

FCC ID: M82-AIM37AC Report No.: T170919D06-A-RP2 Page: 1 / 46 Rev.: 02

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Computer
Brand Name	ADVANTECH
Model Name	AIM-37ACxxxxxxxxxxxxxxxx; AIM37ACxxxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Tested by:

Sam Chuang Manager

Jerry Chuang Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.ggs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.gg.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2 / 46 Rev.: 02

Revision History

Rev.	Issue Date	Revisions	Revised By
00	January 24, 2018	Initial Issue	May Lin
01	May 14, 2018	 Revised model discrepancy: P.4. Revised radiation test photo: P.44 	May Lin
02	July 31, 2018	1. Re-test AC Conducted Emissions and modify test setup photo: P.15-16, P.46	May Lin

Page: 3 / 46 Rev.: 02

Table of contents

1.	GENERAL INFORMATION
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY6
1.5	FACILITIES AND TEST LOCATION
1.6	INSTRUMENT CALIBRATION7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
2.	TEST SUMMERY 10
3.	DESCRIPTION OF TEST MODES 11
3.1	THE WORST MODE OF OPERATING CONDITION11
3.2	THE WORST MODE OF MEASUREMENT 12
3.3	EUT DUTY CYCLE 13
4.	TEST RESULT 14
4.1	AC POWER LINE CONDUCTED EMISSION 14
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%) 17
4.3	OUTPUT POWER MEASUREMENT 20
4.4	POWER SPECTRAL DENSITY
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION
APP	ENDIX 1 - PHOTOGRAPHS OF EUT

Page: 4 / 46 Rev.: 02

1. GENERAL INFORMATION

1.1 EUT INFORMATION

.

Applicant	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.					
Manufacturer	Advantech Co.Ltd. No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan, R.O.C.					
Equipment	Computer					
Model No.	AIM-37ACxxxxxxxxxx be any alphanumeric of impact safety related of Model Name	charact	ter, "-" or blank components a	for marke	eting purpose a uctions)	
	- Woder Name	-	Magnetic stripe	IC reader	Memory / Storage	Color
	AIM-37AC	SKU1 SKU2 SKU3	V V	V V	4GB / 64GB 2GB / 32GB	Orange
Model Discrepancy		SKU4 SKU5	X	X	4GB / 64GB	Grey
	AIM-37ACxxxxxxxxxxx; AIM37ACxxxxxxxxxxxx (where "x" may be any alphanumeric character, "-" or blank for marketing purpose and no impact safety related critical components and constructions)					
Received Date	September 19, 2017					
Date of Test	January 15 ~ July 27, 2018					
Output Power (W)	BLE : 0.0047					
Power Supply	VDC from Power Adapter Brand: Asian Power Devices Inc. Model name: WA-15I05R Input: 100-240Vac, 50-60Hz, 0.5A Max Output: 5Vdc, 3A					

Page: 5 / 46 Rev.: 02

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE-1Mbps
Number of channel	40 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested						
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Type	🛛 PIFA 🗌 PCB 🗌 Dipole 🗌 Coils
Antenna Gain	Gain: 1.13dBi

Page: 6 / 46 Rev.: 02

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 2.96
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 46 Rev.: 02

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	
Radiation	Jerry Chuang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment	Equipment Manufacturer Model S/N					
Power Meter	Anritsu	ML2495A	1033009	04/11/2017	04/10/2018	
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018	
Spectrum Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018	
Directional Coupler	Agilent	87301D	MY44350252	07/25/2017	07/24/2018	
SUCOFLEX Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018	
Divider	Solvang Technology	2-18GHz 4Way	STI08-0015	07/26/2017	07/25/2018	

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018	
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018	
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/27/2017	11/26/2018	
Loop Ant	COM-POWER	AL-130	121051	03/02/2017	03/01/2018	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Pre-Amplifier	HP	8449B	3008A00965	06/27/2017	06/26/2018	
Filter	N/A	2400-2500	N/A	N/A	N/A	
Filter	N/A	0-6000	N/A	N/A	N/A	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	07/31/2017	07/30/2018	

Page: 8 / 46 Rev.: 02

AC Conducted Emissions Test Site							
Equipment Manufacturer Model S/N Cal Date Cal Due							
LISN	R&S	ENV216	101054	02/06/2018	02/05/2019		
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019		
EMI Test Receiver	R&S	ESCI	101203	11/02/2017	11/01/2018		

Remark: Each piece of equipment is scheduled for calibration once a year.

