Philips, OZEO

Date of Test: 7/07-27/00

Specific Absorption Rate (SAR) Test Report for Philips Consumer Communications on the TDMA/AMPS Cellular Phone Model: OZEO

> Test Report: 20178673 Date of Report: July 28, 2000

NVLAP Laboratory Code 200201-0 Accredited for testing to FCC Parts 15

Tested by:	Suresh Kondapalli	1 Jours
Reviewed by:	David Chernomordik	Doord Cleramondix

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

Table of Contents

Job Description	2
1 Client Information	ر د
2 Equipment under test (EUT)	3 2
3 Test plan reference	د
4 System test configuration	1
1.4.1 System block diagram & Support equipment	
1.4.2 Test Position	 5
1.4.3 lest Condition	- 5
Modifications required for compliance	6
Additions, deviations and exclusions from standards	6
SAR Evaluation	.
SAR Limits	7
2 Configuration Photographs	ý
System Verification	17%
Evaluation Procedures	10
Test Results	10
Equipment	15
Equipment List	15
Brain Tissue Simulating Liquid	16
B-Field Probe Calibration	1.8
Weasurement Uncertainty	10
Measurement Traceability	10
warning Label Information - USA	20
References	21
ENDIX A - SAR Evaluation Data	22
ENDIX B - E-Field Probe Calibration Data	49
	Equipment under test (EUT) Test plan reference System test configuration 1.4.1 System block diagram & Support equipment 1.4.2 Test Position 1.4.3 Test Condition Modifications required for compliance Additions, deviations and exclusions from standards SAR Evaluation SAR Limits Configuration Photographs System Verification Evaluation Procedures Test Results Equipment Equipment Equipment List Brain Tissue Simulating Liquid E-Field Probe Calibration Measurement Uncertainty

Intertek Testing Services

Philips, OZEO Date of Test: 7/07-27/00

1 JOB DESCRIPTION

1.1 Client Information

The EUT has been tested at the request of

Company:

Philips Consumer Communications

1000 West Maude Avenue Sunnyvale, California 94086

Name of contact:

Mr. Sudarshan Biligiri

US Telephone:

(408) 617-5914

US Fax:

(408) 617-5960

1.2 Equipment under test (EUT)

Product Descriptions:

Equipment AMPS/TDMA Cellular Rac	lio Telephone
Trade Name Philips	Model No. OZEO
FCC ID M7VTCD588	S/N No. Not Labeled
Category Portable	RF Uncontrolled Exposure Environment
Frequency AMPS, 824-849 MHz Band (uplink) TDMA, 824-849 MHz TDMA: 1850-1910 MHz	System AMPS TDMA TDMA PCS

EUT Antenna Description					
Туре	Helical 800 MHz Monopole 1900 MHz	Configuration	Fixed		
Dimensions	22 mm (L)	Gain	1.0 dBi Cellular 2.4 dBi PCS		
Location	Right, Top		2		

Use of Product:

Voice communications

Manufacturer:

SAME as above.

Production is planned:

[X] Yes, [] No

EUT receive date:

7/6/00

EUT received condition:

Good condition prototype

Test start date:

7/6/00

Test end date:

7/29/00

Philips, OZEO

Date of Test: 7/07-27/00

1.3 Test plan reference

FCC rule part 2.1093, FCC Docket 96-326 & Supplement C to OET Bulletin 65

1.4 System test configuration

1.4.1 System block diagram & Support equipment

The diagram shown below details test configuration of the equipment under test.

EUT

S: Shielded	U:	Unshielded	F:	With Ferrite Core	7

	医斯萨诺氏性多征 人名英克特	Support eq	uipment		
Equp. #	Equipment	Manufacturer	Model #	S/N #	FCC ID
None	-	-	-	-	•

1.4.2 Test Position

The EUT was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in C95.1 (1992) and Supplement C of OET 65 (1998). The EUT was placed in the intended use position, i.e. CENELEC 80° position. This position is defined by a reference plane and a line. The reference plane of the head is given by three points, the auditory canal opening of both ears and center of the closed mouth. The reference line of the EUT is defined by the line which connects the center of the ear piece with the center of the bottom of the case and lies on the surface of the case facing the phantom. The reference line of the EUT lies in the reference plane of the head. The center of the ear piece of the EUT is place at the entry of the auditory canal. The angle between the reference line of the phone and the line connecting both auditory canal openings is 80°. Please refer to figure 1 below for the position details:

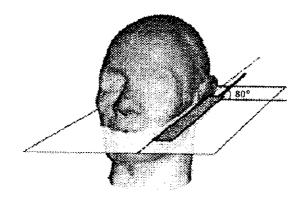


Figure 1: Intended use position

1.4.3 Test Condition

During tests, the worst case data (max. RF coupling) was determined with following conditions:

EUT Antenna Fixed	Orientation N/A
Usage Left-Hand and Right –Hand	Distance between 18.4 mm antenna axis at the joint and the liquid surface:
Simulating human hand Not Used	EUT Battery Fully Charged
280 dBm on anten	na port in AMPS mode na port in TDMA mode na port in PCS TDMA mode

The spatial peak SAR values were accessed for lowest, middle and highest operating channels defined by the manufacturer. Tests were performed at AMPS mode, TDMA mode, & TDMA PCS mode.

Antenna port power measurement was performed, with the HP 435A power meter, before and after the SAR tests to ensure that the EUT operated at the highest power level.

Intertek Testing Services

Philips, OZEO Date of Test: 7/07-27/00

1.5 Modifications required for compliance

No modifications were implemented by Intertek Testing Services.

1.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusions have been made from standard.

Intertek Testing Services

Philips, OZEO

Date of Test: 7/07-27/00

2 SAR EVALUATION

2.1 SAR Limits

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:

EXPOSURE (General Population/Uncontrolled Exposure environment)	SAR (W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00


2.2 Configuration Photographs

Worst-Case SAR measurement

2.2 Configuration Photographs – Continued

Worst-Case SAR Measurement

2.3 System Verification

Prior to the assessment, the system was verified to the $\pm 5\%$ of the specifications by using the system validation kit. The validation was performed at 900 MHz.

Validation kit	Targeted SAR _{ix} (mW/g)	Measured SAR _{iz} (mW/g)
D900V2, S/N #: 013	3.92	3.86

2.4 Evaluation Procedures

The SAR evaluation was performed with the following procedures:

- a. SAR was measured at a fixed location above the ear point and used as a reference value for the assessing the power drop.
- b. The SAR distribution at the exposed side of the head was measured at a distance of 4.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- c. Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 1.6 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - ii) The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (Ig or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
 - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- d. Re-measurement of the SAR value at the same location as in step a, above. If the value changed by more than 5 %, the evaluation was repeated.

