FCC TEST REPORT

For

Hena Digital Technology (Shenzhen) Co., Ltd.

Tablet PC with DVD player

Model No.: MD93

Additional Model No.: MD-93, MD92, MD-92, MD91, MD-91, PDT9000

Prepared for Address	:	Hena Digital Technology (Shenzhen) Co., Ltd. 3F, South Tower, Jiuzhou Electric Building, Southern No, 12Rd, High-tech Industrial Park, Nanshan District, Shenzhen, China
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an
Tel Fax Web Mail	::	District, Shenzhen, Guangdong, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report	: : :	March 09, 2017 1 Prototype March 09, 2017~March 24, 2017 March 24, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 59
 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: M7C-MD93

Report No.: LCS1703243375E

	FCC TEST REPORT				
FCC CFR 47 PART 15 C(15.247): 2016					
Report Reference No :	LCS1703243375E				
Date of Issue :	March 24, 2017				
Testing Laboratory Name :	Shenzhen LCS Compliance Testi	ng Laboratory Ltd.			
Address : Testing Location/ Procedure :	Bao'an District, Shenzhen, Guangd	ong, China dards ■			
Applicant's Name :	Hena Digital Technology (Shenzh	nen) Co., Ltd.			
Address: :	3F, South Tower, Jiuzhou Electric E High-tech Industrial Park, Nanshan	-			
Test Specification					
Standard: :	FCC CFR 47 PART 15 C(15.247): 2	2016			
Test Report Form No :	LCSEMC-1.0				
TRF Originator: :	Shenzhen LCS Compliance Testing	g Laboratory Ltd.			
Master TRF :	Dated 2011-03				
Shenzhen LCS Compliance Testing This publication may be reproduced i Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance assume liability for damages resulting placement and context.	n whole or in part for non-commercia aboratory Ltd. is acknowledged as c Testing Laboratory Ltd. takes no res	I purposes as long as the opyright owner and source of the ponsibility for and will not			
EUT Description :	Tablet PC with DVD player				
Trade Mark:	HENA, Polaroid				
Model/ Type reference :	MD93				
Ratings::	DC 3.7V by Lithium ion polymer bat Recharge Voltage: DC 5V/2A	tery (4000mAh)			
Result:	Positive				
Compiled by:	Supervised by:	Approved by:			
Aking Jin	Cash	Gravino Ling			
Aking Jin/ File administrators	Glin Lu/ Technique principal	Gavin Liang/ Manager			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 59

SHENZHEN LCS COMPLIANCE TESTING LABORATOR	Y LTD. FCC ID: M7C-MD93

FCC -- TEST REPORT

Test Report No. : LCS1703243375E

March 24, 2017 Date of issue

EUT	: Tablet PC with DVD player
Type / Model	: MD93
Applicant	:Hena Digital Technology (Shenzhen) Co., Ltd.
Address	3F, South Tower, Jiuzhou Electric Building, Southern No, 12Rd, High-tech Industrial Park, Nanshan District, Shenzhen, China
Telephone	: /
Fax	: /
Manufacturer	:Hena Digital Technology (Shenzhen) Co., Ltd.
Address	: 3F, South Tower, Jiuzhou Electric Building, Southern No, 12Rd,
	High-tech Industrial Park, Nanshan District, Shenzhen, China
Telephone	: /
Fax	: /
Factory	:Hena Digital Technology (Shenzhen) Co., Ltd.
Address	: 3F, South Tower, Jiuzhou Electric Building, Southern No, 12Rd,
	High-tech Industrial Park, Nanshan District, Shenzhen, China
Telephone	: /
Fax	: /

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

|--|

 FCC ID: M7C-MD93
 Report No.: LCS1703243375E

Revision History

Revision	Issue Date	Revisions	Revised By
00	March 24, 2017	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 59

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
 1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS 1.3. EXTERNAL I/O CABLE 	6
1.4. DESCRIPTION OF TEST FACILITY 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	7 7
1.6. MEASUREMENT UNCERTAINTY 1.7. DESCRIPTION OF TEST MODES	8
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION 2.2. EUT EXERCISE 2.3. GENERAL TEST PROCEDURES	9
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUT Exercise Software	.10
3.3. Special Accessories	. 10
3.4. BLOCK DIAGRAM/SCHEMATICS	. 10
3.5. Equipment Modifications	. 10
4. SUMMARY OF TEST RESULTS	
5. TEST RESULT	
5.1. ON TIME AND DUTY CYCLE	
5.2. Maximum Conducted Output Power Measurement 5.3. Power Spectral Density Measurement	
5.3. POWER SPECTRAL DENSITY MEASUREMENT	
5.5. RADIATED EMISSIONS MEASUREMENT.	
5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	. 40
5.7. AC POWER LINE CONDUCTED EMISSIONS	
5.8. Band-edge measurements for radiated emissions 5.9. Antenna Requirements	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS OF EUT	
8. EXTERIOR PHOTOGRAPHS OF THE EUT	50
9. INTERIOR PHOTOGRAPHS OF THE EUT	

AD93 Report No.:

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

···· = = = = = = = = = = = = = = = = =	
EUT	: Tablet PC with DVD player
Model Number	: MD93, MD-93, MD92, MD-92, MD91, MD-91, PDT9000
Model Declaration	: PCB board, structure and internal of these model(s) are the same, So no
	additional models were tested.
Test Model	: MD93
Hardware version	: 7500-MD7100-03R
Software version	: Ver.Wed Mar 15 11:56:56 CST 2017
Power Supply	: DC 3.7V by Lithium ion polymer battery (4000mAh)
	Recharge Voltage: DC 5V/2A
Bluetooth	: Supported BT 4.0
Operation frequency	: 2402MHz-2480MHz
Channel Spacing	: 1MHz for Bluetooth 4.0(DSS); 2MHz for Bluetooth 4.0(DTS);
Modulation Type	: GFSK,π/4DQPSK, 8DPSK for Bluetooth 4.0(DSS);
	GFSK for Bluetooth 4.0(DTS)
Bluetooth Version	: 4.0
Channel Number	: 79 Channels for Bluetooth 4.0(DSS);40 Channels for Bluetooth 4.0(DTS)
WLAN	: Supported 802.11b/802.11g/802.11n/802.11a
Operation frequency	: IEEE 802.11b:2412-2462MHz
	IEEE 802.11g:2412-2462MHz
	IEEE 802.11n HT20:2412-2462MHz/5150-5250MHz/5745-5850MHz
	IEEE 802.11n HT40:2422-2452MHz/5150-5250MHz/5745-5850MHz
	IEEE 802.11a:5150-5250MHz/5745-5850MHz
Modulation Type	: IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)
	IEEE 802.11a: OFDM (64QAM, 16QAM,QPSK,BPSK)
Channel Number	: 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20)
	7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40)
	4 Channels for 5180.00-5240.00MHz(802.11a/n-HT20)
	5 Channels for 5745.00-5825.00MHz(802.11a/n-HT20)
	2 Channels for 5190.00-5230.00MHz(802.11n-HT40)
	2 Channels for 5755.00-5795.00MHz(802.11n-HT40)
Antenna Type	: PIFA Antenna
Antenna Gain	:2.0dBi (Max.) For WIFI/BT
Extreme temp. Tolerance	: -15°C to +45°C
Extreme vol. Limits	: 3.30VDC to 4.20VDC (nominal: 3.70VDC)
GPS Function	: Supported and only RX

1.2. Host System Configuration List and Details

[Manufacturer	Description	Model	Serial Number	Certificate
	Shenzhen Bestgk Technology co., Ltd.	AC Adapter	NBS12E050 200HU		CE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 59

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
Micro USB Port	1	1.2m, unshielded
TF Card Slot	1	N/A
Earphone Jack	1	N/A

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be 802.11b mode (Low Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows: 802.11b Mode: 1 Mbps, DSSS. 802.11g Mode: 6 Mbps, OFDM. 802.11n Mode HT20: MCS0, OFDM. 802.11n Mode HT40: MCS7, OFDM.

Channel List & Frequency

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
2412~240210172	4	2427	10	2457
	5	2432	11	2462
	6	2437		

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1		7	2442
	2		8	2447
2422~2452MHz	3	2422	9	2452
	4	2427	10	
	5	2432	11	
	6	2437		

The test configuration of the test software shows as below:

Test mode	Channel No.	Frequency(MHz)	Software setting value
	1	2412	5
802.11b	6	2437	5
	11	2462	6
	1	2412	4
802.11g	6	2437	4
	11	2462	4
	1	2412	3
802.11n20	6	2437	3
	11	2462	3
	3	2422	2
802.11n40	6	2437	2
	9	2452	2

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 59

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v03r05 and KDB 662911 are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (Installed in the tablet PC) provided by application.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

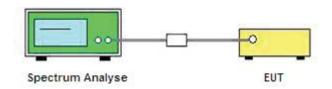
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C						
FCC Rules	FCC Rules Description of Test					
/	Duty Cycle	Compliant				
§15.247(b)	Maximum Conducted Output Power	Compliant				
§15.247(e)	Power Spectral Density	Compliant				
§15.247(a)(2)	6dB Bandwidth	Compliant				
§15.247(a)	Occupied Bandwidth	Compliant				
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant				
§15.205	Emissions at Restricted Band	Compliant				
§15.207(a)	Conducted Emissions	Compliant				
§15.203	Antenna Requirements	Compliant				
§15.247(i)§2.1093	RF Exposure	Compliant				

5. TEST RESULT

- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable


None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of the spectrum analyse.

5.1.3. Test Procedures

- 1. Set the centre frequency of the spectrum analyse to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
802.11b	5.0	5.0	1	100	0	0.01
802.11g	5.0	5.0	1	100	0	0.01
802.11n -HT20	5.0	5.0	1	100	0	0.01
802.11n -HT40	5.0	5.0	1	100	0	0.01

