

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

December 13, 2016

Polycom, Inc. 6001 America Center Drive San Jose, CA 95002

Dear Tony Griffiths,

Enclosed is the EMC Wireless test report for compliance testing of the Polycom, Inc., Pano as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15, Subpart C for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

Jennifer Warnell Documentation Department

Reference: (\Polycom, Inc.\EMCA91224C-FCC247 DSS Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Test Report

for the

Polycom, Inc. Pano

Tested under the FCC Certification Rules contained in 15.247 Subpart C for Intentional Radiators

MET Report: EMCA91224C-FCC247 DSS Rev. 1

December 13, 2016

Prepared For:

Polycom, Inc. 6001 America Center Drive San Jose, CA 95002

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Polycom, Inc. Pano

Tested under the FCC Certification Rules contained in 15.247 Subpart C for Intentional Radiators

Kintine Chal

Kristine Cabrera, Project Engineer Electromagnetic Compatibility Lab

fellal

Jennifer Warnell Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

a Bajina.

Asad Bajwa, Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	November 3, 2016	Initial Issue.
1	December 13, 2016	Engineer corrections.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	
	A. Overview	4
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	5
	E. Equipment Configuration	5
	F. Mode of Operation	6
	G. Method of Monitoring EUT Operation	6
	H. Modifications	6
	a) Modifications to EUT	6
	b) Modifications to Test Standard	6
	I. Disposition of EUT	6
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	7
	§ 15.203 Antenna Requirement	
	§ 15.247(b) Peak Power Output	9
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	§ 15.247(i) Maximum Permissible Exposure	
IV.	Test Equipment	
V.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	
VI.	ICES-003 Procedural & Labeling Requirements	40
	· -	

List of Tables

Table 1.	Executive Summary of EMC Part 15.247 Compliance Testing	2
Table 2.	EUT Summary Table	4
Table 3.	References	5
Table 4.	Equipment Configuration	5
Table 5.	Peak Conducted Output Power, Bluetooth Hopping, 8PSK Modulation, Test Results	10
Table 6.	Peak Conducted Output Power, Bluetooth Hopping, GFSK Modulation, Test Results	10
Table 7.	Restricted Bands of Operation.	13
Table 8.	Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	14
Table 9.	Test Equipment List	32

List of Plots

Plot 1. Peak Power Output, 2402 MHz, BT Hopping, 8PSK, Chain 0	11
Plot 2. Peak Power Output, 2441 MHz, BT Hopping, 8PSK, Chain 0	11
Plot 3. Peak Power Output, 2480 MHz, BT Hopping, 8PSK, Chain 0	11
Plot 4. Peak Power Output, 2402 MHz, BT Hopping, GFSK, Chain 0	12
Plot 5. Peak Power Output, 2441 MHz, BT Hopping, GFSK, Chain 0	12
Plot 6. Peak Power Output, 2480 MHz, BT Hopping, GFSK, Chain 0	12
Plot 7. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 30 MHz - 1 GHz	15
Plot 8. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Average	15
Plot 9. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Peak	15
Plot 10. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Average	16
Plot 11. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Peak	16
Plot 12. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 30 MHz - 1 GHz	16
Plot 13. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Average	17
Plot 14. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Peak	17
Plot 15. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Average	17
Plot 16. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Peak	
Plot 17. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 30 MHz - 1 GHz	
Plot 18. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Average.	
Plot 19. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 1 GHz - 7 GHz, Peak	19
Plot 20. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Average	19
Plot 21. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 7 GHz - 18 GHz, Peak	19
Plot 22. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 30 MHz - 1 GHz	
Plot 23. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Average	
Plot 24. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Peak	
Plot 25. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Average	21
Plot 26. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Peak	21
Plot 27. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 30 MHz - 1 GHz	21
Plot 28. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Average	
Plot 29. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Peak	
Plot 30. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Average	
Plot 31. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Peak	
Plot 32. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 30 MHz - 1 GHz	
Plot 33. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Average	
Plot 34. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 1 GHz - 7 GHz, Peak	
Plot 35. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Average	
Plot 36. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 7 GHz - 18 GHz, Peak	
Plot 37. Radiated Restricted Band Edge, Low Channel, BT Hopping GFSK, Average	
Plot 38. Radiated Restricted Band Edge, Low Channel, BT Hopping GFSK, Peak	
Plot 39. Radiated Restricted Band Edge, High Channel, BT Hopping GFSK, Average	
Plot 40. Radiated Restricted Band Edge, High Channel, BT Hopping GFSK, Peak	