Intertek Testing Services

Philips, OZEO

2.5 Test Results

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detail measurement data and plots which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

Date of Test: 7/07-27/00

Intertek Testing Services
Philips, OZEO

Date of Test: 7/07-27/00

Trade Name: Philips	Model No.: OZEO	
Serial No.: Not Labeled	Test Engineer: Suresh	
	Kondapalli	

TEST	CONDITIONS
Ambient Temperature 22 °C	Relative Humidity 51 %
Test Signal Source Test Mode	Signal Modulation CW
Output Power Before 24.7 dBm SAR Test (AMPS)	Output Power After 24.5 dBm SAR Test (AMPS)
Output Power Before 28.0 dBm SAR Test (TDMA, Cellular)	Output Power After 28.0dBm SAR Test (TDMA, Cellular)
Output Power Before 25.5 dBm SAR Test (TDMA, PCS)	Output Power After 25.5 dBm SAR Test (TDMA, PCS)
Test Duration 23 Min.	Number of Battery Every Scan Change

EUT Position: Left Hand, 2 Points Touching Phantom					
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
824	AMPS	1	Fixed	1.01	1
837	AMPS	1	Fixed	1.47	2
849	AMPS	1	Fixed	1.22	3

Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
824	AMPS	1	Fixed	0.999	4
837	AMPS	I	Fixed	0.799	5
849	AMPS	1	Fixed	1.18	6

EUT Position: Left Hand, 2 Points Touching Phantom								
Channei MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number			
837	TDMA	3	Fixed	0.936	7			
	IDMA	3	Fixed	0.936				

Date of Test: 7/07-27/00

EUT Position: Right Hand, 2 Points Touching Phanton								
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{ig} (mW/g)	Plot Number			
837	AMPS	1	Fixed	1.16	8			

	EUT Pos	ition: Left Ha	nd, 2 Points Touching	Phantom, Large Batte	ry
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
837	AMPS	1	Fixed	1.46	9

EUT Position: Body SAR, Face Down With Belt-Clip								
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number			
824	AMPS	1	Fixed	0.54	10			
837	AMPS	1	Fixed	0.586	11			
849	AMPS	1	Fixed	0.435	12			

EUT Position: Body SAR, Face Down, Large Battery								
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number			
837	AMPS	1	Fixed	0.594	13			
837	TDMA	3	Fixed	0,454	14			

	E)	UT Position: L	eft Hand, 2 Points	Touching Phantom	
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
1850	TDMA	3	Fixed	1.45	15
1880	TDMA	3	Fixed	1.28	16
1910	TDMA	3	Fixed	1.17	17

Date of Test: 7/07-27/00

	EU	T Position: L	eft Hand, 80 Degrees T	ouching Phantom	
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
1850	TDMA	3	Fixed	1.43	18

	EUT Posit	ion: Left Ha	nd, 80 Degrees Touchin	g Phan tom , Large Bat	tery
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number
1850	TDMA	3	Fixed	1.49	19

EUT Position: Right Hand, 80 Degrees Touching Phantom, Large Battery								
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number			
1850	TDMA	3	Fixed	1.24	20			

EUT Position: Body SAR. Face Down							
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{1g} (mW/g)	Plot Number		
1850	TDMA	3	Fixed	0.184	21		
1880	TDMA	3	Fixed	0.151	22		
1910	TDMA	3	Fixed	0.140	23		

	F	UT Position:	Body SAR. *Face Do	wn, Large Bettery	
Channel MHz	Operating Mode	Crest Factor	Antenna Position	Measured SAR _{Ig} (mW/g)	Plot Number
1850	TDMA	3	Fixed	0.175	24

Note: a) Worst case data were reported

b) Duty cycle factor included in the measured SAR data c) Uncertainty of the system is not included

3.0 EQUIPMENT

3.1 Equipment List

The Specific Absorption Rate (SAR) tests were performed with the SPEAG model DASY 3 automated near-field scanning system which is package optimized for dosimetric evaluation of mobile radios [3].

The following major equipment/components were used for the SAR evaluations:

	SAR Measurement System							
EQUIPMENT	SPECIFICATIONS	S/N #	CAL. DATE					
Robot	Stäubi RX60L	597412-01	N/A					
	Repeatability: ± 0.025mm	**************************************	<u> </u>					
	Accuracy: 0.806x10 ⁻³ degree							
n de como de la companya de la comp	Number of Axes: 6							
E-Field Probe	ET3DV5	1333	04/10/00					
	Frequency Range: 10 MHZ to 6 GHz	, , , , , , , , , , , , , , , , , , ,						
		Linearity: ± 0.2 dB						
	Directivity: ± 0.1 dB in brain tissue	_						
Data Acquisition	DAE3	317	N/A					
	Measurement Range: 1µV to >200mV							
	Input offset Voltage: < 1µV (with auto zero)							
	Input Resistance: 200 M							
Phantom	Generic Twin V3.0	N/A	N/A					
	Type: Generic Twin, Homogenous							
	Shell Material: Fiberglass							
	Thickness: 2 ± 0.1 mm							
	Capacity: 20 liter							
	Ear spacer: 4 mm (between EUT ear piec	e and tissue simulati	ng liquid)					
Simulated Tissue	Mixture	N/A	07/06/00					
	Please see section 3.2 for details							
Power Meter	HP 435A w/ 8481H sensor	1312A01255	02/16/00					
	Frequency Range: 100kHz to 18 GHz							
	Power Range: 300µW to 3W							

3.2 Simulating Liquid

TREED BY A CALABOTTO TO THE PROPERTY OF A CALABOTTO AND A STATE BY	rain Tissue
Ingredient	
Water	40.3 %
Sugar	56.0 %
Salt	2.5 %
HEC	1.0 %
Bactericide	0.2 %

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

Frequency (MHZ)		*(mho/m)	**(kg/m ³⁾
900	41.9± 5%	$0.835 \pm 10\%$	1000

^{*} worst case uncertainty of the HP 85070A dielectric probe kit

^{**} worst case assumption

Brain	1996年,1997年,
Ingredient	Frequency (1900 MHz)
Water	53.9 %
Sugar	44.9 %
Salt	0%
Cellulose	1.0 %
Bactericide	0.2 %

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

Frequency (MHZ)		(**(kg/m ³⁾
900	40.7± 5%	$1.85 \pm 10\%$	1000

worst case uncertainty of the HP 85070A dielectric probe kit

^{**} worst case assumption

Mü	HHIBBANA BARARARA BARARARA BARARARA BARARARA BARARARA BARARARA BARARARAR
Ingredient	Prequency (800 – 850 MHz)
Water	54.05 %
Sugar	45.05 %
Salt	0.1 %
Bactericide	0.8%

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

Frequency (MHZ)		· · · · · · · · · · · · · · · · · · ·	**(kg/m³)
835	56.1± 5%	$0.95 \pm 10\%$	1000

^{*} worst case uncertainty of the HP 85070A dielectric probe kit

^{**} worst case assumption

Muscle Tissue	
Ingredient	Frequency (1900 MHz)
Water	55.5 %
Sugar	53.5 %
Salt	0 %
Cellulose	1.0 %

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

rrequency (Mrnz.)		*(mho/m)	**(kg/m ³⁾
1900	54.4± 5%	1.57 ± 10%	1000

^{*} worst case uncertainty of the HP 85070A dielectric probe kit

^{**} worst case assumption

3.3 E-Field Probe Calibration

Probes were calibrated by the manufacturer in the TEM cell ifi 110. To ensure consistency, a strict protocol was followed. The conversion factor (ConF) between this calibration and the measurement in the tissue simulation solution was performed by comparison with temperature measurement and computer simulations. Probe calibration factors are included in Appendix C.