.

Page: 9 / 46 Rev.: 02

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

Support Equipment							
No. Equipment Brand Model Series No. FCC ID							
1.	NB(K)	Toshiba	voyager	ZD 154034s	N/A		

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v04.

2. TEST SUMMERY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 10 / 46 Rev.: 02

Page: 11 / 46 Rev.: 02

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BT4.0 Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

Remark:

г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 12 / 46 Rev.: 02

3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission					
Test Condition	AC Power line conducted emission for line and neutral					
Voltage/Hz	120V/60Hz					
Test Mode	Mode 1: EUT power by AC adapter via power cable.					
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4					

Radiated Emission Measurement Above 1G						
Test Condition Band edge, Emission for Unwanted and Fundamental						
Voltage/Hz	120V/60Hz					
Test ModeMode 1: EUT power by AC adapter via power cable.						
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity	Horizontal 🗌 Vertical					

Radiated Emission Measurement Below 1G					
Test Condition Radiated Emission Below 1G					
Voltage/Hz 120V/60Hz					
Test Mode	Mode 1: EUT power by AC adapter via power cable.				
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane and Horizontal) were recorded in this report


3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 13 / 46 Rev.: 02

3.3 EUT DUTY CYCLE

Duty Cycle							
Configuration TX ON (ms) TX ALL (ms) Duty Cycle (%) Duty Factor(dB)							
BLE	0.4250	0.6000	70.83%	1.50			

Page: 14 / 46 Rev.: 02

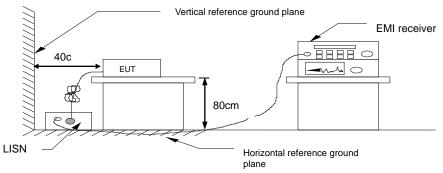
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			


* Decreases with the logarithm of the frequency.

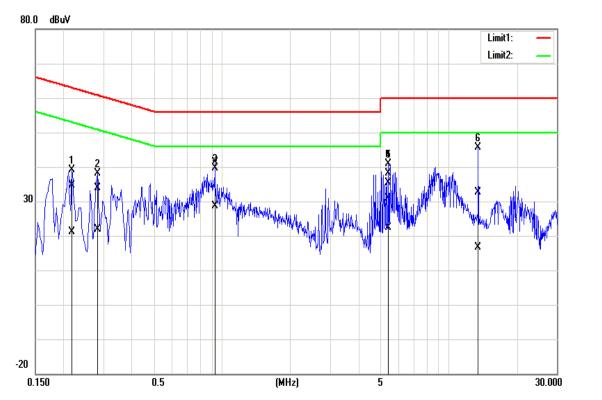
4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

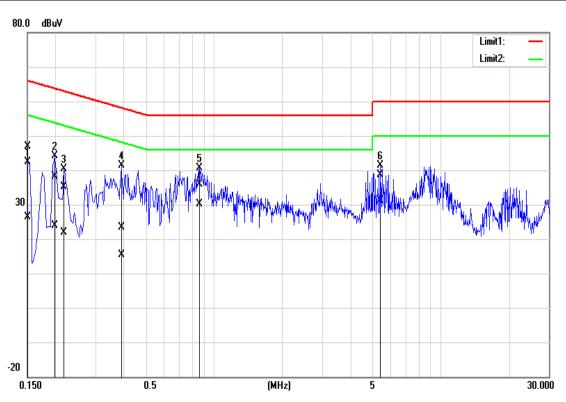
4.1.4 Test Result


Pass.