Plot 41. Radiated Restricted Band Edge, Low Channel, BT Hopping 8PSK, Average	27
Plot 42. Radiated Restricted Band Edge, Low Channel, BT Hopping 8PSK, Peak	27
Plot 43. Radiated Restricted Band Edge, High Channel, BT Hopping 8PSK, Average	
Plot 44 Radiated Restricted Band Edge High Channel BT Honning & PSK Peak	28

List of Figures

rigure 1. Feak Fower Output Test Setup	Figure 1.	c Power Output Test Setup
--	-----------	---------------------------

Ι	Lis	t of	Terms	and	Abbreviation	S
	~					

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBµA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
Ε	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
HCP Hz	Horizontal Coupling Plane Hertz
HCP Hz IEC	Horizontal Coupling Plane Hertz International Electrotechnical Commission
HCP Hz IEC kHz	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz
HCP Hz IEC kHz kPa	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal
HCP Hz IEC kHz kPa kV	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt
HCP Hz IEC kHz kPa kV LISN	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network
HCP Hz IEC kHz kPa kV LISN MHz	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network Megahertz
HCP Hz IEC kHz kPa kV LISN MHz μH	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network Megahertz microhenry
HCP Hz IEC kHz kPa kV LISN MHz μH	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network Megahertz microhenry microfarad
HCP Hz IEC kHz kPa kV LISN MHz μH μ	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network Megahertz microhenry microfarad microseconds
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ μS NEBS	Horizontal Coupling Plane Hertz International Electrotechnical Commission kilohertz kilopascal kilovolt Line Impedance Stabilization Network Megahertz microhenry microfarad Metwork Equipment-Building System
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ μ S NEBS PRF	Horizontal Coupling PlaneHertzInternational Electrotechnical CommissionkilohertzkilopascalkilovoltLine Impedance Stabilization NetworkMegahertzmicrohenrymicrofaradmicrosecondsNetwork Equipment-Building SystemPulse Repetition Frequency
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ S NEBS PRF RF	Horizontal Coupling PlaneHertzInternational Electrotechnical CommissionkilohertzkilopascalkilovoltLine Impedance Stabilization NetworkMegahertzmicrohenrymicrofaradmicrosecondsNetwork Equipment-Building SystemPulse Repetition FrequencyRadio Frequency
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ μ S NEBS PRF RF RF RMS	Horizontal Coupling PlaneHertzInternational Electrotechnical CommissionkilohertzkilopascalkilovoltLine Impedance Stabilization NetworkMegahertzmicrohenrymicrofaradmicrosecondsNetwork Equipment-Building SystemPulse Repetition FrequencyRadio FrequencyRoot-Mean-Square
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ μ S NEBS PRF RF RF RMS TWT	Horizontal Coupling PlaneHertzInternational Electrotechnical CommissionkilohertzkilopascalkilovoltLine Impedance Stabilization NetworkMegahertzmicrohenrymicrofaradmicrosecondsNetwork Equipment-Building SystemPulse Repetition FrequencyRadio FrequencyRoot-Mean-SquareTraveling Wave Tube
HCP Hz IEC kHz kPa kV LISN MHz μH μ μ S NEBS PRF RF RF RF RMS TWT V/m	Horizontal Coupling PlaneHertzInternational Electrotechnical CommissionkilohertzkilopascalkilovoltLine Impedance Stabilization NetworkMegahertzmicrohenrymicrofaradmicrosecondsNetwork Equipment-Building SystemPulse Repetition FrequencyRadio FrequencyRoot-Mean-SquareTraveling Wave TubeVolts per meter

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Polycom, Inc. Pano, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the Pano. Polycom, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Pano, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Polycom, Inc., purchase order number PO 6090001474. All tests were conducted using measurement procedure ANSI C63.4-2014 and ANSI C63.10-2013

FCC Reference 47 CFR Part 15.247:2005	Description	Compliance
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(i)	Maximum Permissible Exposure (MPE)	Compliant

 Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Polycom, Inc. to perform testing on the Pano, under Polycom, Inc.' purchase order number PO 6090001474.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Polycom, Inc., Pano.

