

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

January 27 2023

HP Inc. Tony Griffiths 1501 Page Mill Road Palo Alto, CA 94304

Dear Tony Griffiths,

Enclosed is the EMC Wireless test report for compliance testing of the HP, Inc. P033 as tested to the requirements of FCC Part 15 E and RSS-247 Issue 2 Dynamic Frequency Selection Criteria for Intentional Radiators.

Thank you for using the services of Eurofins MET Labs. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS MET LABS

I ancy Labucque

Nancy LaBrecque Documentation Department

Reference: WIR118717-FCC407 RSS247 DFS Rev 4

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs.

The Nation's First Licensed Nationally Recognized Testing Laboratory

HP, Inc. P033

Dynamic Frequency Selection Test Report

for the

HP, Inc. P033

Tested under FCC Part 15 E and RSS-247 Issue 2 Dynamic Frequency Selection Criteria For Intentional Radiators

Bryan Taylor, Wireless Team Lead Electromagnetic Compatibility Lab

Jancy Lat

Nancy LaBrecque Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Matthew Hinojosa EMC Manager, Austin Electromagnetic Compatibility Lab

HP, Inc. P033

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	September 30, 2022	Initial Issue.
1	November 4, 2022	Change Customer's Name and Address
2	December 19, 2022	Corrections Requested by Customer
3	January 7, 2023	Updated Antenna Gain Info
4	January 27, 2023	Added a footnote to the radar pulse verification plot explaining that the radar test level used represented worst case.

HP, Inc. P033

Table of Contents

I.	Executive Summary	8
	A. Purpose of Test	9
	B. Executive Summary	9
II.	Equipment Configuration	10
	A. Overview	11
	B. References	12
	C. Test Site	13
	D. Measurement Uncertainty	13
	E. Description of Test Sample	13
	F. Equipment Configuration	14
	G. Support Equipment	14
	H. Ports and Cabling Information	14
	I. Mode of Operation	15
	J. Method of Monitoring EUT Operation	15
	K. Modifications	15
	a) Modifications to EUT	15
	b) Modifications to Test Standard	15
	L. Disposition of EUT	15
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	16
	A. DFS Requirements	17
	B. Radar Test Waveforms	20
	C. Radar Waveform Calibration	24
IV.	DFS Test Procedure and Test Results	25
	A. DFS Test Setup	26
	B. In-Service Monitoring for Channel Move Time, Channel Closing Time, and Non-Occupancy	27
V.	Test Equipment	32

HP, Inc. P033

List of Tables

Table 1. Executive Summary	9
Table 2. EUT Summary Table	11
Table 3. References	12
Table 4. Uncertainty Calculations Summary	13
Table 5. Equipment Configuration	14
Table 6. Support Equipment	14
Table 7. Ports and Cabling Information	14
Table 8. Applicability of DFS Requirements Prior to Use of a Channel	17
Table 9. Applicability of DFS Requirements During Normal Operation	18
Table 10. DFS Detection Thresholds for Master or Client Devices Incorporating DFS	19
Table 11. DFS Response Requirement Values	19
Table 12. Pulse Repetition Intervals Values for Test A	21
Table 13. Test Equipment List	33

HP, Inc. P033

List of Figures

Figure 1.	Long Pulse Radar Test Signal Waveform	23
Figure 2.	Block Diagram of Test Configuration	24
Figure 3.	Test Setup Diagram	26

HP, Inc. P033

AC	Alternating Current		
ACF	Antenna Correction Factor		
Cal	Calibration		
d	Measurement Distance		
dB	Decibels		
dBμA	Decibels above one microamp		
dBμV	Decibels above one microvolt		
dBμA/m	Decibels above one microamp per meter		
dBμV/m	Decibels above one microvolt per meter		
DC	Direct Current		
E	Electric Field		
DSL	Digital Subscriber Line		
ESD	Electrostatic Discharge		
EUT	Equipment Under Test		
f	Frequency		
FCC	Federal Communications Commission		
GRP	Ground Reference Plane		
Н	Magnetic Field		
НСР	Horizontal Coupling Plane		
Hz	Hertz		
IEC	International Electrotechnical Commission		
kHz	kilohertz		
kPa	kilopascal		
kV	kilovolt		
LISN	Line Impedance Stabilization Network		
MHz	Megahertz		
μΗ	microhenry		
μ	microfarad		
μs	microseconds		
NEBS	Network Equipment-Building System		
PRF	Pulse Repetition Frequency		
RF	Radio Frequency		
RMS	Root-Mean-Square		
ТWT	Traveling Wave Tube		
V/m	Volts per meter		
VCP	Vertical Coupling Plane		

List of Terms and Abbreviations

HP, Inc. P033

I. Executive Summary

HP, Inc. P033

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the HP, Inc. P033, with the requirements of FCC Part 15 E and RSS-247 Issue 2 Dynamic Frequency Selection Criteria. HP, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the P033, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15 E and RSS-247 Issue 2 Dynamic Frequency Selection Criteria, in accordance with HP, Inc. purchase order number 10000013761. All tests were conducted using measurement procedures ANSI C63.10-2013 and FCC KDB 905462 D02.

