

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

January 17, 2023

HP Inc. Tony Griffiths 1501 Page Mill Road Palo Alto, CA 94304

Dear Tony Griffiths,

Enclosed is the EMC Wireless test report for compliance testing of the HP, Inc. P033 as tested to the requirements of FCC Part 15 C and RSS-247 Issue 2 for Intentional Radiators.

Thank you for using the services of Eurofins MET Labs. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS MET LABS

Mancy LaBucque.

Nancy LaBrecque Documentation Department

Reference: WIR118717-FCC247 RSS247 DTS BLE Rev 4

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs.

The Nation's First Licensed Nationally Recognized Testing Laboratory

HP, Inc. P033

Bluetooth Low Energy Test Report

for the

HP, Inc. P033

Tested under FCC Part 15 C and RSS-247 Issue 2 For Intentional Radiators

Bryan Taylor, Wireless Team Lead Electromagnetic Compatibility Lab

Jancy Lak

Nancy LaBrecque Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Matthew Hinojosa EMC Manager, Austin Electromagnetic Compatibility Lab

HP, Inc. P033

Report Status Sheet

Revision	Report Date	Reason for Revision			
Ø	Ø September 30, 2022 Initial Issue.				
1	November 4, 2022	Change Customer's Name and Address			
2	December 19, 2022 Corrections Requested by Customer				
3	3 January 7, 2023 Technical Revisions After TCB Review				
4 January 17, 2023 Added table showing test channels and power settings					

HP, Inc. P033

Table of Contents

I.	Executive Summary	8
	A. Purpose of Test	
	B. Executive Summary	9
II.	Equipment Configuration	10
	A. Overview	11
	B. References	12
	C. Test Site	13
	D. Measurement Uncertainty	13
	E. Description of Test Sample	
	F. Equipment Configuration	14
	G. Support Equipment	14
	H. Ports and Cabling Information	14
	I. Mode of Operation	15
	J. Method of Monitoring EUT Operation	
	K. Modifications	15
	a) Modifications to EUT	15
	b) Modifications to Test Standard	
	L. Disposition of EUT	15
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	16
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits	
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	
	RSS-GEN (6.7) 99% Bandwidth	
	§ 15.247(b) Peak Power Output	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(e) Peak Power Spectral Density	
IV.	Test Equipment	44

HP, Inc. P033

List of Tables

Table 1. Executive Summary	9
Table 2. EUT Summary Table	11
Table 1. Executive Summary Table 2. EUT Summary Table Table 3. References	12
Table 4. Uncertainty Calculations Summary	
Table 5. Equipment Configuration	14
Table 6. Support Equipment	14
Table 7. Ports and Cabling Information	14
Table 8. Test Channels Utilized	15
Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	18
Table 9. Conducted Emissions, 15.207(a), Phase Line, Test Results	19
Table 10. Conducted Emissions, 15.207(a), Neutral Line, Test Results	20
Table 11. 99% and 6 dB Occupied Bandwidth, Test Results	22
Table 12. Output Power Requirements from §15.247(b)	25
Table 13. Peak Power Output, Test Results	26
Table 14. Restricted Bands of Operation	
Table 15. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	29
Table 16. Peak Power Spectral Density, Test Results	42
Table 17. Test Equipment List	

HP, Inc. P033

List of Figures

Figure 1.	Block Diagram of Test Configuration	.14
	Block Diagram, Occupied Bandwidth Test Setup	
0	Peak Power Output Test Setup	
	Block Diagram, Conducted Spurious Emissions Test Setup	
0	Block Diagram, Peak Power Spectral Density Test Setup	

HP, Inc. P033

10	
AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
Е	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

List of Terms and Abbreviations

HP, Inc. P033 Bluetooth Low Energy Test Report FCC Part 15 C and RSS-247 Issue 2

I. Executive Summary

HP, Inc. P033

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the P033, with the requirements of FCC Part 15 C and RSS-247 Issue 2. HP, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the P033, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15 C and RSS-247 Issue 2, in accordance with HP, Inc. purchase order number 10000013761. All tests were conducted using measurement procedures ANSI C63.4-2014 and ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.247:2005	IC Reference RSS-247 Issue 2: 2017; RSS-GEN Issue 5: 2018	Description	Compliance
Title 47 of the CFR, Part 15 §15.203		Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	RSS-GEN(8.8)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(2)	RSS-247 (5.2)	6dB Occupied Bandwidth	Compliant
	RSS-GEN(6.7)	99% Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	RSS-247(5.4)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	RSS-GEN (6.13), (8.9), & (8.10)	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RSS-247(5.5)	RF Conducted Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	RSS-247(5.2)	Peak Power Spectral Density	Compliant

 Table 1. Executive Summary

HP, Inc. P033

II. Equipment Configuration

A. Overview

Eurofins MET Labs was contracted by HP, Inc. to perform testing on the P033, under HP, Inc.'s purchase order number 10000013761.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the P033.

Model(s) Tested: P033 Model(s) Covered: P033 Primary Power: 120VAC Type of Modulations: **GFSK** DTS Equipment Code: EUT **Specifications:** Peak RF Output Power: 0.89dBm **EUT Frequency Ranges:** 2402-2480 MHz Antenna Gain (declared 4.09dBi by HP, Inc.) Analysis: The results obtained relate only to the item(s) tested. Temperature: 15-35° C **Environmental** Relative Humidity: 30-60% **Test Conditions:** Barometric Pressure: 860-1060 mbar **Evaluated by:** Bryan Taylor **Report Date(s):** 4/20/2022 through 5/27/2022

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

HP, Inc. P033

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies
RSS-247, Issue 2, February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-GEN, Issue 5, March 2019	General Requirements and Information for the Certification of Radio Apparatus
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Table 3. References

HP, Inc. P033

C. Test Site

All testing was performed at Eurofins MET Labs, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	К	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.97 dB	2	95%
RF Power Radiated Emissions	±2.95 dB	2	95%

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

The P033 (marketed as Studio X52), is a video conferencing video bar designed to act as an audio / video endpoint codec over LAN networks. The device is powered by a AC/DC mains adapter and contains 2.4GHz / 5Ghz Wifi and Bluetooth radio interfaces.