Model(s) Tested: Pano Pano Model(s) Covered: Primary Power: 48VDC FCC ID: M72-PANO Using Pre-Approved Module FCC ID: VOB-P2180 EUT Type of Modulations: FHSS (GFSK, 8DPSK) **Specifications:** Equipment Code: DSS Peak RF Output Power: 8.275 dBm EUT Frequency Ranges: 2402.0 MHz - 2480.0 MHz Analysis: The results obtained relate only to the item(s) tested. Temperature: 15-35° C Environmental Relative Humidity: 30-60% **Test Conditions:** Barometric Pressure: 860-1060 mbar **Evaluated by:** Kristine Cabrera **Report Date(s):** December 13, 2016

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The Polycom, Inc. Pano, Equipment Under Test (EUT), is a cloud connected visual collaboration device that democratizes content presentation and control.

- Wirelessly connect your personal device to share documents, music, movies and more from the comfort of your chair. Annotate and save with a simple touch to enable a seamless flow of information from anywhere.
- Unlike lesser-performing AV Pods, Pano allows up to 4 individuals to connect and share their own media into the same secure stream for maximum flexibility while in or out of a collaborative video session.

E. Equipment Configuration

Name / Description Model Number		Part Number	Serial Number	Rev. #
Pano	Pano	2201-29400-001	821623464100DZ	01

 Table 4. Equipment Configuration

F. Mode of Operation

The test software is DVT code that exercises all of the ports. The unit is set up and attached to a 4K monitor over HDMI. Then the unit is given a 4K video source as content input. This is provided over the HDMI input port from a 4K source (we used a NVIDIA shield box below the floor). The system is populated with a USB stick in the bottom port where files are written back and forth. The upper USB slot has a usb battery in it to charge. (This is a service port so the software doesn't write back and forth on this slot). The 3.5mm audio jack has a set of headphones plugged in to hear audio from the content in file. There are two LAN cables that are connected to a router outside the chamber that provides the IP addresses. Then a pc is also connected to the router and using Iperf we send data back and forth to both addresses.

G. Method of Monitoring EUT Operation

We monitor the video being displayed and the laptops Iperf window to see continuous operation during the testing.

H. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

I. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Polycom, Inc. upon completion of testing.

Electromagnetic Compatibility Criteria III. for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.
- **Results:** The EUT as tested is compliant the criteria of §15.203. The antenna is permanently attached to the unit.
- Test Engineer(s): Kristine Cabrera

Test Date(s): 07/21/16

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output

Test Requirements: §15.247(b)(1): 1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

- **Test Procedure:** The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the low, mid and high channels of each band.
- Test Results: The EUT was compliant with the Peak Power Output limits of §15.247(b).
- **Test Engineer(s):** Kristine Cabrera
- **Test Date(s):** 08/01/16

Figure 1. Peak Power Output Test Setup

Peak Power Output Test Results

Peak Conducted Output Power								
Carrier	Frequency	Measured PCOP	Measured PCOP	Total Power	Limit	Margin		
Channel	(MHz)	(dBm) Chain 0	(dBm) Chain 1		(dBm)	(dB)		
Low	2402	3.918	N/A	3.918	30	-26.082		
Mid	2441	7.142	N/A	7.142	30	-22.858		
High	2480	6.091	N/A	6.091	30	-23.909		

Table 5. Peak Conducted Output Power, Bluetooth Hopping, 8PSK Modulation, Test Results

Peak Conducted Output Power							
Carrier	Frequency	Measured PCOP	Measured PCOP	Total Power	Limit	Margin	
Channel	(MHz)	(dBm) Chain 0	(dBm) Chain 1		(dBm)	(dB)	
Low	2402	4.967	N/A	4.967	30	-25.033	
Mid	2441	8.275	N/A	8.275	30	-21.725	
High	2480	6.707	N/A	6.707	30	-23.293	