Page: 15 / 46 Rev.: 02

Test Data

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2018/07/27
Phase:	Line	Test Engineer	Dally Hong



No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.2180	34.46	21.09	0.11	34.57	21.20	62.89	52.89	-28.32	-31.69	Pass
2	0.2820	33.70	21.81	0.11	33.81	21.92	60.76	50.76	-26.95	-28.84	Pass
3	0.9300	41.36	28.51	0.13	41.49	28.64	56.00	46.00	-14.51	-17.36	Pass
4	5.4420	37.99	30.72	0.22	38.21	30.94	60.00	50.00	-21.79	-19.06	Pass
5	5.4460	35.16	22.12	0.22	35.38	22.34	60.00	50.00	-24.62	-27.66	Pass
6	13.5340	32.27	16.31	0.36	32.63	16.67	60.00	50.00	-27.37	-33.33	Pass

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	2018/07/27
Phase:	Neutral	Test Engineer	Dally Hong

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	46.86	26.36	0.14	47.00	26.50	65.99	56.00	-18.99	-29.50	Pass
2	0.1980	38.05	23.67	0.13	38.18	23.80	63.69	53.69	-25.51	-29.89	Pass
3	0.2180	34.96	21.76	0.13	35.09	21.89	62.89	52.89	-27.80	-31.00	Pass
4	0.3899	23.13	15.22	0.13	23.26	15.35	58.06	48.07	-34.80	-32.72	Pass
5	0.8620	35.80	29.97	0.14	35.94	30.11	56.00	46.00	-20.06	-15.89	Pass
6	5.4420	38.29	30.87	0.22	38.51	31.09	60.00	50.00	-21.49	-18.91	Pass

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 17 / 46 Rev.: 02

4.2 6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

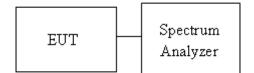
4.2.1 Test Limit

According to §15.247(a)(2).

6 dB Bandwidth :

Limit

Shall be at least 500kHz

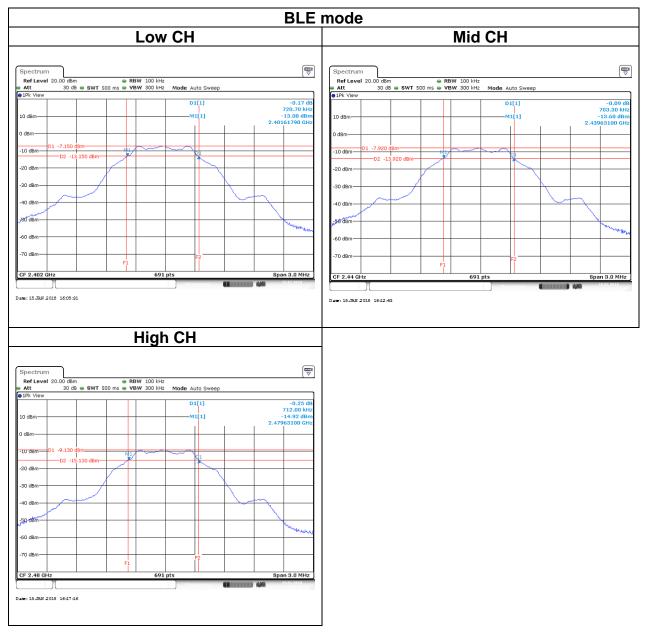

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

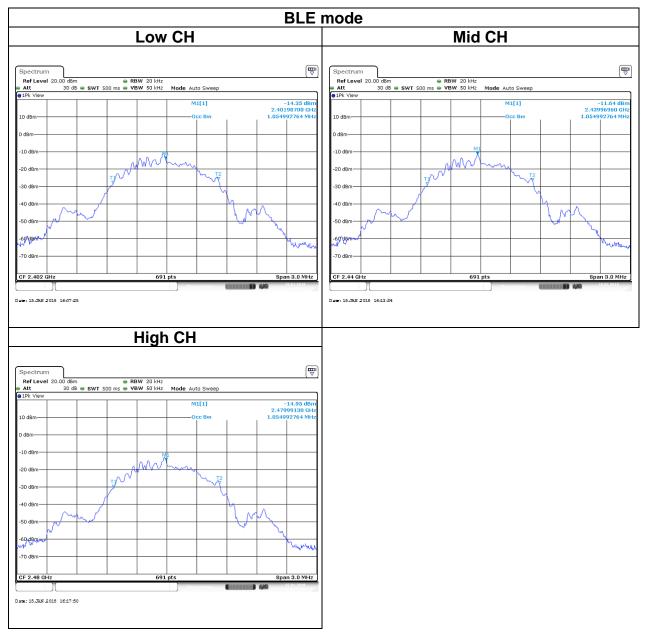
4.2.3 Test Setup



4.2.4 Test Result

	Test mode: BLE mode / 2402-2480 MHz						
Channel	Channel Frequency OBW(99%) 6dB BW (MHz) (MHz) (MHz) (MHz)						
Low	2402	1.0549	0.7207				
Mid	2440	1.0549	0.7033	>500			
High	2480	1.0549	0.7120				