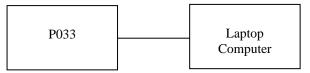


Figure 1. Block Diagram of Test Configuration

F. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. The laptop computer was used to send test commands to force the transmitters to operate in the appropriate test mode.

Ref. ID	Name / Description	Model Number	Part Number	Serial Number	Revision
1	P033	P033	N/A	Test Sample 1	N/A

 Table 5. Equipment Configuration

G. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	Customer Supplied Calibration Data
1	Laptop Computer	Dell	HW_Lab	

 Table 6.
 Support Equipment

H. Ports and Cabling Information

Ref. Id	Port Name on EUT	Qty	Length as tested (m)	Shielded? (Y/N)	Termination Box ID & Port Name
5	DC Power	1	2m	No	AC/DC adaptor
9	USB C	1	10m	No	Laptop Computer

Table 7. Ports and Cabling Information

HP, Inc. P033

I. Mode of Operation

The support laptop provided a direct means of controlling transmitter parameters. Unless otherwise stated or shown, all tests were performed at worst-case modulation and data rates on the following channels.

Transmit Band	Operating Mode	Channel Frequencies Tested	Test Tool Power Setting
2400 -	1Mbps	2402MHz / 2440MHz / 2480MHz	9.0dBm
2483.5MHz	2Mbps	2402MHz / 2440MHz / 2480MHz	9.0dBm

Table 8. Test Channels Utilized

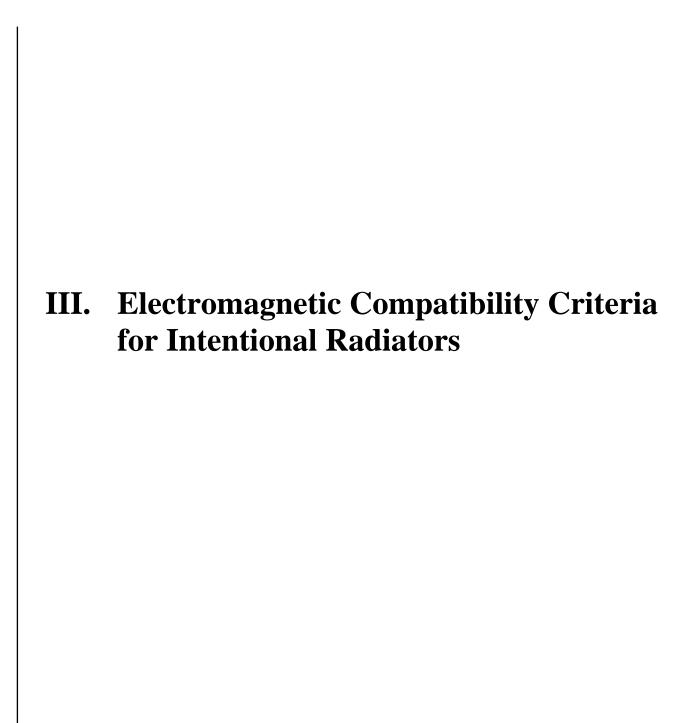
J. Method of Monitoring EUT Operation

A spectrum analyzer was used to confirm proper transmitter operation.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

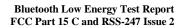

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to HP, Inc.upon completion of testing.

Electromagnetic Compatibility Criteria for Intentional Radiators


§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.
- **Results:** The EUT as tested is compliant the criteria of §15.203. The TX antenna is not accessible by the end user.
- Test Engineer(s): Bryan Taylor

Test Date(s): 5/3/2022

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

MET Labs

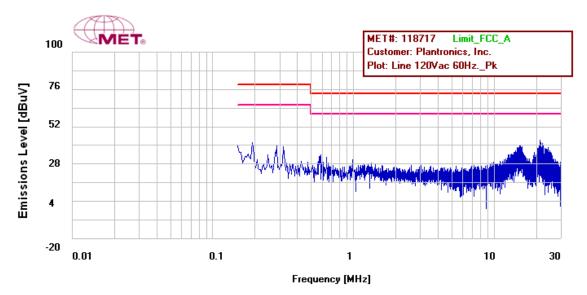
Test Requirement(s): § 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56	56 - 46			
0.5-5	56	46			
5-30	60	50			

Table 9. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure: The EUT was placed on a 0.8 m-high wooden table. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed using a 50 Ω /50 μ H LISN as the input transducer to an EMI receiver. For the purpose of this testing, the transmitter was turned on.

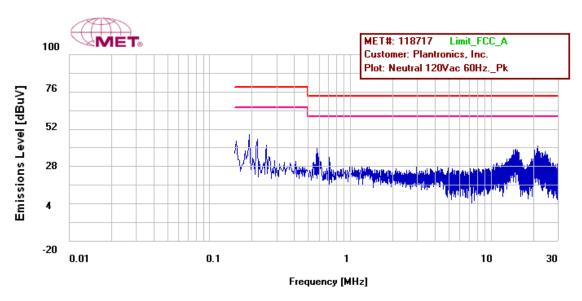
- **Test Results:** The EUT was compliant with this requirement.
- Test Engineer(s): James Seib
- **Test Date(s):** 4/20/2022


🛟 eurofins

15.207(a) Conducted Emissions Test Results

М	easurement	Location			Measu	irement	Limit	Limit Result	
Bonding measureme	ent from LI	SN ground to gr	ound plane		2.09	5 mΩ	$< 2.5 \text{ m}\Omega$	Pas	S
Line	Freq (MHz)	QP Amplitude (dBµV)	QP Limit (dBµV)	Margin (dB)	Result	Average Amplitud (dBµV)		Margin (dB)	Result
Line 120 VAC/60 Hz.	21.234	42.40	73.00	-30.60	Pass	38.90	60.00	-21.10	Pass
Line 120 VAC/60 Hz.	0.190	42.40	79.00	-36.60	Pass	28.50	66.00	-37.50	Pass
Line 120 VAC/60 Hz.	15.578	36.90	73.00	-36.10	Pass	31.50	60.00	-28.50	Pass
Line 120 VAC/60 Hz.	0.150	48.50	79.00	-30.50	Pass	32.50	66.00	-33.50	Pass
Line 120 VAC/60 Hz.	0.286	33.40	79.00	-45.60	Pass	21.70	66.00	-44.30	Pass
Line 120 VAC/60 Hz.	0.318	32.00	79.00	-47.00	Pass	22.00	66.00	-44.00	Pass