Table 6. Peak Conducted Output Power, Bluetooth Hopping, GFSK Modulation, Test Results

Peak Power Output Test Results, BT Hopping, 8PSK, Chain 0

Center 2.402 GHz Res BW 1 MHz

#VBW 3 MHz

Span 3 MHz

Sweep 5 ms (401 pts)

Plot 3. Peak Power Output, 2480 MHz, BT Hopping, 8PSK, Chain 0

Peak Power Output Test Results, BT Hopping, GFSK, Chain 0

Plot 4. Peak Power Output, 2402 MHz, BT Hopping, GFSK, Chain 0

Plot 5. Peak Power Output, 2441 MHz, BT Hopping, GFSK, Chain 0

Plot 6. Peak Power Output, 2480 MHz, BT Hopping, GFSK, Chain 0

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260-3267	23.6–24.0
12.29–12.293	167.72–173.2	3332-3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675-12.57725	322–335.4	3600-4400	(²)

Table 7. Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 - 0.510 MHz.

² Above 38.6

Test Requirement(s):	§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional
	radiator shall not exceed the field strength levels specified in Table 8.

Frequency (MHz)	§ 15.209(a), Radiated Emission Limits				
	(dBµV) @ 3m				
30 - 88	40.00				
88 - 216	43.50				
216 - 960	46.00				
Above 960	54.00				

Table 8. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedure: The transmitter was set to the mid channel at the highest output power and placed on a 0.8 m high wooden table inside in a semi-anechoic chamber. Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast with 1 m to 4 m height to determine worst case orientation for maximum emissions. Measurement were repeated the measurement at the low and highest channels.

For frequencies from 30 MHz to 1 GHz, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per \$15.33(a)(1) and \$15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

In accordance with \$15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

EUT Field Strength Final Amplitude = Raw Amplitude – Preamp gain + Antenna Factor + Cable Loss – Distance Correction Factor

- Test Results: The EUT was compliant with the Radiated Spurious Emission limits of §15.247(d).
- Test Engineer(s): Kristine Cabrera

Test Date(s): 08/01/16

Radiated Spurious Emissions, BT Hopping, GFSK, Chain 0

Plot 7. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 30 MHz - 1 GHz

Plot 8. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 9. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 1 GHz – 7 GHz, Peak

Plot 10. Radiated Spurious Emissions, Low Channel, BT Hopping, GFSK, Chain 0, 7 GHz – 18 GHz, Average

Plot 12. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 30 MHz – 1 GHz

Plot 13. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 15. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 7 GHz – 18 GHz, Average

Plot 16. Radiated Spurious Emissions, Mid Channel, BT Hopping, GFSK, Chain 0, 7 GHz – 18 GHz, Peak

Plot 17. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 30 MHz - 1 GHz

Plot 18. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 19. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 1 GHz – 7 GHz, Peak

Plot 21. Radiated Spurious Emissions, High Channel, BT Hopping, GFSK, Chain 0, 7 GHz – 18 GHz, Peak

Radiated Spurious Emissions, BT Hopping, 8PSK, Chain 0

Plot 22. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 30 MHz - 1 GHz

Plot 23. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 24. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Peak

Plot 25. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 7 GHz – 18 GHz, Average

Plot 26. Radiated Spurious Emissions, Low Channel, BT Hopping, 8PSK, Chain 0, 7 GHz – 18 GHz, Peak

Plot 27. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 30 MHz – 1 GHz

Plot 28. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 29. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Peak

Plot 30. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 7 GHz – 18 GHz, Average

Plot 31. Radiated Spurious Emissions, Mid Channel, BT Hopping, 8PSK, Chain 0, 7 GHz – 18 GHz, Peak

Plot 32. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 30 MHz - 1 GHz

Plot 33. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Average

Plot 34. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 1 GHz – 7 GHz, Peak

Plot 36. Radiated Spurious Emissions, High Channel, BT Hopping, 8PSK, Chain 0, 7 GHz – 18 GHz, Peak

Radiated Band Edge Measurements

Test Procedures: The transmitter was turned. Measurements were performed of the low and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance.

