Test of Polycom Spectralink 8440 Wi-Fi handset with Bluetooth

To: FCC 47 CFR Part 15, SubPart E 15.407 & RSS-210 Annex 9

Test Report Serial No.: POLY21-U2a Rev A

TEST REPORT

Test of: Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
To: FCC 47 CFR Part 15, SubPart E 15.407 & RSS-210 Annex 9
Test Report Serial No.: POLY21-U2a Rev A

This report supersedes: None

Applicant:		Polycom	
		4750 Willo	w Road
		Pleasantor	n, CA 94588-2708
		USA	
Product Funct	ion:	Wi-Fi hand	lset with Bluetooth
Сору No:	pdf	Issue Date:	6 th June 2011

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 3 of 186

TABLE OF CONTENTS

1	ACC	CREDITATION, LISTINGS & RECOGNITION	5
	1.1	TESTING ACCREDITATION	5
	1.2	RECOGNITION	6
	1.3	PRODUCT CERTIFICATION	7
2	DOC	CUMENT HISTORY	8
3	TES	T RESULT CERTIFICATE	9
1	DEE		10
4			. 10
	4.1	Normative References	. 10
-	4.2	Test and Uncertainty Procedures	.11
5	IES		. 12
6	PRC	DDUCT DETAILS AND TEST CONFIGURATIONS	. 15
	6.1	Test Program Scope	. 15
	6.2	EUT Details	. 19
	6.3	External A.C. / D.C. Power Adaptor	. 20
	6.4	Operational Power Range	. 20
	6.5	Types of Modulation Supported	. 21
	6.6	Antenna Details	21
	6.7	Cabling and I/O Ports	
	6.8	EUT Configurations	22
	6.9		23
	6.10	Lest Configurations.	24
	6.11	Equipment Modifications.	24
7	0.12		
1	153		. 25
	7.1	26 dB and 99 % Bandwidth	25
		7.1.1 5150 MHz - 5250 MHz; 26 dB and 99 % Operational Bandwidth(s)	27
		7.1.2 5250 MHZ - 5350 MHZ; 26 dB and 99 % Operational Bandwidth(s)	35
	70	7.1.3 5470 MHZ - 5725 MHZ, 20 0B and 99 % Operational Bandwidth(s)	.43
	1.2	7.2.1 5150 MHz - 5250 MHz: Peak Output Power	56
		7.2.1 5150 MHz - 5250 MHz; Peak Output Power	58
		7.2.3 5470 MHz - 5725 MHz ⁻ Peak Output Power	60
	73	Peak Excursion Ratio	62
	1.0	7.3.1 5150 MHz - 5250 MHz: Peak Excursion Ratio	. 63
		7.3.2 5250 MHz - 5350 MHz: Peak Excursion Ratio	
		7.3.3 5470 MHz - 5725 MHz: Peak Excursion Ratio	. 79
	7.4	Peak Power Spectral Density	. 87
		7.4.1 5150 MHz - 5250 MHz; Peak Power Spectral Density	. 89
		7.4.2 5250 MHz - 5350 MHz; Peak Power Spectral Density	. 97
		7.4.3 5470 MHz - 5725 MHz; Peak Power Spectral Density	105
	7.5	Frequency Stability	113
	7.6	Maximum Permissible Exposure	114
	7.7	Dynamic Frequency Selection (DFS)	115
		7.7.1 Test Procedure and Setup	<u>115</u>
	-	This test report may be repreduced in full only. The decument may only be undeted by MCCOM	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	Polycom Spectralink 8440 Wi-Fi handset			
	with Bluetooth			
To:	FCC 47 CFR Part 15.407 & RSS-210 A9			
Serial #:	POLY21-Ua2 Rev A			
Issue Date:	6 th June 2011			
Page:	Page 4 of 186			

		7.7.2 In-Service Monitoring for Channel Move Time, Channel Closing	
		Transmission Time and Non-Occupancy Period	
		7.7.3 30 Minute Non-Occupancy Period	
	7.8	Radiated Spurious Emissions	
		7.8.1 Transmitter Radiated Spurious Emissions	
		7.8.2 Band-Edge Measurements	
		7.8.3 Peak Emissions	
		7.8.4 Receiver Radiated Emissions	
	7.9	Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)	173
		7.9.1 Stand Alone Charger - Conducted Disturbance at Mains Termina	l (150 kHz
		– 30 MHz)	
8	PHC	DTOGRAPHS	177
	8.1	Conducted RF Emissions - EUT	
	8.2	Conducted RF Emissions - Test Equipment	
	8.3	Dynamic Frequency Selection Test Set-Up	
	8.4	Transmitter Radiated Spurious Emission below 1 GHz with Charger	
	8.5	Transmitter Radiated Spurious Emission above 1 GHz with Charger	
	8.6	Receiver Radiated Emissions below 1 GHz with Charger	
	8.7	Receiver Radiated Emissions above 1 GHz with Charger	
	8.8	AC Mains Conducted Emissions with Charger	
1.	TES	ST EQUIPMENT DETAILS	

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 5 of 186

1 ACCREDITATION, LISTINGS & RECOGNITION

1.1 **TESTING ACCREDITATION**

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 6 of 186

1.2 <u>RECOGNITION</u>

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	030159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 7 of 186

1.3 PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States- Telecommunication Certification Body: TCB Identifier - US0159

Industry Canada - Certification Body: CAB Identifier - US0159

Europe - Notified Body: Notified Body Identifier - 2280

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 8 of 186

2 DOCUMENT HISTORY

	Document History				
Revision	Date	Comments			
Draft					
	29th February 2010	Initial Report Release:			
	28th February 2010	MiCOM Labs Report Number POLY06-U12 Rev A			
	6 th June 2011	Product Change: PCB layout (grounding) improved over Power Amplifier to attenuate 6.9 GHz spurious emission. Emission apparent only in the 5 GHz bands, does not effect 2.4 GHz operation.			
		Testing performed to prove continued compliance;			
Rev A		Section 7.8.1 (5150-5250, 5250-5350, 5470-5725 MHz): Radiated Spurious above 1 GHz			
		Also verification performed that there was no change to Output Power and 26 dB & 99% Bandwidth (5150-5250, 5250-5350, 5470-5725 MHz): as part of the same program			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 9 of 186

3 TEST RESULT CERTIFICATE

Applicant:	Polycom	Tested By:	MiCOM Labs, Inc.
	4750 Willow Road		440 Boulder Court
	Pleasanton		Suite 200
	California ,		Pleasanton
	94588-2708, USA		California, 94566, USA
Product:	Spectralink 8400 series Wi-Fi handsets with Bluetooth	Telephone:	+1 925 462 0304
Model No.:	Spectralink 8440	Fax:	+1 925 462 0306
S/No's:	610874629 (radiated)		
	610859571 (conducted)		
Date(s) Tested:	16 th – 20 th May 2011	Website:	www.micomlabs.com

STANDARD(S)TEST RESULTSFCC 47 CFR Part 15, SubPart E 15.407 &
RSS-210 Annex 9EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERTIFICATE #2381.01

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 10 of 186

4 REFERENCES AND MEASUREMENT UNCERTAINTY

4.1 Normative References

Ref.	Publication	Year	Title
i.	FCC 47 CFR Part 15, SubPart C 15.247	2010	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	FCC 47 CFR Part 15 SubPart E 15.407	2010	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart E—Unlicensed National Information Infrastructure Devices
iii.	RSS-210 Annex 9	2010	Radio Standards Specification 210, Issue 8, Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment,
iv.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment,
v.	47 CFR Part 15, SubPart B	2010	47 CFR Part 15, SubPart B; Unintentional Radiators
vi.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
vii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
viii.	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
ix.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
x.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xi.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xii.	A2LA	9th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 11 of 186

4.2 Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 12 of 186

5 TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
FCC §15.407(a)(1)(2) RSS-210 §A9.2(2) RSS-Gen §4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	7.1
FCC §15.407(a)(1)(2) RSS-210 §A9.2(2) RSS-Gen §4.6	Transmit Output Power	Power Measurement	Conducted	Complies	7.2
FCC §15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	7.3
FCC §15.407(a)(1)(2) RSS-210 §A9.2(1)(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	7.4
FCC §15.407(g) RSS-Gen §7.2.6	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	7.5
FCC §1.1310 RSS-Gen §5.6	Maximum Permissible Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Calculated	Complies	7.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 13 of 186

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
FCC §15.407(b)(2) FCC §15.205(a) FCC §15.209(a) RSS-210 §A9.3(2) RSS-Gen §4.7 RSS-Gen §4.8	Radiated Emissions		Radiated		7.8
RSS-Gen §6	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	7.8.1
	Radiated Band Edge	Band-edge results		Complies	7.8.2
	Padiated Peak Emissions	Peak Emissions results		Complies	7.8.3
	Receiver Radiated Spurious Emissions	Rx Emissions		Complies	7.8.4
	Radiated Spurious Emissions - Digital	Emissions below 1 GHz (30M- 1 GHz)		Complies	N/A
FCC §15.407(b)(6) FCC §15.207(a) RSS-Gen §7.2.4	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies	7.9

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
To: Sorial #:	FCC 47 CFR Part 15.407 & RSS-210 A9
Issue Date: Page:	6 th June 2011 Page 14 of 186
0	0

List of Measurements (continued)

Dynamic Frequency Selection (DFS)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407(h)(2) and FCC Memorandum Opinion and Order FCC 06-96 (Compliance Measurement procedures for Unlicensed National Information Infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection).

Industry Canada RSS-210 §A9.3

Section	Test Items	Description	Condition	Result	Test Report Section
7.8.3	In-Service Monitoring	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non- Occupancy Period	Conducted	Complies	7.7

Tests performed on Client Device without Radar Detection

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 6.11 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Note 4: Complete Radiated Emissions – Digital Apparatus & AC Mains test results are presented in MiCOM Labs test report POLY06-U18.