<u>Test Data (</u>6dB)



This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 18 / 46 Rev.: 02

Test Data (99%OBW)

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 19 / 46 Rev.: 02

Page: 20 / 46 Rev.: 02

4.3 OUTPUT POWER MEASUREMENT

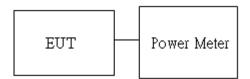
4.3.1 Test Limit

According to §15.247(b)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi it = 30 – (DG – 6)] Point-to-point operation
oint-to-point operation


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

BLE Mode							
Config.	config. CH Freq. PK PK PK Limi (MHz) (dBm) (W)						
BLE Data rate:	0	2402	6.74	0.0047			
	19	2440	5.74	0.0037	30		
1Mbps	39	2480	4.86	0.0031			

Average output power :

BLE Mode					
Config.	СН	Freq. (MHz)	AV Power (dBm)		
BLE	0	2402	5.52		
Data rate:	19	2440	4.58		
1Mbps	39	2480	3.72		

Page: 21 / 46 Rev.: 02

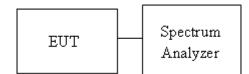
Page: 22 / 46 Rev.: 02

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

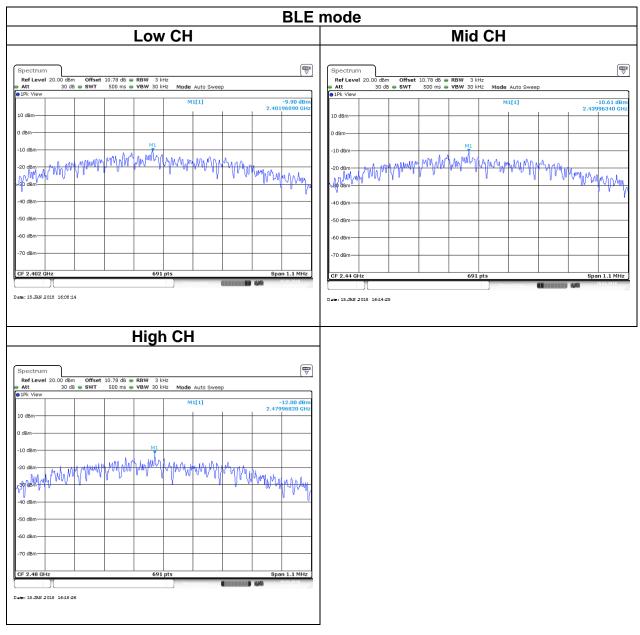
4.4.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

4.4.4 Test Result


	Test mode: BLE mode / 2402-2480 MHz					
Channel	Channel Frequency PSD (MHz) (dBm)					
Low	2402	-9.90				
Mid	2440	-10.61	8			
High	2480	-12.00				

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 23 / 46 Rev.: 02

Test Data

Page: 24 / 46 Rev.: 02

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

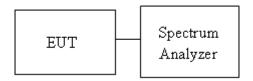
4.5.1 Test Limit

According to §15.247(d).