Table 10. Conducted Emissions, 15.207(a), Phase Line, Test Results


Conducted Emissions, 15.207(a), Phase Line

15.207(a) Conducted Emissions Test Results

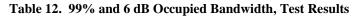
M	leasurement	Location			Measu	irement	Limit	Rest	ılt
Bonding measurem	Bonding measurement from LISN ground to ground plane				2.09	5 mΩ	$< 2.5 \text{ m}\Omega$	Pas	8
Line	Freq (MHz)	QP Amplitude (dBµV)	QP Limit (dBµV)	Margin (dB)	Result	Average Amplitud (dBµV)	0	Margin (dB)	Result
Neutral 120 VAC/60 Hz.	0.190	43.20	79.00	-35.80	Pass	29.20	66.00	-36.80	Pass
Neutral 120 VAC/60 Hz.	0.218	39.50	79.00	-39.50	Pass	25.90	66.00	-40.10	Pass
Neutral 120 VAC/60 Hz.	0.154	48.40	79.00	-30.60	Pass	32.00	66.00	-34.00	Pass
Neutral 120 VAC/60 Hz.	0.254	36.00	79.00	-43.00	Pass	23.00	66.00	-43.00	Pass
Neutral 120 VAC/60 Hz.	21.482	41.70	73.00	-31.30	Pass	38.20	60.00	-21.80	Pass
Neutral 120 VAC/60 Hz.	0.582	37.50	73.00	-35.50	Pass	30.20	60.00	-29.80	Pass

Table 11. Conducted Emissions, 15.207(a), Neutral Line, Test Results

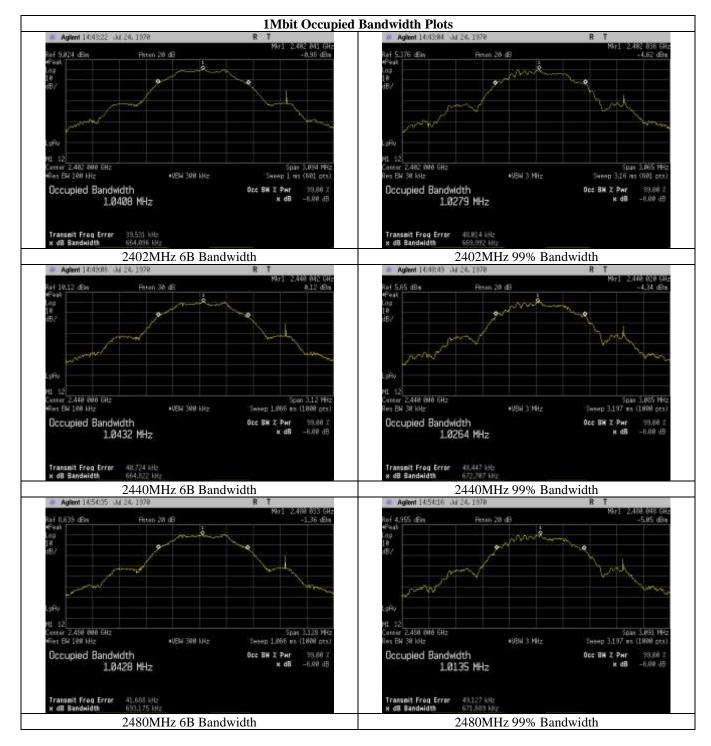
Conducted Emissions, 15.207(a), Neutral Line

Electromagnetic Compatibility Criteria for Intentional Radiators

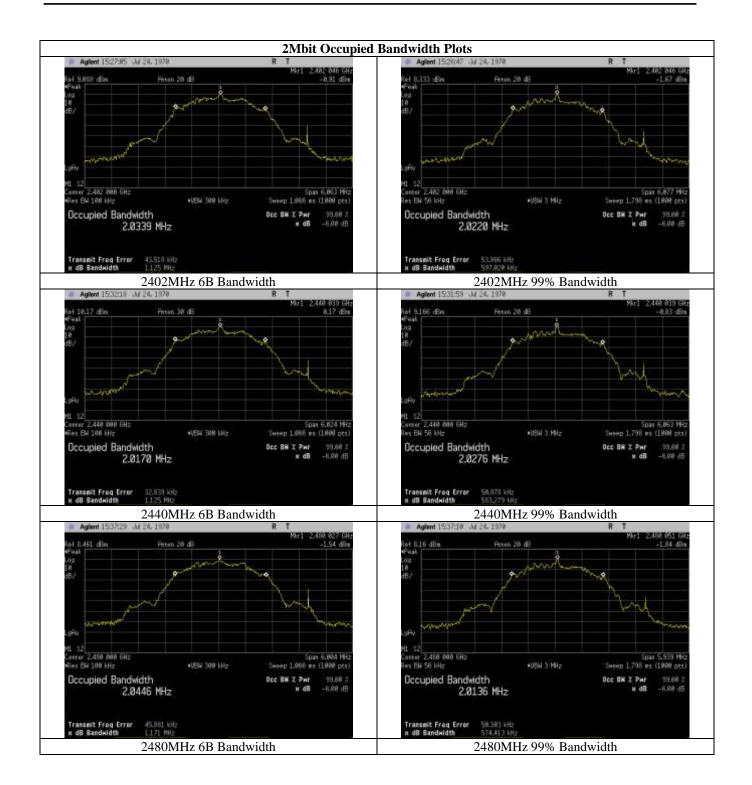
§ 15.247(a)(2)	6 dB Bandwidth
Test Requirements:	§ 15.247(a)(2): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
	For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.
Test Procedure:	The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, and the VBW $>$ RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.
Test Results	The EUT was compliant with § 15.247 (a)(2).
	The 6 dB Bandwidth was determined from the plots on the following pages.
Test Engineer(s):	Bryan Taylor
Test Date(s):	5/3/2022


Electromagnetic Compatibility Criteria for Intentional Radiators

RSS-GEN (6.7)	99% Bandwidth
Test Requirements:	The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency rang between two points, one above and the other blow the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.
Test Procedure:	The transmitter was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, and the VBW > RBW. The 99% Bandwidth was measured and recorded.
Test Results	The 99% Bandwidth determined from the plots on the following pages.
Test Engineer(s):	Bryan Taylor
Test Date(s):	5/3/2022