Radiated Band Edge Measurements, BT Hopping GFSK

Plot 37. Radiated Restricted Band Edge, Low Channel, BT Hopping GFSK, Average

Plot 38. Radiated Restricted Band Edge, Low Channel, BT Hopping GFSK, Peak

Plot 39. Radiated Restricted Band Edge, High Channel, BT Hopping GFSK, Average

Plot 40. Radiated Restricted Band Edge, High Channel, BT Hopping GFSK, Peak

Radiated Band Edge Measurements, BT Hopping 8PSK

Plot 41. Radiated Restricted Band Edge, Low Channel, BT Hopping 8PSK, Average

Plot 42. Radiated Restricted Band Edge, Low Channel, BT Hopping 8PSK, Peak

Plot 43. Radiated Restricted Band Edge, High Channel, BT Hopping 8PSK, Average

Plot 44. Radiated Restricted Band Edge, High Channel, BT Hopping 8PSK, Peak

Test Procedures for Radiated Band Edge for High Channel 2480 MHz:

- 1. The field strength of the fundamental emission was measured using a 1MHz RBW and a 3MHz VBW for the peak value and a 1MHz RBW and a 10Hz VBW for the average value.
- 2. The spectrum analyzer was spanned to encompass both the peak of the fundamental emission and the band edge emission under investigation. The RBW was set to 1% of the span and the VBW to 3x the RBW. The delta between the peak levels of the fundamental emission at the relevant band edge emission was measured and recorded.
- 3. The resulting delta value was used to determine compliance.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) Maximum Permissible Exposure

- **RF Exposure Requirements:** §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
- **RF Radiation Exposure Limit: §1.1310:** As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Limit: EUT's operating frequencies @ 2400-2483.5 MHz; Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \int (PG / 4\pi S)$

where, S = Power Density (mW/cm²) P = Power Input to antenna (mW) G = Antenna Gain (numeric value)R = Distance (cm)

Test Results:

FCC									
Frequency (MHz)	Con. Pwr. (dBm)	Con. Pwr. (mW)	Ant. Gain (dBi)	Ant. Gain numeric	Pwr. Density (mW/cm ²)	Limit (mW/cm ²)	Margin	Distance (cm)	Result
2441	8.275	6.722	5.6103	3.639	0.00487	1	0.99513	20	Pass

The safe distance where Power Density is less than the MPE Limit listed above was found to be 20 cm.

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1044	GENERATOR	COM-POWER CORP	CG-520	SEE NOTE	
1A1047	HORN ANTENNA	ETS	3117	3117 08/03/2015	
1A1073	MULTI DEVICE CONTROLLER	ETS EMCO	2090	SEE NOTE	
1A1074	SYSTEM CONTROLLER	PANASONIC	WV-CU101	SEE I	NOTE
1A1075	SYSTEM CONTROLLER	PANASONIC	WV-CU101	SEE I	NOTE
1A1080	MULTI DEVICE CONTROLLER	ETS EMCO	2090	SEE NOTE	
1A1088	PRE-AMP	RHODE & SCHWARZ	TS-PR1	SEE NOTE	
1A1099	GENERATOR	COM-POWER CORP	CGO-51000	SEE NOTE	
1A1106A	10M CHAMBER (FCC)	ETS	SEMI- ANECHOIC	03/31/2015 03/31/201	
1A1147	BILOG ANTENNA (30MHZ TO 1GHZ)	SUNOL SCIENCES CORP	JB3	08/14/2015 02/14/2017	
1A1180	PRE-AMP	MITEQ	AMF-7D- 01001800- 22-10P	SEE NOTE	
1A1184	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	02/03/2016	02/03/2017
1A1141	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	03/31/2016 03/31/201	
182523	PRE-AMP	AGILENT TECHNOLOGIES	8449B	SEE NOTE	

Table 9. Test Equipment List

J. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

- Section 6.1: A record of the measurements and results, showing the date that the measurements were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination on the request of the Minister.
- Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class $[^2]$ digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [1] est conforme à la norme NMB-003 du Canada.

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report