Test of Polycom Spectralink 8450 Wi-Fi handset with Bluetooth

To: FCC 47 CFR Part 15, SubPart B & ICES-003

Test Report Serial No.: POLY06-U21 Rev A

TEST REPORT

Test of: Polycom Spectralink 8450 Wi-Fi handset with Bluetooth

To: FCC 47 CFR Part 15, SubPart B & ICES-003

Test Report Serial No.: POLY06-U21 Rev A

This report supersedes: None

Applicant:		Polycom		
		4750 Willow	Road	
		Pleasanton, (CA 94588-2708	
		USA		
Product Funct	ion:	Wi-Fi handse	t with Bluetooth	
Copy No:	pdf	Issue Date:	14th February 201	

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

1

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 3 of 52

TABLE OF CONTENTS

1	ACCREDITATION, LISTINGS & RECOGNITION	4
	1.1 TESTING ACCREDITATION	4
	1.2 RECOGNITION	5
	1.3 PRODUCT CERTIFICATION	6
2	DOCUMENT HISTORY	7
3	TEST RESULT CERTIFICATE	8
4	REFERENCES AND MEASUREMENT UNCERTAINTY	9
-	4.1 Normative References	9
	4.2 Test and Uncertainty Procedures	10
5	TEST SUMMARY	11
6	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	6.1 Test Program Scope	12
	6.2 EUT Details	19
	6.3 External A.C. / D.C. Power Adaptor	20
	6.4 Cabling and I/O Ports	
	6.5 EUI Configurations	21
	6.7 Equipment Medifications	
	6.8 Deviations from the Test Standard	
7		
1	7 1 Radiated Spurious Emissions – Digital Apparatus	23
	7.1.1 Stand Alone Charger - Measurement Results for Radiated Spurious Emission	ons –
	Digital Apparatus	
	7.1.2 Charging Dock - Measurement Results for Radiated Spurious Emissions -	Digital
	Apparatus	31
	7.1.3 Speaker Dock - Measurement Results for Radiated Spurious Emissions – D	Digital
	Apparatus	
	7.2 Conducted Disturbance at Mains Terminal (150 kmz – 50 Mmz)	30 20
	7.2.1 Stand Alone Charger - Conducted Disturbance at Mains Terminal	
	7.2.3 Speaker Dock - Conducted Disturbance at Mains Terminal	
8	Photographs	
•	8.1 Radiated Emission below 1 GHz with Stand Alone Charger	
	8.2 Radiated Emissions above 1 GHz with Stand Alone Charger	43
	8.3 Radiated Emission below 1 GHz with Charging Dock	44
	8.4 Radiated Emissions above 1 GHz with Charging Dock	45
	8.5 Radiated Emission below 1 GHz with Speaker Dock	
	8.6 Radiated Emission above 1 GHZ with Speaker Dock	47
	8.8 AC Mains Conducted Emissions with Charging Dock	4 0
	8.9 AC Mains Conducted Emissions with Speaker Dock	50
9		51
3		
	i his test report may be reproduced in tuil only. I ne document may only be updated by MICOM	

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 4 of 52

1 ACCREDITATION, LISTINGS & RECOGNITION

1.1 TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 5 of 52

1.2 RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 6 of 52

1.3 PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier - US0159

Europe – Notified Body

Notified Body Identifier - 2280

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 7 of 52

2 DOCUMENT HISTORY

	Document History				
Revision	Date	Comments			
Draft					
Rev A	14th February 2011	Initial Release			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 8 of 52

3 TEST RESULT CERTIFICATE

Applicant:	Polycom 4750 Willow Road	Tested By:	MiCOM Labs, Inc. 440 Boulder Court
	Pleasanton		Suite 200
	California ,		Pleasanton
	94588-2708, USA		California, 94566, USA
Product:	Spectralink 8400 series Wi-Fi handsets	Telephone:	+1 925 462 0304
Model No.:	Spectralink 8450 handset	Fax:	+1 925 462 0306
S/No's:	600826769		
Date(s) Tested:	Nov 19 th , 2010 – Jan 3rd, 2011	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 15, SubPart B & ICES-003	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve / Quality Manager MiCOM Labs, Inc.