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

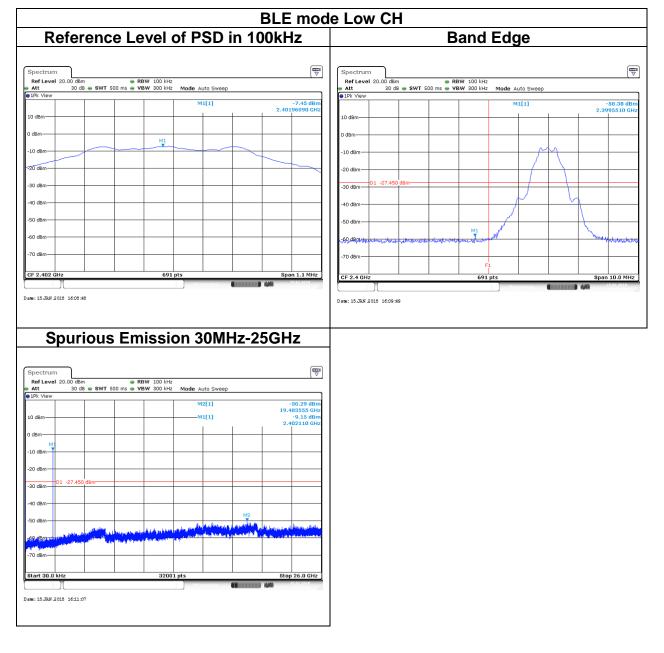
4.5.2 Test Procedure


Test method Refer as KDB 558074 D01 v04, Section 11.

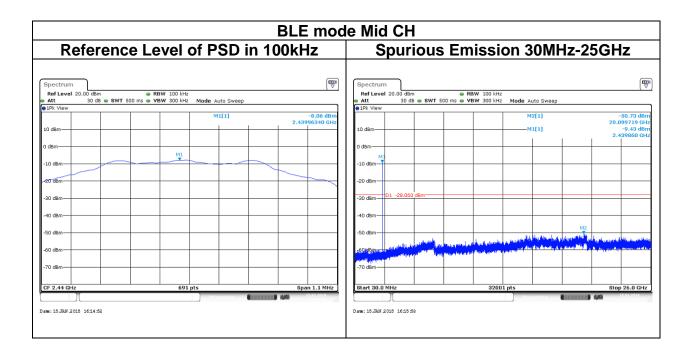
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

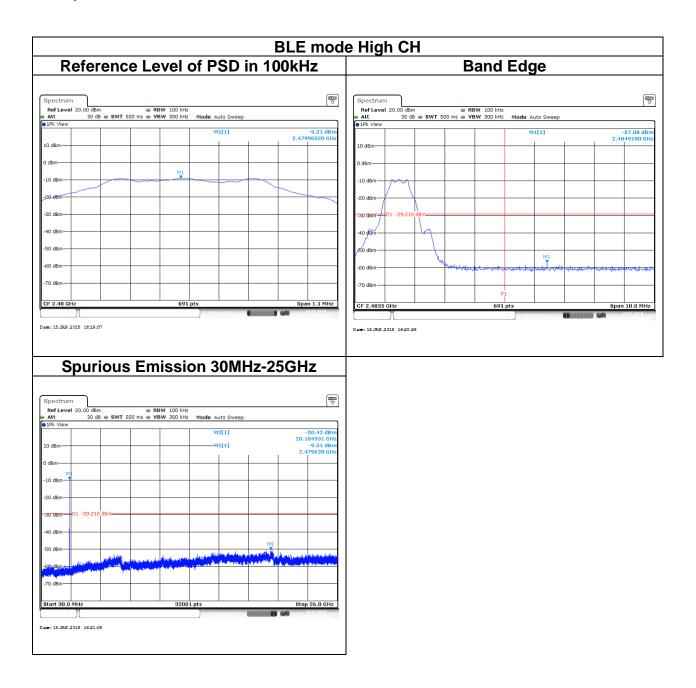
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


4.5.3 Test Setup

4.5.4 Test Result


Test Data

Page: 25 / 46 Rev.: 02



Page: 26 / 46 Rev.: 02

Page: 27 / 46 Rev.: 02

Page: 28 / 46 Rev.: 02

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Page: 29 / 46 Rev.: 02

4.6.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Remark:

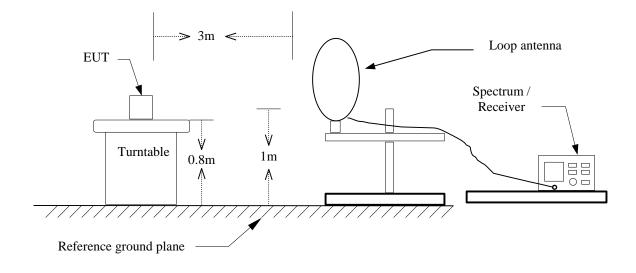
Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