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.FCC ID: M7C-MD93

Report No.: LCS1703243375E

			Tes	st plot			July Oyon	0			
Agilent Spectrum Analyzer - Swept SA 20 RF 50 2 AC Ref Level 30.00 dBm	PNO: Fast ++ Trig: Free R	Avg Type: tun	alignauto 06:47: : Log-Pwr	57 PM Mar 17, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWWWWWW DET P N N N N N	Trace/Detector	Agilent Spectrum A XI Ref Level 30	.00 dBm	Fast ↔ Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	06:48:16 PM Mar 17, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWWWWWW DET P NN N N N	Trace/Detector
Ref Offset 0.5 dB 10 dB/div Ref 30.00 dBm Log	IFGain:Low Atten: 40 dE	3		DETIP NNNNN	Select Trace	10 dB/div Re	IFGai Offset 0.5 dB f 30.00 dBm	Atten: 40 dB		DET P NNNNN	Select Trace
20.0	Malana tulan ƙasar ƙasar ƙadalar	ell an geological and a film	have been and the second	/www.webstance.com	Clear Write	20.0 Uhlandyyyy	rizifashirburgifiyidadhirduyishi	erilgiðiðumstreniðaðiðurgyturið	1444-re14-11/181431-re1451714-1434	-pesilosilabel/howeversilabello	Clear Write
0.00					Trace Average	0.00					Trace Average
-10.0					Max Hold	-10.0					Max Hold
-40.0					Min Hold	-30.0					Min Hold
-50.0					View Blank Trace On	-50.0					View Blank Trace On
-80.0 Center 2.437000000 GHz				Span 0 Hz	More 1 of 3	-60.0 Center 2.4370	00000 GHz		_	Span 0 Hz	More 1 of 3
Res BW 8 MHz	#VBW 50 MHz		Sweep 5.000 m	s (1001 pts)		Res BW 8 MH	2	#VBW 50 MHz	STATU	5.000 ms (1001 pts) JS	
	80)2.11b						802	2.11g		
Agilent Spectrum Analyzer - Swept SA XI RF 150.9. AC Ref Level 30.00 dBm	PNO: Fast - Trig: Free R IFGain:Low Atten: 40 dE	Avg Type: tun	alignauto 06:47:0	33 PM Mar 17, 2017 TRACE 12 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Amplitude Ref Level	Agilent Spectrum A CAL R Ref Level 30	.00 dBm	Fast ↔ Trig: Free Run n:Low Atten: 40 dB	ALIGNAUTO Avg Type: Log-Pwr	06:47:32 PM Mar 17, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Trace/Detector
Ref Offset 0.5 dB 10 dB/div Ref 30.00 dBm					30.00 dBm	10 dB/div Re	Offset 0.5 dB f 30.00 dBm				1
					1						
20.0 hyperternet the second states and the second	uk kenoperateriseksen alteriseksen alte	Kapalarinstariationadioach	Antique also also also also also also also also	eset an the sector of	Attenuation [40 dB]	20.0	witherstation	adambarahindurah	man	ashadinasadaad	Clear Write
20.0 Hyp appinyte.ofHa refue.of. 10.0 0.00	มไปไขที่กฎพ น ักรับไป กับไขไม่ไม่ไปไม่ไปไป	Manapers of the other other of the other other of the other o	Astronomic and a series	4549,49,46,497-1		20.0	forther made of the first	ad 2 million of the second	vingulanalus-oluanaluso	Martin and Pred	Clear Write Trace Average
10.0		Haaverstorethowersk	Antopolisesta alexandr	4549.49.49.49.49.49.49.49.49.49.49.49.49.4	[40 dB] Scale/Div	20.0 10.0 WMR/WMR	1.0.246-0.192147(4 <u>11</u> 02	enter alle and a second and a	nymynegen har of en networ	p	
10.0 		Maxwerch.edu	/1/184046/v.4/4/v.4/4/	4/54(-4) ⁴ 587-692-7 	[40 dB] Scale/Div 10 dB Scale Type	20.0 10.0 4478,49-04. 0.00	1.0.486-0.1.8864714408	Antipologian (1990)	าราชุมารุษาราวมาก 		Trace Average
Unpatient vite Market vite			, кулария (кл. к.	**************************************	[40 dB] Scale/Div 10 dB Scale Type Log Lin	20.0 10.0 40.0 -20.0 -20.0 -30.0 -60.0 -50.0	(Trace Average Max Hold
International and the second				Span 0 Hz	[40 dB] Scale/Div 10 dB Scale Type Log Lin Presel Center Presel Adjust	20.0 10.0	00000 GHz			Span 0 Hz	Trace Average Max Hold Min Hold View Blank
Income Income<	ฟ. (กังกุญญา ค.ศ. 2014) 		λήλημη Αλλάς Αλληγού Αλλημη Αλλάς Αλληγού Αλληγο Αλληγού Αλληγο Αλληγού Αλληγο Αλιγο Αλληγο Αλληγο Αλληγο Αλιγ Αλογ Αλιγο Αλιγ Αλ	Span 0 Hz	[40 dB] Scale/Div 10 dB Scale Type Log Lin Presel Center Presel Adjust 0 H2 More	20.0 10.0 4753/47416 0.00 -10.0 -20.0 -20.0 -40.0 -50.0 -60.0	00000 GHz	#VBW 50 MHz		Span 0 Hz 5.000 ms (1001 pts)	Trace Average Max Hold Min Hold View Blank Trace On More

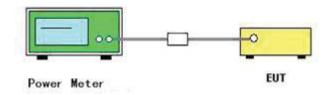
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 59

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.


5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Limits (dBm)	Verdict	
IEEE	1	2412	8.32			
802.11b	6	2437	8.26	≤30	PASS	
002.110	11	2462	8.38			
IEEE	1	2412	8.15			
802.11g	6	2437	8.21	≤30	PASS	
002.11g	11	2462	8.22			
IEEE	1	2412	8.15			
802.11n	6	2437	8.26	≤30	PASS	
HT20	11	2462	8.08			
IEEE	3	2422	7.45			
802.11n	6	2437	7.26	≤30	PASS	
HT40	9	2452	7.32			

Remark:

1.Measured output power at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

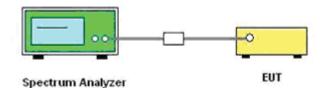
3.Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting


Please refer to section 6 of equipment's list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

- 3. Set the RBW = 100 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level shall not be great than 8dBm.
- 5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

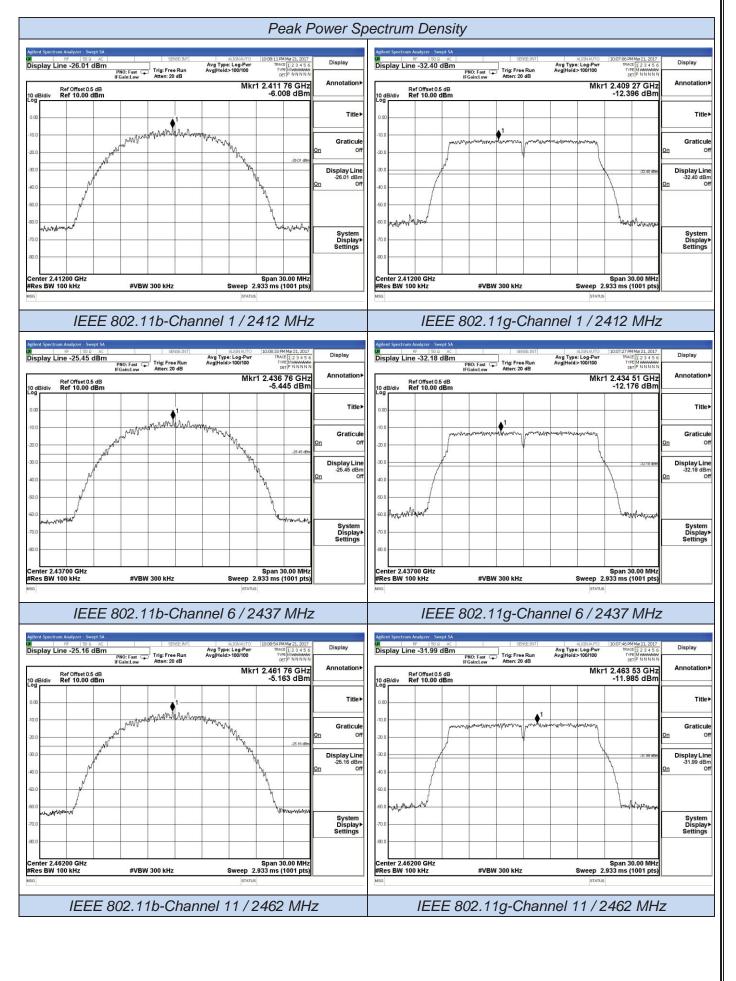
5.3.6. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Measured Peak Power Spectral Density (dBm/100KHz)	Limits (dBm/3KHz)	Verdict
IEEE	1	2412	-6.008		
802.11b	6	2437	-5.445	≪8	PASS
002.110	11	2462	-5.163		
IEEE	1	2412	-12.396		
802.11g	6	2437	-12.176	≪8	PASS
002.11g	11	2462	-11.985		
IEEE	1	2412	-12.008		
802.11n	6	2437	-11.887	≪8	PASS
HT20	11	2462	-11.511		
IEEE	3	2422	-15.348		
802.11n	6	2437	-14.866	≪8	PASS
HT40	9	2452	-14.705		

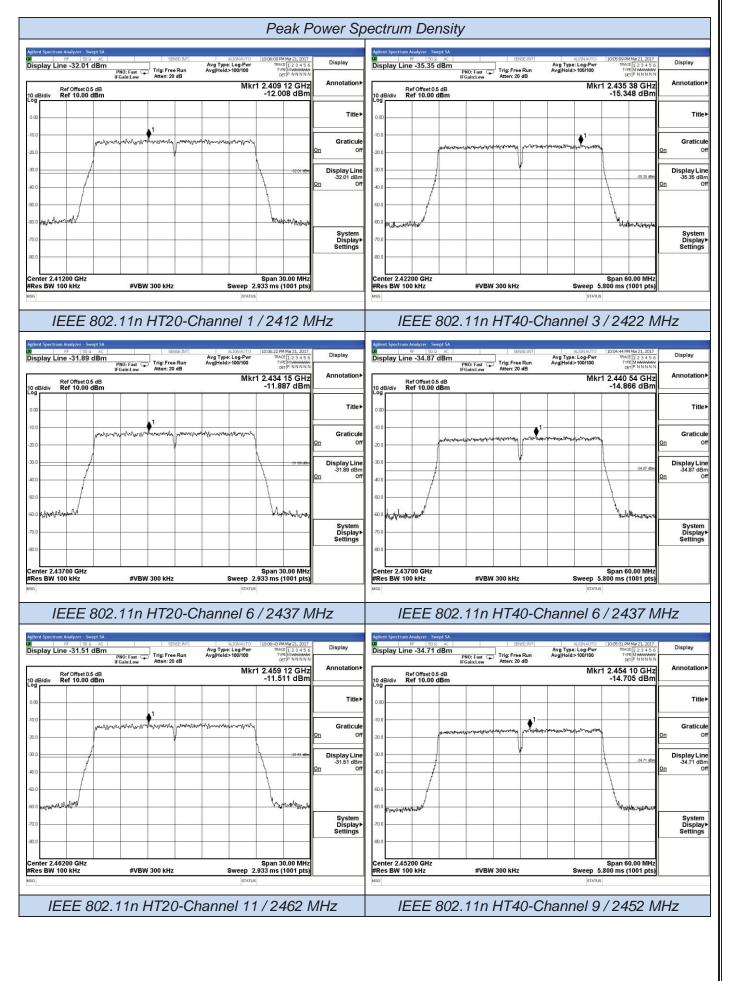
Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.


2. Test results including cable loss;

3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

4.please refer to following plots;


Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 59 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: M7C-MD93

Report No.: LCS1703243375E

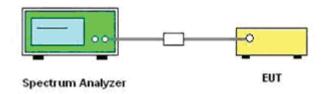
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 59

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting


Please refer to section 6 of equipment's list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report No.: LCS1703243375E

5.4.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	802.11b/g/n

Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limits (MHz)	Verdict
	1	2412	8.884		
IEEE 802.11b	6	2437	8.882	≥0.500	PASS
	11	2462	8.885		
	1	2412	16.39		PASS
IEEE 802.11g	6	2437	16.40	≥0.500	
	11	2462	16.39		
IEEE 802.11n	1	2412	17.61		
HT20	6	2437	17.60	≥0.500	PASS
	11	2462	17.60		
IEEE 002 11p	3	2422	36.34		
IEEE 802.11n HT40	6	2437	36.34	≥0.500	PASS
11140	9	2452	36.33		

Remark:

1.Measured output power at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

3.Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

4. please refer to following plots;