ACCREDITED

TESTING CERTIFICATE #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 9 of 52

4 REFERENCES AND MEASUREMENT UNCERTAINTY

4.1 Normative References

Ref.	Publication	Year	Title
i.	47 CFR Part 15, SubPart B	2010	47 CFR Part 15, SubPart B; Unintentional Radiators
ii.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
iii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
iv.	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
v.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
vi.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
vii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
viii.	A2LA	9th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 10 of 52

4.2 Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 11 of 52

5 TEST SUMMARY

List of Measurements: The following table represents the list of measurements required under FCC 47 CFR Part 15, SubPart B & ICES-003.

Standard Section(s)	Test Description	Condition	Result	Test Report Section
15.109	Radiated Emissions - Unintentional Radiator	Radiated	Pass	7.1
15.107	AC Mains Emissions 0.15 – 30 MHz	Conducted	Pass	7.2

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 6.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 12 of 52

6 PRODUCT DETAILS AND TEST CONFIGURATIONS

6.1 Test Program Scope

The scope of the test program was to test the Polycom Spectralink 8450 Wi-Fi handset in three different configurations as listed below for compliance against FCC 47 CFR Part 15, SubPart B & Industry Canda ICES-003.

Test Configurations

8450 Handset + AC-DC Adapter /Charger: SA106B-05 + Headset
8450 Handset + AC-DC Adapter: HK-U-120A050-CP + Charging Dock + Headset
8450 Handset + AC-DC Adapter: HK-AX-120A200-CP + Speaker Dock + Headset

APPLICANT: Polycom PRODUCT: Spectralink 8450 Wi-Fi handsets Front

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 13 of 52

APPLICANT: Polycom PRODUCT: Spectralink 8450 Wi-Fi handset Back

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 14 of 52

APPLICANT: Polycom **PRODUCT:** AC-DC Adapter/ Charger for Spectralink 8400 series handsets

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 15 of 52

APPLICANT: Polycom PRODUCT: Charging Dock for Spectralink 8400 series handsets

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 16 of 52

APPLICANT: Polycom PRODUCT: AC-DC Adapter for Charging Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 17 of 52

APPLICANT: Polycom PRODUCT: Speaker Dock for Spectralink 8400 series handsets

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 18 of 52

APPLICANT: Polycom **PRODUCT:** AC-DC Adapter for Speaker Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 19 of 52

6.2 EUT Details

Detail	Description
Purpose:	Test of the Polycom Spectralink 8450 Wi-Fi handset with Bluetooth for compliance against FCC 47 CFR Part 15, SubPart B & ICES-003
Applicant:	Polycom 4750 Willow Road Pleasanton, CA 94588-2708 USA
Manufacturer:	Same as Applicant
Test Laboratory:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	POLY06-U21
Date EUT received:	11/11/2010
Dates of test (from - to):	11/19/2010 - 01/03/2011
No of Units Tested:	1 – S/N: 600826769
Product Name:	Spectralink 8400 series Wi-Fi handsets
Manufacturers Trade Name:	Polycom Spectralink 8400 series Wi-Fi handsets
Model No.:	Spectralink 8450 handset
Equipment Primary Function:	Wi-Fi handset with Bluetooth
Equipment Secondary Function(s):	Bar code reader
Type of Technology:	802.11bg / Bluetooth
Installation type:	Portable
Construction/Location for Use:	Indoor/Outdoor
Software/Firmware Release:	BootROM Mink Phoenix E6 FCC Test 14.
Test Software Release:	BootROM Mink Phoenix E6 FCC Test 14.
Rated Input Voltage and Current	Nominal: 3.8V; Battery: 3.5V - 4.2V,
DC:	Charger (USB or Base) supply: 5V +/- 10%
Operating Temperature Range °C:	Min: 0 °C Max: 40 °C
Equipment Dimensions:	5.75" x 2.125" x 0.9"
Weight:	8 oz
Long Term Frequency Stability:	20 p.p.m.
Transmit/Receive Operation:	Full Duplex
Output Power Type	Fixed