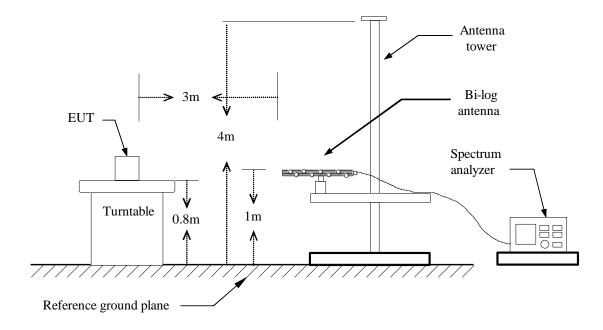
4. The SA setting following :

- (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

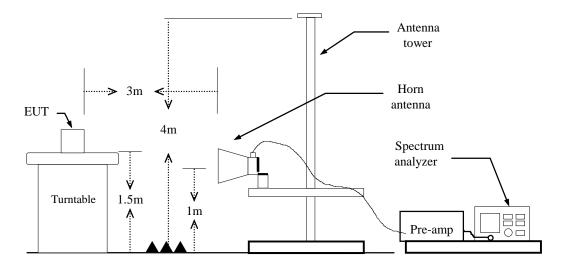
If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting
BLE	71%	0.4250	2.353	2.4KHz


4.6.3 Test Setup

<u>9kHz ~ 30MHz</u>

Page: 30 / 46 Rev.: 02


<u>30MHz ~ 1GHz</u>

Page: 31 / 46 Rev.: 02

Above 1 GHz

Page: 32 / 46 Rev.: 02

4.6.4 Test Result

Band Edge Test Data

Test Mode:	BLE Low CH	Temp/Hum	24(℃)/ 33%RH
Test Item	Band Edge	Test Date	January 19, 201
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak	Test Voltage:	120V
120.0 dBu∀/m			
			Limit1: —
			Limit2: —
			2
80			
and the state of the	ware a preserve a control or ten work for the server of for the server of the server of the server of the serve	1	monorthe monorthe
	anan tanan ana ang ang ang ang ang ang ang ang	harrannan de la chairtean an thairtean an thairtean an thairtean an thairtean an thairtean an thairtean an thai Thairtean an thairtean	MANu wa
40.0	2330.40 2340.60 2350.80 2361.00	2371.20 2381.40 239	L.60 2412.00 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.112	51.34	-2.99	48.35	74.00	-25.65	peak
2	2401.749	101.45	-2.95	98.50	-	-	peak

Test Mode:	BLE Low CH	Temp/Hum	24(°∁)/ 33%RH
Test Item	Band Edge	Test Date	January 19, 201
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average	Test Voltage:	120V
110.0 dBu∀/m			Limit1: —
			Limit2: —
			2
70			
		1	
30.0			
2310.000 2320.20	2330.40 2340.60 2350.80 2361.00	2371.20 2381.40 2391	.60 2412.00 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.979	39.21	-2.98	36.23	54.00	-17.77	AVG
2	2402.055	100.57	-2.95	97.62	-	-	AVG

Test Mode:	BLE High CH	Temp/Hum	24(°C)/ 33%RH
Test Item	Band Edge	Test Date	January 19, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak	Test Voltage:	120V
120.0 dBu¥/m			
			Limit1: —
			Limit2: —
1			
80			
2			
www.www.www	doord with the second	and all the state to the last of the last	the second state where we have
40.0	had a shike a particular she and a particular she was a she w	a ma ta sanan kara na karatan karita dalam karata karata karata karata karata karata karata karata karata karat	ena orași tele în ortenina della la cuna konfilore, en con
		2519.20 2527.40 253	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.758	100.21	-2.70	97.51	-	-	peak
2	2483.776	52.19	-2.69	49.50	74.00	-24.50	peak

Test Mode:	BLE High CH	Temp/Hum	24(°∁)/ 33%RF
Test Item	Band Edge	Test Date	January 19, 201
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Average	Test Voltage:	120V
110.0 dBuV/m			
			Limit1: —
			Limit2: —
70			
	2		
30.0			
2470.000 2478.20	2486.40 2494.60 2502.80 2511.00	2519.20 2527.40 253	5.60 2552.00 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.045	99.35	-2.70	96.65	-	-	AVG
2	2483.694	40.66	-2.69	37.97	54.00	-16.03	AVG