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: M7C-MD93

Report No.: LCS1703243375E

6 dB Ba	ndwidth
Addrest Spectrum Analyzer Occupied BW State: BVT ALISTAUTO IOS:17:12 PM Mar 17, 2017 Trace/Detector X dB - 6.00 dB Center Freq: 2.412000000 GHz Radio Std: None Trace/Detector #// # 50 a - AC Center Freq: 2.412000000 GHz Radio Std: None Trace/Detector #// # Gain:Low #// # Gain:Low Address Std: None Radio Device: BTS 10 dB/div Ref 20.00 dBm Frequencies Frequencies Frequencies	Auftent Spectrum Analyzer Occupied BW JI RF 50.0 SEMEDIATI ALSHAUTO 005.000.0 MMar17, 2017 Center Freq 2.41200000.0 GHz Center Freq: 2.41200000.0 GHz Radio Stdt: None Frequency #IF-Gain:Lew Frequency Atten: 20 dB Radio Device: BTS 10 dB/div Ref 20.00 dBm Frequency
Log Clear Write 100	Log 100 100 100 100 100 100 100 10
Center 2.412 GHz Span 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Occupied Bandwidth 12.409 MHz Detector Peak Transmit Freq Error 47.427 kHz OBW Power 99.00 % Man x dB Bandwidth 8.884 MHz x dB -6.00 dB Man	Center 2.412 GHz Span 30 MHz CF Step 3.00000 MHz Øccupied Bandwidth #VBW 300 kHz Sweep 3.733 ms Auto Man Occupied Bandwidth 16.370 MHz Freq Offset 0 Hz Freq Offset 0 Hz Freq Offset 0 Hz X dB Bandwidth 16.39 MHz x dB -6.00 dB Hz
IEEE 802.11b-Channel 1 / 2412 MHz	IEEE 802.11g-Channel 1 / 2412 MHz
Agient Spectrum Analyzer Occupied BW ALISHAUTO Occupied BW ALISHAUTO Occupied BW TraceIDetector Val NP SD AC SPISE_INIT ALISHAUTO Occupied BW TraceIDetector Center Freq 2.437000000 GHz Center Freq:2.43700000 GHz TraceIDetector TraceIDetector #IFGainLew #Atten: 20 dB Radio Device: BTS Radio Device: BTS	Agtent Spectrum Analyzer - Occupied BW BF 50 a AC SPECEINT AL391/JUTO 00619-42 PM Mrr 17, 2017 Center Freq 2.437000000 GHz Conter Freq: 2.43700000 GHz Radio Stdt: None BF Cainclow FAtten: 20 dB Radio Device: BTS
10 dB/div Ref 20.00 dBm	10 dB/div Ref 20.00 dBm
200	300 Average 300 MANANUMAN 400 MANANUMAN 600 MANANUMAN 600 MANANUMAN
70.0	Tool Span 30 MHz Center 2.437 GHz #VBW 300 kHz Sweep 3.733 ms #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms
Occupied Bandwidth 12.409 MHz Transmit Freq Error 55.774 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 8.882 MHz x dB -6.00 dB	Occupied Bandwidth 16.386 MHz Transmit Freq Error 2.241 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 16.40 MHz x dB -6.00 dB
IEEE 802.11b-Channel 6 / 2437 MHz	IEEE 802.11g-Channel 6 / 2437 MHz
Agint Spectrum Analyzer Oxcupied BW State State State State State Frequency Frequency Center Freq 2.46200000 GHz Center Freq 2.46200000 GHz Center Freq 2.46200000 GHz Radio Std: None Frequency #// FoainLow Free Run Avg Hold>10/10 Radio Device: BTS Frequency	Adient Seetrum Analyzer - Occupied BW Adient Seetrum Analyzer - Occupied BW Center Freq 2.4620000000 GHz #IFGain:Low #Atten: 20 dB Center Freq 2.462000000 Rz Freq 2.46200000 Rz Freq 2.4620000 Rz Freq 2.462000 Rz Freq 2.46200
10 dBdviv Ref 20.00 dBm Log 10 0 10 0	10 dB/div Ref 20.00 dBm
	800
Center 2.462 GHz Span 30 MHz CF Step 3.000000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Auto MHz Occupied Bandwidth 12.389 MHz Esco Offset Men	Center 2.462 GHz Span 30 MHz Span 30 MHz #VBW 300 kHz Sweep 3.733 ms Min Hold Occupied Bandwidth 16.394 MHz Detector
Transmit Freq Error 67.978 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 8.885 MHz x dB -6.00 dB	Transmit Freq Error 8.201 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 16.39 MHz x dB -6.00 dB
IEEE 802.11b-Channel 11 / 2462 MHz	IEEE 802.11g-Channel 11 / 2462 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 59

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: M7C-MD93

Report No.: LCS1703243375E

6 dB Ba	andwidth
Asterit Spectrum Analyzer Occupied BW 28/96/10/1 28/96/10/1 28/96/10/1 28/96/10/1 20/27/10/10/10/10/10/10/10/10/10/10/10/10/10/	Agtent Spectrum Analyzerin Occupied BW GENEE 1VII #LS018/17:0 008/22/94 MM tor 17, 2017 B 0
10 dB/div Ref 20.00 dBm	10 dB/dly Ref 20.00 dBm 60.000 MHz 100 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Image: Span 30 MHz Image: Span 30 MHz Image: Span 30 MHz Image: Span 30 MHz <th>Occupied Bandwidth</th>	Occupied Bandwidth
17.566 MHz Detector Peak Transmit Freq Error 15.049 kHz OBW Power 99.00 % x dB Bandwidth 17.61 MHz x dB -6.00 dB	35.858 MHz Transmit Freq Error 41.067 kHz OBW Power 99.00 % x dB Bandwidth 36.34 MHz x dB -6.00 dB
IEEE 802.11n HT20-Channel 1 / 2412 MHz	IEEE 802.11n HT40-Channel 3 / 2422 MHz
Agterst Spectrum Analyzer - Occupied DW Trace/Detector Trace/Detector Center Freq 2.43700000 OG Hz Frig: Free Run Avg Hold>10/10 Radio Device: BTS Trace/Detector	Andrent Spectnum Analyzer Occupied BW EX1016/17 AL1018/17 IO02250 IBM Mr 17, 2017 98 99.2 45 Center Freq:2,43700000 GHz Radio Std: None Trace/Detector Center Freq 2,43700000 GHz Canter Freq:2,43700000 GHz Trace/Detector #IFGainLow Freq:2,64700000 GHz Radio Device: BTS Trace/Detector
10 dB/div Ref 20.00 dBm	10 aBidiv Ref 20.00 dBm
	Average Average 000 0
700 Center 2.437 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Min Hold	TOD Span 60 MHz Center 2.437 GHz Span 60 MHz Files BWL 100 kHz
Occupied Bandwidth 17.560 MHz Transmit Freq Error 14.297 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 17.60 MHz x dB -6.00 dB	Occupied Bandwidth 35.859 MHz Transmit Freq Error 63.174 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 36.34 MHz x dB -6.00 dB
IEEE 802.11n HT20-Channel 6 / 2437 MHz	IEEE 802.11n HT40-Channel 6 / 2437 MHz
Agilent Spectrum Analyzer - Occupied BW Stree.INT ALIGNATIO (06/2140)PM Mr 17, 2017 Trace/Detector B RF 50.9 AC Center Freq 2.46200000 GHz Radio Skt. Nene Center Freq 2.4620000 GHz Center Freq 2.4620000 GHz Radio Skt. Nene Trace/Detector If Gaint.ew #Atten: 20 dB Radio Device: BTS Radio Device: BTS	Agtient Spectrum Analyzer Occupied BW SENSE:INT ALISHAUTO D022315 PM M# 17, 2017 Trace/Detector Center Freq 2.4520000000 GHz Center Freq: 2.452000000 GHz Center Freq: 2.452000000 GHz Radio Stat: None Trace/Detector #IFGein:Low #IFGein:Low #Atten: 20 dB Avg Hold>10/10 Radio Device: BTS 10 dB/div Ref 20.00 dBm Conter Freq: 2.45200000 GHz Freq: 2.452000000 GHz Freq: 2.452000000 GHz Freq: 2.452000000 GHz Radio Device: BTS
	Clear Write Clear Write Clear Write Average Clear Write Average
600	300
#Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Min Hold Occupied Bandwidth	#Res BW 100 kHz #VBW 300 kHz Sweep 7.467 ms Min Hold Occupied Bandwidth 35.859 MHz Detector
Transmit Freq Error 23.225 kHz OBW Power 99.00 % <u>Auto Man</u> x dB Bandwidth 17.60 MHz x dB -6.00 dB	Transmit Freq Error 65.069 kHz OBW Power 99.00 % <u>Auto Man</u> x dB Bandwidth 36.33 MHz x dB -6.00 dB
IEEE 802.11n HT20-Channel 11 / 2462 MHz	IEEE 802.11n HT40-Channel 9 / 2452 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 59

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110 \1\ 0.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2	399.9-410 608-614 960-1240 1300-1427 1435-1626.5 1645.5-1646.5 1660-1710	4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5 9.0-9.2 9.3-9.5 10.6-12.7
6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.366 8.37625-8.38675 8.41425-8.41475 12.29-12.293. 12.51975-12.52025 12.57675-12.57725 13.36-13.41	108-121.94 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285 322-335.4	1718.8-1722.2 2200-2300 2310-2390 2483.5-2500 2690-2900 3260-3267 3332-3339 3345.8-3358 3600-4400	13.25-13.4 14.47-14.5 15.35-16.2 17.7-21.4 22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 (\2\)

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

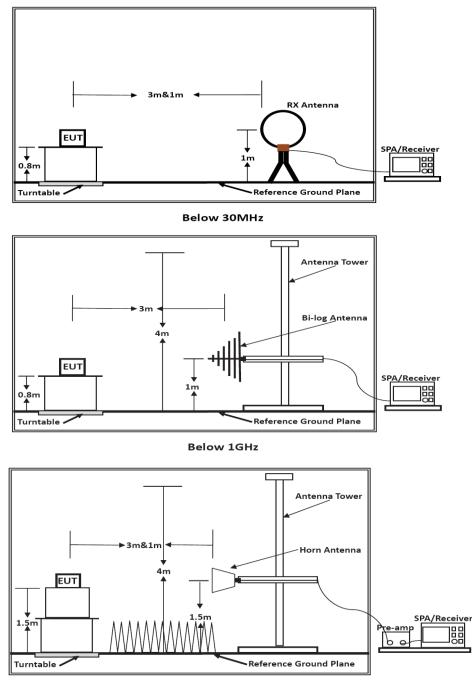
4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.5.4. Test Setup Layout

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 59

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	25°C	Humidty	60%	
Test Engineer	Jayden Zhuo	Configurations	802.11b/g/n	

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25°C	Humidty	60%	
Test Engineer	Jayden Zhuo	Configurations	802.11b (Low CH)	

Test result for 802.11b (Low Channel)

149.49

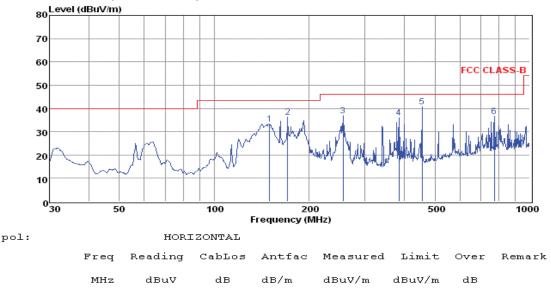
170.79

255.62

385.28

455.91

771.45


1 2

З

4

5

6

Note: 1. All readings are Quasi-peak values.

24.27

26.37

23.73

19.84

23.90

15.27

2. Measured= Reading + Antenna Factor + Cable Loss

0.86

0.80

1.02

1.32

1.39

1.63

3. The emission that ate 20db blow the offficial limit are not reported

8.26

9.03

12.06

14.71

15.58

19.70

33.39

36.20

36.81

35.87

40.87

36.60

43.50

43.50

46.00

46.00

46.00

46.00

-10.11

-7.30

-9.19

-5.13

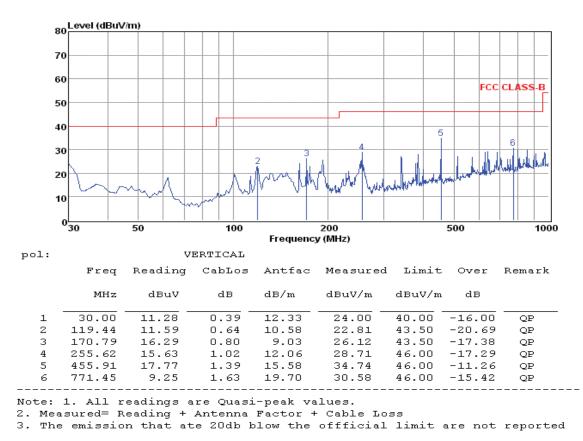
-9.40

-10.13

OP

OP

QP


QP

QP

QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 59

Report No.: LCS1703243375E

Note:

1). Pre-scan all mode and recorded the worst case results in this report (802.11b (Low Channel)). Emission level (dBuV/m) = 20 log Emission level (uV/m).

2). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

Please refer to the following page.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.FCC ID: M7C-MD93Report No.: LCS1703243375E

Above 1GHz

The result for 802.11b Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	54.56	33.3	36.44	7.68	59.10	74	-14.90	Peak	Horizontal
4824.00	40.74	33.3	36.44	7.68	45.28	54	-8.72	Average	Horizontal
4824.00	52.27	33.81	36.44	7.68	57.32	74	-16.68	Peak	Vertical
4824.00	40.12	33.81	36.44	7.68	45.17	54	-8.83	Average	Vertical
7236.00	47.85	36.87	35.28	9.32	58.76	74	-15.24	Peak	Horizontal
7236.00	35.74	36.87	35.28	9.32	46.65	54	-7.35	Average	Horizontal
7236.00	45.24	36.76	35.28	9.32	56.04	74	-17.96	Peak	Vertical
7236.00	33.75	36.76	35.28	9.32	44.55	54	-9.45	Average	Vertical
9648.00	41.62	38.01	35.32	9.98	54.29	74	-19.71	Peak	Horizontal
9648.00	29.16	38.01	35.32	9.98	41.83	54	-12.17	Average	Horizontal
9648.00	41.68	37.73	35.32	9.98	54.07	74	-19.93	Peak	Vertical
9648.00	31.02	37.73	35.32	9.98	43.41	54	-10.59	Average	Vertical
12060.00	45.37	36.52	35.37	10.22	56.74	74	-17.26	Peak	Horizontal
12060.00	32.00	36.52	35.37	10.22	43.37	54	-10.63	Average	Horizontal
12060.00	40.12	36.53	35.37	10.22	51.50	74	-22.50	Peak	Vertical
12060.00	32.08	36.53	35.37	10.22	43.46	54	-10.54	Average	Vertical
14472.00	38.56	40.34	35.66	10.34	53.58	74	-20.42	Peak	Horizontal
14472.00	26.17	40.34	35.66	10.34	41.19	54	-12.81	Average	Horizontal
14472.00	37.74	40.16	35.66	10.34	52.58	74	-21.42	Peak	Vertical
14472.00	23.92	40.16	35.66	10.34	38.76	54	-15.24	Average	Vertical
16884.00	39.03	38.02	35.25	10.70	52.50	74	-21.50	Peak	Horizontal
16884.00	24.12	38.02	35.25	10.70	37.59	54	-16.41	Average	Horizontal
16884.00	39.04	37.93	35.25	10.70	52.42	74	-21.58	Peak	Vertical
16884.00	24.81	37.93	35.25	10.70	38.19	54	-15.81	Average	Vertical

The result for 802.11b Channel 6 / 2437MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	54.33	33.3	36.44	7.68	58.87	74	-15.13	Peak	Horizontal
4874.00	39.54	33.3	36.44	7.68	44.08	54	-9.92	Average	Horizontal
4874.00	53.29	33.46	36.44	7.68	57.99	74	-16.01	Peak	Vertical
4874.00	41.64	33.46	36.44	7.68	46.34	54	-7.66	Average	Vertical
7311.00	47.97	36.92	35.12	9.36	59.13	74	-14.87	Peak	Horizontal
7311.00	34.94	36.92	35.12	9.36	46.10	54	-7.90	Average	Horizontal
7311.00	44.70	36.75	35.12	9.36	55.69	74	-18.31	Peak	Vertical
7311.00	32.82	36.75	35.12	9.36	43.81	54	-10.19	Average	Vertical
9748.00	41.88	38.06	35.22	10.01	54.73	74	-19.27	Peak	Horizontal
9748.00	29.28	38.06	35.22	10.01	42.13	54	-11.87	Average	Horizontal
9748.00	41.87	38.02	35.22	10.01	54.68	74	-19.32	Peak	Vertical
9748.00	30.66	38.02	35.22	10.01	43.47	54	-10.53	Average	Vertical
12185.00	45.56	36.52	35.37	10.22	56.93	74	-17.07	Peak	Horizontal
12185.00	30.57	36.52	35.37	10.22	41.94	54	-12.06	Average	Horizontal
12185.00	39.51	36.68	35.37	10.22	51.04	74	-22.96	Peak	Vertical
12185.00	32.86	36.68	35.37	10.22	44.39	54	-9.61	Average	Vertical
14622.00	38.66	40.34	35.66	10.34	53.68	74	-20.32	Peak	Horizontal
14622.00	25.04	40.34	35.66	10.34	40.06	54	-13.94	Average	Horizontal
14622.00	38.32	40.27	35.66	10.34	53.27	74	-20.73	Peak	Vertical
14622.00	22.83	40.27	35.66	10.34	37.78	54	-16.22	Average	Vertical
17059.00	38.01	40.11	35.05	11.00	54.07	74	-19.93	Peak	Horizontal
17059.00	24.00	40.11	35.05	11.00	40.06	54	-13.94	Average	Horizontal
17059.00	37.96	40.00	35.05	11.00	53.91	74	-20.09	Peak	Vertical
17059.00	25.35	40.00	35.05	11.00	41.30	54	-12.70	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 59

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	54.17	33.55	36.41	7.74	59.05	74	-14.95	Peak	Horizontal
4924.00	41.06	33.55	36.41	7.74	45.94	54	-8.06	Average	Horizontal
4924.00	53.25	33.43	36.41	7.74	58.01	74	-15.99	Peak	Vertical
4924.00	40.04	33.43	36.41	7.74	44.80	54	-9.20	Average	Vertical
7386.00	48.31	36.92	35.12	9.36	59.47	74	-14.53	Peak	Horizontal
7386.00	35.85	36.92	35.12	9.36	47.01	54	-6.99	Average	Horizontal
7386.00	45.23	37.04	35.12	9.36	56.51	74	-17.49	Peak	Vertical
7386.00	34.01	37.04	35.12	9.36	45.29	54	-8.71	Average	Vertical
9848.00	41.77	38.11	35.12	10.04	54.80	74	-19.20	Peak	Horizontal
9848.00	29.26	38.11	35.12	10.04	42.29	54	-11.71	Average	Horizontal
9848.00	42.68	38.13	35.12	10.04	55.73	74	-18.27	Peak	Vertical
9848.00	29.72	38.13	35.12	10.04	42.77	54	-11.23	Average	Vertical
12310.00	43.80	36.52	35.37	10.22	55.17	74	-18.83	Peak	Horizontal
12310.00	31.56	36.52	35.37	10.22	42.93	54	-11.07	Average	Horizontal
12310.00	40.14	36.57	35.37	10.22	51.56	74	-22.44	Peak	Vertical
12310.00	32.30	36.57	35.37	10.22	43.72	54	-10.28	Average	Vertical
14772.00	38.79	40.34	35.66	10.34	53.81	74	-20.19	Peak	Horizontal
14772.00	25.71	40.34	35.66	10.34	40.73	54	-13.27	Average	Horizontal
14772.00	36.79	40.16	35.66	10.34	51.63	74	-22.37	Peak	Vertical
14772.00	23.58	40.16	35.66	10.34	38.42	54	-15.58	Average	Vertical
17234.00	37.37	40.11	35.05	11.00	53.43	74	-20.57	Peak	Horizontal
17234.00	25.25	40.11	35.05	11.00	41.31	54	-12.69	Average	Horizontal
17234.00	38.14	39.86	35.05	11.00	53.95	74	-20.05	Peak	Vertical
17234.00	25.60	39.86	35.05	11.00	41.41	54	-12.59	Average	Vertical

The result for 802.11b Channel 11 / 2462MHz

The result for 802.11g Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	54.42	33.3	36.44	7.68	58.96	74	-15.04	Peak	Horizontal
4824.00	39.87	33.3	36.44	7.68	44.41	54	-9.59	Average	Horizontal
4824.00	53.09	33.81	36.44	7.68	58.14	74	-15.86	Peak	Vertical
4824.00	40.54	33.81	36.44	7.68	45.59	54	-8.41	Average	Vertical
7236.00	47.91	36.87	35.28	9.32	58.82	74	-15.18	Peak	Horizontal
7236.00	35.68	36.87	35.28	9.32	46.59	54	-7.41	Average	Horizontal
7236.00	46.00	36.76	35.28	9.32	56.80	74	-17.20	Peak	Vertical
7236.00	32.85	36.76	35.28	9.32	43.65	54	-10.35	Average	Vertical
9648.00	41.73	38.01	35.32	9.98	54.40	74	-19.60	Peak	Horizontal
9648.00	29.93	38.01	35.32	9.98	42.60	54	-11.40	Average	Horizontal
9648.00	41.72	37.73	35.32	9.98	54.11	74	-19.89	Peak	Vertical
9648.00	30.68	37.73	35.32	9.98	43.07	54	-10.93	Average	Vertical
12060.00	44.95	36.52	35.37	10.22	56.32	74	-17.68	Peak	Horizontal
12060.00	31.87	36.52	35.37	10.22	43.24	54	-10.76	Average	Horizontal
12060.00	39.65	36.53	35.37	10.22	51.03	74	-22.97	Peak	Vertical
12060.00	32.55	36.53	35.37	10.22	43.93	54	-10.07	Average	Vertical
14472.00	38.85	40.34	35.66	10.34	53.87	74	-20.13	Peak	Horizontal
14472.00	26.57	40.34	35.66	10.34	41.59	54	-12.41	Average	Horizontal
14472.00	36.57	40.16	35.66	10.34	51.41	74	-22.59	Peak	Vertical
14472.00	23.57	40.16	35.66	10.34	38.41	54	-15.59	Average	Vertical
16884.00	38.39	38.02	35.25	10.70	51.86	74	-22.14	Peak	Horizontal
16884.00	25.08	38.02	35.25	10.70	38.55	54	-15.45	Average	Horizontal
16884.00	37.75	37.93	35.25	10.70	51.13	74	-22.87	Peak	Vertical
16884.00	25.30	37.93	35.25	10.70	38.68	54	-15.32	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 59

Report No.: LCS1703243375E

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	54.76	33.30	36.44	7.68	59.30	74	-14.70	Peak	Horizontal
4874.00	39.93	33.30	36.44	7.68	44.47	54	-9.53	Average	Horizontal
4874.00	52.94	33.46	36.44	7.68	57.64	74	-16.36	Peak	Vertical
4874.00	40.38	33.46	36.44	7.68	45.08	54	-8.92	Average	Vertical
7311.00	47.98	36.92	35.12	9.36	59.14	74	-14.86	Peak	Horizontal
7311.00	35.88	36.92	35.12	9.36	47.04	54	-6.96	Average	Horizontal
7311.00	45.40	36.75	35.12	9.36	56.39	74	-17.61	Peak	Vertical
7311.00	32.42	36.75	35.12	9.36	43.41	54	-10.59	Average	Vertical
9748.00	41.72	38.06	35.22	10.01	54.57	74	-19.43	Peak	Horizontal
9748.00	30.59	38.06	35.22	10.01	43.44	54	-10.56	Average	Horizontal
9748.00	41.46	38.02	35.22	10.01	54.27	74	-19.73	Peak	Vertical
9748.00	29.74	38.02	35.22	10.01	42.55	54	-11.45	Average	Vertical
12185.00	45.17	36.52	35.37	10.22	56.54	74	-17.46	Peak	Horizontal
12185.00	30.59	36.52	35.37	10.22	41.96	54	-12.04	Average	Horizontal
12185.00	40.54	36.68	35.37	10.22	52.07	74	-21.93	Peak	Vertical
12185.00	32.83	36.68	35.37	10.22	44.36	54	-9.64	Average	Vertical
14622.00	37.88	40.34	35.66	10.34	52.90	74	-21.10	Peak	Horizontal
14622.00	25.31	40.34	35.66	10.34	40.33	54	-13.67	Average	Horizontal
14622.00	38.20	40.27	35.66	10.34	53.15	74	-20.85	Peak	Vertical
14622.00	23.97	40.27	35.66	10.34	38.92	54	-15.08	Average	Vertical
17059.00	37.54	40.11	35.05	11.00	53.60	74	-20.40	Peak	Horizontal
17059.00	25.50	40.11	35.05	11.00	41.56	54	-12.44	Average	Horizontal
17059.00	38.27	40.00	35.05	11.00	54.22	74	-19.78	Peak	Vertical
17059.00	24.70	40.00	35.05	11.00	40.65	54	-13.35	Average	Vertical