Note 5: Radio's included within the Spectralink 8400 Series wireless handsets are declared identical by the manufacturer. EUT's were tested for RF output power. Unit and model (Model: 8440 S/N: 600830461) with highest output power was utilized for testing.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 15 of 186

6 PRODUCT DETAILS AND TEST CONFIGURATIONS

6.1 <u>Test Program Scope</u>

The scope of the test program was to test the WiFi transmitter (802.11a/n) utilized in the Polycom Spectralink 8440 Wi-Fi handset with Bluetooth for compliance against FCC 47 CFR Part 15, SubPart E 15.407 & RSS-210 Annex 9.

Two Spectralink 8400 Series handsets (models 8440 and 8450) were tested during this test program. These products share the same RF circuitry. Conducted RF testing was performed only on the 8440 model. RF Conducted Emission results of 8440 model are presented in this report.

Class II Permissive Change (CIIPC)

As a result of a 6.9 GHz spurious emission found during the original test program pcb layout was changed to improve grounding around the Power Amplifier (PA) which in turn attenuated the spurious emission. This problem was only apparent in all 5 GHz frequency bands. The following retesting was performed in order to prove continued compliance;

1. Radiated Spurious above 1 GHz (5150-5350 & 5470-5725 MHz)

The following parameters were verified as part of the CIIPC (5150-5350 & 5470-5725 MHz)

- 1. Output Power
- 2. 6 dB & 99% Bandwidth

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 16 of 186

Applicant: Polycom Product: Spectralink 8440 Wi-Fi handset Front

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 17 of 186

Applicant: Polycom Product: Spectralink 8440 Wi-Fi handset Back

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 18 of 186

Applicant: Polycom **Product:** AC-DC Adapter/ Charger Model SA106B-05 for Spectralink 8400 series handsets

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 19 of 186

6.2 EUT Details

Detail	Description
Purpose:	Test of the Polycom Spectralink 8440 Wi-Fi
	handset with Bluetooth for compliance against
	210 Annex 9
Applicant:	Polycom
	4750 Willow Road
	Pleasanton, CA 94588-2708
	USA
Manufacturer:	Same as Applicant
Test Laboratory:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
Test report reference number:	Pleasanton, California 94566 USA
Dete FUT received:	POL100-012
Date EUT received.	12/21/2010 1/10/2011
No of Units Tested:	12/21/2010 = 1/19/2011 610874620 (radiated)
	610859571 (conducted)
Product Name:	Spectralink 8400 series Wi-Fi handset
Manufacturers Trade Name:	Polycom Spectralink 8400 series Wi-Fi handsets
Model No.:	Spectralink 8440 handset with Bluetooth
Equipment Primary Function:	Wi-Fi handset with Bluetooth
Equipment Secondary Function(s):	N/A
Type of Technology:	802.11 a/b/g/n and Bluetooth
Installation type:	Portable
Construction/Location for Use:	Indoor/Outdoor
Software/Firmware Release:	BootROM Mink Phoenix E6 FCC Test 14.
Rated Input Voltage and Current DC:	Nominal: 3.8V; Battery: 3.5V - 4.2V,
	Charger (USB or Base) supply: 5V +/- 10%
Operating Temperature Range °C:	
	0.70 X 2.120 X U.9
Weight:	0 02 20 n n m
Transmit/Receive Operation:	zu p.p.iii. Full Duploy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 20 of 186

6.3 External A.C. / D.C. Power Adaptor

Model	Description
SA106B-05	GCI Technologies switching adaptor:
	Input: 100 - 240V AC; 50-60 Hz; 0.25 Amp
	Output: 5V DC; 1 Amp

6.4 Operational Power Range

			Utility		TX SPR: Utility	Band Edge: Utility		
Fundamental	Conducted	Max	Setting	Measured	Setting	Setting	Compliant	Compliant
Fundamental	RF	Test	Used	Output	Used	Used	Compliant	Output
Frequency	Emissions	Utility	During	Power	During	During	Test Utility	Power
(MHz)	Limit (dBm)	Setting	Test	(dBm)	Test	Test	Setting	(dBm)
	Preliminary		Conducte	ed RF	Radiated	RF		
802.11a	Conditions		Emission	IS	Emissions	6	Final Result	s
5180	15.46	24	14	14.69	24	14	14	14.69
5200	15.46	24	14	14.63	24		14	14.63
5240	15.46	24	14	14.72	24		14	14.72

802.11n	Preliminary		Conducted RF		Radiated RF			
HT-20	Conditions		Emissions		Emissions		Final Results	
5180	15.46	24	14	14.81	24	14	14	14.81
5200	15.46	24	14 14.91		24		14	14.91
5240	15.46	24	14	14 14.75		24		14.75

802.11a	Preliminary Conditions		Conducted RF Emissions		Radiated RF Emissions		Final Results	
5260	22.46	24	16	15.38	24		16	15.38
5280	22.46	6 24 16 15.51		15.51	24		16	15.51
5320	22.46	24	16	15.39	24	16	16	15.39

802.11n HT-20	Preliminary Conditions		Conducted RF Emissions		Radiated RF Emissions		Final Results	
5260	22.46	24	16	15.27	24		16	15.27
5280	22.46	24	16 15.17		24		16	15.17
5320	22.46	24	16	15.36	24	16	16	15.36

802.11a	Preliminary Conditions		Conducted RF Emissions		Radiated RF Emissions		Final Results	
5500	22.46	24	16	16.04	24	16	16	16.04
5600	22.46 24		16	16.03	24		16	16.03
5700	22.46	22.46 24		16.42	24		16	16.42

802.11n HT-20	Preliminary Conditions		Conducted RF Emissions		Radiated RF Emissions		Final Results	
5500	22.46	24	16	15.93	24	16	16	15.93
5600	22.46	24	16 15.90		24		16	15.90
5700	22.46	24	16 16.30		24		16 16.30	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 21 of 186

6.5 Types of Modulation Supported

Modulation / Mode	BW 1
802.11a	OFDM
802.11n HT-20	OFDM

6.6 Antenna Details

The following is a description of the EUT antennas.

Antenna Type	Manufacturer	Model	Gain	Frequency Range
Plated antenna on PCB	Polycom	N/A	2.50 dBi	2400 - 2483.5 MHz
	-		5.51 dBi	5150 - 5850 MHz

6.7 Cabling and I/O Ports

The following is a description of the cable and input/ output ports available on the EUT.

Type of I/O Ports	Description	Screened (Y/N)	Length	Qty	Tested (Y/N)
Battery	Battery connections for removable	Ν	N/A	1	Ν
	Correction to bondo free boodest	V	4 0 m at a m	4	V
Stereo	Connection to nands free headset	Ŷ	< 3 meters	1	Ŷ
	Dower connector mini LICD for	V	< 2 motoro	1	V
AC-DC Adapter/ Charger	charging using AC-DC Adapter/ Charger (model: SA106B-05)	T	< 5 meters	I	Ť
Charging terminals	Charging terminal for charging EUT with docking options	Ν	N/A	1	Y

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 22 of 186

6.8 EUT Configurations

Frequency bands:

Test Mode	Start Freq. (MHz)	Stop Freq. (MHz)	Rated Output Power (Watts)	Frequency Tolerence (p.p.m.)	20dB BW (MHz)	Emission Designator
802.11a	5180	5240	0.030	20	16.633	16M7D1D
802.11n HT-20	5180	5240	0.031	20	17.735	17M8D1D
802.11a	5260	5320	0.036	20	16.633	16M7D1D
802.11n HT-20	5260	5320	0.035	20	17.735	17M8D1D
802.11a	5500	5700	0.044	20	16.733	16M8D1D
802.11n HT-20	5500	5700	0.043	20	17.936	18M0D1D

Channel plan and spacing:

Band (GHz)	Mode	Freq Band (MHz)	Freq Range (MHz)	Low Ch	Mid Ch	High Ch	# Ch	Ch Spacing (MHz)
5.2	802.11a	5180-5240	5150-5250	5180	5200	5240	4	20
5.2	802.11n HT-20	5180-5240	5150-5250	5180	5200	5240	4	20
5.3	802.11a	5260-5320	5250-5350	5260	5280	5320	4	20
5.3	802.11n HT-20	5260-5320	5250-5350	5260	5280	5320	4	20
5.7	802.11a	5500-5700	5470-5725	5500	5580/5600	5700	11	20
5.7	802.11n HT-20	5500-5700	5470-5725	5500	5580/5600	5700	11	20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 23 of 186

6.9 Equipment Details

The following is a description of supporting equipment used during the test program.

Equipment	Equipment Description	Manufacturer	Model No.	Serial No (s).	Tested
	Alpha		ESB-		
Battery	SAMPLE	Polycom	RS657+002	AC10103200B7	N
	Alpha	Polycom	ESB-		
Battery	SAMPLE		RS657+002	AC1010320232	Y
	Alpha	Polycom	ESB-		
Battery	SAMPLE		RS657+002	AC101032008E	Y
	Alpha	Polycom	ESB-		
Battery	SAMPLE		RS658+002	AD101032019C	N
	Alpha	_	ESB-		
Charging Dock	SAMPLE	Polycom	DCA39+001	AlphaB391741033	N
40.00			HK-U-		
AC-DC	I.I.E. Power		120A050-	N1/A	N
Adapter	Supply	HUN-KWANG	CP	N/A	IN
AC-DC Adapter/	Switching				
Adapter/	Adoptor	GUI	SA106D 05	NI/A	v
Charger		lechnologies	SA100D-05	IN/A	T
	Pin/ to				
	Ground Dock				
	PCB Revision				
Speaker Dock	X4	Polycom	N/A	N/A	N
			HK-AX-		
AC-DC	I.T.E. Power		120A200-		
Adapter	Supply	HON-KWANG	CP	N/A	N
•	Encore		P/N: 29951-		
Headset	Headset	Plantronics	12	0E0723 K7	Y
Charging	Alpha		ESB-DCA		
Station	SAMPLE	Polycom	40+001	AlphaB400241032	N
Power Splitter/					
Combiner	ZAPD-4	Mini-Circuits	15542	0 9729	Y
			AIR-		
	Aironet		AP1242AG-		
Access Point	802.11 a/ b/ g	Cisco	A-K9	FTX0940B04J	Y
Switching AC					
Adapter for	Switching		PSA18U-		
Access Point	Adapter	PHIHONG	480C	N/A	Y
	Personal			1005HAB-	
Computer	Computer	Eee	1005HAB	BLU001X	Y
AC-DC			ADP-40PH		
Adapter for PC	Power Supply	ASUS	AB	N/A	Υ

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 24 of 186

6.10 Test Configurations

Operational Mode(s) Data Rate Tested		Duty Cycle (Conducted Emissions)	Duty Cycle (Radiated Emissions)
а	6 MBit/s	100%	10%
n HT-20	6.5 MCS	100%	10%

6.11 Equipment Modifications

The following modifications were required to complete testing of the UUT:

1. Conducted Emissions – unit with 100% duty cycle was provided by the customer in order to complete the testing

6.12 Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 25 of 186

7 TEST RESULTS

7.1 26 dB and 99 % Bandwidth

FCC, Part 15 Subpart E §15.407(a)(1)(2) Industry Canada RSS-210 § A9.2(2) Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was restricted to a single port.