Figure 2. Block Diagram, Occupied Bandwidth Test Setup

Configuration / Channel Tested	Port 1 (6dB) (MHz)	Port 1 (99%) (MHz)
BLE_Low Ch_2402MHz_1MBit	0.664	1.028
BLE_Mid Ch_2440MHz_1MBit	0.665	1.026
BLE_High Ch_2480MHz_1MBit	0.693	1.014
BLE_Low Ch_2402MHz_2MBit	1.125	2.022
BLE_Mid Ch_2440MHz_2MBit	1.125	2.028
BLE_High Ch_2480MHz_2MBit	1.171	2.014



Occupied Bandwidth Test Results

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output

Test Requirements:

§15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400-2483.5	1.000
5725-5850	1.000

Table 13. Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 13, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band and using a point to point application may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, pointto-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, Omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

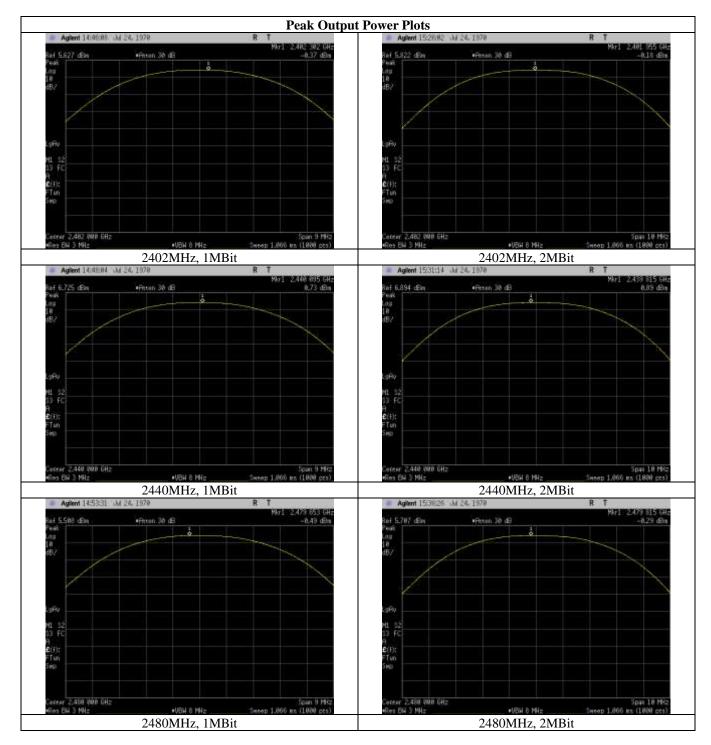
Test Procedure: The transmitter was connected to a calibrated spectrum analyzer. The analyzer reference level was offset by cable loss connecting to the test sample. The peak power was measured at the low, mid and high channels of each band at the maximum power level.

Test Results: The EUT was compliant with the Peak Power Output limits of **§15.247(b)**.

Test Engineer(s): Bryan Taylor

Test Date(s): 5/3/2022

Figure 3. Peak Power Output Test Setup


Peak Power Output Test Results

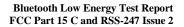

Configuration / Channel Tested	Port 1 (mW)	Port 1 (dBm)	Limit (dBm)	Margin dB
BLE_Low Ch_2402MHz_1MBit	0.9177	-0.37	30	30.37
BLE_Mid Ch_2440MHz_1MBit	1.1817	0.72	30	29.28
BLE_High Ch_2480MHz_1MBit	0.8929	-0.49	30	30.49
BLE_Low Ch_2402MHz_2MBit	0.9598	-0.18	30	30.18
BLE_Mid Ch_2440MHz_2MBit	1.2286	0.89	30	29.11
BLE_High Ch_2480MHz_2MBit	0.9348	-0.29	30	30.29

Table 14. Peak Power Output, Test Results

Peak Power Output Test Results

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475-16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 15. Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 – 0.510 MHz.

² Above 38.6

HP, Inc.

P033

MET Labs

Test Requirement(s): § 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 16.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits (dBµV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

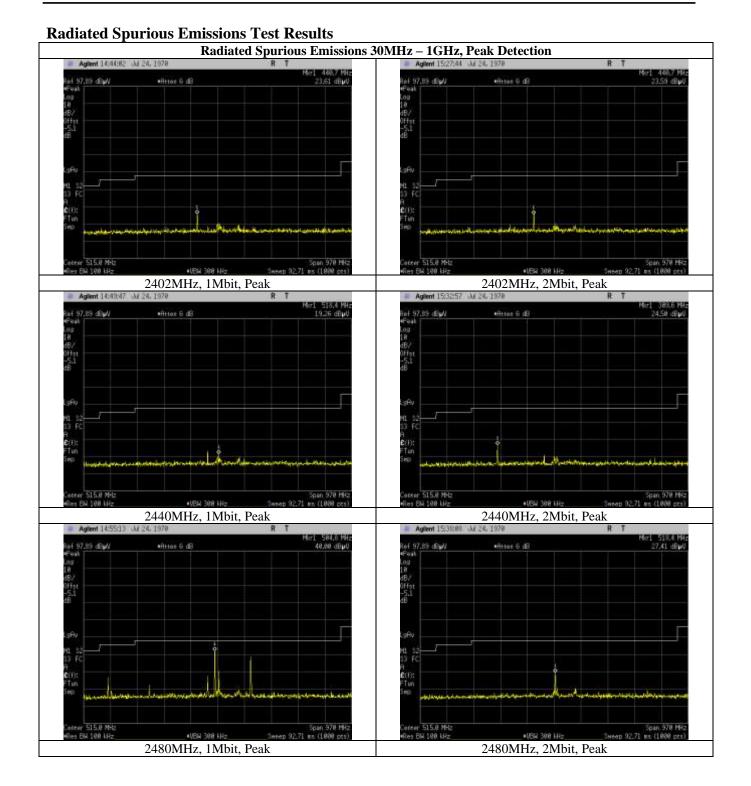
Table 16. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures: The antenna-port methodology form ANSI C63.10: 2013 Section 11.12.2 was utilized as an alternative to radiated emissions in the restricted bands.