3.4 Measurement Uncertainty

The uncertainty budget has been determined for the DASY3 measurement system according to the NIS81 [5] and the NIST 1297 [6] documents and is given in the following table. The extended uncertainty (K=2) was assessed to be 23.5 %

TE A TOTAL TO A TOTAL AND A STATE OF THE ADDRESS OF	· · · · · · · · · · · · · · · · · · ·	CERTAINTY BUI		CLID
Uncertainty Description	Error	Distrib.	Weight	Std.Dev.
Probe Uncertainty				
Axial isotropy	±0.2 dB	U-shape	0.5	±2.4 %
Spherical isotropy	±0.4 dB	U-shape	0.5	±4.8 %
Isotropy from gradient	±0.5 dB	U-shape	0	
Spatial resolution	±0.5 %	Normal	' 1	±0.5 %
Linearity error	±0.2 dB	Rectang.	1	±2.7 %
Calibration error	±3.3 %	Normal	: 1	±3.3 %
SAR Evaluation Uncertain	ty			
Data acquisition error	±1 %	Rectang.	1	±0.6 %
ELF and RF disturbances	±0.25 %	Normal	1	±0.25 %
Conductivity assessment	±10 %	Rectang.	1	±5.8 %
Spatial Peak SAR Evaluati	on Uncertain	ty		
Extrapol boundary effect	±3 %	Normal	1	±3 %
Probe positioning error	±0.1 mm	Normal	1	±1 %
Integrat. And cube orient	±3 %	Normal	1	±3 %
Cube shape inaccuracies	±2 %	Rectang.	1	±1.2 %
Device positioning	±6 %	Normal	1	±6 %
Combined Uncertanties				±11.7 %

3.5 Measurement Traceability

All measurements described in this report are traceable to National Institute of Standards and Technology (NIST) standards or appropriate national standards.

Intertek Testing Services Philips, OZEO

Philips, OZEO Date of Test: 7/07-27/00

4.0 WARNING LABEL INFORMATION - USA

See attached users manual.

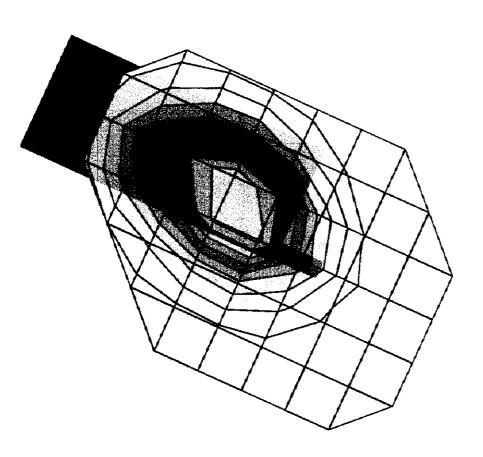
5.0 REFERENCES

[1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 Ghz. The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992

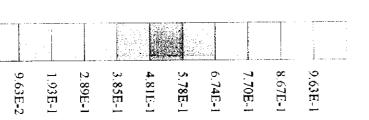
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institude of Standards and Technology, 1994.

APPENDIX A - SAR EVALUATION DATA

Please note that the graphical visualization of the phone position onto the SAR distribution gives only limited information on the current distribution of the device, since the curvature of the head results in graphical distortion. Full information can only be obtained either by H-field scans in free space or SAR evaluation with a flat phantom.

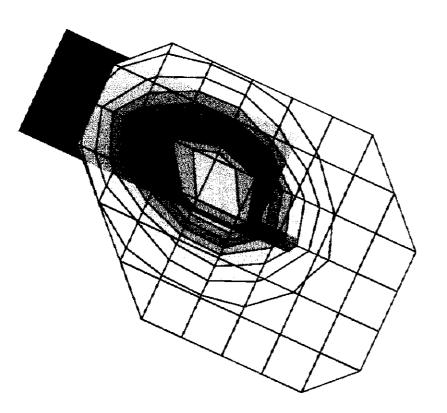

Powerdrift is the measurement of power drift of the device over one complete SAR scan.

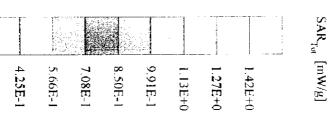
Generic Twin Phantom; Left Hand X Section; Position. (80°,65°); Frequency: 824 MHz


Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 825 MHz: $\sigma = 0.76$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³ Cube 5x5x7. SAR (1g): 1.01 mW/g, SAR (10g): 0.741 mW/g, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0Powerdrift: -0.10 dB

OZEO PR3 2A, AMPS, 24.9 dBm, Position: 2 Point Touch

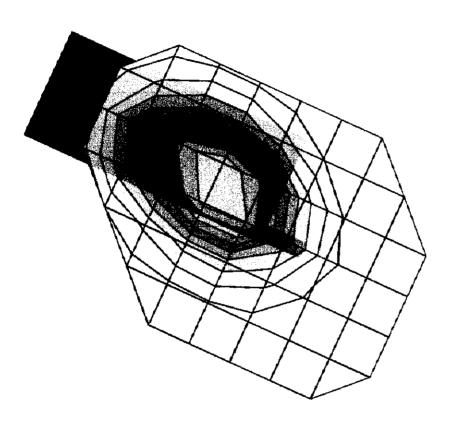




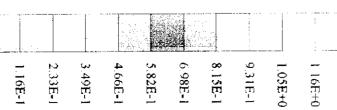
Generic Twin Phantom, Left Hand X Section, Position: (80°,65°), Frequency: 837 MHz

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 835 MHz: $\sigma = 0.76$ mho/m $\varepsilon_r = 43.1 \ \rho = 1.00 \ g/cm^3$ Cube 5x5x7: SAR (1g): 1.47 mW/g, SAR (10g): 1.07 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.14 dB

OZEO PR3 2A, AMPS, 24.7 dBm, Position: 2 Point Touch

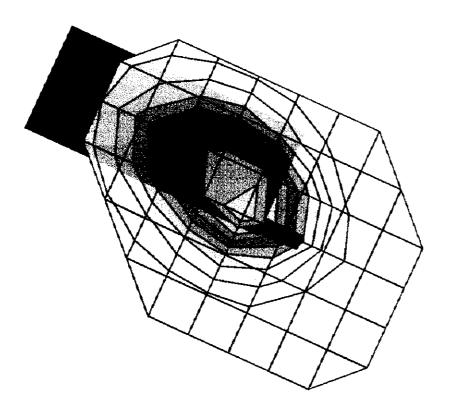

1.42E-1

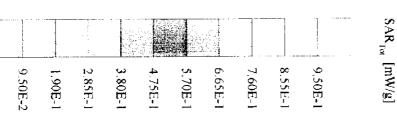

2.83E-1


Generic Twin Phantom; Left Hand _X Section; Position: $(80^\circ,65^\circ)$; Frequency: 849 MHz Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 849 MHz: $\sigma = 0.77 \text{ mho/m } \epsilon_r = 43.2 \text{ } \rho = 1.00 \text{ g/cm}^3$ Cube 5x5x7: SAR (1g): 1.22 mW/g, SAR (10g): 0.885 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

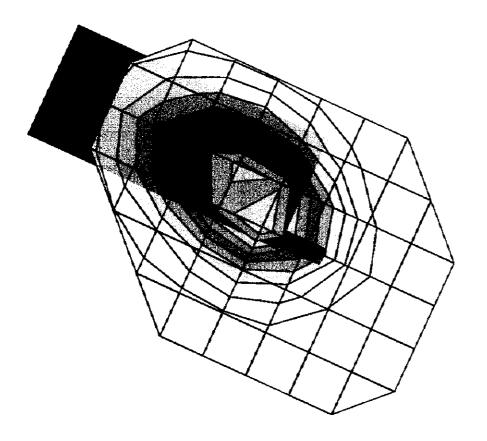
Powerdrift: -0.25 dB

OZEO PR3 2A, AMPS, 24.7 dBm, Position: 2 Point Touch



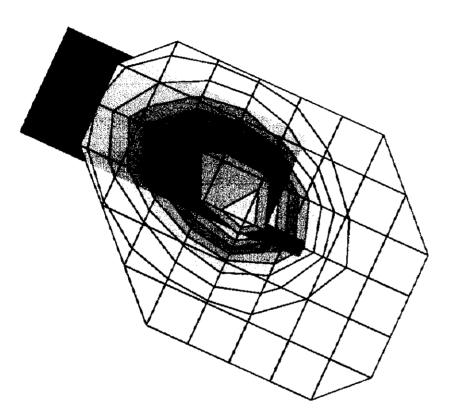

Generic Twin Phantom; Left Hand X Section; Position: (80°,65°), Frequency: 824 MHz.