Test Configuration

Measurement set up for 26 dB and 99 % bandwidth test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 26 of 186

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen §4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Spectrum Measurement

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 27 of 186

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Compliant Power

7.1.1 5150 MHz - 5250 MHz; 26 dB and 99 % Operational Bandwidth(s)

TABLE OF RESULTS – 802.11a

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

Test Frequency		26 dB Ba Mł	ndwidth Hz	Minimu Bandwid	ım 6dB dth Limit	Margin	
MHz	а	b	с	d	kHz MHz		MHz
5180	22.645000						-22.145000
5200	22.244000				500 0.5		-21.744000
5240	21.844000						-21.344000

99% Bandwidth

		99 % Bai	ndwidth			
Test Frequency		MF	łz			
MHz	а	b	с	d		
5180	16.633000					
5200	16.633000					
5240	16.633000					

±2.81 dB

Measurement unc	ertainty:
-----------------	-----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 28 of 186

26dB OBW 99% Ambient 5180MHz 4.20V 14.71dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 29 of 186

26dB OBW 99% Ambient 5200MHz 4.20V 14.55dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 30 of 186

26dB OBW 99% Ambient 5240MHz 4.20V 15.36dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 31 of 186

TABLE OF RESULTS - 802.11 HT-20

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

		26 dB Ba	andwidth	Minimu	um 6dB	Margin	
rest riequency		м	Hz	Bandwid	dth Limit	wargin	
MHz	а	b	с	d	kHz MHz		MHz
5180	23.848000						-23.348000
5200	23.747000				500 0.5		-23.247000
5240	23.447000						-22.947000

99% Bandwidth

		99 % Ba	andwidth			
Test Frequency		м	Hz			
MHz	а	b	с	d		
5180	17.735000					
5200	17.735000					
5240	17.735000					

Measurement uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 32 of 186

26dB OBW 99% Ambient 5180MHz 4.20V 14.66dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 33 of 186

26dB OBW 99% Ambient 5200MHz 4.20V 14.95dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 34 of 186

26dB OBW 99% Ambient 5240MHz 4.20V 14.77dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 35 of 186

7.1.2 5250 MHz - 5350 MHz; 26 dB and 99 % Operational Bandwidth(s)

TABLE OF RESULTS – 802.11a

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

Test Frequency	26 dB Bandwidth MHz			Minimu Bandwid	ım 6dB dth Limit	Margin	
MHz	а	b	с	d	kHz	MHz	MHz
5260	22.946000						-22.446000
5280	22.946000				500	0.5	-22.446000
5320	23.046000						-22.546000

99% Bandwidth

	99 % Bandwidth						
Test Frequency	MHz						
MHz	а	b	с	d			
5260	16.633000						
5280	16.633000						
5320	16.633000						

Measurement uncertainty:	±2.81 dB
-	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 36 of 186

26dB OBW 99% Ambient 5260MHz 4.20V 15.37dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 37 of 186

26dB OBW 99% Ambient 5280MHz 4.20V 15.99dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 38 of 186

26dB OBW 99% Ambient 5320MHz 4.20V 15.43dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 39 of 186

TABLE OF RESULTS - 802.11 HT-20

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

Test Frequency	26 dB Bandwidth MHz				Minimu Bandwid	um 6dB dth Limit	Margin
MHz	а	b	с	d	kHz	MHz	MHz
5260	24.649000						-24.149000
5280	24.549000				500	0.5	-24.049000
5320	24.148000						-23.648000

99% Bandwidth

		99 % Ba	andwidth			
Test Frequency	MHz					
MHz	а	b	с	d		
5260	17.735000					
5280	17.735000					
5320	17.735000					

Measurement uncertainty:

±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 40 of 186

26dB OBW 99% Ambient 5260MHz 4.20V 15.30dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 41 of 186

26dB OBW 99% Ambient 5280MHz 4.20V 15.21dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 42 of 186

26dB OBW 99% Ambient 5320MHz 4.20V 15.26dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 43 of 186

7.1.3 5470 MHz - 5725 MHz; 26 dB and 99 % Operational Bandwidth(s)

TABLE OF RESULTS – 802.11a

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

Test Frequency	26 dB Bandwidth MHz				Minimu Bandwid	um 6dB dth Limit	Margin
MHz	а	b	с	d	kHz MHz		MHz
5500	24.950000						-24.450000
5580	25.651000				500	0.5	-25.151000
5700	26.453000						-25.953000

99% Bandwidth

		99 % Ba	ndwidth				
Test Frequency	MHz						
MHz	а	b	с	d			
5500	16.733000						
5580	16.733000						
5700	16.733000						

Measurement uncertainty:	+2 81 dB
measurement uncertainty.	12.01 UD

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 44 of 186

26dB OBW 99% Ambient 5500MHz 4.20V 16.04dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 45 of 186

26dB OBW 99% Ambient 5580MHz 4.20V 16.02dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 46 of 186

26dB OBW 99% Ambient 5700MHz 4.20V 16.47dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 47 of 186

TABLE OF RESULTS - 802.11 HT-20

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

26 dB Bandwidth

		26 dB Ba	Minimu	um 6dB	Margin		
restriequency		MHz Bandwidth Limit				Wargin	
MHz	а	b	с	d	kHz MHz		MHz
5500	25.451000						-24.951000
5580	27.355000				500	0.5	-26.855000
5700	25.752000						-25.252000

99% Bandwidth

		99 % Ba	andwidth			
Test Frequency	MHz					
MHz	а	b	с	d		
5500	17.936000					
5580	17.936000					
5700	17.936000					

Measurement uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 48 of 186

26dB OBW 99% Ambient 5500MHz 4.20V 15.96dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 49 of 186

26dB OBW 99% Ambient 5580MHz 4.20V 15.92dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 50 of 186

26dB OBW 99% Ambient 5700MHz 4.20V 16.27dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 51 of 186

7.2 Transmit Output Power

FCC, Part 15 Subpart E §15.407(a)(1)(2) Industry Canada RSS-210 §9.2(2) RSS-Gen §4.4

Test Procedure

The transmitter terminal of EUT was connected to the input of an average power meter. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result.

Test Measurement Setup

Measurement setup for Transmitter Output Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY06-U12 Rev AIssue Date:28th February, 2011Page:Page 53 of 186

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna Gain - Maximum Permissible Peak Transmit Power

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum allowable peak power in the 5150 – 5250 MHz frequency band is +17 dBm.

The maximum allowable peak power in the 5250 - 5350 MHz, and 5470 - 5725 MHz frequency band is + 24 dBm.

Maximum Transmit Power, FCC Limits

Frequency Range	Maximum 26 dB Bandwidth	4 + 10 Log (B)	Limit
(MHz)	(MHz)	(dBm)	(dBm)
5150 – 5250	23.848	17.77	17.00

Limit 5150 - 5250 MHz: Lesser of 50 mW (+17 dBm) or 4 + 10 Log (B) dBm

Limit 5250 - 5350 and 5470 - 5725: Lesser of 250 mV	/ (+24 dBm) or 11	+ 10 Log (B) dBm
---	-------------------	------------------

Frequency Range	Maximum 26 dB Bandwidth	11 + 10 Log (B)	Limit
(MHz)	(MHz)	(dBm)	(dBm)
5250 - 5350	26.649	25.26	24.00
5470 - 5725	27.355	25.37	24.00

Maximum Transmit Power Industry Canada Limits

Limit 5150 – 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm

Frequency Range	Maximum 99% Bandwidth	10 + 10 Log (B)	EIRP Limit
(IVIHZ)	(IVIHZ)	(aBm)	(авт)
5150 – 5250	17.735	22.49	22.49

Limit 5250 – 5350 and 5470 – 5725: Lesser of 250 mW (+24 dBm) or 11 + 10 Log (B) dBm

Frequency Range (MHz)	Maximum 99% Bandwidth (MHz)	11 + 10 Log (B) (dBm)	EIRP Limit (dBm)
5250 - 5350	17.735	23.49	23.49
5470 - 5725	17.936	23.54	23.54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
To:	FCC 47 CFR Part 15.407 & RSS-210 A9
Serial #:	POLY21-Ua2 Rev A
Issue Date:	6 th June 2011
Page:	Page 55 of 186

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

Traceability	
Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
Power'	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 56 of 186

Measurement Results for Transmit Output Power

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Compliant Power

7.2.1 5150 MHz - 5250 MHz; Peak Output Power

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Me	easured Pe	ak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)					Linit	Wargin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	14.69				14.69		17.00	-2.31
5200	14.63				14.63		17.00	-2.37
5240	14.72				14.72		17.00	-2.28

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 57 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Ме	asured Pe	ak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)					2	margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	14.81				14.81		17.00	-2.19
5200	14.91				14.91		17.00	-2.09
5240	14.75				14.75		17.00	-2.25

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 58 of 186

7.2.2 5250 MHz - 5350 MHz; Peak Output Power

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		Limit	Margin	
Frequency							g	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	15.38				15.38		24.00	-8.62
5280	15.51				15.51		24.00	-8.49
5320	15.39				15.39		24.00	-8.61

Measurement uncertainty:	±1.33 dB
······································	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 59 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		Limit	Margin	
Frequency								
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	15.27				15.27		24.00	-8.73
5280	15.17				15.17		24.00	-8.83
5320	15.36				15.36		24.00	-8.64

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 60 of 186

7.2.3 5470 MHz - 5725 MHz; Peak Output Power

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		Limit	Margin	
Frequency								
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	16.04				16.04		24.00	-7.96
5580	16.03				16.03		24.00	-7.97
5700	16.42				16.42		24.00	-7.58

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 61 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		Limit	Margin	
Frequency						Linit	margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	15.93				15.93		24.00	-8.07
5580	15.90				15.90		24.00	-8.10
5700	16.30				16.30		24.00	-7.70

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 62 of 186

7.3 Peak Excursion Ratio

FCC, Part 15 Subpart E §15.407(a)(6)

Test Procedure

Normative Reference (xi) Section 2.1 Measurement Procedure DA 02-2138 "Measurement Procedure Updated for Peak Transmit Power in the UNII Bands" was implemented to determine the Peak Excursion Ratio. This is a conducted measurement using a spectrum analyzer. The Peak Excursion Ratio is the difference in amplitude (dB) between the two traces.