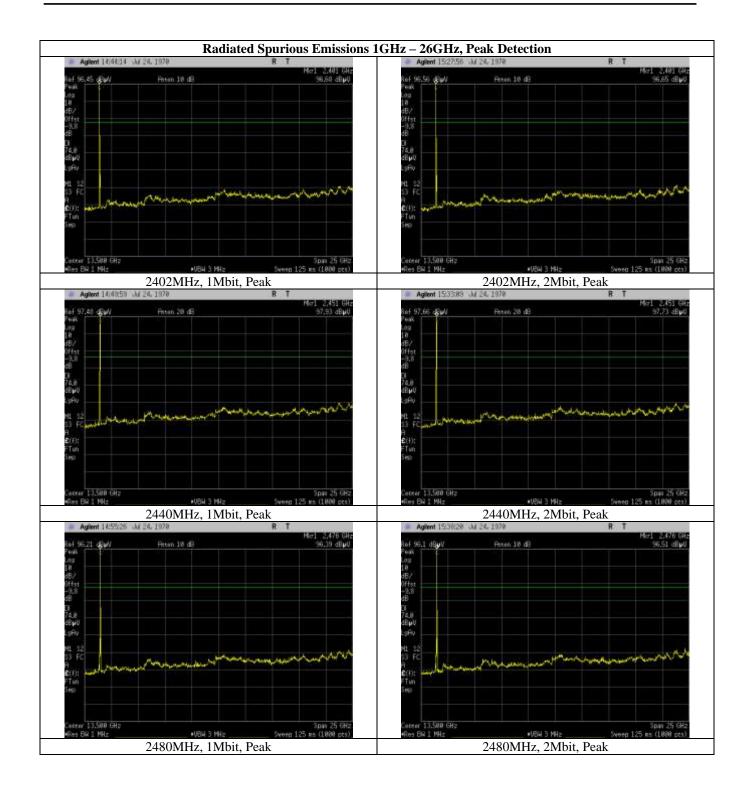
The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. For frequencies below 1GHz, the RBW was set to 100 kHz and the VBW was set to 3x the RBW. For frequencies above 1GHz the RBW was set to 1MHz and the VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector was used. The maximum antenna gain was added to the measurement trace as was the appropriate maximum ground reflection factor as outlined in section 11.12.2 of ANSI C63.10. The resultant EIRP was then converted to an equivalent electric field strength which is shown on the graphical plots which follow. Measurements were carried out at the low, mid and high channels.

In order to assess the cabinet radiated spurious emissions, a radiated scan was performed with the antenna of proper impedance installed. The transmitter was turned on. Measurements were performed of the low, mid and high Channels. The EUT was rotated orthogonally through all three axes if multiple mounting orientations are supported. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line.

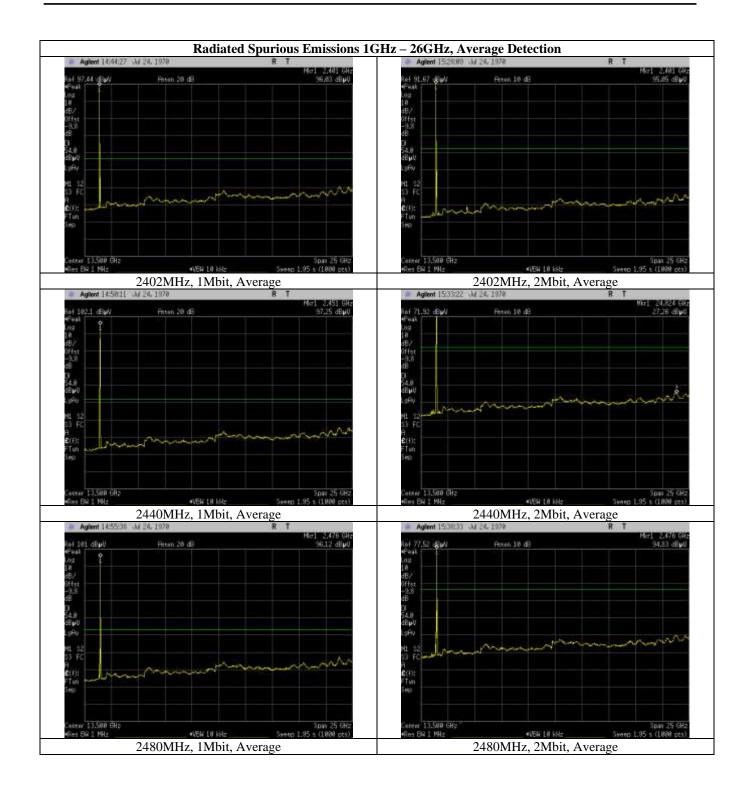
Radiated measurements below 30MHz were performed in a semi-anechoic chamber that has been correlated to an open area site.

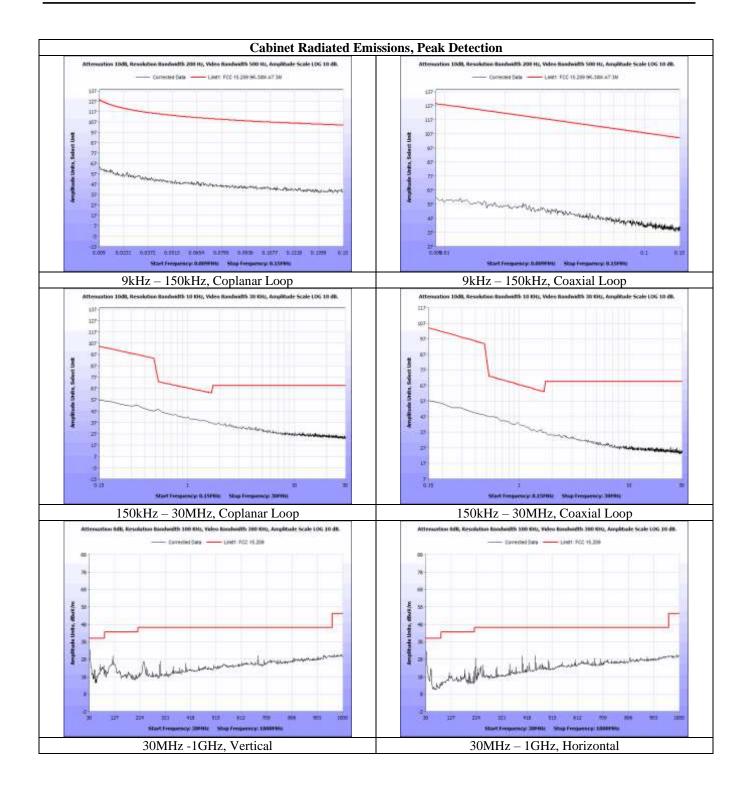

Test Results: The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).

