: 02

TEST PROCEDURE

- 1. Turn the EUT off, and place it inside the environmental temperature chamber.
- 2. Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
- 3. Set the spectrum analyzer as RBW=1kHz, VBW = RBW, Span = 200kHz, Sweep = auto.
- 4. Turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized.
- 5. Switch off the EUT and Lower the chamber temperature by not more than 10 °C and allow the temperature inside the chamber to stabilize.
- 6. Mark the peak frequency and measure the frequency tolerance using frequency counter function.
- 7. Repeat step 4 through step 6 down to the lowest specified temperature.

Page: 25 / 31 Rev.: 02

TEST RESULTS

No non-compliance noted.

TEST DATA

Condition			Frequency Error (ppm)									
Temperature	Modulation Mode	Test Freq.	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	Limit (ppm)	Result
						Normal						
T _{20°C} Vmax	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00	100	Pass
T _{20°C} Vmin	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00		Pass
		•				Extreme						
T _{50°C} Vnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00		Pass
T _{40°C} Vnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00	$\frac{1}{100}$ 100	Pass
T _{30°C} Vnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00		Pass
T _{20°C} Vnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00	100	Pass
T _{10°C} Vnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00	1	Pass
T₀∘cVnom	CW	13.56	13.560000	13.560000	13.560000	13.560000	0.00	0.00	0.00	0.00	1	Pass

Remark: Vnom: 5

Vmax: 5.5 Vmin: 4.5

Page: 26 / 31 Rev.: 02

7.4 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page: 27 / 31 Rev.: 02

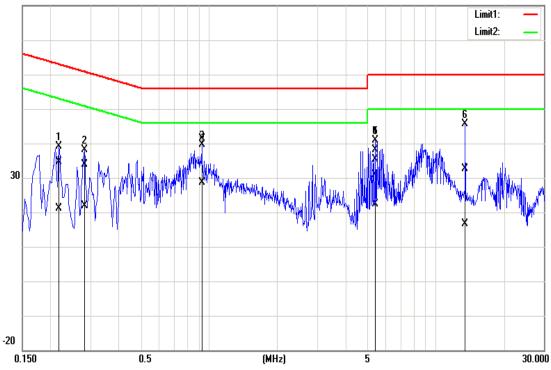
TEST RESULTS

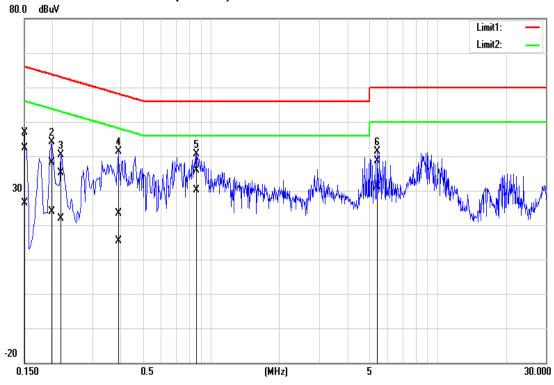
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Operation Mode:	NFC mode	Test Date:	July 27, 2018
Temperature:	24.2°C	Tested by:	Dally Hong
Humidity:	50.4% RH		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)	AV Result (dBuV/m)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.2180	34.46	21.09	0.11	34.57	21.20	62.89	52.89	-28.32	-31.69	L1
0.2820	33.70	21.81	0.11	33.81	21.92	60.76	50.76	-26.95	-28.84	L1
0.9300	41.36	28.51	0.13	41.49	28.64	56.00	46.00	-14.51	-17.36	L1
5.4420	37.99	30.72	0.22	38.21	30.94	60.00	50.00	-21.79	-19.06	L1
5.4460	35.16	22.12	0.22	35.38	22.34	60.00	50.00	-24.62	-27.66	L1
13.5340	32.27	16.31	0.36	32.63	16.67	60.00	50.00	-27.37	-33.33	L1
0.1500	46.86	26.36	0.14	47.00	26.50	65.99	56.00	-18.99	-29.50	L2
0.1980	38.05	23.67	0.13	38.18	23.80	63.69	53.69	-25.51	-29.89	L2
0.2180	34.96	21.76	0.13	35.09	21.89	62.89	52.89	-27.80	-31.00	L2
0.3899	23.13	15.22	0.13	23.26	15.35	58.06	48.07	-34.80	-32.72	L2
0.8620	35.80	29.97	0.14	35.94	30.11	56.00	46.00	-20.06	-15.89	L2
5.4420	38.29	30.87	0.22	38.51	31.09	60.00	50.00	-21.49	-18.91	L2

Remark:


- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)
- 5. "-" means Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.


Test Plots

Conducted emissions (Line 1)

80.0 dBuV

Conducted emissions (Line 2)

Page: 28 / 31 Rev.: 02