The result for 802.11g Channel 6 / 2437MHz

The result for 802.11g Channel 11 / 2462MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	54.81	33.55	36.41	7.74	59.69	74	-14.31	Peak	Horizontal
4924.00	39.34	33.55	36.41	7.74	44.22	54	-9.78	Average	Horizontal
4924.00	53.38	33.43	36.41	7.74	58.14	74	-15.86	Peak	Vertical
4924.00	40.51	33.43	36.41	7.74	45.27	54	-8.73	Average	Vertical
7386.00	48.59	36.92	35.12	9.36	59.75	74	-14.25	Peak	Horizontal
7386.00	34.99	36.92	35.12	9.36	46.15	54	-7.85	Average	Horizontal
7386.00	45.81	37.04	35.12	9.36	57.09	74	-16.91	Peak	Vertical
7386.00	33.33	37.04	35.12	9.36	44.61	54	-9.39	Average	Vertical
9848.00	42.08	38.11	35.12	10.04	55.11	74	-18.89	Peak	Horizontal
9848.00	30.07	38.11	35.12	10.04	43.10	54	-10.90	Average	Horizontal
9848.00	42.10	38.13	35.12	10.04	55.15	74	-18.85	Peak	Vertical
9848.00	30.72	38.13	35.12	10.04	43.77	54	-10.23	Average	Vertical
12310.00	45.05	36.52	35.37	10.22	56.42	74	-17.58	Peak	Horizontal
12310.00	30.67	36.52	35.37	10.22	42.04	54	-11.96	Average	Horizontal
12310.00	40.78	36.57	35.37	10.22	52.20	74	-21.80	Peak	Vertical
12310.00	32.07	36.57	35.37	10.22	43.49	54	-10.51	Average	Vertical
14772.00	38.23	40.34	35.66	10.34	53.25	74	-20.75	Peak	Horizontal
14772.00	25.99	40.34	35.66	10.34	41.01	54	-12.99	Average	Horizontal
14772.00	37.88	40.16	35.66	10.34	52.72	74	-21.28	Peak	Vertical
14772.00	23.99	40.16	35.66	10.34	38.83	54	-15.17	Average	Vertical
17234.00	37.43	40.11	35.05	11.00	53.49	74	-20.51	Peak	Horizontal
17234.00	24.64	40.11	35.05	11.00	40.70	54	-13.30	Average	Horizontal
17234.00	37.73	39.86	35.05	11.00	53.54	74	-20.46	Peak	Vertical
17234.00	24.64	39.86	35.05	11.00	40.45	54	-13.55	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 59

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	54.11	33.3	36.44	7.68	58.65	74	-15.35	Peak	Horizontal
4824.00	39.74	33.3	36.44	7.68	44.28	54	-9.72	Average	Horizontal
4824.00	51.79	33.81	36.44	7.68	56.84	74	-17.16	Peak	Vertical
4824.00	41.25	33.81	36.44	7.68	46.30	54	-7.70	Average	Vertical
7236.00	48.60	36.87	35.28	9.32	59.51	74	-14.49	Peak	Horizontal
7236.00	35.87	36.87	35.28	9.32	46.78	54	-7.22	Average	Horizontal
7236.00	45.72	36.76	35.28	9.32	56.52	74	-17.48	Peak	Vertical
7236.00	33.74	36.76	35.28	9.32	44.54	54	-9.46	Average	Vertical
9648.00	41.13	38.01	35.32	9.98	53.80	74	-20.20	Peak	Horizontal
9648.00	30.95	38.01	35.32	9.98	43.62	54	-10.38	Average	Horizontal
9648.00	41.77	37.73	35.32	9.98	54.16	74	-19.84	Peak	Vertical
9648.00	30.90	37.73	35.32	9.98	43.29	54	-10.71	Average	Vertical
12060.00	44.89	36.52	35.37	10.22	56.26	74	-17.74	Peak	Horizontal
12060.00	30.91	36.52	35.37	10.22	42.28	54	-11.72	Average	Horizontal
12060.00	40.38	36.53	35.37	10.22	51.76	74	-22.24	Peak	Vertical
12060.00	32.20	36.53	35.37	10.22	43.58	54	-10.42	Average	Vertical
14472.00	37.71	40.34	35.66	10.34	52.73	74	-21.27	Peak	Horizontal
14472.00	26.68	40.34	35.66	10.34	41.70	54	-12.30	Average	Horizontal
14472.00	37.97	40.16	35.66	10.34	52.81	74	-21.19	Peak	Vertical
14472.00	22.70	40.16	35.66	10.34	37.54	54	-16.46	Average	Vertical
16884.00	37.27	38.02	35.25	10.70	50.74	74	-23.26	Peak	Horizontal
16884.00	25.48	38.02	35.25	10.70	38.95	54	-15.05	Average	Horizontal
16884.00	38.85	37.93	35.25	10.70	52.23	74	-21.77	Peak	Vertical
16884.00	24.31	37.93	35.25	10.70	37.69	54	-16.31	Average	Vertical

The result for 802.11n HT20 Channel 1 / 2412MHz

The result for 802.11n HT20 Channel 6 / 2437MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	53.98	33.3	36.44	7.68	58.52	74	-15.48	Peak	Horizontal
4874.00	39.48	33.3	36.44	7.68	44.02	54	-9.98	Average	Horizontal
4874.00	52.30	33.46	36.44	7.68	57.00	74	-17.00	Peak	Vertical
4874.00	40.87	33.46	36.44	7.68	45.57	54	-8.43	Average	Vertical
7311.00	48.99	36.92	35.12	9.36	60.15	74	-13.85	Peak	Horizontal
7311.00	36.31	36.92	35.12	9.36	47.47	54	-6.53	Average	Horizontal
7311.00	45.65	36.75	35.12	9.36	56.64	74	-17.36	Peak	Vertical
7311.00	33.27	36.75	35.12	9.36	44.26	54	-9.74	Average	Vertical
9748.00	41.29	38.06	35.22	10.01	54.14	74	-19.86	Peak	Horizontal
9748.00	29.47	38.06	35.22	10.01	42.32	54	-11.68	Average	Horizontal
9748.00	41.97	38.02	35.22	10.01	54.78	74	-19.22	Peak	Vertical
9748.00	30.51	38.02	35.22	10.01	43.32	54	-10.68	Average	Vertical
12185.00	44.84	36.52	35.37	10.22	56.21	74	-17.79	Peak	Horizontal
12185.00	30.90	36.52	35.37	10.22	42.27	54	-11.73	Average	Horizontal
12185.00	39.57	36.68	35.37	10.22	51.10	74	-22.90	Peak	Vertical
12185.00	32.68	36.68	35.37	10.22	44.21	54	-9.79	Average	Vertical
14622.00	37.90	40.34	35.66	10.34	52.92	74	-21.08	Peak	Horizontal
14622.00	25.74	40.34	35.66	10.34	40.76	54	-13.24	Average	Horizontal
14622.00	37.84	40.27	35.66	10.34	52.79	74	-21.21	Peak	Vertical
14622.00	24.05	40.27	35.66	10.34	39.00	54	-15.00	Average	Vertical
17059.00	38.40	40.11	35.05	11.00	54.46	74	-19.54	Peak	Horizontal
17059.00	24.32	40.11	35.05	11.00	40.38	54	-13.62	Average	Horizontal
17059.00	37.15	40	35.05	11.00	53.10	74	-20.90	Peak	Vertical
17059.00	25.41	40	35.05	11.00	41.36	54	-12.64	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 59

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	54.37	33.55	36.41	7.74	59.25	74	-14.75	Peak	Horizontal
4924.00	39.68	33.55	36.41	7.74	44.56	54	-9.44	Average	Horizontal
4924.00	52.89	33.43	36.41	7.74	57.65	74	-16.35	Peak	Vertical
4924.00	40.30	33.43	36.41	7.74	45.06	54	-8.94	Average	Vertical
7386.00	48.62	36.92	35.12	9.36	59.78	74	-14.22	Peak	Horizontal
7386.00	35.87	36.92	35.12	9.36	47.03	54	-6.97	Average	Horizontal
7386.00	44.47	37.04	35.12	9.36	55.75	74	-18.25	Peak	Vertical
7386.00	33.82	37.04	35.12	9.36	45.10	54	-8.90	Average	Vertical
9848.00	42.71	38.11	35.12	10.04	55.74	74	-18.26	Peak	Horizontal
9848.00	30.17	38.11	35.12	10.04	43.20	54	-10.80	Average	Horizontal
9848.00	42.84	38.13	35.12	10.04	55.89	74	-18.11	Peak	Vertical
9848.00	30.80	38.13	35.12	10.04	43.85	54	-10.15	Average	Vertical
12310.00	44.79	36.52	35.37	10.22	56.16	74	-17.84	Peak	Horizontal
12310.00	31.00	36.52	35.37	10.22	42.37	54	-11.63	Average	Horizontal
12310.00	39.40	36.57	35.37	10.22	50.82	74	-23.18	Peak	Vertical
12310.00	31.40	36.57	35.37	10.22	42.82	54	-11.18	Average	Vertical
14772.00	38.88	40.34	35.66	10.34	53.90	74	-20.10	Peak	Horizontal
14772.00	26.37	40.34	35.66	10.34	41.39	54	-12.61	Average	Horizontal
14772.00	37.52	40.16	35.66	10.34	52.36	74	-21.64	Peak	Vertical
14772.00	23.44	40.16	35.66	10.34	38.28	54	-15.72	Average	Vertical
17234.00	38.55	40.11	35.05	11.00	54.61	74	-19.39	Peak	Horizontal
17234.00	24.47	40.11	35.05	11.00	40.53	54	-13.47	Average	Horizontal
17234.00	39.07	39.86	35.05	11.00	54.88	74	-19.12	Peak	Vertical
17234.00	24.90	39.86	35.05	11.00	40.71	54	-13.29	Average	Vertical

The result for 802.11n HT20 Channel 11 / 2462MHz

The result for 802.11n HT40 Channel 3 / 2422MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4844.00	54.55	33.30	36.44	7.68	59.09	74	-14.91	Peak	Horizontal
4844.00	39.45	33.30	36.44	7.68	43.99	54	-10.01	Average	Horizontal
4844.00	51.84	33.10	36.44	7.68	56.18	74	-17.82	Peak	Vertical
4844.00	41.83	33.10	36.44	7.68	46.17	54	-7.83	Average	Vertical
7266.00	49.61	36.87	35.28	9.32	60.52	74	-13.48	Peak	Horizontal
7266.00	34.51	36.87	35.28	9.32	45.42	54	-8.58	Average	Horizontal
7266.00	44.68	36.71	35.28	9.32	55.43	74	-18.57	Peak	Vertical
7266.00	33.59	36.71	35.28	9.32	44.34	54	-9.66	Average	Vertical
9688.00	42.19	38.01	35.32	9.98	54.86	74	-19.14	Peak	Horizontal
9688.00	30.84	38.01	35.32	9.98	43.51	54	-10.49	Average	Horizontal
9688.00	41.87	37.97	35.32	9.98	54.50	74	-19.50	Peak	Vertical
9688.00	29.46	37.97	35.32	9.98	42.09	54	-11.91	Average	Vertical
12110.00	44.92	36.52	35.37	10.22	56.29	74	-17.71	Peak	Horizontal
12110.00	31.64	36.52	35.37	10.22	43.01	54	-10.99	Average	Horizontal
12110.00	40.09	36.52	35.37	10.22	51.46	74	-22.54	Peak	Vertical
12110.00	32.69	36.52	35.37	10.22	44.06	54	-9.94	Average	Vertical
14532.00	37.78	40.34	35.66	10.34	52.80	74	-21.20	Peak	Horizontal
14532.00	25.43	40.34	35.66	10.34	40.45	54	-13.55	Average	Horizontal
14532.00	36.61	40.52	35.66	10.34	51.81	74	-22.19	Peak	Vertical
14532.00	23.86	40.52	35.66	10.34	39.06	54	-14.94	Average	Vertical
16954.00	37.34	38.02	35.25	10.70	50.81	74	-23.19	Peak	Horizontal
16954.00	24.85	38.02	35.25	10.70	38.32	54	-15.68	Average	Horizontal
16954.00	38.58	37.93	35.25	10.70	51.96	74	-22.04	Peak	Vertical
16954.00	25.07	37.93	35.25	10.70	38.45	54	-15.55	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 59