Note: The antenna gain specification sheet indicated a worst case gain of 4.09dBi. During the testing the scans were performed with either 4dBi for the gain or the default 2dBi from ANSI C63.10. Due to the high margin on the plots the additional gain in all cases still demonstrates a passing result.

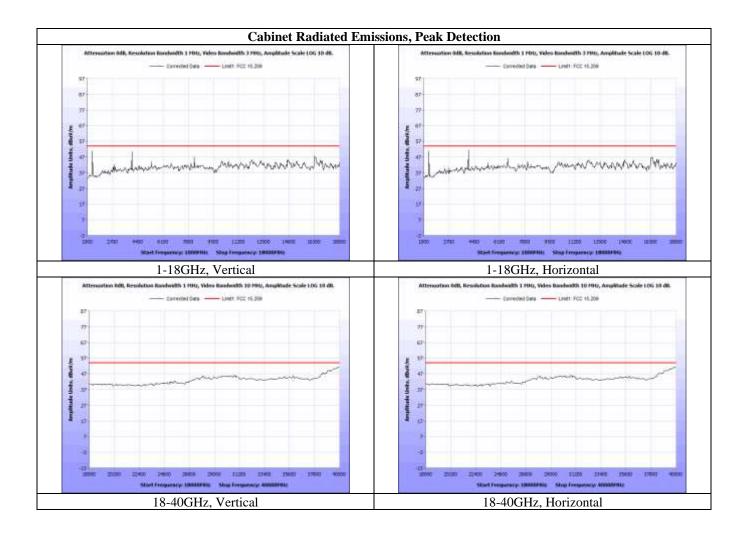

Test Engineer(s): Bryan Taylor, James Seib

Test Date(s): 5/3/2022 - 5/18/2022





Ref 110 dBpU Press 30 dB 43.85 dBpU Usg 10	Agilent 14044:33 M.	24, 1978	R T	Agilent 14:55:45 UM	24, 1978	RT
Max And And <th>over the second</th> <th>100 Mar 100</th> <th></th> <th>our the second</th> <th>10.00 million</th> <th>Mari 2,483 500 G4</th>	over the second	100 Mar 100		our the second	10.00 million	Mari 2,483 500 G4
He was a serie of the series o		Friten 30 Bb	43,03 dBp0		Friten 30 dis	43,40 dbpt
dfy real dip real dip real dip real dip real dip real dip real dip real re	Log ·					
Print						
de jarden van de jarden van de jarden						
Image: State Bill Control I	-3,8 dB			-9.8 dB		
dipy dipy	0			0		
Start						
13) FC 14 Minute Market Ma						
13 FC 14 <	ur = 10		التربي المدر التربي ال			
Effor see See See See See See See See	55 F.F.		a second second	33 FC	and the state of t	
Tun Sho Noo Bu I Miz 2402MHz, Lower Band Edge, 1Mbit, Peak 2402MHz, Lower Band Edge, 1Mbit, Peak 2402MHz, Lower Band Edge, 1Mbit, Peak 2402MHz, Upper Band Edge, 1Mbit, Peak 2480MHz, Upper Band Edge, 1Mbit, Peak 2480Mz, Upper Band Edge,		electrol Southing the Instantion States States in some of the states in	and the second	THE NEW YORK	water and the second	and the second second second second second
See See <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Res DN 11 Miz #USH 3 Miz Beent 1466 m/ (1800 ccs) #USH 3 Miz Seent 1466 m/ (1800 ccs) 24022MHz, Lower Band Edge, 1Mbit, Peak 2480MHz, Upper Band Edge, 1Mbit, Peak Agient 1522015 Mizt 2380 86 cft Agient 1522015 Mizt 2380 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 3 Mizt 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 86 cft Ref 110 dBpU Pren 30 dB #It 2430 66 m/ 140 cft Ref 110 dBpU Pren 30 dB #It 2430 cft Ref 110 dBpU Pren 30 dB #It Ref 110 dBpU Ref 110 dBpU Pren 30 dB #It Ref 110 dBpU Ref 110 dBpU Pren 30 dB #It Ref 110 dBpU Ref 110 dBpU Pren 30 dB #It Ref 110 dBpU Ref 110 dBpU Pren 30 dB <						
effere BH 1 Miz *//BH 3 Miz Breent 1.000 ms (1000 ccs) 2402MHz, Lower Band Edge, 1Mbit, Peak 2480MHz, Upper Band Edge, 1Mbit, Peak Aginer 152825 Mizet 1000 Aginer 152825 Mizet 1000 Ref 110 dBµU Price 30 dB Met 12 dBµU Price 30 dB <						
effere BH 1 Miz *//BH 3 Miz Breent 1.000 ms (1000 ccs) 2402MHz, Lower Band Edge, 1Mbit, Peak 2480MHz, Upper Band Edge, 1Mbit, Peak Aginer 152825 Mizet 1000 Aginer 152825 Mizet 1000 Ref 110 dBµU Price 30 dB Met 12 dBµU Price 30 dB <						
2402MHz, Lower Band Edge, 1Mbit, Peak 2480MHz, Upper Band Edge, 1Mbit, Peak Agtert 1522015 All 24, 1070 B <t< td=""> Agtert 1522025 All 24, 1070 B<t< td=""> Agtert 1522025 All 24, 1070</t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<>						Spail 19-196
Agient 15:28:15 Adjent 15:28:15 Adjent 15:28:10 B T Ref 110 dBµU Fitter 30 dB 46:25 dBµU Fitter 30 dB 44:70 dBµU Magient 15:28:15 Adjent 15:28:35 Adjent 15:28:35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Micl 2,338 88 (Hz Micl	2402MH	z, Lower Band Edge,	1Mbit, Peak	2480MF	Iz, Upper Band Edg	e, 1Mbit, Peak
Ref 110 dBµU Prom 30 dB 46.75 dBµU Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Max Ref 110 dBµU Prom 30 dB 44.70 dBµ Ref 110 dBµ Prom 30 dB 44.70 dBµ Ref 110	· Agilent 13:28:15 U.I	24, 1979		Agilent 15:38:38 UM	24, 1978	
ePeak	Rof TIR (Rul)	Peter 38 dB		Rol TTR (Rul)	Peters 3h dB	
18 48 48 48 48 48 48 48 48 48 4	Peak			Pest		
dB/ dB/ 33 dB dB						
-9.8 dB dB dB dB dB dB dB dB dB dB	dB/			dB/		
48 48 72.8 48 48 10 72.8 48 48 12 72.9	Offst -3.8			Offst -9.8		
dBpV dBpV <td< td=""><td>dB</td><td></td><td></td><td>dB</td><td></td><td></td></td<>	dB			dB		
dBpV dBpV <td< td=""><td>01 76 8</td><td></td><td></td><td>76.8</td><td></td><td></td></td<>	01 76 8			76.8		
NEL 12 13 FC 13 FC 14 FC 15 FC 1	dByU					
13 FC 13 FC 14 14 14 14 15 14 14 14 16 15 14 14 17 14 14 14 18 14 14 14 10 14 14 14 17 14 14 14 18 14 14 14 19 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 14 14 15 14 14 14 <td>tgAv</td> <td></td> <td></td> <td>LaRv</td> <td></td> <td></td>	tgAv			LaRv		
É(i): É(i): FTun Step Cateer 2.350 60 GHz Span 100 HHz Cateer 2.450 Still GHz Span 19 HHz	HL 12			HL 12		
É(i): É(i): FTun Step Cateer 2.350 60 GHz Span 100 HHz Cateer 2.450 Still GHz Span 19 HHz	A DO PAR	a substance of a large second s	and mary stranger in the second state of the	33 FC 1990000	مر المراجع الم	and and a stand a stand and a same
FTun Sep Cateer 2.350 00 GHz : Span 100 HHz Cateer 2.450 SHI GHz : Span 19 HH						
Cateer 2.350 60 GHz Span 100 HHz, Cateer 2.450 Still GHz Span 19 HH				FTun		
Concer 2.350 69 GHz 5pp 109 HHz. Concer 2.456 Set 6Hz 5pp 19 HHz. 5pp 19 HHz. 5pp 19 HHz 50 pp 19 Hz 50 pp 19 HHz 50 pp 19 HHz 50 pp 19 HHz 50 pp 19 Hz 50 pp 19	2ND			- KD		
Carterr 2.350 69 GHz Span 199 HHz Carterr 2.450 Stati 6Hz Span 19 HHz Span 19 HHz Span 19 HHz Statis 100 mm 1000 mm 10000 mm 100000000						
Carser 2,359 89 (592 5pa) 19 Hz; Carser 2,359 89 6Hz 5pa) 19 Hz; Spa) 19 Hz; S						