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 20 of 52

6.3 External A.C. / D.C. Power Adaptor

Model	Description
SA106B-05	GCI Technologies switching adaptor: Input: 100 - 240V AC; 50-60 Hz; 0.25 Amp Output: 5V DC; 1 Amp
HK-U-120A050-CP	Hon-Kwang I.T.E. Power Supply Input: 100 - 240V AC; 50/60 Hz; 0.2 Amp Output: 12V DC; 0.5 Amp
HK-AX-120A200-CP	Hon-Kwang I.T.E. Power Supply Input: 100-240V AC 50/60 Hz; 0.8 Amp Output: 12V DC; 2.0 Amp

6.4 Cabling and I/O Ports

The following is a description of the cable and input, output ports available on the EUT.

Type of I/O Ports	Description	Screened (Y/N)	Length	Qty	Tested (Y/N)
Battery terminal	Battery connections for removable battery	N	N/A	1	N
1/8th" stereo Connector	for connection to hands free headset	Y	< 3 meters	1	Y
Power Supply	Power connector - mini USB for charging using AC-DC Adapter/ Charger SA106B-05	Y	< 3 meters	1	Y
Charging terminals	Charging terminal for charging EUT with docking options	Ν	N/A	1	Y

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 21 of 52

6.5 EUT Configurations

EUT + AC-DC Adapter: HK-AX-120A200-CP + Speaker Dock + Headset EUT + AC-DC Adapter: HK-U-120A050-CP + Charging Dock + Headset EUT + AC-DC Adapter /Charger: SA106B-05 + Headset

6.6 Equipment Details

The following is a description of supporting equipment used during the test program.

Equipment	Equipment Description	Manufacturer	Model No.	Serial No (s).	Tested
			ESB-		
Battery	Alpha SAMPLE	Polycom	RS657+002	AC10103200B7	Y
D //			ESB-	10101000000	Ň
Battery	Alpha SAMPLE	Polycom	RS657+002	AC1010320232	Y
Battery	Alpha SAMPLE	Polycom	ESB- RS657+002	AC101032008E	Y
			ESB-		
Battery	Alpha SAMPLE	Polycom	RS658+002	AD101032019C	Y
Charging			ESB-	AlphaB39174	
Dock	Alpha SAMPLE	Polycom	DCA39+001	1033	Y
AC-DC	I.T.E. Power		HK-U-		
Adapter	Supply	HON-KWANG	120A050-CP	N/A	Y
AC-DC					
Adapter/	Switching	GCi			
Charger	Adapter	technologies	SA106B-05	N/A	Y
	10uF @ U8 Pin4				
Speaker	to Ground Dock				
Dock	PCB Revision X4	Polycom	N/A	N/A	Y
AC-DC	I.T.E. Power		HK-AX-		
Adapter	Supply	HON-KWANG	120A200-CP	N/A	Y
			P/N: 29951-		
Headset	Encore Headset	Plantronics	12	0E0723 K7	Y

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 22 of 52

6.7 Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

6.8 Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 23 of 52

7 TEST RESULTS

7.1 Radiated Spurious Emissions – Digital Apparatus

Standard Reference

FCC, Part 15 Subpart B §15.109 Industry Canada ICES-003 §5

Test Procedure

Testing was performed in a 3-meter semi-anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Measurement Setup

Measurement setup for Radiated Emission Test < 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Measurement setup for Radiated Emission Test > 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 26 of 52

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor FO = Distance Falloff Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 27 of 52

Specification

Radiated Spurious Emissions – Digital Apparatus

FCC, Part 15 Subpart B §15.109

A representative type or model of each digital apparatus shall be tested in accordance with the measurement methods described in FCC Part 15; Subpart A - General and FCC Subpart B – Unintentional Radiators.

Industry Canada ICES-003

A representative type or model of each digital apparatus shall be tested in accordance with the measurement method described in the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."].

FCC, Part 15 Subpart B §15.109 Spurious Emissions Limits

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values.