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	54.20	33.30	36.44	7.68	58.74	74	-15.26	Peak	Horizontal
4874.00	39.38	33.30	36.44	7.68	43.92	54	-10.08	Average	Horizontal
4874.00	53.24	33.46	36.44	7.68	57.94	74	-16.06	Peak	Vertical
4874.00	40.93	33.46	36.44	7.68	45.63	54	-8.37	Average	Vertical
7311.00	49.08	36.92	35.12	9.36	60.24	74	-13.76	Peak	Horizontal
7311.00	34.55	36.92	35.12	9.36	45.71	54	-8.29	Average	Horizontal
7311.00	45.53	36.75	35.12	9.36	56.52	74	-17.48	Peak	Vertical
7311.00	34.18	36.75	35.12	9.36	45.17	54	-8.83	Average	Vertical
9748.00	41.40	38.06	35.22	10.01	54.25	74	-19.75	Peak	Horizontal
9748.00	30.15	38.06	35.22	10.01	43.00	54	-11.00	Average	Horizontal
9748.00	42.91	38.02	35.22	10.01	55.72	74	-18.28	Peak	Vertical
9748.00	29.57	38.02	35.22	10.01	42.38	54	-11.62	Average	Vertical
12185.00	44.25	36.52	35.37	10.22	55.62	74	-18.38	Peak	Horizontal
12185.00	31.41	36.52	35.37	10.22	42.78	54	-11.22	Average	Horizontal
12185.00	39.84	36.68	35.37	10.22	51.37	74	-22.63	Peak	Vertical
12185.00	31.77	36.68	35.37	10.22	43.30	54	-10.70	Average	Vertical
14622.00	37.53	40.34	35.66	10.34	52.55	74	-21.45	Peak	Horizontal
14622.00	25.38	40.34	35.66	10.34	40.40	54	-13.60	Average	Horizontal
14622.00	38.01	40.27	35.66	10.34	52.96	74	-21.04	Peak	Vertical
14622.00	22.73	40.27	35.66	10.34	37.68	54	-16.32	Average	Vertical
17059.00	37.70	40.11	35.05	11.00	53.76	74	-20.24	Peak	Horizontal
17059.00	24.22	40.11	35.05	11.00	40.28	54	-13.72	Average	Horizontal
17059.00	38.50	40.00	35.05	11.00	54.45	74	-19.55	Peak	Vertical
17059.00	24.49	40.00	35.05	11.00	40.44	54	-13.56	Average	Vertical

The result for 802.11n HT40 Channel 6 / 2437MHz

The result for 802.11n HT40 Channel 9 / 2452MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4904.00	55.54	33.55	36.41	7.74	60.42	74	-13.58	Peak	Horizontal
4904.00	40.65	33.55	36.41	7.74	45.53	54	-8.47	Average	Horizontal
4904.00	52.56	33.63	36.41	7.74	57.52	74	-16.48	Peak	Vertical
4904.00	40.05	33.63	36.41	7.74	45.01	54	-8.99	Average	Vertical
7356.00	48.85	36.92	35.12	9.36	60.01	74	-13.99	Peak	Horizontal
7356.00	35.88	36.92	35.12	9.36	47.04	54	-6.96	Average	Horizontal
7356.00	45.42	36.64	35.12	9.36	56.30	74	-17.70	Peak	Vertical
7356.00	33.51	36.64	35.12	9.36	44.39	54	-9.61	Average	Vertical
9808.00	42.45	38.11	35.12	10.04	55.48	74	-18.52	Peak	Horizontal
9808.00	29.89	38.11	35.12	10.04	42.92	54	-11.08	Average	Horizontal
9808.00	42.67	38.22	35.12	10.04	55.81	74	-18.19	Peak	Vertical
9808.00	29.31	38.22	35.12	10.04	42.45	54	-11.55	Average	Vertical
12260.00	44.13	36.52	35.37	10.22	55.50	74	-18.50	Peak	Horizontal
12260.00	31.07	36.52	35.37	10.22	42.44	54	-11.56	Average	Horizontal
12260.00	40.21	36.35	35.37	10.22	51.41	74	-22.59	Peak	Vertical
12260.00	31.54	36.35	35.37	10.22	42.74	54	-11.26	Average	Vertical
14712.00	38.42	40.34	35.66	10.34	53.44	74	-20.56	Peak	Horizontal
14712.00	24.86	40.34	35.66	10.34	39.88	54	-14.12	Average	Horizontal
14712.00	37.43	40.05	35.66	10.34	52.16	74	-21.84	Peak	Vertical
14712.00	22.32	40.05	35.66	10.34	37.05	54	-16.95	Average	Vertical
17164.00	38.30	40.11	35.05	11.00	54.36	74	-19.64	Peak	Horizontal
17164.00	25.04	40.11	35.05	11.00	41.10	54	-12.90	Average	Horizontal
17164.00	37.62	39.91	35.05	11.00	53.48	74	-20.52	Peak	Vertical
17164.00	23.84	39.91	35.05	11.00	39.70	54	-14.30	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 59

Notes:

- 1. Measuring frequencies from 9k~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

Temperature	25 ℃	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: M7C-MD93

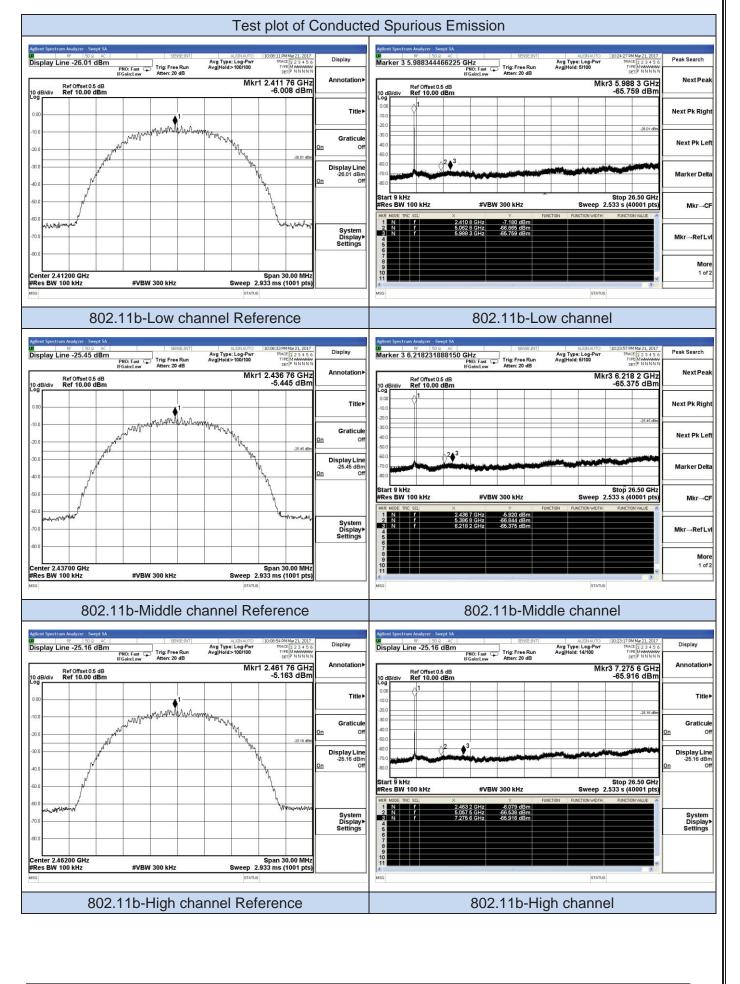
Report No.: LCS1703243375E

Test Mode	Channel	Frequency (MHz)	Reading Frequency (MHz)	Conducted Spurious Emission	Limits (dBc)	Verdict
	1	2412	5062.80	-66.865		
	I	2412	5988.30	-65.759		
IEEE	6	2437	5386.80	-66.844	<20	PASS
802.11b	0	2437	6218.20	-65.375	~20	1 400
	11	2462	5057.50	-66.538		
	11	2402	7275.60	-65.916		
	1	2412	5408.00	-65.965		
1	2412	5761.80	-61.207			
IEEE	6	2437	5322.50	-66.524	<20	PASS
802.11g	0	2437	7607.50	7607.50 -66.314		1,400
_	11	2462	5843.30	-66.358		
	11	2402	8240.80	-65.263		
	1	1 2412 5838.60 -64.972		-64.972		
IEEE	I	2412	7284.90 -65.053		1	
802.11n	6	2437	5841.30	-65.570	<20	PASS
HT20	0	2437	7192.80	-66.177	<20	FA33
П120	11	2462	5383.50	-65.094		
	11	2402	6673.40	-65.736		
	3	2422	5881.70	-65.743		
	3	2422	7592.30	-65.925		
IEEE 802.11n	6	2437	6091.70	6091.70 -66.136		DAGO
802.11n HT40	O	2437	7547.20	-66.650	<20	PASS
FT140	0	2452	5995.60	-65.865	-	
	9	2452	7216.00	-66.360		

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

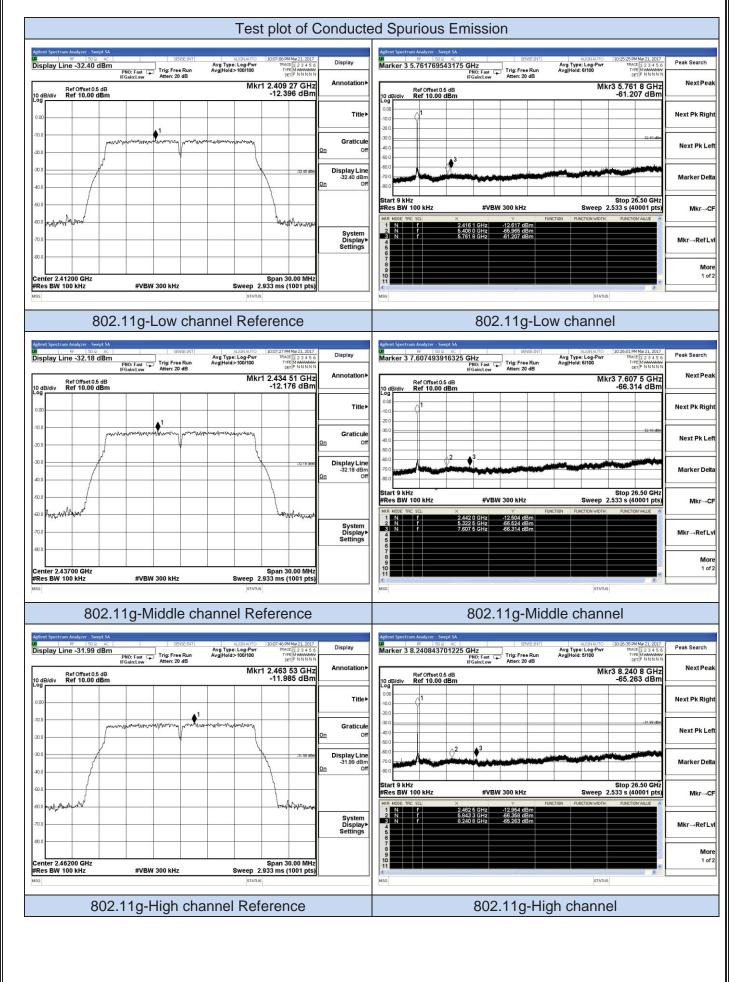
2. Test results including cable loss;


3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

4. "---"means that the fundamental frequency not for 15.209 limits requirement.