Test Measurement Set up

Measurement set up for Peak Excursion Ratio

Specification

Limits

§15.407 (a)(6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Laboratory Measurement Uncertainty for Spectrum Measurement

|--|

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 63 of 186

Measurement Results for Peak Excursion Ratio

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Compliant Power

7.3.1 5150 MHz - 5250 MHz; Peak Excursion Ratio

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Trace Peak Power Markers		Δ Marker	Limit	Margin	
Frequency	1	2	(Marker 1 – 2)	Linin	Margin
MHz	dBm	dBm	dB	dB	dB
5180	14.01	3.66	-10.35	13	-2.65
5200	14.34	3.56	-10.78	13	-2.22
5240	14.35	3.86	-10.49	13	-2.51

Measurement uncertainty:±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 64 of 186

Pk Excursion Ambient 5180MHz 4.20V 14.69dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 65 of 186

Pk Excursion Ambient 5200MHz 4.20V 14.62dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 66 of 186

Pk Excursion Ambient 5240MHz 4.20V 14.72dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 67 of 186

TABLE OF RESULTS - 802.11HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Test	Trace Peak Power Markers		Δ Marker	Limit	Margin
Frequency	1	2	(Marker 1 – 2)	Linit	Margin
MHz	dBm	dBm	dB	dB	dB
5180	14.00	3.62	-10.38	13	-2.62
5200	14.62	2.89	-11.73	13	-1.27
5240	13.75	3.76	-9.99	13	-3.01

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 68 of 186

Pk Excursion Ambient 5180MHz 4.20V 14.83dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 69 of 186

Pk Excursion Ambient 5200MHz 4.20V 14.91dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 70 of 186

Pk Excursion Ambient 5240MHz 4.20V 14.75dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 71 of 186

7.3.2 5250 MHz - 5350 MHz; Peak Excursion Ratio

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Test	Trace Peak Power Markers		ower Markers Δ Marker		Margin
Frequency	1	2	(Marker 1 – 2)	Linin	Margin
MHz	dBm	dBm	dB	dB	dB
5260	15.22	4.44	-10.78	13	-2.22
5280	14.92	4.49	-10.43	13	-2.57
5320	15.24	4.41	-10.83	13	-2.17

Measurement uncertainty: ±1.33 dB	Measurement uncertainty:	±1.33 dB
-----------------------------------	--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 72 of 186

Pk Excursion Ambient 5260MHz 4.20V 15.38dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 73 of 186

Pk Excursion Ambient 5280MHz 4.20V 15.50dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 74 of 186

Pk Excursion Ambient 5320MHz 4.20V 15.37dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 75 of 186

TABLE OF RESULTS - 802.11HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Test	Trace Peak Power Markers Δ Marker		Limit	Margin		
Frequency	1	2	(Marker 1 – 2)	Linnt	Margin	
MHz	dBm	dBm	dB	dB	dB	
5260	14.41	4.15	-10.26	13	-2.74	
5280	14.77	2.90	-11.87	13	-1.13	
5320	14.78	3.36	-11.42	13	-1.58	

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 76 of 186

Pk Excursion Ambient 5260MHz 4.20V 15.26dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 77 of 186

Pk Excursion Ambient 5280MHz 4.20V 15.15dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 78 of 186

Pk Excursion Ambient 5320MHz 4.20V 15.34dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 79 of 186

7.3.3 5470 MHz - 5725 MHz; Peak Excursion Ratio

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Test	Trace Peak Pow	ver Markers	Δ Marker	Limit	Margin	
Frequency	1	2	(Marker 1 – 2)	Linnt		
MHz	dBm	dBm	dB	dB	dB	
5500	15.05	4.62	-10.43	13	-2.57	
5580	14.85	4.81	-10.04	13	-2.96	
5700	14.92	4.60	-10.32	13	-2.68	

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 80 of 186

Pk Excursion Ambient 5500MHz 4.20V 16.02dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 81 of 186

Pk Excursion Ambient 5580MHz 4.20V 16.02dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 82 of 186

Pk Excursion Ambient 5700MHz 4.20V 16.43dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 83 of 186

TABLE OF RESULTS - 802.11HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Test	Trace Peak Po	wer Markers	Δ Marker	Limit	Margin	
Frequency	1	2	(Marker 1 – 2)	Linnit	margin	
MHz	dBm	dBm	dB	dB	dB	
5500	14.96	3.87	-11.09	13	-1.91	
5580	14.38	4.00	-10.38	13	-2.62	
5700	14.62	3.55	-11.07	13	-1.93	

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 84 of 186

Pk Excursion Ambient 5500MHz 4.20V 15.93dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 85 of 186

Pk Excursion Ambient 5580MHz 4.20V 15.90dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 86 of 186

Pk Excursion Ambient 5700MHz 4.20V 16.29dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 87 of 186

7.4 Peak Power Spectral Density

FCC, Part 15 Subpart C §15.407(a)(1)(2) Industry Canada RSS-210 §A9.2(1)(2)

Test Procedure

The transmitter output was connected to a spectrum analyzer and the peak power spectral density measured. Method 2 Sample Detection and power averaging, specified in FCC document DA 02-2138 (Normative Reference (ix) Section 2.1 "Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices") was used to determine the peak power spectral density of the emission. The Peak Power Spectral Density is the highest level found across the emission in a 1 MHz resolution bandwidth.

Test Measurement Setup

Measurement setup for Peak Power Spectral Density

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 88 of 186

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2) 5150 – 5250 MHz

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band

5250 - 5350 MHz & 5470 - 5725 MHz

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band

Industry Canada RSS-210 § A9.2(1), A9.2(2) 5150 – 5250 MHz

§ A9.2(1) The e.i.r.p. spectral density shall not exceed +10 dBm in any 1 MHz band

5250 - 5350 MHz & 5470 - 5725 MHz

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Measurement Results for Peak Power Spectral Density

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Compliant Power

7.4.1 5150 MHz - 5250 MHz; Peak Power Spectral Density

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				– Total Power (dBm)		Limit	Margin
Frequency	RF Port (dBm)					Linin	margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	3.46				3.46		4.00	-0.54
5200	3.34				3.34		4.00	-0.66
5240	3.40				3.40		4.00	-0.60

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 90 of 186

Power Density Ambient 5180MHz 4.20V 14.69dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 91 of 186

Power Density Ambient 5200MHz 4.20V 14.63dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 92 of 186

Power Density Ambient 5240MHz 4.20V 14.60dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 93 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Ме	Measured Peak Power				ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)					Linit	margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	3.90				3.90		4.00	-0.10
5200	3.50				3.50		4.00	-0.50
5240	3.84				3.84		4.00	-0.16

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 94 of 186

Power Density Ambient 5180MHz 4.20V 15.08dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 95 of 186

Power Density Ambient 5200MHz 4.20V 14.91dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 96 of 186

Power Density Ambient 5240MHz 4.20V 14.75dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 97 of 186

7.4.2 5250 MHz - 5350 MHz; Peak Power Spectral Density

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)						Linit	margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	4.29				4.29		11.00	-6.71
5280	3.86				3.86		11.00	-7.14
5320	4.75				4.75		11.00	-6.25

Measurement uncertainty:	±1.33 dB
measurement uncertainty.	±1.55 db

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 98 of 186

Power Density Ambient 5260MHz 4.20V 15.41dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 99 of 186

Power Density Ambient 5280MHz 4.20V 15.41dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 100 of 186

Power Density Ambient 5320MHz 4.20V 15.39dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 101 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				– Total Power (dBm)		Limit	Margin
Frequency		RF Port (c	dBm)			,		
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	4.03				4.03		11.00	-6.97
5280	4.20				4.20		11.00	-6.80
5320	4.06				4.06		11.00	-6.94

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 102 of 186

Power Density Ambient 5260MHz 4.20V 15.26dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 103 of 186

Power Density Ambient 5280MHz 4.20V 15.18dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 104 of 186

Power Density Ambient 5320MHz 4.20V 15.36dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 105 of 186

7.4.3 5470 MHz - 5725 MHz; Peak Power Spectral Density

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)					, , ,		5
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	4.73				4.73		11.00	-6.27
5580	4.48				4.48		11.00	-6.52
5700	3.99				3.99		11.00	-7.01

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 106 of 186

Power Density Ambient 5500MHz 4.20V 16.04dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 107 of 186

Power Density Ambient 5580MHz 4.20V 16.03dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 108 of 186

Power Density Ambient 5700MHz 4.20V 16.42dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 109 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Ме	Measured Peak Power Total Power (dBm)		Limit	Margin			
Frequency		RF Port (dBm)			or (a2)		inc. gin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	4.06				4.06		11.00	-6.94
5580	4.40				4.40		11.00	-6.60
5700	4.08				4.08		11.00	-6.92