FCC Reference	ISED Reference	Measurement Proceedure	Description	Results
15.40 (h)(2)	RSS-247 (6.3)	FCC KDB 905462 D02	U-NII Detection Bandwidth	Not Applicable
15.407(h)(2)(ii)	RSS-247 (6.3)	FCC KDB 905462 D02	Channel Availability Check Time	Not Applicable
15.407(h)(2)(ii- iii)	RSS-247 (6.3)	FCC KDB 905462 D02	Channel Move Time	Compliant
15.407(h)(2)	RSS-247 (6.3)	FCC KDB 905462 D02	Non-Occupancy Period	Compliant

 Table 1. Executive Summary

HP, Inc. P033

II. Equipment Configuration

HP, Inc. P033

A. Overview

Eurofins MET Labs was contracted by HP, Inc. to perform testing on the P033, under HP, Inc.'s purchase order number 10000013761.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the HP, Inc. P033.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	P033		
Model(s) Covered:	P033		
	Primary Power: 120VAC		
	Type of Modulations:	OFDM	
	Equipment Code:	NII	
	Peak RF Output Power:	13.48dBm	
EUT Specifications:	EUT Frequency Ranges:	U-NII-2A: 5250 - 5350 MHz U-NII-2C: 5470 – 5725 MHz	
	Antenna Gain (declared by HP, Inc.)	3.64dBi (Antenna Path 1) 3.64dBi (Antenna Path 2) Directional Gain = 3.64 + 10log(2) = 6.64dBi Note: the array gain was calculated per KDB 662911 D01 Section F.2.a.(i) for correlated signals with equal antenna gains.	
Analysis:	The results obtained relate	e only to the item(s) tested.	
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Bryan Taylor		
Report Date(s):	5/25/2022		

 Table 2. EUT Summary Table

HP, Inc. P033

B. References

CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)	
RSS-247, Issue 2, February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices	
RSS-GEN, Issue 5, March 2019	General Requirements and Information for the Certification of Radio Apparatus	
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	
905462 DO2 UNII DFS Compliance Procedures New Rules v02	Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5250-5350 MHz and 5470-5725 MHz Bands Incorporating Dynamic Frequency Selection	

Table 3. References

HP, Inc. P033

C. Test Site

All testing was performed at Eurofins MET Labs, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.97 dB	2	95%
RF Power Radiated Emissions	±2.95 dB	2	95%

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

The HP, Inc. P033 (marketed as Studio X52), is a video conferencing video bar designed to act as an audio / video endpoint codec over LAN networks. The device is powered by a AC/DC mains adapter and contains 2.4GHz / 5Ghz Wifi and Bluetooth radio interfaces.

HP, Inc. P033

F. Equipment Configuration

During the DFS testing the P033 was connected via a conducted cabled path to a certified master device. Data was streamed from the master device to the P033.

Ref. ID	Name / Description	Model Number	Part Number	Serial Number	Revision
1	P033	P033	N/A	Test Sample 1	N/A

 Table 5. Equipment Configuration

G. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID Name / Description		Manufacturer	Model Number	Customer Supplied Calibration Data
1	Laptop Computer	Dell	HW_Lab	
2	Dual and Gigabit Router (Master Device)	Asus	AX6000	FCCID: MSQ- RTAXHP00

 Table 6.
 Support Equipment

H. Ports and Cabling Information

Ref. Id	Port Name on EUT	Qty	Length as tested (m)	Shielded? (Y/N)	Termination Box ID & Port Name
5	DC Power	1	2m	No	AC/DC adaptor
9	USB C	1	10m	No	Laptop Computer

Table 7. Ports and Cabling Information

HP, Inc. P033

I. Mode of Operation

During the DFS testing the P033 was connected via a conducted cabled path to a certified master device. Data was streamed from the master device to the P033.

J. Method of Monitoring EUT Operation

A spectrum analyzer was used to confirm proper transmitter operation.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to HP, Inc. upon completion of testing.