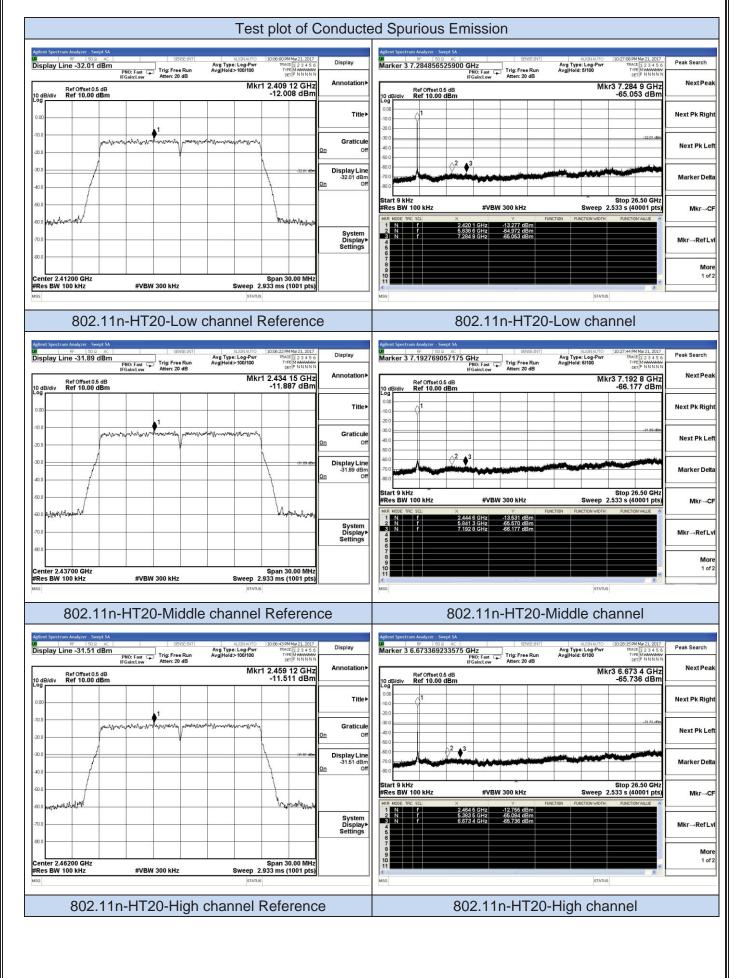
5. please refer to following plots;

FCC ID: M7C-MD93


Report No.: LCS1703243375E

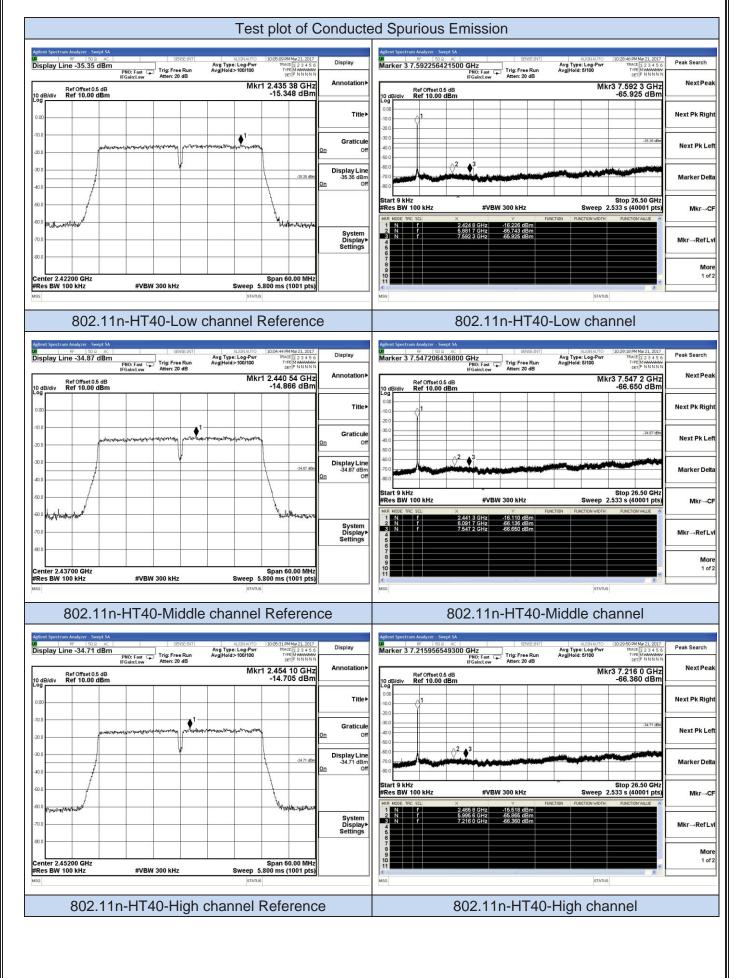
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 59

FCC ID: M7C-MD93


Report No.: LCS1703243375E

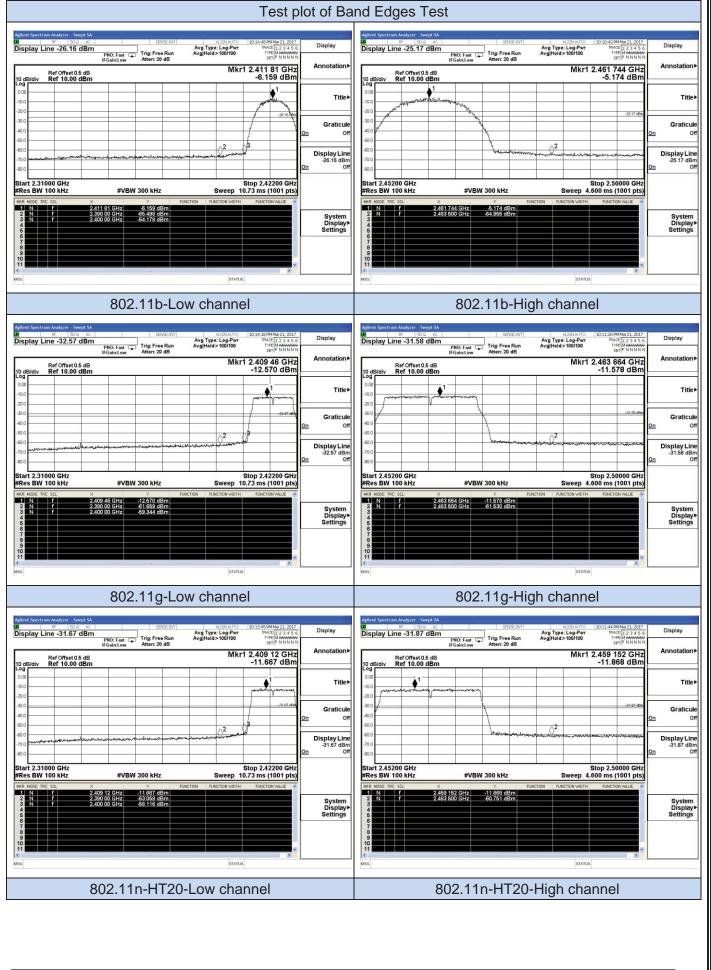
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 59

FCC ID: M7C-MD93


Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 59

FCC ID: M7C-MD93


Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 59

FCC ID: M7C-MD93

Report No.: LCS1703243375E

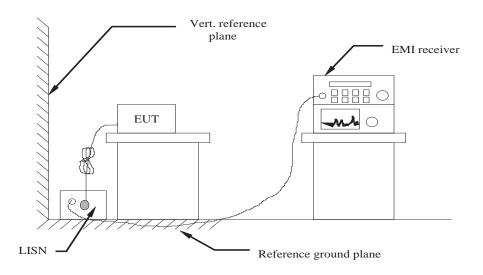
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 59

FCC ID: M7C-MD93

Report No.: LCS1703243375E

		Те	Test plot of Band Edges Test									
Agilent Spectrum Analyzer - Swept SJ JAC RF 50 Q AC	SENSE:INT	ALIGNAUTO 10:13:14 PM M	ar 21, 2017 Display	Agilent Spectrum Analyzer - Swe	AC SENSE:INT	ALIGNAUTO 10:12:22 F	PM Mar 21, 2017	Display				
Display Line -34.94 dBr	PNO: Fast IFGain:Low Atten: 20 dB		NNNNN	Display Line -35.13 d	IBM PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB		ACE 1 2 3 4 5 6 YPE MWWWWW DET P N N N N N	Annotation				
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBn Log	n	Mkr1 2.424 18 -14.940	GHZ	Ref Offset 0.5 10 dB/div Ref 10.00 d	dB Bm	Mkr1 2.461 6 -15.1	28 dBm					
-10.0		1 province and the second	Title⊁	-10.0 -20.0	anne arran with and and			Title►				
-30.0			-34.94.000 Graticule On Off	-30.0	Y		-35.13 oBm	Graticule				
-50.0 -60.0	ور ماران مر المراجع من مراجع	2	Display Line -34.94 dBm	-50.0		2 manufacture 2	-	Display Line -35.13 dBm				
-70.0			On Off	-70.0				-35.13 dBm On Off				
Start 2.31000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.442 Sweep 12.67 ms (10 NCTION FUNCTION WIDTH FUNCTION	01 pts)	Start 2.43200 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 6.533 ms	00000 GHz (1001 pts)					
1 N	2.424 18 GHz -14.940 dBm 2.390 00 GHz -62.232 dBm 2.400 00 GHz -59.164 dBm		System	1 N 7 2 N 7 3	2.461 648 GHz -15.128 dBm 2.483 500 GHz -60.063 dBm			System Display►				
5 6 7 8			Dİsplay≯ Settings	5678				Display▶ Settings				
9 10 11				9 10 11			-					
MSG		STATUS		MSG		STATUS						
	802.11n-HT40	-Low channel			802.11n-HT40)-High channe	el					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 59

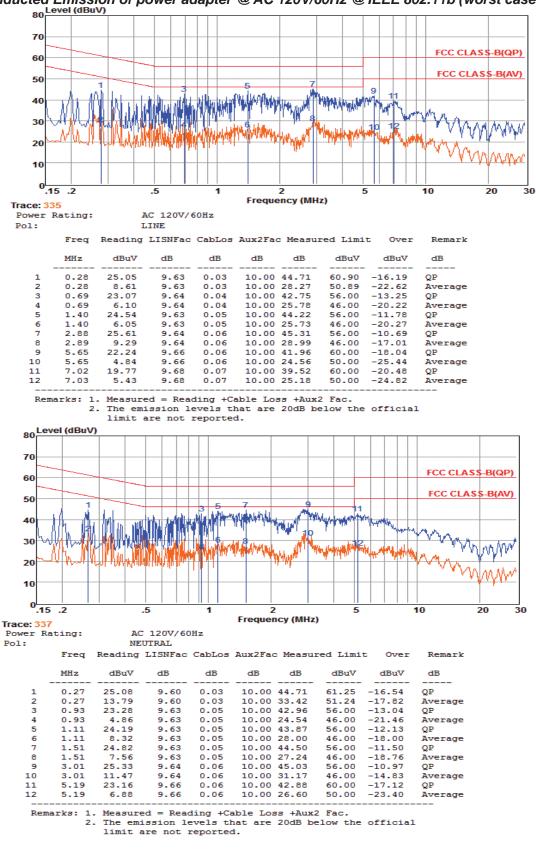

5.7. AC Power line conducted emissions

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

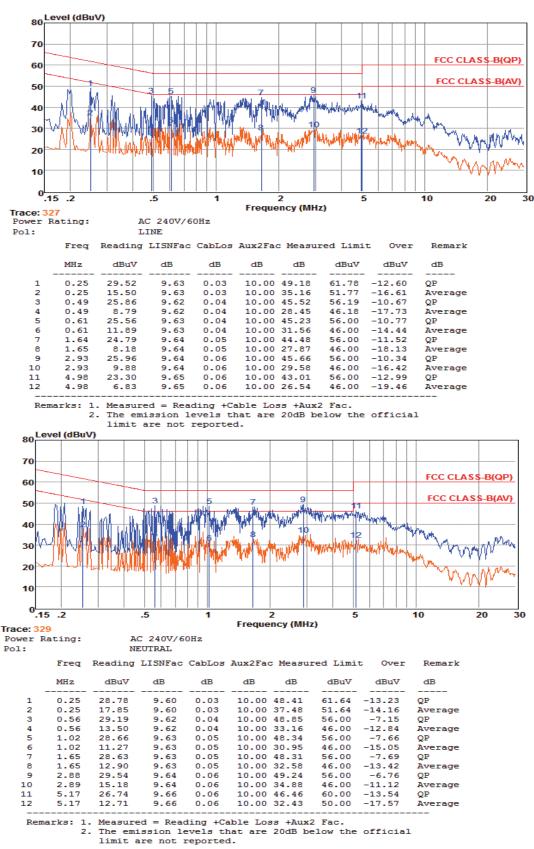
5.7.2 Block Diagram of Test Setup



5.7.3 Test Results

PASS.