Frequency (MHz)	Field Strength (µV/m) @ 3m	Measurement Distance (meters)	Field Strength (dBµV/m) @ 3m
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

Field Strength of radiated emissions for a Class A digital device are as follows.

Frequency (MHz)	Field Strength (µV/m) @ 10m	Measurement Distance (meters)	Field Strength (dBµV/m) @ 3m
30-88	90	3	49.5
88-216	150	3	54.0
216-960	210	3	57.0
Above 960	300	3	60.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 28 of 52

ICES-003 §5 Spurious Emissions Limits

Class A Digital Device: The field intensity of radio noise emissions that are radiated from a Class A digital apparatus shall not exceed the limits specified in Table 5 of the publication referred to in Section 7.1, within the indicated frequency range.

Frequency range	Quasi-peak limits dB(µV/m) @	Quasi-peak limits dB(µV/m) @
(MHz)	10m	3m
30 to 230	40	50.5
230 to 1000	47	57.5
Note 1	The lower limit shall apply at the tra	ansition frequency
Note 2	Additional provisions may be require	red for cases where interference
	occurs	

Class B Digital Device: The field intensity of radio noise emissions that are radiated from a Class B digital apparatus shall not exceed the limits specified in Table 6 of the publication referred to in Section 7.1, within the indicated frequency range.

Frequency range	Quasi-peak limits dB(µV/m) @	Quasi-peak limits dB(µV/m) @
(MHz)	10m	3m
30 to 230	30	40.5
230 to 1000	37	47.5
Note 1	The lower limit shall apply at the tra	ansition frequency.
Noto 2	Additional provisions may be requir	ed for cases where interference
Note 2	occurs	

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 29 of 52

7.1.1 <u>Stand Alone Charger - Measurement Results for Radiated Spurious Emissions –</u> <u>Digital Apparatus</u>

EUT emissions were investigated with the EUT arranged in X, Y, and Z axis. The highest emissions orientation was chosen for the final test. Only final data is presented in this test report.

Test	t Freq.	N/A				Engineer EVF								
۷	/ariant	Digital I	Emissior	าร				Т	ēmp (⁰C)	22.5				
Freq. I	Range	30 MHz	2 - 1000	MHz				Rel.	Hum. (%)	34				
Power S	Setting	Charge	r: 120VA	C/ 60Hz				Press	. (mBars)	99.7				
An	ntenna	Integral												
Test N	otes 1	Handse to charę												
Test N	otes 2	Prelimir Channe	hary test el 06 Rec	ing perforn ceive; WL/	ned. EUT tested AN=1, BT=1, BC	in hori =1, DK	zontal =1	positior	n/ Mode: B	T Channe	l 39 Red	eive; WLAN		
MiCem	abs	dBu√m 60.0 40.0 30.0 10.0 00 30.0 830.0 830.0 830.0 830.0 830.0 830.0 830.0	dBuV/m Vasona by EMiSoft 19 Nov 10 17:17 11 Horizontz 12 Vertical 19 Nov 10 17:17 12 Vertical 19 Nov 10 17:17 13 Nor 10 17:17 14 Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m 10 Nov 10 17:17 10 Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m 10 Nov 10 17:17 10 Debug Meas Dist 3m Spec Dist											
Formally	meas	ured e	emissi	on peal	ks		11-4	A-1	1 : : (Deres			
MHz	dBuV	Loss	AF dB	dBuV/m	Type	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments		
30.297	36.0	3.4	-9.4	30.0	Quasi Max	V	151	90	40	-10.0	Pass	DIG		
155.996	48.7	4.5	-18.4	34.9	Quasi Max	V	98	87	43.5	-8.7	Pass	DIG		
829.047	23.3	7.2	-7.9	22.6	Quasi Max	Н	332	173	46	-23.4	Pass	DIG		
179.994	45.6	4.7	-19.7	30.5	Peak [Scan]	V	98	360	43.5	-13.0	Pass	DIG		
389.992	42.1	5.6	-14.9	32.8	Peak [Scan]	Н	98	360	46	-13.2	Pass	DIG		
441.988	43.5	5.8	-13.8	35.5	Peak [Scan]	Н	98	360	46	-10.5	Pass	DIG		
Legend:	DIG = NRB =	Digital D Non-Re	evice Ei stricted	mission; TX Band, Lim	K = Transmitter E iit is 20 dB below	missio Funda	n; FUN amenta	ID = Fu I; RB =	Indamenta Restricted	l Frequeno Band	су			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 30 of 52