Measurement uncertainty:	±1.33 dB
--------------------------	----------

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 110 of 186

Power Density Ambient 5500MHz 4.20V 15.94dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 111 of 186

Power Density Ambient 5580MHz 4.20V 15.90dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 112 of 186

Power Density Ambient 5700MHz 4.20V 16.30dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 113 of 186

7.5 Frequency Stability

FCC, Part 15 Subpart E §15.407(g) Industry Canada RSS-Gen §7.2.6

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20 ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 ± 20 ppm at 5.250 GHz translates to a maximum frequency shift of ± 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, ± 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

FCC §15.407 (g)

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Industry Canada RSS-Gen §7.2.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 114 of 186

7.6 Maximum Permissible Exposure

FCC §1.1310 Industry Canada RSS-Gen §5.6

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm2) = EIRP/($4\pi d2$) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

The Peak Power in mW is the highest transmitter power measured and summed across all transmitters. Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm2

Freq. Band	Antenna Gain	Peak Output Power	Antenna Gain	EIRP	Distance @ 1mW/cm2	Minimum Separation Distance
(MHz)	(dBi)	(dBm)	(numeric)	(mW)	Limit(cm)	(cm)
5150 - 5725	5.51	16.42	3.56	155.96	3.52	20

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

FCC §1.1310

Limit = $1 \text{mW} / \text{cm}^2$ from 1.310 Table 1

RSS-Gen §5.6

Exposure of Humans to RF Fields: Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

Laboratory Measurement Uncertainty for Power Measurements Measurement uncertainty +1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 115 of 186

7.7 Dynamic Frequency Selection (DFS)

7.7.1 Test Procedure and Setup

FCC, Part 15 Subpart C §15.407(h) FCC 06-96 Memorandum Opinion and Order Industry Canada RSS-210 §A9.3

7.7.1.1 Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)			
≥ 200 milliwatt	-64 dBm			
< 200 milliwatt	-62 dBm			
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna				

7.7.1.2 DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds
	over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth See
	Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

7.7.1.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (R	adar Types 1-4)			80%	120

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.
- 3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Bursts* may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *Burst* will have the same chirp width. Pulses in different *Bursts* may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to *Burst_Count*. Each interval is of length (12,000,000 / *Burst_Count*) microseconds. Each interval contains one *Burst*. The start time for the *Burst*, relative to the beginning of the interval, is between 1 and [(12,000,000 / *Burst_Count*) (Total *Burst* Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each *Burst* is chosen independently.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 118 of 186

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical Representation of the Long Pulse Radar Test Waveform

7.7.1.4 Frequency Hopping Radar Test Waveform

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

7.7.1.5 Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm (Ref Section 5.1). The 30dB amplifier gain was entered as amplitude offset on the spectrum analyzer.

Conducted Calibration Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 120 of 186

7.7.1.6 Test Setup

Block Diagram(s) of Test Setup

Setup for Conducted Measurements where the EUT is the Client with injection of Radar Test:

Support Equipment Configuration

Measurement Uncertainty Time/Power

Moasurement uncertainty	Time - 4%
Measurement uncertainty	Power - 1.33dB

Traceability

	Test	Equ	ipmen	t Us	ed
--	------	-----	-------	------	----

0072, 0083, 0098, 0116, 0132, 0158, 0313, 0314, 0193, 0223, 0252, 0253, 0251, 0256, 0328, 0329

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 121 of 186

The EUT is a Client Device without radar detection.

Applicability of DFS Requirements Prior to Use of a Channel

(Ref Table 1 of FCC 06-96)

Requirement	Operatio	onal Mode	
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Applicability of DFS requirements during normal operation

Requirement	Operational Mode			Operational Mode	
	Master	Client Without Radar Detection	Client With Radar Detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

(Ref Table 2 of FCC 06-96)

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 122 of 186

Declared minimum antenna gain 0 dBi.

Radar receive signal level = -62 dBm + minimum antenna gain + 1 dB = -61 dBm

Radar receive signal level = -61 dBm

Measurement Results - Dynamic Frequency Selection (DFS)

Radio parameters. Test methodology: Conducted Device Type: Client device without radar detection. Transmit Power: Maximum

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.7.2 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

Channel Closing Transmission Time - Measurement

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured, collecting nearly 250M samples of data, which included in excess of 600 ms of pre-trigger data. This Type 1 waveform had an integral marker built into its construction, marking the start of the radar waveform play, which directly triggered the PXI digitizer's data capture via the PXI backplane trigger bus.

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events with respect to T0 (zero time indicating the start of the measurements sequence) starting the 612.1 ms pre-trigger period followed by the radar type 1 burst period.

Radar (Type 1) Pre-trigger period	=612.1 ms
Type 1 burst period	=25.7 ms
Channel Closing Transmission Time starts in	mmediately after the last radar pulse is transmitted
i.e. 637.8 ms after the start of the trace capt	ure period.

Title: To: Serial #: Issue Date: Page:	Polycom Spectralink 8440 Wi-Fi handset with Bluetooth FCC 47 CFR Part 15.407 & RSS-210 A9 POLY21-Ua2 Rev A 6 th June 2011 Page 124 of 186
--	---

Therefore, pulses seen after this 637.8 ms boundary are identified and totaled to provide an aggregate total of transmissions in order to determine whether the EUT is compliant with the Channel Closing Transmission Time requirements as described in MO&O FCC 06-96. In this case, it was found that an aggregate total of 10.636 ms of transmission time accrued. This value is found at the right hand side at the foot of the following plot (10s Total).

Channel Closing Transmission Time

= <u>10.636 mSecs (limit 260 mSecs)</u>

Channel Move Time

= 0.9822 Secs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 1 of 6 (0-2 Seconds) Ch 112

From the plot above it can be seen that the transmission activity within the 200 mS window is 0.722 mS (see 200 mS Total). From the following plots which shows all additional activity within the remained of the 10 sec measurement window it can be determined that the aggregate transmission within this period is 9.914 mS. This is less than the 60 mS limit.

Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
FCC 47 CFR Part 15.407 & RSS-210 A9
POLY21-Ua2 Rev A
6 th June 2011
Page 125 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 2 of 6 (2-4 Seconds) Ch 112

Aeroflex DFS Radar Simulator and Analyzer	
3 Configure Help	
Output Frequency: 5560 MHz RF On Stimulus Output Path Loss: 0.0 dBm Mkr 2 Route SMB Off Output Level: 4 dBm Continuous Wave Digitizer Input Path Loss: 0.0 dBm	Snap Shot
Create New Waveform Capture Waveform Measurement / Analysis	
Top Of Screen: 0 dBm Sample Rate: 5.0 MHz Input Level: 0 dBm ARB Single Shot Select ARB File dB Per Division: 10 Capture Duration: 12.0	Next Page > < Previous Page
	Marker Info. Start Waveform 0.61210 sec
-10.00	End Waveform 0.63780 sec
-20.00	200ms Boundary 0.83780 sec
-30.00	10s Boundary 10.63780 sec
튭 _{40.00}	Aggregates
-50.00	200ms Total: 0.000722 sec
	Burst Cnt: <mark>4020</mark> 9.8s Total:
	0.009914 sec
-60.00 2.00000 2.20000 2.40000 2.60000 2.80000 3.00000 3.20000 3.40000 3.60000 3.80000 4.00000 Seconds	10s Total: 0.010636 sec
ARB File: DfsType1Pw1Pi1428Nop18NoChirp60Msps.aiq Trigger Threshold: 50 dBm 30 Min Delay Arm 30 M	lin End CAC 💌
The Platting Function Completed Successfully. Play Capture Auto Play Capture Manual Play Capture Manual	Play
SigGen: LO: PX12::12:INSTR Digitizer: LO: PX12::15:INSTR Quick Boot Booted	Exit Application

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 126 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 3 of 6 (4-6 Seconds) Ch 112

🚨 Aeroflex DFS Radar Simulator and Analyzer	
File Configure Help	
Output Frequency: 5560 MHz RF On Stimulus Output Path Loss: 0.0 dBm Mkr 2 Route SMB Off Output Level: -4 dBm Continuous Wave Digitizer Input Path Loss: 0.0 dBm	Snap Shot
Top 0f Screer: 0 dBm Sample Rate: 5.0 MHz Input Level: 0 dBm ARB Single Shot Select ARB File Next F dB Per Division: 10 Capture Duration: 12.0 Second(s) Mode C Continuous Capture Duration: Capture Duration: Mode C Continuous Market	°age> us Page
0.00 Start Wa	veform 210 sec veform 780 sec
-20.00 - 20.00	oundary 780 sec
-30.00	ndary }780 sec
œ 40.00 Agrical Agrical Burst Cn Burst Cn 200m 200m 200m 200m 200m 200m 200m	tes t: <mark>175</mark> otal: 22 sec
-60.00 Burst Cn 9.8s Tot	t: <mark>4020</mark> al:
	14 sec t: <mark>4195</mark>
-80.00 4.00000 4.20000 4.40000 4.60000 4.80000 5.00000 5.20000 5.40000 5.60000 5.80000 6.00000 0.0106	l: 36 sec
ARB File: DfsType1Pw1Pit1428Nop18NoChirp60Msps.aiq Trigger Threshold: 50 dBm 30 Min Delay Arm 30 Min End C	AC -
The Plotting Function Completed Successfully. Play Capture Auto Play Capture Manual Play	
SigGen: L0: PXI2:11::/INSTR Digitizer: L0: PXI2:15::INSTR Quick Boot Br: PXI2:11::INSTR Digitizer: RF: PXI2:11::INSTR Quick Boot	ication

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
FCC 47 CFR Part 15.407 & RSS-210 A9
POLY21-Ua2 Rev A
6 th June 2011
Page 127 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 4 of 6 (6-8 Seconds) Ch 112