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 825 MHz: $\sigma = 0.76$ mho/m $\epsilon_r = 43.2$ $\rho = 1.00$ g/cm³ Cube 5x5x7; SAR·(1g): 0.999 mW/g, SAR (10g): 0.706 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0


Powerdrift: -0.05 dB

OZEO PR3 2A, AMPS, 24.9 dBm

Generic Twin Phantom; Left Hand _X Section; Position: (80°,65°); Frequency: 837 MHz Probe. ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 835 MHz: σ = 0.76 mho/m $\epsilon_{\rm t}$ = 43.1 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 0.799 mW/g, SAR (10g): 0.588 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.10 dB OZEO PR3 2A, TDMA, 28.0 dBm



SAR
[mW/g]

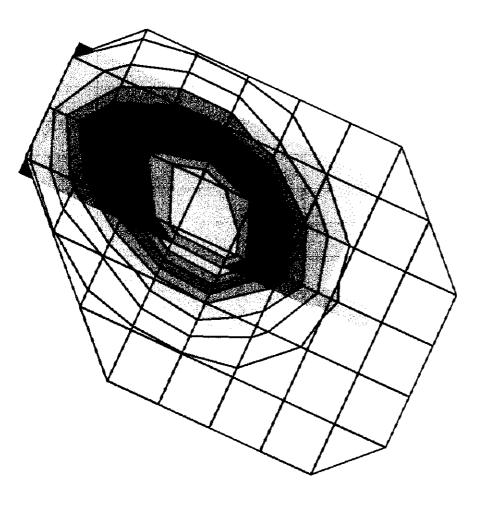
			1 / W		¥ ¥					- : : :
7.62E-2	1.52E-1	2.29E-1	3.05E-1	3 81E-1	4.57E-1	5.33E-1	6.10E-1	6.86E-1	7.62E-1	

Generic Twin Phantom, Left Hand X Section; Position: $(80^\circ,65^\circ)$; Frequency: 849 MHz Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 849 MHz: $\sigma = 0.77$ mho/m $\epsilon_c = 43.2$ $\rho = 1.00$ g/cm³ Cubc 5x5x7: SAR (1g): 1.18 mW/g, SAR (10g): 0.837 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.22 dB

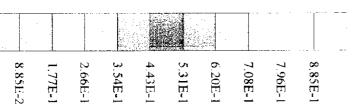
OZEO PR3 2A, AMPS, 24.9 dBm

SAR_{Tot}
[mW/g]

1.14E-	2.28E-1	3.43E-1	4.57E-1	5.71E-1	6.85E-1	7.99E-1	9.14E-1	1.03E+	1.14E+(

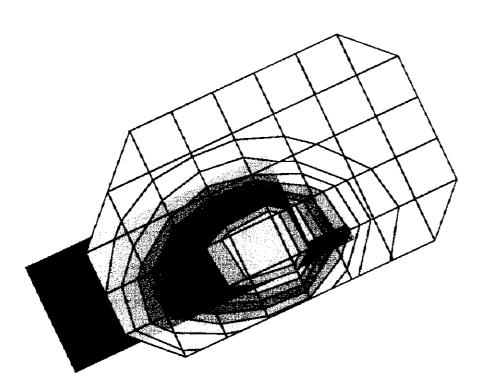

Generic Twin Phantom; Left Hand _X Section; Position: (80°,65°); Frequency: 837 MHz

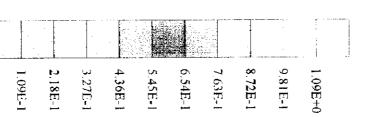
Probe: ET3DV5 - SN1333; ConvF(5.70,5.70; Crest factor: 3.0; Brain 835 MHz: $\alpha = 0.76$ mho/m $\epsilon_r = 43.1$ $\rho = 1.00$ g/cm³


Cubes (2): SAR (1g): 0.936 mW/g + 0.02 dB, SAR (10g): 0.682 mW/g \pm 0.03 dB, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

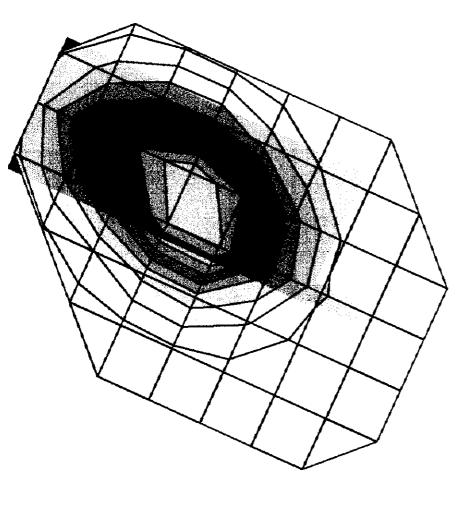
Two point touch Powerdrift: -0.03 dB

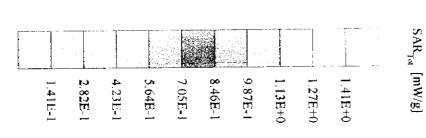



Generic Twin Phantom; Right Hand Section; Position: (80°,65°); Frequency: 837 MHz

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70), Crest factor: 1.0; Brain 835 MHz: $\sigma = 0.76$ mho/m $\epsilon_r = 43.1$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 1.16 mW/g, SAR (10g): 0.850 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.30 dB

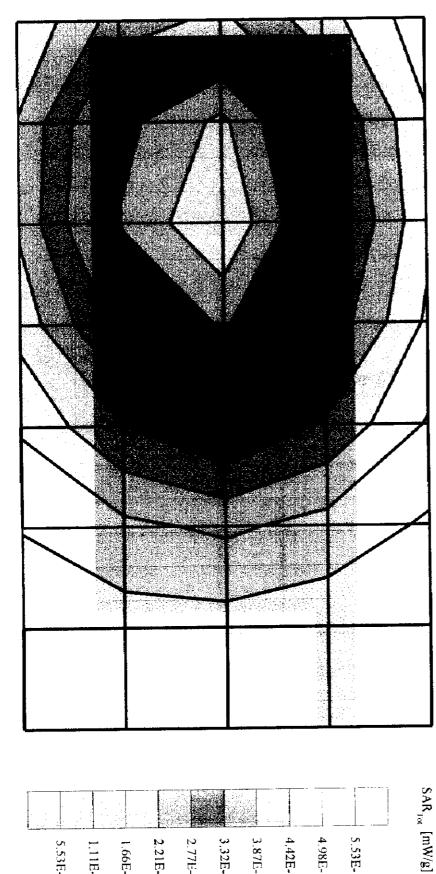
OZEO PR3 2A, AMPS, 24.7 dBm

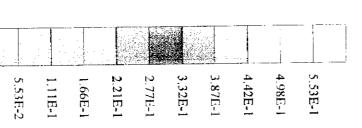




Two point touch

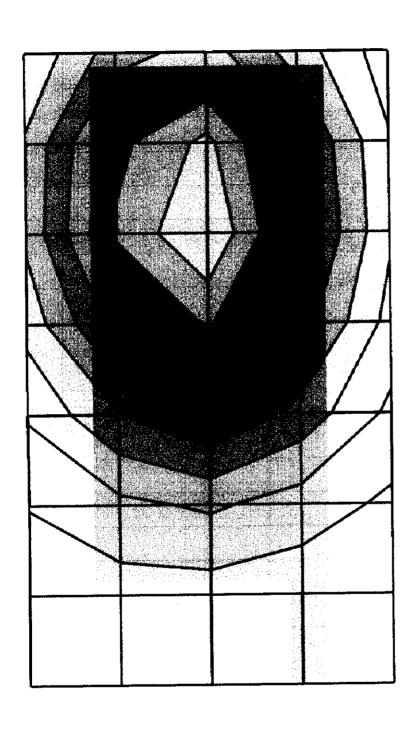
Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Brain 835 MHz: σ = 0.76 mho/m ϵ_r - 43.1 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 1.46 mW/g, SAR (10g): 1.07 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.12 dB Generic Twin Phantom; Left Hand X Section; Position: (80°,65°); Frequency: 837 MHz