Above 1G Test Data

	st Mode:		В	LE Low			ſemp/H		. ,	/ 33%RH
	st Item			Harmon			Test Da		Januar	<u>y 22, 2018</u>
	olarize		Vertical				st Engi		Jerry	Chuang
	etector) dBuV/m		Pea	k and Av	erage		est Volt	age:	1	20V
110.0									Limit1: Limit2:	_
70										
		1 X								
30.0 10	000.000 3550.0	0 611	DO.OO 865	50.00 1120	0.00 1375	0.00 1630	0.00 188	50.00 2140	0.00 2	6500.00 MHz
	juency 1Hz)	Rea (di	ading BuV)	Correct Factor (dB/m)		lesult BuV/m)		imit uV/m)	Margin (dB)	Remark
	4.000	38	3.84	4.34	4	3.18	74	4.00	-30.82	peak
Ν	N/A						<u> </u>			
							1			

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test It	em		Harmo	nic			emp/H Fest Da		Janua	ary 22,	6RF 201
Polari	ze		Horizo	ntal		Tes	st Eng	ineer		ry Chua	
Detec	tor	Pea	ak and A	verage		Te	st Volt	age:		120V	
110.0 dBu	V/m										
									Limit1		
									Limit2	: _	
					_						
70											
	1 X										
30.0											
1000.000	3550.00	6100.00 8	650.00 11	200.00 13	750.00	16300	.00 188	50.00 214	DO.OO	26500.00	i Hz
Frequenc (MHz)		Reading (dBuV)	Correc Facto (dB/m	r (Resu dBuV/			imit suV/m)	Margin (dB)	Re	emai
4804.000)	39.70	4.34		44.04	4	7	4.00	-29.96	p	eak
N/A											
_											
nark:				_	_				of highe		

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	BLE Mid CH		emp/Hum	24(°C)/ 33%RH
Test Item	Harmonic		est Date	January 22, 2018
Polarize Detector	Vertical Peak and Aver		t Engineer st Voltage:	Jerry Chuang 120V
110.0 dBuV/m	reak and Aven	aye let	si vullaye.	1200
				Limit1: — Limit2: —
70				
1				
30.0 1000.000 3550.00	6100.00 8650.00 11200.00	D 13750.00 16300. ¹	00 18850.00 2140	0.00 26500.00 MHz
Frequency (MHz)	Reading Correct (dBuV) (dBu(m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB) Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.000	37.34	4.48	41.82	74.00	-32.18	peak
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Image: Non-State Image: Non-State<	Test Mod			BLE Mid			emp/H		-	$\frac{1}{2}$)/ 33%	
Detector Peak and Average Test Voltage: 120V 110.0 dBuV/m									Janua	rv Chua	201 ina
110.0 d8uV/n Internet Limit1: Imit2:			Pea						0011		ing
30.0 30.0 30.0 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Trequency (MHz) Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Remainstance 4880.000 36.92 4.48 41.40 74.00 -32.60 peak	110.0 dBuV/n									-	
Trequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remain Remain4880.00036.924.4841.4074.00-32.60peak	30.0				0.00 1070		0.00 100			25500.00.1	
requency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Rema4880.00036.924.4841.4074.00-32.60peak	1000.000 35	50.00 6	100.00 80	550.00 112	00.00 13750.)0 16300	J.OO 188	50.00 2140	UO.OO	26500.00 M	IHz
	Frequency (MHz)			Factor	Ke (dB)					Re	mark
N/A Image: Constraint of the second sec	4880.000	3	36.92	4.48	41	.40	74	4.00	-32.60	р	eak
	N/A										
nark: 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest	mark:		_						•		