Test	t Freq.	N/A							Engineer	EVF				
V	ariant	Digital E	Emissior	IS				Т	emp (⁰C)	21.5				
Freq. I	Range	1000 M	Hz - 180	00 MHz				Rel.	Hum. (%)	34				
Power S	Setting	Charge	r: 120VA	C/ 60Hz				Press.	(mBars)	1007				
An	ntenna	Integral				_				-				
Test N	otes 1	Handse to charç	-landset (Model: 8450) with discharged battery (S/N: AC10103200B7) , headset connected, also connected o charger (Model: SA106B-05)											
Test N	otes 2	Mode: E	/ode: BT Channel 39 Receive; WLAN Channel 06 Receive; WLAN=1, BT=1, BC=1, DK=1											
Micem	abs	dBu∨ 800 600 900 900 900 900 900 900 900 900 9) Jiated En name: k:	issions program/pr	Vasona by E	MiSof	t plate: F	1000 FCC RE	ол 1-186Hz 15 b; ices-0	22 Nov PK PA Meas Au Spec Frequen 18000.0 03/8440/d	10 16:49) Horizon (Vertical eak Limit werage Li ebug Dist 3m Dist 3m Dist 3m cy: MHz ata vradiat	 tz :		
Formally	meas	ured e	missio	n peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
No emissions a	above 1	GHz.												
Legend:	DIG =	Digital D	evice Er	nission; T	K = Transmitter E	missio	n; FUN	ID = Fu	Indamenta	I Frequen	су			
_	NRB =	Non-Re	stricted	Band, Lim	iit is 20 dB below	Funda	menta	l; RB =	Restricted	Band				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 31 of 52

7.1.2 <u>Charging Dock - Measurement Results for Radiated Spurious Emissions –</u> <u>Digital Apparatus</u>

Tes	t Freq.	N/A							Engineer	EVF				
١	/ariant	Digital I	Emissior	าร				٦	emp (⁰C)	21.5				
Freq.	Range	30 MHz	: - 1000	MHz				Rel.	Hum. (%)	33				
Power S	Setting	Dock: 1	20VAC/	60Hz				Press	. (mBars)	1009				
Ai	ntenna	Integral	ntegral											
Test N	lotes 1	Handse with add	landset (Model: 8450) with discharged battery (SN: AC10103200B7), headset connected, charging in dock vith additional battery charging (SN: AD101032019C), AC-DC Adapter (Model: HK-U-120A050-CP)											
Test N	lotes 2	Mode: I	3T Chan	inel 39 Rec	ceive; WLAN Cha	annel 0	6 Rece	ive; W	′LAN=1, B⊺	T=1, BC=′	1, DK=1			
MiCOM	dBuV/m Vasona by EMiSoft 22 Nov 10 09:05 - (1) Horizontz (1) Hor													
Formally	meas	ured e	emissi	ion peal	ks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
85.898	36.7	4.0	-23.7	17.0	Quasi Max	V	98	142	40	-23.0	Pass	DIG		
53.539	46.8	3.8	-23.6	26.9	Quasi Max	V	102	33	40	-13.1	Pass	DIG		
174.174	33.7	4.6	-19.4	18.9	Quasi Max	V	126	338	43.5	-24.6	Pass	DIG		
883.643	29.8	7.3	-7.3	29.8	Quasi Max	V	400	360	46	-16.2	Pass	DIG		
41.026	45.7	3.6	-17.7	31.6	Quasi Max	V	107	360	40	-8.4	Pass	DIG		
77.995	42.3	4.0	-23.0	23.2	Quasi Max	V	154	244	40	-16.8	Pass	DIG		
Legend:	DIG =	Digital D	evice E	mission; T	X = Transmitter E	missio	n; FUN	ID = Fi	Indamenta	I Frequen	су			
	NRB =	Non-Re	stricted	Band, Lim	nit is 20 dB below	Funda	amenta	l; RB =	Restricted	Band				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Polycom Spectralink 8450 Wi-Fi handset with Bluetooth To: FCC 47 CFR Part 15, SubPart B & ICES-003 Serial #: POLY06-U21 Rev A Issue Date: 14th February, 2011 Page: Page 32 of 52