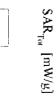


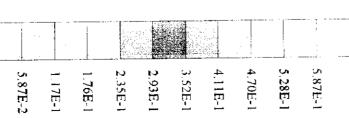

Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 824 MHz

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 0.95$ mho/m $e_r = 56.1$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.540 mW/g, SAR (10g): 0.393 mW/g, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

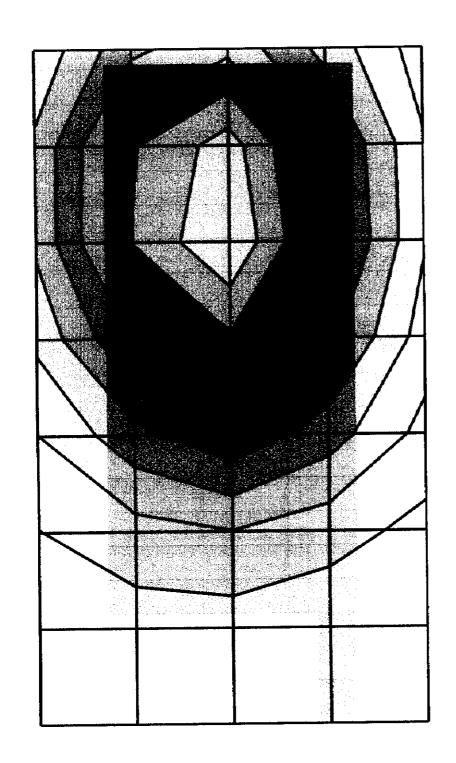

Powerdrift: -0.19 dB

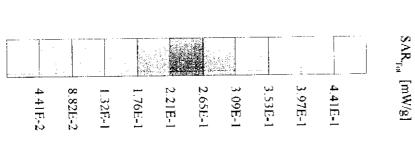




Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 837 MHz

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Muscle 835 MHz: σ = 0.95 mho/m ϵ_r = 56.1 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 0.586 mW/g, SAR (10g): 0.427 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.07 dB

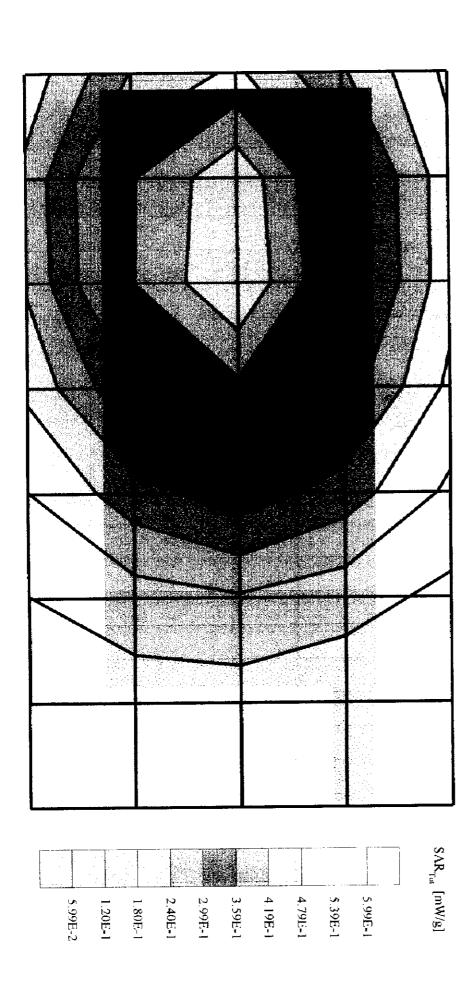




07/29/00

philips ozeo

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0Powerdrift: -0.19 dB Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Muscle 835 MHz: σ = 0.95 mho/m ϵ_r = 56.1 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 0.435 mW/g, SAR (10g): 0.316 mW/g, (Worst-case extrapolation) Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 849 MHz

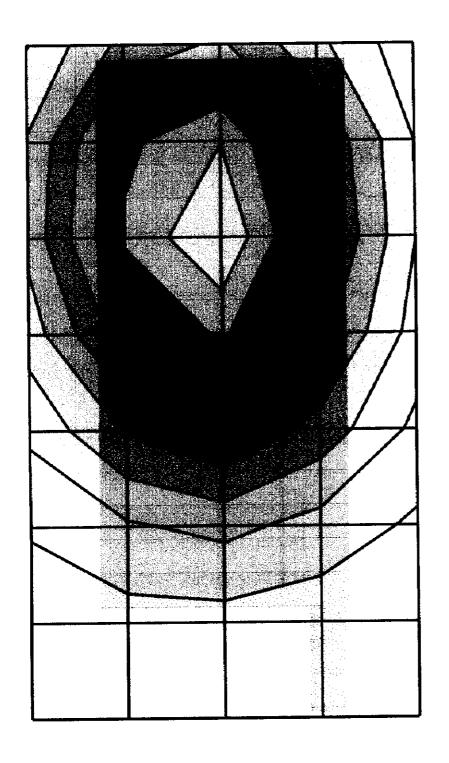

07/29/00

philips ozeo

Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 837 MHz

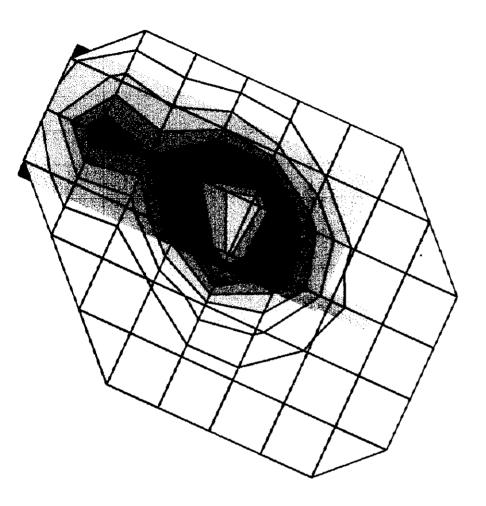
Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 1.0; Muscle 835 MHz: $\sigma = 0.95$ mho/m $\varepsilon_r = 56.1 \ \rho = 1.00 \ g/cm^3$ Cube 5x5x7; SAR (1g): 0.594 mW/g, SAR (10g): 0.432 mW/g. (Worst-case extrapolation)