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	E	BLE High C			np/Hum	24(°C)/ 3	
Test Item		Harmonic	;		st Date	January 2	
Polarize		Vertical			Engineer	Jerry C	
Detector	Pea	ak and Ave	rage	Test	Voltage:	120)V
110.0 dBu∀/m							
						Limit1:	-
						Limitz: 4	
							_
70							_
							-
	1 X						
	1						_
30.0							
1000.000 3550.00	D 6100.00 8	650.00 11200.0	00 13750.00	16300.00	18850.00 2140	0.00 2650	0.00 MHz
-		Correct					
Frequency (MHz)	Reading (dBuV)	Factor	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	37.38	4.61	41.99	74.00	-32.01	peak
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Polarize Horizontal Test Engineer Jerry Chuang Detector Peak and Average Test Voltage: 120V 110.0 dBuV/m Limit:	Polarize Horizontal Test Engineer Jerry Chuang Detector Peak and Average Test Voltage: 120V 110.0 dBW/m Imit: Imit: Imit: Imit: Imit: Imit: Imit: Imit: Imit:	Test Mode:		E	BLE High			emp/Hum		℃) / 33%RH
Detector Peak and Average Test Voltage: 120V 110.0 d8wV/m	Detector Peak and Average Test Voltage: 120V 110.0 dBW/m	Test Item								
110.0 dBuV/m Limit1:	110.0 dBuV/m Limit1: Limit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2: Imit2:			Dee						
Image: Second State Image: Second State	Image: Second State Second			Pea	ak and Av	erage	les	st voltage:		1200
30.0 1 Image: Correct Frequency Reading Correct Frequency Result Limit Margin Permark	Image: state Image: state<									
30.0 1 Image: Correct Example Result Limit Margin Pomark	Image: state Image: state<									
30.0 30.0 30.0 30.0 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Frequency Reading Correct Result Limit Margin Bemark	30.0 30.0 30.0 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Frequency Reading Correct Result Limit Margin Remark	70								
1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Frequency Reading Correct Result Limit Margin Bemark	1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Frequency (MHz) Reading (dBuV) Correct Factor Result (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Remark		1 X							
Frequency Reading Factor Result Limit Margin Bomark	(MHz) (dBuV) Factor (dBuV/m) (dBuV/m) (dBuV/m)		00 61	00.00 86	650.00 1120	0.00 13750.00	16300.	00 18850.00	21400.00	26500.00 MHz
					Factor	Res				n Remark

(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
4960.000	38.43	4.61	43.04	74.00	-30.96	peak
N/A						
Domork						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 42 / 46 Rev.: 02

Below 1G Test Data

Test Mode:		BT Mode		Temp/Hum		24(° ℃).	24(℃)/ 33%RH	
Test Item	3	30MHz-1GH	z	Test Date			January 19, 201	
Polarize		Vertical		Test Engineer			Jerry Chuang	
Detector	Peak	and Quasi	-peak	Tes	st Voltage:	1	20V	
80.0 dBu¥/m								
						Limit1: Margin:	_	
	1		4 X	5 X				
30		3				6 X		
-20								
30.000 127.00	224.00 3	21.00 418.00	515.00	612.00	709.00 80	6.00 10	000.00 MHz	
							_	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark	
169.6800	48.48	-16.53	31.9	15	43.52	-11.57	peak	
278.8050	41.66	-14.35	27.3	51	46.02	-18.71	peak	
390.3550	40.70	-11.70	29.0	0	46.02	-17.02	peak	
501.9050	40.81	-8.45	32.3	6	46.02	-13.66	peak	
00110000	40.04	-6.55	34.2	9	46.02	-11.73	peak	
613.4550 864.2000	40.84 31.49							

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Test Mode:		BT Mode			emp/Hum	24(°C)/ 33%Rł		
Test Item	3	30MHz-1GHz			Test Date	January 19, 201		
Polarize	Deel	Horizontal			st Engineer		Jerry Chuang	
Detector	Peak	and Quasi	-peak	le	st Voltage:	1	20V	
80.0 dBuV/m								
						Limit1:	-	
						Margin:	_	
							-	
						Å		
30	1	2 X		4 ×	5			
			3 X					
-20								
30.000 127.00	224.00 32	21.00 418.00	515.00	612.00	709.00 806	.00 10)00.00 MHz	
		-						
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark	
213.3300	44.97	-16.66	28.3	1	43.52	-15.21	peak	
355.4350	42.01	-12.81	29.2	0	46.02	-16.82	peak	
	33.35	-8.45	24.9	0	46.02	-21.12	peak	
501.9050				7	46.02	-17.75	peak	
501.9050 599.8750	35.20	-6.93	28.2	1			-	
		-6.93 -3.38	28.2 29.7		46.02	-16.32	peak	