Teet	Erog							_	Engineer					
Test	rreq.	N/A							Engineer					
V	ariant	Digital I	Emission	IS				T	emp (ºC)	21.5	21.5			
Freq. F	Range	1000 M	Hz - 180	00 MHz				Rel. I	Hum. (%)	34				
Power S	etting	Dock: 120VAC/ 60Hz Press. (mBars) 1007												
An	itenna	Integral												
Test N	lotes 1	Handse with ade	et (Model ditional t	: 8450) wit battery cha	h discharged bat arging (SN: AD10	tery (S 10320	N: AC1 19C), A	1010320 AC-DC	008E), hea Adapter (N	idset conr lodel: HK-	ected, c U-120A	harging in dock)50-CP)		
Test No	otes 2	Mode: E	Node: BT Channel 39 Receive; WLAN Channel 06 Receive; WLAN=1, BT=1, BC=1, DK=1											
Micem	abs	dBu∨ 800 800 800 800 800 300 200 100 100 100 100 100 100 100 100 1	o Diated Ern name: k:	issions 'program'p.	Vasona by E	MiSo1	t plate: f		00 1-13GHz 15 b; ices-0	22 Nov PK P PK P P P P P P P P P P P P P P	10 16:28) Horizon J Vertical eak Limit verage Li ebug Dist 3m Dist 3m cy: MHz cy: MHz	 tz :		
Formally Frequency	meası _{Raw}	leasured emission peaks												
MHz	dBuV	Loss	A⊢dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments		
No emissions a	above 1	GHz.												
Legend:	DIG =	Digital D	evice Ei	mission; T	X = Transmitter E	missio	n; FUN	ID = Fu	Indamenta	I Frequen	су			
	NRB =	Non-Re	estricted	Band, Lim	nit is 20 dB below	Funda	menta	l; RB =	Restricted	Band				
,														

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 33 of 52

7.1.3 <u>Speaker Dock - Measurement Results for Radiated Spurious Emissions – Digital</u> <u>Apparatus</u>

Tes	t Freq.	N/A					Engineer			EVF	EVF		
١	/ariant	Digital I	Emissior	าร			Temp (ºC)			19.5			
Freq.	Range	30 MHz	: - 1000	MHz		Rel. Hum. (%)			Hum. (%)	37			
Power S	Setting	Speake	r Dock:	120VAC/ 6	60Hz			Press	. (mBars)	1005			
Ar	ntenna	Integra	Integral										
Test N	lotes 1	Handse with add	andset (Model: 8450) with discharged battery (SN: AC101032008E), headset connected, charging in dock /ith additional battery_charging (SN: AD101032019C), AC-DC Adapter (Model: HK-AX-120A200-CP)										
Test N	lotes 2	Mode:	BT Chai	nnel 39 Re	ceive; WLAN Ch	annel ()6 Rece	eive; V	VLAN=1, B	T=1, BC=	0, DK=1	1	
Micem	abs	dBu√/m 60.0 40.0 20.0 10.0 0.0 30.0 Rac File	BuV/m Vasona by EMiSoft 03 Jan 11 11:17 00 00 00 00 00 00 00 00 00										
Formally	meas	ured e	emissi	on peal	ks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
101.571	45.0	4.2	-20.6	28.6	Quasi Max	V	101	0	43.5	-14.9	Pass	DIG	
31.311	25.1	3.4	-10.4	18.1	Quasi Max	V	276	183	40	-22.0	Pass	DIG	
159.259	36.3	4.5	-18.4	22.4	Quasi Max	V	99	89	43.5	-21.1	Pass	DIG	
351.992	41.1	5.5	-15.4	31.2	Quasi Max	Н	159	10	46	-14.8	Pass	DIG	
230.040	38.2	4.9	-18.9	24.2	Quasi Max	V	98	81	46	-21.8	Pass	DIG	
441.827	30.7	5.8	-13.8	22.7	Quasi Max	V	136	208	46	-23.3	Pass	DIG	
Legend:	DIG =	Digital D	evice Er	mission; T) Band, Lim	X = Transmitter E	missic Funda	n; FUN	ID = Fu I: RB =	Indamenta Restricted	l Frequend	су		
				,				,					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Polycom Spectralink 8450 Wi-Fi handset with Bluetooth To: FCC 47 CFR Part 15, SubPart B & ICES-003 Serial #: POLY06-U21 Rev A Issue Date: 14th February, 2011 Page: Page 34 of 52