HP Inc.com Inc. P011 Electromagnetic Compatibility DFS Requirements & Radar Waveform CFR Title 47, Part 15, Subpart E

III. Dynamic Frequency Selection Requirements and Radar Waveform Description

A. **DFS Requirements**

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 8. Applicability of DFS Requirements Prior to Use of a Channel

HP Inc.com Inc. P011

Requirement	Operational	Operational Mode						
-	Master Device or Client	Client Without						
	with Radar Detection	Radar Detection						
DFS Detection Threshold	Yes	Not required						
Channel Closing Transmission Time	Yes	Yes						
Channel Move Time	Yes	Yes						
U-NII Detection Bandwidth	Yes	Not required						
Additional requirements for devices	Master Device or Client	Client Without						
with multiple bandwidth modes	with Radar Detection	Radar Detection						
U-NII Detection Bandwidth and	All BW modes must be	Not required						
Statistical Performance Check	tested							
Channel Move Time and Channel	Test using widest BW mode	Test using the widest						
Closing Transmission Time	available	BW mode available						
		for the link						
All other tests	Any single BW mode	Not required						
Note: Frequencies selected for statistical p	erformance check (Section 7.8	.4) should include						
several frequencies within the radar	several frequencies within the radar detection bandwidth and frequencies near the edge of							
the radar detection bandwidth. For	802.11 devices it is suggested t	to select frequencies in						
each of the bolided 20 MHZ chaille	as and the channel center freque	ency.						

Table 9. Applicability of DFS Requirements During Normal Operation

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
$EIRP \ge 200 milliwatt$	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	
Note 1: This is the level at the input of the receiver assuming a 0 dBi	receive antenna.
Note 2: Throughout these test procedures an additional 1 dB has been	added to the amplitude of the test
transmission waveforms to account for variations in measurement equ	ipment. This will ensure that the
test signal is at or above the detection threshold level to trigger a DFS	response.
Note3: EIRP is based on the highest antenna gain. For MIMO device	s refer to KDB Publication 662911
D01.	

Table 10. DFS Detection Thresholds for Master or Client Devices Incorporating DFS

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

 Table 11. DFS Response Requirement Values

B. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

MET Labs

Radar	Pulse Width	PRI	Number of Pulses	Minimum Percentage of	Minimum Number
Type	(USEC)	(µsee)		Successful	of
	(µsec)			Detection	Trials
0	1	1428	19	See Note 1	See Note
v	1	1420	10	See Note 1	1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \end{pmatrix} \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	1-4)		80%	120
Note 1: She	ort Pulse Rada	r Type 0 should be u	sed for the detection ba	ndwidth test, ch	annel move
time, and cl	hannel closing	time tests.			

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

🛟 eurofins

HP Inc.com Inc. P011

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 12. Pulse Repetition Intervals Values for Test A

HP Inc.com Inc. P011

Long Pulse Radar Test Waveform

MET Labs

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Bursts	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- 3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3-5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Figure 1. Long Pulse Radar Test Signal Waveform

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected1 from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 - 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

C. Radar Waveform Calibration

MET Labs

Calibration of the DFS test was done using a conducted method. The signal generator was set to CW mode and the spectrum analyzer was used as the level setting device. The spectrum analyzer amplitude offset was adjusted to compensate for the cable loss, power splitters, and attenuators so that it reflected the amplitude at the antenna port of the master device. The signal generator amplitude was adjusted until the amplitude on the spectrum analyzer was -64dBm (the level at the master device antenna terminal). The signal generator was then set to generate the radar waveform which was verified on the spectrum analyzer.

Figure 2. Block Diagram of Test Configuration

HP Inc.com Inc. P011 Electromagnetic Compatibility DFS Requirements & Radar Waveform CFR Title 47, Part 15, Subpart E

IV. DFS Test Procedure and Test Results

HP Inc.com Inc. P011

A. DFS Test Setup

- 1. A spectrum analyzer is used as a monitor to verify that the Unit Under Test (EUT) has vacated the Channel within the Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and subsequent Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.
- 2. The test setup, which consists of test equipment and equipment under test (EUT), is diagrammed in Figure 3.

Figure 3. Test Setup Diagram

HP Inc.com Inc. P011

B. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time, and Non-Occupancy Period

Test Requirements: §15.407(h)(2)(iii) Channel Move Time. After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel.

§15.407(h)(2)(iv) Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

RSS-247 (6.3.2)(i) In-Service Monitoring: an LE-LAN device shall be able to monitor the operating channel to check that a co-channel radar has not moved or started operation within range of the LE-LAN device. During in-service monitoring, the LE-LAN radar detection function continuously searches for radar signals between normal LE-LAN transmissions.

RSS-247 (6.3.2)(iii) Channel move Time: after a radar signal is detected, the device shall cease all transmissions on the operating channel within 10 seconds.

RSS-247 (6.3.2)(iv) Channel closing transmission time: is comprised of 200 ms starting at the beginning of the channel move time plus any additional intermittent control signals required to facilitate a channel move (an aggregate of 60 ms) over the remaining 10-second period of the channel move time.