Coarse: $D_x = 20.0$, $D_y = 20.0$, $D_z = 10.0$ Powerdrift: -0.19 dB

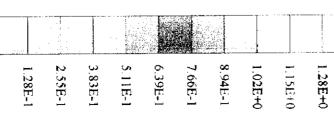

07/29/00


philips ozeo

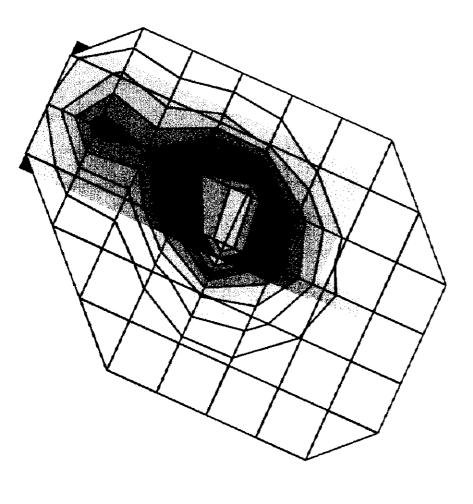
Generic Twin Phantom; Flat Section; Position: (90°,90°); Frequency: 837 MHz

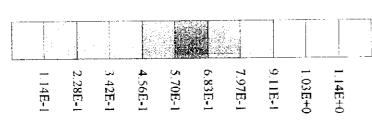

Probe: ET3DV5 - SN1333; ConvF(5.70,5.70,5.70); Crest factor: 3.0; Muscle 835 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 56.1$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.454 mW/g, SAR (10g): 0.330 mW/g, (Worst-case extrapolation)

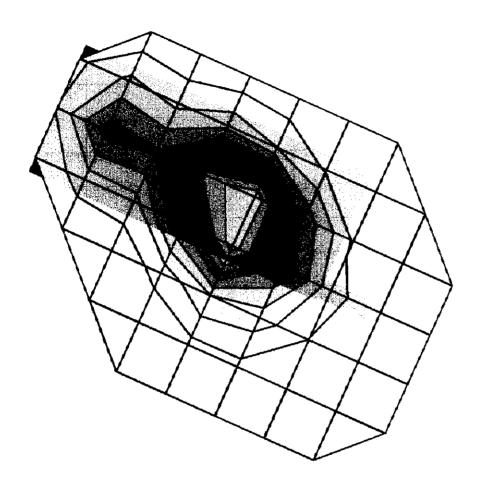
Powerdrift: -0.08 dB Coarse: Dx = 20.0, Dy - 20.0, Dz = 10.0



Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz: $\sigma = 1.85$ mho/m $\epsilon_r = 40.7$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 1.45 mW/g, SAR (10g): 0.836 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: 0.04 dB Generic Twin Phantom; Left Hand _X Section; Position: (80°,65°); Frequency: 1850 MHz

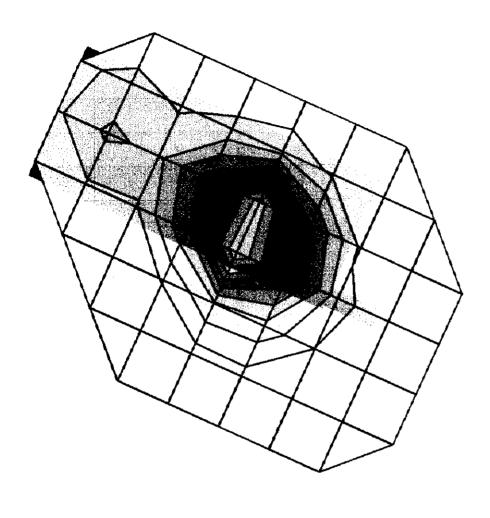


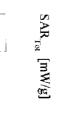

SAR_{Tot} [mW/g]

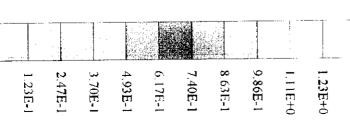

Generic Twin Phantom; Left Hand _X Section; Position: $(80^{\circ},65^{\circ})$; Frequency: 1880 MHz Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz; σ = 1.85 mho/m ϵ_r = 40.7 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 1.28 mW/g, SAR (10g): 0.740 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: 0.01 dB

Generic Twin Phantom; Left Hand _X Section; Position: $(80^{\circ},65^{\circ})$; Frequency: 1910 MHz Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz: $\sigma = 1.85$ mho/m $\epsilon_r = 40.7$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 1.17 mW/g, SAR (10g): 0.672 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.06 dB

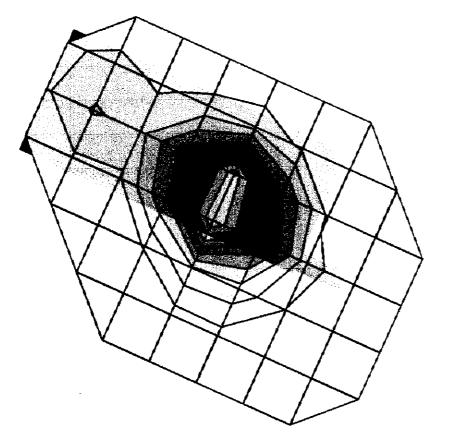
SAR_{lot} [mW/g]

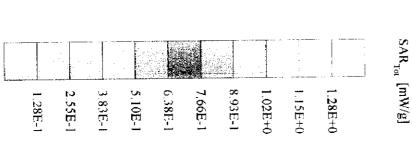

1.04E-1	2.08E-1	3.12E-1	4.16E-1	5.19E-1	6.23E-1	7.27E-1	8,31E-1	9.3 5E- 1	1,04E+0

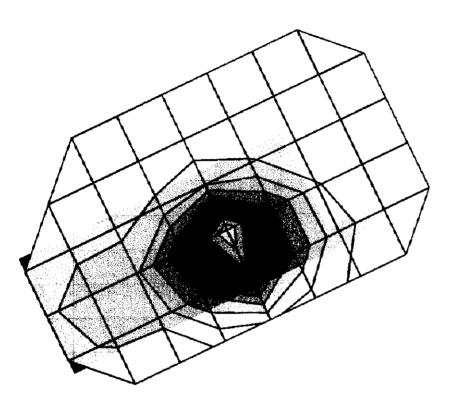

07/29/00

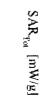

philips ozeo

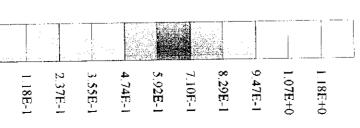
Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz: σ = 1.85 mho/m ϵ_r = 40.7 ρ = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 1.43 mW/g, SAR (10g): 0.792 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Generic Twin Phantom, Left Hand _X Section, Position: (80°,65°); Frequency: 1850 MHz


Powerdrift: -0.06 dB

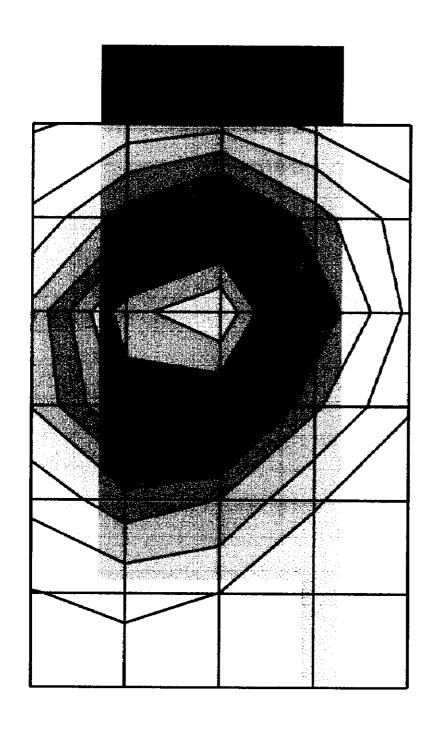


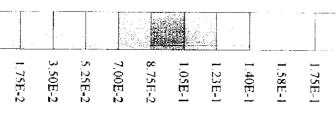

Generic Twin Phantom; Left Hand _X Section; Position: $(80^{\circ},65^{\circ})$; Frequency: 1850 MHz Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz: $\sigma = 1.85 \text{ mho/m} \, \epsilon_r = 40.7 \, \rho = 1.00 \, \text{g/cm}^3$ Cube 5x5x7: SAR (1g): 1.49 mW/g, SAR (10g): 0.824 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.05 dB