Agilent 1404548 (A	1 24, 1978	RT	Agilent 14:55:52 M	24, 1979	RT
Ref 110 dBpU	Pitten 30 dB	Mari 2,310 00 GHz 34,38 dBwU	Ref 110 dBpU	From 30 dB	Mir1 2.483 500 64 34.18 dBu
Feat			*Fost		
18			18		
dB/			dB/		
-9.8			-3.8		
db			68 Di		
54.0 dBµV			54.8 N dBp0		
tgAv			LgAv		
41 12			H1 12		
53 FC			53 FC		
€(i):		and an and a second second	£(+):		
FTun Sep			FTun Sep		
Coteor 2,350 00 GH2 •Rea BW 1 MHz	*V6H 1 kHz	Span 108 HHz Sweep 77.99 ms (1809 pts)	Consor 2,458 SBB GHz •Rea SM 1 MHz	WEN 1 kHz	5pm 19 MH Sweep 14:85 ms (1989 pts)
				*104 T 642	
		Mhit Average	2480MHz	Upper Band Edge	
	, Lower Band Edge, 1	Mbit, Average	2480MHz	z, Upper Band Edge	
2402MHz	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilent 15:38:46 Jul	24, 1978	1Mbit, Average
2402MHz Agitent 1562822 (A Ref 118 dBµU Feat	, Lower Band Edge, 1	R T	Agilent 1538:46 Jul Rot 110 dBpU Feat	z, Upper Band Edge	1Mbit, Average
2402MHz Agitent 1562822 A Rof 118 dBµU Foat 18	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilent 15:38:46 Jul Ref 110 dBpU	24, 1978	1Mbit, Average
2402MHz Agitent 15:2022 A Ref 110 dBpU Feat	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilent 1538:46 Jul Rot 110 dBpU Feat	24, 1978	1Mbit, Average
2402MHz Agitent 1562822 A Rof 118 dBµU Foat 18	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilent 1538:46 Jul Rot 110 dBpU Feat	24, 1978	1Mbit, Average
2402MHz Agitert 152222 A Ref 118 dByU 4Feat 18 dB/ Hfst -2,5 dB	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilert 15:38:46: Will Ref 110 dBpU Peak Iog I# I	24, 1978	1Mbit, Average
2402MHz Agitent 1562822 A Rof 118 dBµU Foat 18	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilent 1538:46 Jul Rot 110 dBpU Feat	24, 1978	1Mbit, Average
2402MHz Agitert 152222 A Ref 118 dByU 4Feat 18 dB/ Hfst -2,5 dB	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilert 15:30:40: GAI Ref 110 dBpU Peak Log B BF -0:8 B D 54.0	24, 1978	1Mbit, Average
2402MHz Agitert 15/22/22 A Ref 110 dB/V 4Feak Log 10 dB/ 4Feak 54,8 dB	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agileri 15:30:40: UM Ref 110 dBpU Peak Upg 10 10 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 10 11 12 13 14 14 14	24, 1978	1Mbit, Average
2402MHz Agilent 152822 A Ref 110 dBµU HTeak Ing In HTeak Ing	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agileri 15:30:40: UM Ref 110 dBpU Peak Upg 10 10 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 10 11 12 13 14 14 14	24, 1978	1Mbit, Average
2402MHz Agitert 15/22/22 A Ref 110 dBul Heal Log 10 dB/ Heal 10 dB	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilert 15:35:46: Will Ref 110 dBpU Prest Im I	24, 1978	1Mbit, Average
2402MHz Agiteri 15/20/22 ** Ref 110 dBµU #Peak #	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agilert 15:38:48: uvi Ref 110 dBpU Feat IP	24, 1978	1Mbit, Average
2402MHz Agitert 152822 A Ref 110 dBpU 46eak Log 18 45/ 07 548 dB 0	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agileri 1533648 (Ad Réf 114 dBpU Peak Jap JB JB JB JB JB JB JB JB JB JB JB JB JB	24, 1978	1Mbit, Average
2402MHz Agitert 152822 A Ref 110 dBpU 46eak Log 18 45/ 07 548 dB 0	, Lower Band Edge, 1	R T Mart 20500 00 GHz	Agileri 1533648 (Ad Réf 114 dBpU Peak Jap JB JB JB JB JB JB JB JB JB JB JB JB JB	24, 1978	1Mbit, Average