RSS-247 (6.3.2(v) Non-occupancy period: a channel that has been flagged as containing a radar signal, either by a channel availability check or in-service monitoring, is subject to a 30-minute non-occupancy period where the channel cannot be used by the LE-LAN device. The non-occupancy period starts from the time that the radar signal is detected.

- **Test Procedure:** A link was established between the master device and the test sample. The vector signal generator was used to generate radar type 0 for the testing since the sample is client only without radar detection. The radar pulses were adjusted to a level of -64dBm at the antenna of the master device. Traffic loading was provided by transferring the data file from the master to the test sample. The spectrum analyzer was configured to record approximately 15 seconds in order to see any transmissions occurring after the introduction of the radar signal. After the initial radar burst the channel is monitored for at least 30 minutes to capture any transmissions or becons that may occur for the non-occupancy period.
- Test Results: The EUT was compliant with the requirements of this section.
- **Test Engineer(s):** Bryan Taylor

Test Date(s): 5/25/2022

HP Inc.com Inc. P011

Date: 25.MAY.2022 09:59:31

Plot 1. Radar Signal Pulses (Type 0)¹

¹ The radar detection threshold from table 3 of KDB905462 D02 is -64dBm assuming a 0dBi receive antenna. -64dBm is the amplitude level of the radar pulses used during this test. The test sample used an antenna with a higher gain than 0dBi and the radar pulses were not offset by this antenna gain. Therefore the radar pulses used were lower than they should be and therefore represent a worse case and more difficult test for the Poly Studio X52.

HP Inc.com Inc. P011

Spectrum										
Ref Level -4	4.00 dBm	Offset	6.00 dB 👄	RBW 500 ki	Hz					
👄 Att	0 dB	SWT	15 s	VBW 500 ki	Hz					
SGL										
1Pk Clrw										
					D	1[1]				0.95 dB
-10 dBm									9	15.099 ms
					M	1[1]				75.94 dBm
-20 dBm										24.276 ms
BÖ I dBin										
40 d2m										
150 03m										
160 dBW										
70 dam .										
2 Danageneration	اللباء المتحد	المؤطر وتصاديعات	hanna (harra) h	hadron and four	فتطعير الألطيطيناء	bulletel etcar	أنغل	مسرائية ومناصحتهم أعقابه	llaerithaddd. 74	And in the second s
-80 dBm			and the second se		and in section of the			A set from a from the set	and the second	
-90 dBm										
-100 dBm						т	1			
100 0011										
CF 5.5 GHz	_			3200	1 pts		_			1.5 s/
					F	e a d y			4,00	5.05.2022

Date: 25.MAY.2022 11:30:51

Transmission End Time at 915.099mS. Meets the 10 Second channel move time requirement. Channel Closing Time = 0.6552mS (limit = 60mS)

Plot 2. Channel Move Time, 5.5 GHz

HP Inc.com Inc. P011

Spectrum	1 I								
Ref Level Att SGL	-4.00 dBm 0 dB	Offset	6.00 dB ⊜ 1850 s	RBW 500 k VBW 500 k	Hz Hz				`
●1Pk Clrw									
-10 dBm					M	1[1]	I	-	28.68 dBr 1.5865
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm	ana dha alfad baa an Is	l segutore a la la	a han dalar, sono	والمرابع ويترود الاستان	and a descept with first Day	and a state of a state of the	agel	ala at las di taa	ر مان ارز مان ا
-80 dBm									
-90 dBm									
-100 dBm—									T1.
CF 5.5 GHz	z			3200	1 pts				185.0 s/
	Л				F	te ad y		4,40	1670.0572.0222

Date: 25.MAY.2022 11:20:19

Plot 3. Non-occupancy period, 5.5 GHz

HP Inc.com Inc. P011

Date: 25.MAY.2022 11:44:48

Plot 4. WLAN Channel Traffic During Test

HP Inc.com Inc. P011 Electromagnetic Compatibility DFS Requirements & Radar Waveform CFR Title 47, Part 15, Subpart E

IV. Test Equipment

MET Labs

HP Inc.com Inc. P011

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

MET Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1234	Signal Analyzer	Rohde & Schwarz	FSV40	1/20/2022	1/20/2023
1\$3905	Vector Signal Generator	Keysight	N5172B	Verify at Time of Use	Verify at Time of Use
None	Power Divider	Weinschel	1506A	Verify at Time of Use	Verify at Time of Use
None	Power Divider	MCS	AAMCS-PWD- 2W-0.5G-13G- 10W-Sf	Verify at Time of Use	Verify at Time of Use

Table 13. Test Equipment List

HP Inc.com Inc. P011 Electromagnetic Compatibility DFS Requirements & Radar Waveform CFR Title 47, Part 15, Subpart E

End of Report