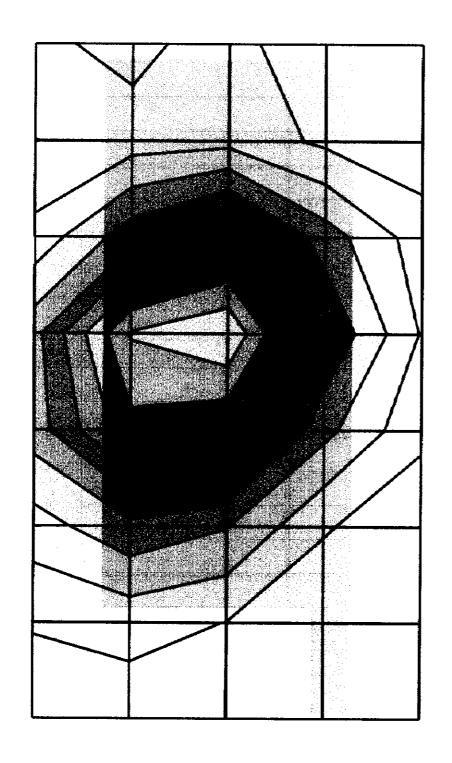


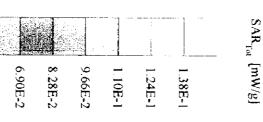
Probe: ET3DV5 - SN1333; ConvF(5 03,5.03,5.03); Crest factor: 3.0; Brain 1900 MHz: $\sigma = 1.85$ mho/m $\epsilon_r = 40.7 \, \rho - 1.00 \, g/cm^3$ Cube 5x5x7: SAR (1g): 1.24 mW/g, SAR (10g): 0.691 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Generic Twin Phantom; Right Hand Section; Position: (80°,65°); Frequency: 1850 MHz


Powerdrift: -0.06 dB



Generic Twin Phantom, Flat Section; Position: $(90^{\circ}, 90^{\circ})$; Frequency: 1850 MHz Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Muscle 1880 MHz: $\sigma = 1.57$ mho/m $\epsilon_r = 54.4$ p = 1.00 g/cm³ Cube 5x5x7: SAR (1g): 0.184 mW/g, SAR (10g): 0.110 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: -0.02 dB



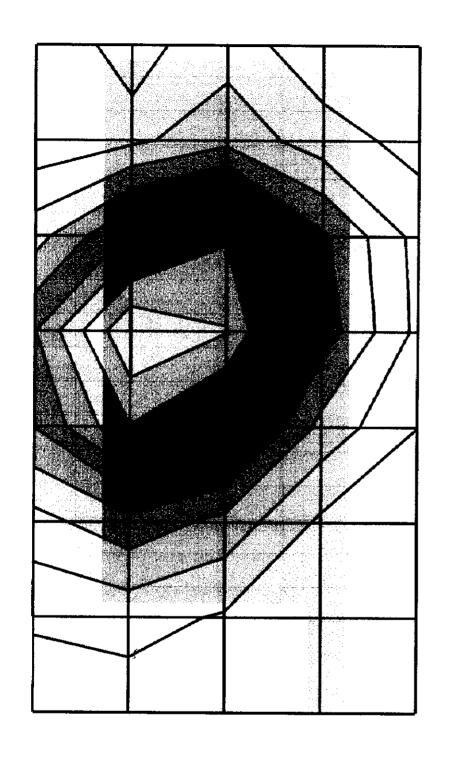


Generic Twin Phantom; Flat Section; Position: $(90^\circ, 90^\circ)$; Frequency: 1880 MHz: $\sigma = 1.57 \text{ mho/m} \text{ g}_r = 54.4 \text{ p} = 1.00 \text{ g/cm}^3$ Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Muscle 1880 MHz: $\sigma = 1.57 \text{ mho/m} \text{ g}_r = 54.4 \text{ p} = 1.00 \text{ g/cm}^3$ Cube 5x5x7: SAR (1g): 0.151 mW/g, SAR (10g): 0.0894 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

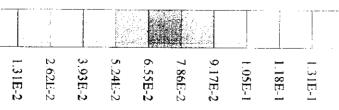
Powerdrift: -0.01 dB

Intertek Testing Services

2.76E-2

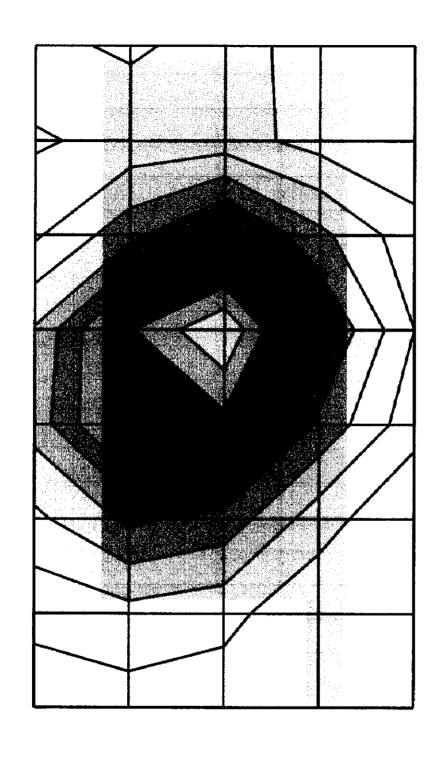

1.38E-2

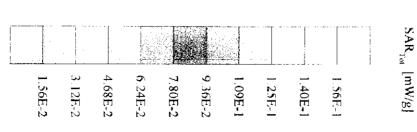
4.14E-2


5.52E-2

Generic Twin Phantom; Flat Section; Position: $(90^{\circ}, 90^{\circ})$; Frequency: 1910 MHz Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Muscle 1880 MHz; $\sigma = 1.57$ mho/m $\epsilon_r = 54.4 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.140 mW/g, SAR (10g): 0.0841 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

Powerdrift: -0.02 dB


Generic Twin Phantom; Flat Section; Position: (90°, 90°); Frequency: 1850 MHz


Probe: ET3DV5 - SN1333; ConvF(5.03,5.03,5.03); Crest factor: 3.0; Muscle 1880 MHz: $\sigma = 1.57$ mho/m $\epsilon_r = 54.4$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g), 0.175 mW/g, SAR (10g): 0.0926 mW/g * Max outside, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy \sim 20.0, Dz = 10.0

Powerdrift: -0.04 dB

Schmid & Partner Engineering AG

Staffelstrasse 8, 8045 Zurich, Switzerland, Telefon +41 1 280 08 60, Fax +41 1 280 08 64

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV5
Serial Number:	1333
Place of Calibration:	Zurich
Date of Calibration:	April 10, 2000
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich. Switzerland have been applied.

Calibrated by:	bliose Karja
Approved by:	C. E, j

Intertek Testing Services
Philips, OZEO Date of Test: 7/07-27/00

APPENDIX B - E-FIELD PROBE CALIBRATION DATA

See attached pages.