Test Fi	req.	N/A							Engineer	EVF			
Vari	iant [Digital E	Emissior	IS				Т	emp (⁰C)	19.5	19.5		
Freq. Ra	inge	1000 M	Hz - 180	00 MHz				Rel.	Hum. (%)	41			
Power Set	ting (Speake	r Dock:	120VAC/ 6	0Hz			Press.	. (mBars)	1011			
Ante	enna	Integra											
Test Note	es 1	Handse with add	t (Model ditional b	: 8450) wit battery cha	h discharged ba arging (SN: AD1	ittery (S 010320	N: AC′ 19C), <i>F</i>	1010320 AC-DC	008E), hea Adapter (N	adset conr 1odel: HK-	nected, c -AX-120/	harging in dock \200-CP)	
Test Note	es 2	Mode:	de: BT Channel 39 Receive; WLAN Channel 06 Receive; WLAN=1, BT=1, BC=0, DK=1										
MiceiMLab	MLabs MG BUV/m Vasona by EMiSoft 27 Dec 10 17:40 Prediction												
Formally m	easu	red e	missio	on peaks	5	-				-			
Frequency R MHz di	Raw BuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
No emissions abo	ove 1 (GHz.											
Legend: DI	IG = D	igital D	evice Er	mission; T)	K = Transmitter	Emissic	n; FUN	ID = Fu	Indamenta	I Frequen	су		
N	RB = I	Non-Re	stricted	Band, Lim	iit is 20 dB belov	v Funda	menta	l; RB =	Restricted	Band			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 35 of 52

7.2 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)

Standard Reference

FCC, Part 15 Subpart C §15.107 Industry Canada ICES-003 §5.3

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 36 of 52

Test Measurement Setup

Measurement setup for Conducted Disturbance at Mains Terminals

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 37 of 52

Specification

Conducted Disturbance at Mains Terminal – Digital Apparatus

FCC, Part 15 Subpart B §15.107

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Industry Canada ICES-003

The voltage of radio noise emissions that are conducted along the power supply lines of a Class A digital apparatus shall not exceed the limits specified in Table 1 of the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."], within the indicated frequency range.

The voltage of radio noise emissions that are conducted along the power supply lines of a Class B digital apparatus shall not exceed the limits specified in Table 2 of the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."], within the indicated frequency range.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 38 of 52

FCC, Part 15 Subpart B §15.107 & Industry Canada ICES-003 Limits

Limits for conducted disturbance at the mains ports of class B ITE

Frequency of emission (MHz)	Quasi-peak (dBuV)	Average (dBuV)			
0.15–0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			
Note 1	* Decreases with the logarithm of the frequency				
Note 2	* The lower limit applies at the boundary between frequency				
	ranges				

Limits for conducted disturbance at the mains ports of class A ITE

Frequency of emission (MHz)	Quasi-peak (dBuV)	Average (dBuV)			
0.15–0.5	79	66			
0.5–30	73	60			
Note 1	* The lower limit shall apply at the transition frequency				

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Work instruction WI-EMC-01	0158, 0184, 0193, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 39 of 52