Issue

Aeroflex DFS Radar Simulator and Analyzer	
Configure Help	
Dutput Frequency: 5560 MHz RF On Stimulus Dutput Path Loss: 0.0 dBm Mkr 2 Route SMB Off	Snap Shot
Output Levet 4 dBm Continuous Wave Digitizer Input Path Loss: 0.0 dBm	
Create New Waveform Capture Waveform Measurement / Analysis	
Top Of Screen: 0 dBm Sample Rate: 5.0 MHz Input Level: 0 dBm ARB • Single Shot Select ARB File	Next Page >
dB Per Division: 10 Capture Duration: 12.0 🛨 Second(s) Play C No Of Repeats Channel List	< Previous Page
	Marker Info.
	Start Waveform
-10.00	End Waveform
	0.63780 sec
-20.00	200ms Boundary
	10s Boundary
-30.00	10.63780 sec
E40.00	Aggregates
	Burst Cnt: 175
-50.00	200ms Total:
	Runat Cala 4020
	9.8s Total:
որությունը հարկությունը հարկությունը հարտումը հարկությունը հարկությունը հարկությունը հարկությունը հարկությունը - 20 00	0.009914 sec
	Total Cnt: 4195
-80,00	10s Total: 0.010636 sec
Блиции Б.20000 Б.40000 Б.60000 Б.80000 7.20000 7.20000 7.40000 7.80000 7.80000 8.00000 Seconds	0.010003 800
ARB File: DfsType1Pw1Pri1428Nop18NoChirp60Msps.aiq Trigger Threshold: 50 dBm 30 Min Delay Arm 30	Min End CAC 💌
The Plotting Function Completed Successfully. Play Capture Auto Play Capture Manual	Play
inGen: L0: PXI2::12::INSTR Dinitizer: L0: PXI2::15::INSTR Quick Boot Booted	Exit Application

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 128 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 5 of 6 (8-10 Seconds) Ch 112

Aeroflex DFS Radar Simulator and Analyzer	
3 Configure Help	
Output Frequency: 5560 MHz RF On Stimulus Output Path Loss: 0.0 dBm Mkr 2 Route SMB Off	Snap Shot
Output Level -4 dBm Continuous Wave Digitizer Input Path Loss: 0.0 dBm	
Create New Waveform Capture Waveform Measurement / Analysis	
Top Of Screen: 0 dBm Sample Rate: 5.0 MHz Input Level: 0 dBm ARB C Single Shot Select ARB File	Next Page >
dB Per Division: 10 Capture Duration: 12.0 🛨 Second(s) Play C No Of Repeats Channel List Channel List	Previous Page
	farker Info.
S S	tart Waveform
-10.00	ind Waveform
	0.63780 sec
-20.00	00ms Boundary
1	0.03700 sec
-30.00	10.63780 sec
E 40.00	Aggregates
B	Jurst Cnt: 175
-50.00 2	00ms Total: 0.000722 sec
	unah Cash M020
	8s Total:
	0.009914 sec
T	otal Cnt: 4195
	Os Total: 0.010636 sec
0.00000 0.20000 0.40000 8.80000 8.80000 8.80000 9.0000 9.40000 9.80000 9.80000 10.00000 Seconds	
ARB File: DfsType1Pw1Pi1428Nop18NoChip60Msps.aiq Trigger Threshold: 50 dBm 30 Min Delay Arm 30 Min	n End CAC 💌
The Plotting Function Completed Successfully. Play Capture Auto Play Capture Manual Play Capture Manual	Play
SigGen: BF: PXI2:11::INSTR Digitizer: BF: PXI2:14::INSTR Quick Boot Booted	xit Application

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 129 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 6 of 6 (10-12 Seconds) Ch 112

Aeroflex DFS Radar Simulator and Analyzer	
e Configure Help	
Output Frequency: 5560 MHz RF On Stimulus Output Path Loss: 0.0 dBm Mkr 2 Route SMB Off Output Level: 4 dBm Continuous Wave Digitizer Input Path Loss: 0.0 dBm	Snap Shot
Top Of Screen: 0 dBm Sample Rate: 5.0 MHz Input Level: 0 dBm ARB Single Shot Select ARB File dB Per Division: 10 Capture Duration: 12.0 ± Second(s) Mode Continuous Channel List	Next Page > < Previous Page
	Start Waveform 0.61210 sec End Waveform 0.63780 sec
-20.00	200ms Boundary 0.83780 sec
-30.00	10s Boundary 10.63780 sec Aggregates
	3urst Cnt: 175 200ms Total: 0.000722 sec
	3urst Cnt: <mark>4020</mark> 3.8s Total: 0.009914 sec
	Total Cnt: 4195 10s Total: 0.010636 sec
ARB File: DfsType1Pw1Pir1428Nop18NoChirp60Msps.aiq Trigger Threshold: -50 dBm 30 Min Delay Arm 30 Min	in End CAC 🔻
The Auto Test Function Completed Successfully. Play Capture Auto Play Capture Manual Play Capture Manual	Play
SigGen: LD: PXI2::12:INSTR Digitizer: LD: PXI2::15:INSTR Quick Boot Booted	Exit Application

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 130 of 186

7.7.3 30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

30 Minute Non-Occupancy Period Type 1 Radar Ch 112 - 5,560 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 131 of 186

7.8 Radiated Spurious Emissions

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

	Title:	Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
	To:	FCC 47 CFR Part 15.407 & RSS-210 A9
IVIC	Serial #:	POLY21-Ua2 Rev A
	Issue Date:	6 th June 2011
	Page:	Page 132 of 186

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

	Title:	Polycom Spectralink 8440 Wi-Fi handset with Bluetooth
MiC MLabs	To: Serial #:	FCC 47 CFR Part 15.407 & RSS-210 A9 POLY21-Ua2 Rev A
\mathcal{C}	Issue Date: Page:	6 th June 2011 Page 133 of 186

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 134 of 186

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor FO = Distance Falloff Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 135 of 186

Specification for FCC Part 15 Radiated Spurious Emissions

Limits

§15.407 (b)(2)

All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

§15.205 (a)

Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a)

Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2)

For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6

Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 136 of 186

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 137 of 186

Specification for Industry Canada Receiver Spurious Emissions

RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with; (a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Frequency	Field Strength	Field Strength	Measurement Distance
	(μν/m)	(αρμν/m)	(meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB

Traceability:	
Method	Test Equipment Used
Work instruction WI-03	0287, 0193, 0342, 0158, 0303, 0304, 0134,
	0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.8.1 Transmitter Radiated Spurious Emissions

All frequencies and modes were checked per section 15.407 for radio emissions below 1GHz.

Test	Freq.	N/A						E	ngineer	EVF		
v	ariant	: WLAN: 802.11a, n HT-20 Temp (°C)			20							
Freq. F	Range	1000 -	18000	MHz				Rel.	Hum.(%)	45		
Power S	etting	Maximu	um				Pi	ress.	(m Bars)	1013		
An	tenna	Integra	I					Duty (Cycle (%)	10		
TestNo	otes 1	Funda AC101	mental 032023	attenuateo 2) , also c	l by band-stop f onnected to cha	ilter. H arger (l andse Model:	et (Mod SA10	el: 8440) v 6B-05)	v ith batte	ry (SN:	
TestNo	otes 2	Mode:	WLAN	Tx; WLAN	I=1, BT=0, BC=0	, DK=0)					
MiC®M	With Vasona by EMiSoft 14 Jan 11 15:10 14 Jan 11 15:10 15 Out as List 3m Spec Dist											
Formally	/ mea	asure	d em	ission	peaks							
Frequency M Hz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
883.367	38.6	7.3	-7.3	38.5	Peak [Scan]	V	400	0	46.0	-7.5	Pass	AMB
826.993988	38.6	7.2	-7.9	37.9	Peak [Scan]	V	400	0	46.0	-8.2	Pass	TRNS
180.003	42.7	4.7	-19.7	27.6	Peak [Scan]	V	100	0	43.5	-15.9	Pass	DIG
107.752	44.2	4.2	-18.8	29.7	Peak [Scan]	V	100	0	43.5	-13.8	Pass	DIG
206.900	41.0	4.8	-19.5	26.3	Peak [Scan]	V	100	0	43.5	-17.2	Pass	DIG
30.309	37.9	3.4	-9.4	31.9	Peak [Scan]	V	100	0	40	-8.1	Pass	DIG
893.086	34.0	7.3	-7.3	34.0	Peak [Scan]	V	400	0	46	-12.0	Pass	AMB
130.013	40.6	4.4	-17.2	27.8	Peak [Scan]	V	100	0	43.5	-15.8	Pass	DIG
338.006	40.0	5.4	-16.2	29.2	Peak [Scan]	Н	100	0	46	-16.8	Pass	DIG
372.269	36.7	5.6	-15.3	27.0	Peak [Scan]	V	400	0	46	-19.0	Pass	DIG
Legend:	TX = 1	ransmit	ter Emis	sions; DK	G = Digital Emissi	ons; T	RNS-T	ransie	nt;AMB =	Ambient		
NRB = Non-Restricted Band. RB = Restricted Band.												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 139 of 186

Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 140 of 186

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 141 of 186

Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 142 of 186

Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 143 of 186

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 144 of 186

5240 MHz	Engineer	GMH
802.11n HT-20; 6.5 MCS	Temp (°C)	23
1000 MHz - 18000 MHz	Rel. Hum.(%)	34
24	Press. (mBars)	995
	Duty Cycle (%)	100
-	5240 MHz 802.11n HT-20; 6.5 MCS 1000 MHz - 18000 MHz 24	5240 MHz Engineer 802.11n HT-20; 6.5 MCS Temp (°C) 1000 MHz - 18000 MHz Rel. Hum.(%) 24 Press. (mBars) 000 MHz Duty Cycle (%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 145 of 186

Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 146 of 186

Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 147 of 186

Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 148 of 186

Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 149 of 186

Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 150 of 186

Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 151 of 186

Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 152 of 186

Test Freq.	5600 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 153 of 186

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 154 of 186

Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 155 of 186

Test Freq.	5600 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 156 of 186

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 157 of 186

7.8.2 Band-Edge Measurements

8440 Band Edge Channel 36 - 5180 MHz 802.11a 4500-5150 MHz Pwr=14 Hor Hght=98 Ang=353

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 158 of 186

8440 Band Edge Channel 36 - 5180 MHz 802.11n HT-20 4500-5150 MHz Pwr=14 Hor Hght=102 Ang=346

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 159 of 186

8440 Band Edge Channel 64 - 5320 MHz 802.11a 5350-5460 MHz Pwr=16 Hor Hght=100 Ang=193

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 160 of 186

8440 Band Edge Channel 64 - 5320 MHz 802.11n HT-20 5350-5460 MHz Pwr=16 Hor Hght=98 Ang=188

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 161 of 186

8440 Band Edge Channel 100 - 5500 MHz 802.11a 5350-5460 MHz Pwr=16 Hor Hght=98 Ang=188

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 162 of 186

8440 Band Edge Channel 100 - 5500 MHz 802.11n HT-20 5350-5460 MHz Pwr=16 Hor Hght=98 Ang=188

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 163 of 186

7.8.3 Peak Emissions

Peak emissions are shown only for the highest levels observed for each mode in each band.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 164 of 186

Toet	Frog	5200 N	147					F	nginoor	EV/E		
Test	rieq.	000 44			<u>`</u>							
V	ariant	802.11	n; HI-2	U; 0.5 IVICE	>			16	mp (°C)	18		
Freq. F	Range	5150 -	5250 M	Hz				Rel.	Hum.(%)	39		
Power Se	etting	14 in te	est utility	1			P	ress.	(m Bars)	1006		
An	tenna	integra	I					Duty (Cycle (%)	10		
Test No	otes 1	Handse SA106	et (Mode B-05)	el: 8440) v	vith battery (S	SN: AC10	10320	232) ,	also conn	ected to o	charger	(Model:
TestNo	otes 2	Mode:	WLAN	Channel 40) Tx; WLAN=1	, BT=0, I	3C=0,	DK=0				
MiCOM	abs	dBu√/m 120.0 1100.0 90.0 90.0 5150.0 5150.0 Rac File	o Jiated En name: k	nissions typrogram to	Vasona by	EMiSot	nplarte: f	Autodal) RSS-210 co part	ն թերյնիցին) PK 2400-2 15e; dss %4	19 Jan 1 19 Jan 1 40 A 483.5 40 Vdata\se	1 11:32 - Horizon Vertical Vertical Vertical Dist 3m Dist 3m Dist 3m Cy: MHz	 t: t
Formally	/ mea	sured	emiss	sion pea	ks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measuremer Type	^{nt} Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5202.305	54.9	14.6	34.4	103.9	Peak [Scan	I H						FUND
Legend [.]	TX = T	ransmit	ter Emis	sions: DIC	G = Digital Emis	sions [.] F	UND =	Funda	mental: W	'B = Wide	band En	nission
Legend.	177 - 1					,510113, 1	5.0 -			2 1100		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 165 of 186

Test	Freq.	5280 M	IHz					E	ngineer	EVF		
Vá	ariant	802.11	a;6 Mb	s				Те	mp (°C)	18		
Freq. R	ange	5250 -	5350 M	Hz				Rel. I	Hum.(%)	39		
Power Se	etting	16 in te	st utility	1			Pi	ress.	(m Bars)	1006		
Ant	enna	integral						Duty C	Cycle (%)	10		
TestNo	tes 1	Handse SA 106	et (Mode B-05)	el: 8440) v	vith battery (SN	EAC10	10320	232) ,	also conn	ected to o	charger	(Model:
TestNo	tes 2	Mode: \	WLAN (Channel 56	6 Tx; WLAN=1,	BT=0, I	3C=0,	DK=0				
Micem	abs	dBu\/im 1200 1100 900 900 52500 52500 File	Wm Vasona by EMiSoft 19 Jan 11 11:38 Image: Second state of the second s									
Formally	mea	sured	emiss	sion pea	ks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5282.224	55.9	14.6	34.5	105.0	Peak [Scan]	Н						FUND
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emiss	ions; F	UND =	Funda	mental; W	'B = Wide	band En	nission
Ŭ,									-			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 166 of 186

Test Fre	eq. 🤄	5320 M	IHz					E	ngineer	EVF		
Varia	ant 8	802.11	n; HT-2	0; 6.5 MCS	6			Те	mp (°C)	18		
Freq. Ran	ge 5	5250 -	5350 M	Hz				Rel. I	Hum.(%)	39		
Power Setti	ing 1	16 in te	st utility	,			Pi	ress.	(m Bars)	1006		
Anten	i na i	integral						Duty C	Cycle (%)	10		
Test Notes	s 1	Hands	et (Mod	el: 8440) v	with battery (SN	I: AC10	010320)232),	also conr	nected to	charger	(Model: SA10
Test Notes	s 2	Mode: \	WLAN (Channel 64	4 Tx; WLAN=1, E	3T=0, I	BC=0,	DK=0				
MiC@MLabs		120.0 110.0 100.0 90.0 5250.0 Rad Filer) liated En name: k	<mark>եշխարհանվորին։</mark> hissions iprogram ip	Vasona by E	MiSol	nplate: F	SSS-210		19 Jan 1 12 14 12 12 14 12 12 12 12 12 12 12 12 12 12	1 11:57) Horizon) Vertical verage Is ebug Dist 3m Dist 3m Cy: MHz vdata/tx	 tz :
Formally m	ieas	ured	emission peaks									
Frequency Ra MHz dB	aw (uV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5318.657 55	5.6	14.6	34.5	104.7	Peak [Scan]	Н	100	0	54.0	50.7	Fail	FUND
Legend: TX	(= Tra	ansmitt	ter Emis	sions; DK	6 = Digital Emissi	ons; F	UND =	Funda	imental; W	'B = Wide	band En	nission

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 167 of 186

Test	Freq.	5700 N	1Hz					E	ngineer	EVF		
Va	ariant	802.11	a;6 Mb	s				Те	mp (°C)	18		
Freq. R	ange	5470 -	5725 N	Hz				Rel. I	Hum.(%)	39		
Power Se	etting	16 in te	st utility	1			Pi	ress.	(m Bars)	1006		
Ant	enna	integra	I					Duty C	Sycle (%)	10		
TestNo	tes 1	Handse SA106	et (Modo B-05)	el: 8440) v	/ ith battery (SN:	AC10	10320	232) ,	also conn	ected to a	charger	(Model:
TestNo	tes 2	Mode:	WLAN	Channel 14	10 Tx; WLAN=1,	BT=0,	BC=0	, DK=0				
Micem	abs	dBu√/m 120.0 1100.0 90.0 50.0 5470.7 Rac File) Jiated En name: k	nissions \program\p	Vasona by E	MiSot	ft (provet)/r oplate: F	RSS-210 cc part) PK 2400-2 15e; dss/84	19 Jan 1 19 Jan 1 40 A 40 A 19 Jan 1 10 A 10 A 1	1 12:13 - Herizon Vertical werage bist 3m Dist 3m Dist 3m cy: MHz	 t: :
Formally	mea	sured	emiss	emission peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	M argin dB	Pass /Fail	Comments
5702.014	58.0	14.7	35.0	107.7	Peak [Scan]	Н	100	0	54.0	53.7	Fail	FUND
Legend:	TX = T	ransmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 168 of 186

	_								_			
Test	Freq.	5700 N	lHz					E	ngineer	EVF		
Va	ariant	802.11	n HT-20); 6.5 MCS				Те	mp (°C)	18		
Freq. R	ange	5470 -	5725 N	Hz				Rel.I	Hum.(%)	39		
Power Se	tting	16 in te	est utility	1			Pi	ress.	(m Bars)	1006		
Ant	enna	integra	I					Duty C	Sycle (%)	10		
TestNo	tes 1	Handse SA 106	et (Modo B-05)	el: 8440) v	/ ith battery (SN:	AC10	10320	232) ,	also conn	ected to c	charger	(Model:
TestNo	tes 2	Mode: \	WLAN	Channel 14	10 Tx; WLAN=1,	BT=0,	BC=0	, DK=0				
MiCem	abs	dBu√/m 1200 11000 9000 9000 54700 Rac File) Jiated En name: k	hissions \program\p	Vasona by E	MiSot	nplate: F	RSS-210 cc part) PK 2400-2 15e; dss %4	19 Jan 1 19 Jan 1 10 10 10 10 10 10 10 10 10 1	1 12:19) Horicon) Vertical verage Li ebug Dist 3m Dist 3m Cy: MHz \data\tx	 tz :-
Formally	mea	sured	emise	sion pea	ks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5702.174	58.0	14.7	35.0	107.8	Peak [Scan]	Н	100	0	54.0	53.8	Fail	FUND
Legend:	TX = T	ransmit	ter Emis	sions: DIC	6 = Digital Emissi	ons: F	UND =	Funda	mental: W	B = Wide	band En	rission

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 169 of 186

7.8.4 <u>Receiver Radiated Emissions</u>

Stand alone Charger (SA106B-05) - Measurement Results for Radiated Spurious Emissions – Receiver