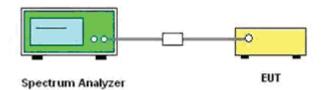

The test data please refer to following page.


FCC ID: M7C-MD93

AC Conducted Emission of power adapter @ AC 120V/60Hz @ IEEE 802.11b (worst case)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 59

***Note: Pre-scan all mode and recorded the worst case results in this report (802.11b).


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 59

5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 V03R05 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 59

FCC ID: M7C-MD93

- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: $E = EIRP - 20\log D + 104.77 = EIRP+95.23$

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

- D = specified measurement distance in meters.
- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test Results

		IE	EE 802.11b			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-58.061	2.0	39.199	Peak	74.00	PASS
2310.000	-70.875	2.0	26.385	AV	54.00	PASS
2390.000	-55.847	2.0	41.413	Peak	74.00	PASS
2390.000	-67.967	2.0	29.293	AV	54.00	PASS
2483.500	-56.693	2.0	40.567	Peak	74.00	PASS
2483.500	-67.178	2.0	30.082	AV	54.00	PASS
2500.000	-55.725	2.0	41.535	Peak	74.00	PASS
2500.000	-67.663	2.0	29.597	AV	54.00	PASS

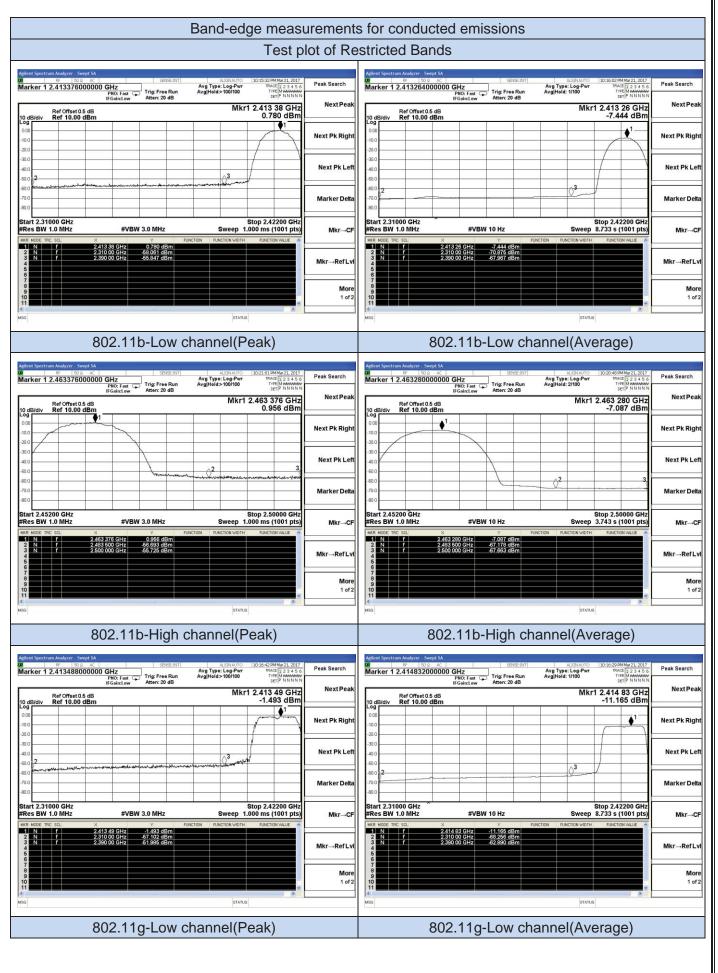
		IE	EE 802.11g			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-57.102	2.0	40.158	Peak	74.00	PASS
2310.000	-68.256	2.0	29.004	AV	54.00	PASS
2390.000	-51.985	2.0	45.275	Peak	74.00	PASS
2390.000	-62.890	2.0	34.370	AV	54.00	PASS
2483.500	-51.431	2.0	45.829	Peak	74.00	PASS
2483.500	-62.273	2.0	34.987	AV	54.00	PASS
2500.000	-52.146	2.0	45.114	Peak	74.00	PASS
2500.000	-62.855	2.0	34.405	AV	54.00	PASS

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: M7C-MD93

Report No.: LCS1703243375E

		IEEE	E 802.11n-HT20			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-57.299	2.0	39.961	Peak	74.00	PASS
2310.000	-69.250	2.0	28.010	AV	54.00	PASS
2390.000	-53.563	2.0	43.697	Peak	74.00	PASS
2390.000	-64.151	2.0	33.109	AV	54.00	PASS
2483.500	-51.314	2.0	45.946	Peak	74.00	PASS
2483.500	-62.086	2.0	35.174	AV	54.00	PASS
2500.000	-52.345	2.0	44.915	Peak	74.00	PASS
2500.000	-62.619	2.0	34.641	AV	54.00	PASS

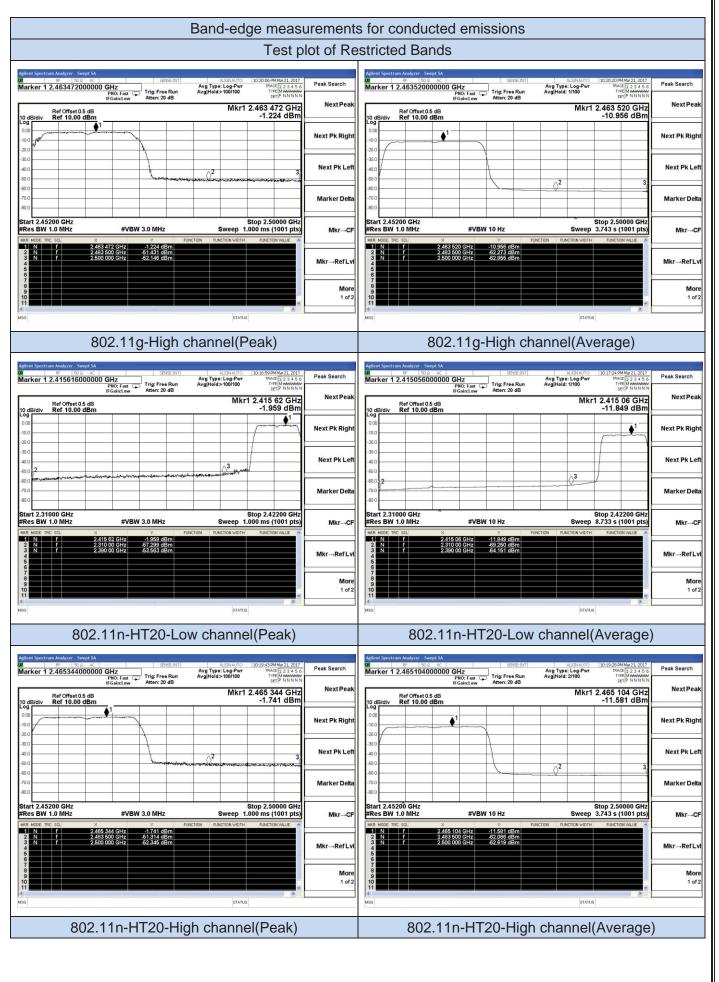
IEEE 802.11n-HT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-59.427	2.0	37.833	Peak	74.00	PASS					
2310.000	-69.722	2.0	27.538	AV	54.00	PASS					
2390.000	-53.170	2.0	44.090	Peak	74.00	PASS					
2390.000	-64.039	2.0	33.221	AV	54.00	PASS					
2483.500	-50.757	2.0	46.503	Peak	74.00	PASS					
2483.500	-62.329	2.0	34.931	AV	54.00	PASS					
2500.000	-52.051	2.0	45.209	Peak	74.00	PASS					
2500.000	-63.115	2.0	34.145	AV	54.00	PASS					


Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

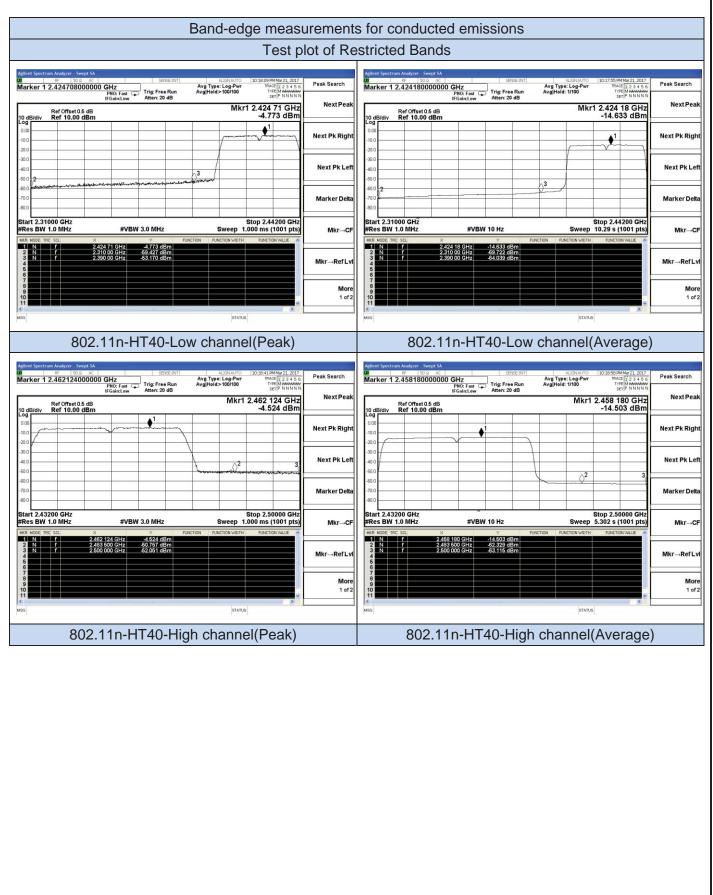
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. please refer to following plots;

FCC ID: M7C-MD93


Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 59

FCC ID: M7C-MD93


Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 59

FCC ID: M7C-MD93

Report No.: LCS1703243375E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 59

FCC ID: M7C-MD93

5.9. Antenna Requirements

5.9.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 2.0dBi, and the antenna is a PIFA antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18, 2016	June 17, 2017
Signal analyzer	Agilent	E4448A(Exter nal mixers to 40GHz)	US44300469	9kHz~40GHz	July 16, 2016	July 15, 2017
Signal analyzer	Agilent	N9020A	MY50510140	9kHz~26.5GHz	October 27, 2016	October 27, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18, 2016	June 17, 2017
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18, 2016	June 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18, 2016	June 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18, 2016	June 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz 3m	June 18, 2016	June 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18, 2016	June 17, 2017
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16, 2016	July 15, 2017
Amplifier	MITEQ	AMF-6F-2604 00	9121372	26.5GHz-40GH z	July 16, 2016	July 15, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18, 2016	June 17, 2017
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10, 2016	June 09, 2017
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10, 2016	June 09, 2017
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10, 2016	June 09, 2017
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18, 2016	June 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18, 2016	June 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18, 2016	June 17, 2017
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	June 18, 2016	June 17, 2017
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	June 18, 2016	June 17, 2017
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 18, 2016	June 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18, 2016	June 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 18, 2016	June 17, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 59

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: M7C-MD93

Report No.: LCS1703243375E

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------