7.2.1 Stand Alone Charger - Conducted Disturbance at Mains Terminal

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 40 of 52

7.2.2 Charging Dock - Conducted Disturbance at Mains Terminal

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 41 of 52

7.2.3 Speaker Dock - Conducted Disturbance at Mains Terminal

Tes	t Freq.	N/A					Engineer	EVF		
١	/ariant	AC Line Emissions				Temp (°C) 19.5				
Freq.	Range	0.150 N	1Hz - 30 Mł	Ηz		R	Rel. Hum.(%) 36			
Power S	Setting	Speaker Dock: 120VAC/ 60Hz					ress. (mBars) 1005			
Ar	ntenna	Integral	Integral							
Test N	lotes 1	Handset (Model: 8450) with discharged battery (SN: AC101032008E), headset connected, charging in speaker dock with additional battery charging (SN: AD101032019C), AC-DC Adapter (Model: HK-AX-120A200-CP)								
Test N	Notes 2 Mode: BT Channel 39 Receive; WLAN Channel 06 Receive; WLAN=1, BT=1, BC=0, DK=1									
Formally	MLabs deuv Vasona by EMiSoft 03 Jan 11 12:05 00 Jan 11 Jan 12:05 00 Jan 12:05 Jan 12:0									
Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.158	22.3	9.9	0.1	32.3	Average	Neutral	55.57	-23.3	Pass	
0.158	40.8	9.9	0.1	50.8	Quasi Peak	Neutral	65.57	-14.8	Pass	
0.217	13.1	9.9	0.1	23.1	Average	Neutral	52.93	-29.8	Pass	
0.217	32.5	9.9	0.1	42.5	Quasi Peak	Neutral	62.93	-20.5	Pass	
0.280	14.1	9.9	0.1	24.0	Average	Live	50.82	-26.8	Pass	
0.280	24.1	9.9	0.1	34.1	Quasi Peak	Live	60.82	-26.7	Pass	
0.494	11.7	9.9	0.1	21.7	Average	Neutral	46.1	-24.4	Pass	
0.494	24.1	9.9	0.1	34.1	Quasi Peak	Neutral	56.1	-22.0	Pass	
0.590	4.8	9.9	0.1	14.8	Average	Neutral	46	-31.2	Pass	
0.590	14.6	9.9	0.1	24.6	Quasi Peak	Neutral	56	-31.4	Pass	
0.821	6.9	9.9	0.1	16.9	Average	Neutral	46	-29.1	Pass	
0.821	12.8	9.9	0.1	22.9	Quasi Peak	Neutral	56	-33.2	Pass	
18.777	15.3	10.5	0.7	26.6	Average	Live	50	-23.5	Pass	
18.777	20.5	10.5	0.7	31.7	Quasi Peak	Live	60	-28.3	Pass	
Legend:	DIG = NRB =	Digital D Non-Re	Jigital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 42 of 52

8 Photographs

8.1 Radiated Emission below 1 GHz with Stand Alone Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 43 of 52

8.2 Radiated Emissions above 1 GHz with Stand Alone Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 44 of 52

8.3 Radiated Emission below 1 GHz with Charging Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 45 of 52

8.4 Radiated Emissions above 1 GHz with Charging Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 46 of 52

8.5 Radiated Emission below 1 GHz with Speaker Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 47 of 52

8.6 Radiated Emission above 1 GHz with Speaker Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 48 of 52

8.7 AC Mains Conducted Emissions with Stand Alone Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page:Page 49 of 52

8.8 AC Mains Conducted Emissions with Charging Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8450 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15, SubPart B & ICES-003Serial #:POLY06-U21 Rev AIssue Date:14th February, 2011
Page:Page 50 of 52

8.9 AC Mains Conducted Emissions with Speaker Dock

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Polycom Spectralink 8450 Wi-Fi handset with Bluetooth To: FCC 47 CFR Part 15, SubPart B & ICES-003 Serial #: POLY06-U21 Rev A Issue Date: 14th February, 2011 Page: Page 51 of 52

TEST EQUIPMENT DETAILS 9

Asset #	Instrument	Manufacturer	Part #	Serial #
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0287	EMI Receiver	Rhode & Schwartz	ESIB 40	100201
0193	EMI Receiver	Rhode & Schwartz	ESIB 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com