Test	Freq.	N/A				Engineer EVF				EVF		
V	ariant	Digital I	Emissio	าร				Те	mp (°C)	21		
Freq. f	Range	30 MHz	z - 1000	MHz				Rel. H	łum. (%)	34		
Power S	etting	Charge	er: 120V	'AC/ 60Hz		Press. (m Bars) 1009						
An	tenna	Integra	al									
TestNo	otes 1	Hands connec	et (Mode cted to o	el: 8440) v charger (N	/ ith discharged lodel: SA106B-0	battery)5)	/ (SN:	AC101	032008E)	, headse	et conne	cted, also
TestNo	otes 2	Prelimir Channe	nary tes el 06 Re	ting perfo ceive; Wi	rmed. EUT teste _AN=1, BT=1, B	ed in ve C=0, D	ertical K=1	positio	n/ Mode: E	3T Channe	el 39 Re	ceive; WLAN
MiC@M	abs	dBu V/m 60.0 50.0 50.0 50.0 20.0 10.0 30.0 Ran File	22 Nov 10 13:36 22 Nov 10 13:36 2) Vertical (2) Vertical (2) Vertical (2) Vertical (2) Vertical (2) Vertical (3) Meas Dist 3m Spec Dist 3m Spec Dist 3m (4) Frequency: MHz 300 1300 2300 3300 4300 5300 1300 3300 3300 10000 Radiated Emissions Radiated Emissions Radiated Emissions Template: FCC 15:209 RE 30-1000MHz Filename: k:\program\polycom\poly06 - phoenix foc ic\foc part 16 b; ices-003\%440\data\vadiated									
Formally	/ mea	asure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
40.423	48.0	3.6	-17.1	34.5	Quasi Max	V	137	77	40	-5.5	Pass	DIG
85.932	47.4	4.0	-23.7	27.8	Quasi Max	V	98	246	40	-12.3	Pass	DIG
182.000	49.5	4.7	4.7 -19.6 34.5 Quasi Max V 104 167 43.5 -9.0 Pass								DIG	
207.999	46.1	4.8	3 -19.6 31.3 Quasi Max V 102 171 43.5 -12.2 Pass DIG									
299.999	45.0	5.2	5.2 -16.9 33.4 Quasi Max H 120 51 46 -12.6 Pass DIG									
200.461	45.0	4.8	4.8 -17.9 31.9 Quasi Max V 98 0 43.5 -11.6 Pass DIG									
Legend:	DIG =	Digital D	Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency									
	NRB =	Non-Re	on-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band									
	-											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 170 of 186

Test	Freq.	5200 N	IHz					E	ngineer	EVF		
Va	ariant	Receiv	e in Tes	t Utility				Те	mp (°C)	22		
Freq. F	Range	1000 N	IHz - 18	000 MHz				Rel. I	Hum.(%)	35		
Power Se	etting	Not Ap	plicable	in Receiv	e Mode		P	ress.	(m Bars)	993		
Ant	tenna	integra								•		
TestNo	otes 1	Fundar AC101	nental a 032023	ttenuated 2) , also c	by band-stop fil onnected to cha	ter. H arger (andsei Model:	t (Mode SA106	el: 8440) w 6B-05)	v ith batte	ry (SN:	
TestNo	otes 2	Mode: \	WLAN (Channel 40) Receive; WLA	N=1, E	3T=0, I	3C=0, I	DK=0			
MiCOM	abs	dBu√m 80.0 60.0 50.0 40.0 30.0 20.0 10.0 10.0 10.0 830 File	//m Vasona by EMiSoft 21 Dec 10 16:12 //m Vasona by EMiSoft Pk Pit Horizont: //m Average Lt Pebug Meas Dist 3m //m Average Lt Debug Meas Dist 3m /m Average Lt Debug Meas Dist 3m /m Average Lt Debug Meas Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m Meas Dist 3m Notes Dist 3m Notes Dist 3m /m M									
Formally	mea	sure	ed emission peaks									
Frequency M H z	Raw dBuV	Cable Loss	A F dB	Level dBuV/m	M easurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	M argin dB	Pass /Fail	Comments
No Receiver E	missior	ns Withir	n 6dB o	f limit.								
Legend:	RB = R	estricte	d Band;	NRB = No	on-Restricted Ba	nd; FL	JND = I	undar	nental Fre	q.		
	BE = Er	mission	ssion in Restricted Band Nearest Transmission Band Edge;									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 171 of 186

Test F	req.	5280 N	IHz					E	ngineer	EVF		
Var	riant	Receiv	e in Tes	t Utility				Те	mp (°C)	22		
Freq. Ra	inge	1000 N	IHz - 18	000 MHz				Rel. I	-lum.(%)	35		
Power Set	tting	Not Ap	plicable	in Receiv	e Mode		Pi	ress. ((m Bars)	993		
Ante	enna	integra										
Test Note	es 1	Fundar AC101	nental a 032023	ittenuated 2) , also c	by band-stop fil onnected to cha	ter. H arger (andset Model:	:(Mode SA106	el: 8440) w 6B-05)	ith batter	ry (SN:	
Test Note	es 2	Mode: \	WLAN	Channel 56	8 Receive; WLA	N=1, E	3T=0, e	3C=0, [DK=0			
MiCOMLak	bs	dBu√/m 80.0 70.0 60.0 50.0 40.0 30.0 30.0 20.0 10.0 10.0 10.0 File	Im Vasona by EMiSoft 21 Dec 10 16:23 Image: Strain									
Formally r	meas	sured	emission peaks									
Frequency F MHz d	Raw IBuV	Cable Loss	AF dBLevel dBuV/mMeasurement TypePolHgt cmAzt DegLimit dBuV/mMargin dBPass /FailComments									
No Receiver Em	nission	ns Within	Vithin 6dB of limit.									
Legend: R	RB = Re	estricte	d Band	NRB = No	on-Restricted Ba	nd; FL	IND = F	undan	nental Free	q.		
В	BE = Er	nission	ssion in Restricted Band Nearest Transmission Band Edge;									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 172 of 186

Tast F	rea	5600 M	Hz					F	naineer	EV/E		
iesti	loq.	Dessity	. i.e. T.e.e	A 1 M.I.A						20		
Vai	riant	Receive	e in Tes					Ie	mp (°C)	22		
Freq. Ra	ange	1000 M	Hz - 18	000 MHz				Rel. I	-lum.(%)	35		
Power Set	tting	Not Ap	plicable	in Receiv	e Mode		Pi	ress.	(m Bars)	993		
Ante	enna	integral								-		
TestNot	es 1	Fundan AC101	nental a 032023	ittenuated 2) , also c	by band-stop fi onnected to cha	lter. H arger (andset Model:	:(Mode SA106	el: 8440) w 6B-05)	ith batter	ry (SN:	
TestNot	es 2	Mode: \	NLAN (Channel 12	20 Receive; WL	AN=1,	BT=0,	BC=0,	DK=0			
MiC@MLa	bs	dBu√/m 80.0 70.0 50.0 40.0 30.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 1	Vim Vasona by EMiSoft 21 Dec 10 16:29 Image: Second Se									
Formally	meas	sured	d emission peaks									
Frequency MHz d	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No Receiver En	nission	ns Withir	n 6dB o	f limit.								
Legend: F	RB = R	estricte	d Band;	NRB = No	on-Restricted Ba	and; FL	JND = F	undar	nental Free	q.		
В	3E = Er	nission	ssion in Restricted Band Nearest Transmission Band Edge;									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.9 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 174 of 186

Test Measurement Setup

Measurement setup for Conducted Disturbance at Mains Terminals

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification for Conducted Disturbance at Mains Terminal

§15.407 (b)(6)

Any U-NII devices using an AC power line are required to comply also with the limits set forth in Section 15.207.

§15.207 (a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

Limits

Frequency of Emission (MHz)	Conducted Limit (dBµV)							
	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						

* Decreases with the logarithm of the frequency

Traceability

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Work instruction WI-EMC-01	0158, 0184, 0193, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 176 of 186

7.9.1 <u>Stand Alone Charger - Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)</u>

Test	Freq.	N/A				Engineer EVF				
v	ariant	AC Line Emissions					Temp (°C) 19.5			
Freq. l	Range	0.150 MHz - 30 MHz			Re	el. Hum. (%) 37				
Power Setting		Charger: 120VAC/ 60Hz			Pres	s. (m Bars)	ars) 1002			
An	tenna	Integral								
TestNotes 1		Handset (Model: 8440) with discharged battery (SN: AC101032008E) , headset connected, also connected to charger (Model: SA106B-05)								
Test N	lotes 2	Mode: BT Channel 39 Receive; WLAN Channel 06 Receive; WLAN=1, BT=1, BC=0, DK=1								
With the second										
Formally measured emission peaks										
Frequency M Hz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	M argin dB	Pass /Fail	Comments
0.534	21.4	9.9	0.1	31.4	Average	Neutral	46.0	-14.6	Pass	
0.534	36.0	9.9	0.1	46.0	Quasi Peak	Neutral	56	-10.0	Pass	
0.553	22.5	9.9	0.1	32.5	Average	Neutral	46	-13.5	Pass	
0.553	35.9	9.9	0.1	45.9	Quasi Peak	Neutral	56	-10.1	Pass	
0.614	25.7	10.0	0.1	35.7	Average	Neutral	46.0	-10.3	Pass	
0.614	39.7	10.0	0.1	49.8	Quasi Peak	Neutral	56	-6.3	Pass	
0.801	22.5	10.0	0.1	32.5	Average	Neutral	46	-13.5	Pass	
0.801	33.3	10.0	0.1	43.3	Quasi Peak	Neutral	56	-12.7	Pass	
0.869	16.9	9.9	0.1	26.9	Average	Neutral	46.0	-19.1	Pass	
0.869	29.8	9.9	0.1	39.8	Quasi Peak	Neutral	56	-16.2	Pass	
1.269	20.4	10.0	0.1	30.4	Average	Neutral	46.0	-15.6	Pass	
1.269	30.2	10.0	0.1	40.3	Quasi Peak	Neutral	56	-15.7	Pass	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 177 of 186

8 PHOTOGRAPHS

8.1 <u>Conducted RF Emissions - EUT</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 178 of 186

8.2 Conducted RF Emissions - Test Equipment

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 179 of 186

8.3 Dynamic Frequency Selection Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 180 of 186

8.4 Transmitter Radiated Spurious Emission below 1 GHz with Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011Page:Page 181 of 186

8.5 <u>Transmitter Radiated Spurious Emission above 1 GHz with Charger</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 182 of 186

8.6 <u>Receiver Radiated Emissions below 1 GHz with Charger</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 183 of 186

8.7 Receiver Radiated Emissions above 1 GHz with Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page 184 of 186

8.8 AC Mains Conducted Emissions with Charger

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Polycom Spectralink 8440 Wi-Fi handset
with BluetoothTo:FCC 47 CFR Part 15.407 & RSS-210 A9Serial #:POLY21-Ua2 Rev AIssue Date:6th June 2011
Page:Page:Page 185 of 186

1. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0287	EMI Receiver	Rhode & Schwartz	ESIB 40	100201
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com