Schmid & Partner Engineering AG

Staffelstrasse 8, 8045 Zurich, Switzerland, Telefon +41 1 280 08 60, Fax +41 1 280 08 64

Probe ET3DV5

SN:1333

Manufactured:

December 20, 1997

Last calibration:

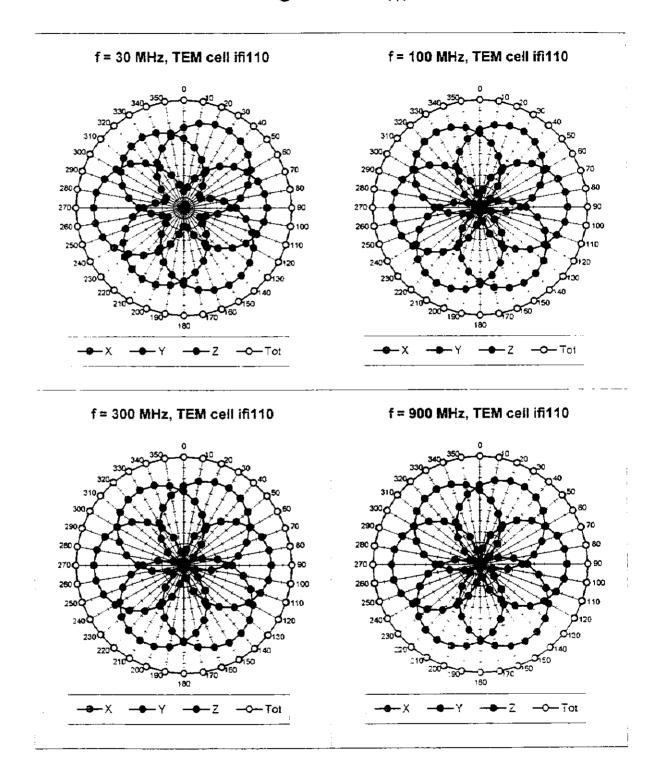
March 18, 1999

Recalibrated:

April 10, 2000

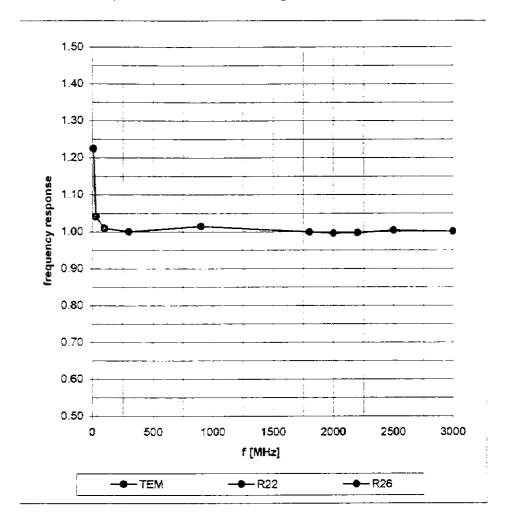
Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV5 SN:1333

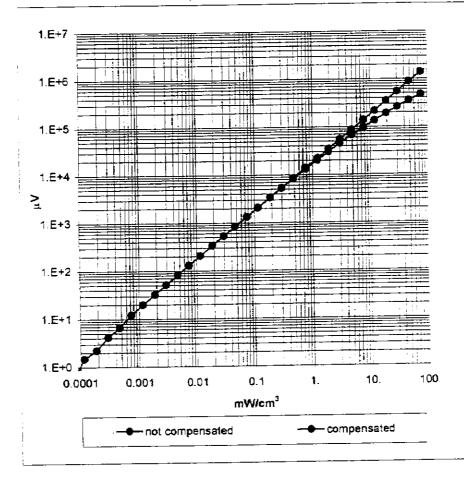

DAG 10 - 1 alalifetels of 1 10bc. E10b vo CN. 1000							
Sensitiv	vity in Free S	pace		Diode C	Compression		
	NormX 2.39		μ V/(V/m) ²		DCP X	100 mV	
			$\mu V/(V/m)^2$		DCP Y	100 mV	
	NormZ		μV/(V/m) ²		DCP Z	100 mV	
Sensitiv	vity in Tissue	Simu	ulating Liquid				
Brain	•		ε _r = 48 ± 5%		σ = 0.50 ± 10% mho/m		
			·				
	ConvF X		extrapolated		Boundary effect:		
	ConvF Y		extrapolated		Alpha	0.13	
	ConvF Z	6.03	extrapolated		Depth	3.57	
Вгаіл	Brain 900 MHz		$\epsilon_r = 42.5 \pm 5\%$ $\sigma = 0.86 \pm$		0.86 ± 10% mhc	e/m	
	ConvF X	5.70	± 7% (k=2)		Boundary effect:		
	ConvF Y	5.70	± 7% (k=2)		Alpha	0.34	
	ConvF Z	5.70	± 7% (k=2)		Depth	3.00	
Brain	1500 MHz		ε _τ = 41 ± 5%	σ=	1.32 ± 10% mhc	o/m	
	ConvF X	5.25	interpolated		Boundary effect:		
	ConvF Y	5.25	interpolated		Alpha	0.61	
	ConvF Z	5.25	interpolated		Depth	2.23	
Brain	Brain 1800 MHz		ε _τ = 41 ± 5%	σ=	σ = 1.69 ± 10% mho/m		
	ConvF X	5.03	± 7% (k=2)		Boundary effect:		
	ConvF Y	5.03	± 7% (k=2)		Alpha	0.74	
	ConvF Z	5.03	± 7% (k=2)		Depth	1.85	
Sensor	Offset						
	Probe Tip to Se	nsor Ce	enter	2.7	mm		

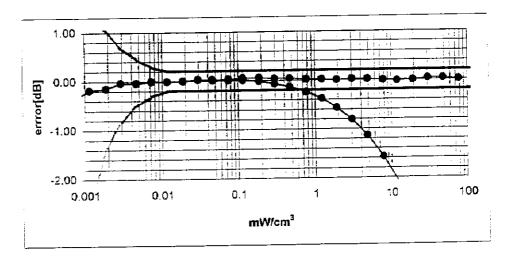
Optical Surface Detection

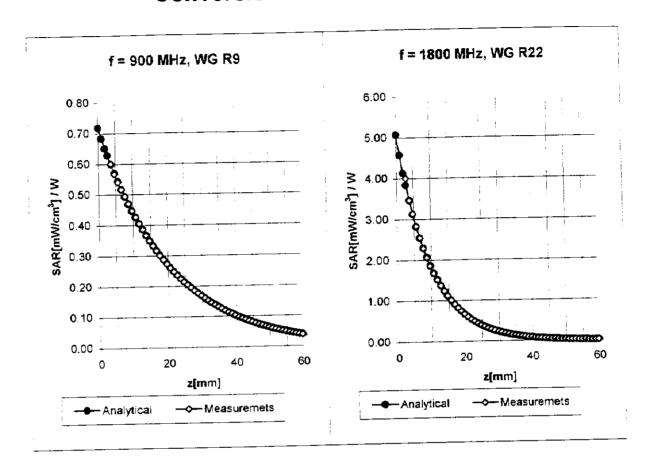
1.9 ± 0.2


mm

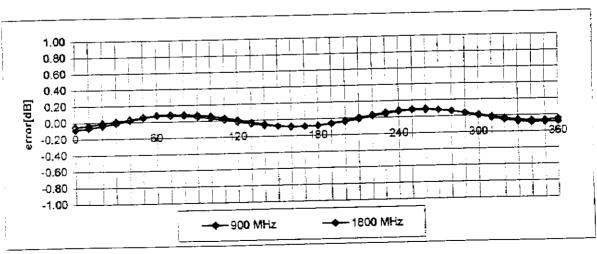
Receiving Pattern (ϕ), θ = 0°


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22, R26)


Dynamic Range f(SAR_{brain})

(TEM-Cell:ifi110)



Conversion Factor Assessment

Receiving Pattern (\$)

(in brain tissue, z = 5 mm)