HP, Inc. P033

🛟 eurofins

Frequency (Hz)	Meter Reading (dBuV)	RBW (Hz)	Antenna Factor (dBuV)	Cable Loss (dB)	Preamp Factor (dB)	Corrected Measurement dBuV/m	Limit 1, FCC 15.209 dBuV/m	Margin 1 (dB)
30.0E+06	33.98	100000	22.8	1.16	-25.16	32.78	40	-7.22
31.5545E+06	34.2	100000	21.92	1.27	-25.06	32.33	40	-7.67
33.109E+06	30.02	100000	21.25	1.36	-24.97	27.65	40	-12.35
399.9679E+06	30.94	100000	19.9	4.3	-25.25	29.88	46	-16.12
449.7115E+06	29.65	100000	20.8	4.66	-25.08	30.03	46	-15.97
811.9071E+06	23.58	100000	24.19	6.31	-25.03	29.06	46	-16.94
1.3269E+09	50.95	1000000	28.79	2.23	-31.32	50.65	54	-3.35
3.9968E+09	55.62	1000000	32.98	5.18	-42.41	51.37	54	-2.63
6.6667E+09	49.84	1000000	35.41	6.6	-45.75	46.09	54	-7.91
12.1426E+09	46.83	1000000	38.6	9.38	-49.53	45.28	54	-8.72
14.5401E+09	45.61	1000000	39.01	10.29	-49.75	45.16	54	-8.84
15.1394E+09	43.44	1000000	39.3	11.19	-48.87	45.06	54	-8.94
16.3381E+09	47.07	1000000	40.5	11.66	-52.51	46.72	54	-7.28
16.3654E+09	47.14	1000000	40.53	11.69	-52.54	46.82	54	-7.18
16.3926E+09	46.97	1000000	40.57	11.71	-52.57	46.68	54	-7.32
16.4199E+09	47.48	1000000	40.61	11.78	-52.99	46.88	54	-7.12
16.4471E+09	46.94	1000000	40.66	11.85	-53.55	45.91	54	-8.09
16.6923E+09	46.31	1000000	41.18	11.48	-53.5	45.47	54	-8.53
16.8285E+09	47.39	1000000	41.25	11.16	-54.57	45.23	54	-8.77
16.8558E+09	47.13	1000000	41.23	11.22	-54.43	45.16	54	-8.84
39.4359E+09	27.65	1000000	47.36	11.69	-36.68	50.02	54	-3.98
39.7885E+09	27.5	1000000	47.75	11.8	-36.25	50.8	54	-3.2
40.0E+09	27.45	1000000	48.03	11.86	-35.74	51.6	54	-2.4

Worst Case Cabinet Spurious Emissions (Horizontal Polarity)

HP,	Inc.
P03	3

🛟 eurofins

Frequency (Hz)	Meter Reading (dBuV)	RBW (Hz)	Antenna Factor (dBuV)	Cable Loss (dB)	Preamp Factor (dB)	Corrected Measurement dBuV/m	Limit 1, FCC 15.209 dBuV/m	Margin 1 (dB)
30.0E+06	34.79	100000	22.3	1.16	-25.16	33.09	40	-6.91
31.5545E+06	35.62	100000	21.37	1.27	-25.06	33.2	40	-6.8
33.109E+06	32.44	100000	20.17	1.36	-24.97	29	40	-11
71.9712E+06	38.1	100000	10.19	1.84	-25.21	24.92	40	-15.08
84.4071E+06	34.98	100000	12.18	2.04	-24.95	24.26	40	-15.74
120.1603E+06	36.78	100000	15.92	2.31	-25.14	29.87	43.5	-13.63
675.1122E+06	26.72	100000	23.1	5.63	-25.3	30.15	46	-15.85
930.0481E+06	22.44	100000	25.4	6.82	-24.39	30.27	46	-15.73
950.2564E+06	21.62	100000	25.6	7	-24.2	30.02	46	-15.98
954.9199E+06	21.75	100000	25.6	7	-24.22	30.13	46	-15.87
1.3269E+09	51.1	1000000	28.9	2.23	-31.32	50.91	54	-3.09
3.9968E+09	54.59	1000000	33.18	5.18	-42.41	50.54	54	-3.46
8.2196E+09	50.38	1000000	35.52	7.31	-46.08	47.13	54	-6.87
12.0881E+09	46.21	1000000	38.56	9.26	-48.97	45.06	54	-8.94
14.5673E+09	45.2	1000000	39.03	10.4	-49.61	45.02	54	-8.98
16.3381E+09	48.01	1000000	40.48	11.66	-52.51	47.66	54	-6.34
16.3654E+09	47.44	1000000	40.52	11.69	-52.54	47.11	54	-6.89
16.3926E+09	46.96	1000000	40.55	11.71	-52.57	46.65	54	-7.35
16.4199E+09	47.21	1000000	40.6	11.78	-52.99	46.6	54	-7.4
16.4471E+09	46.14	1000000	40.66	11.85	-53.55	45.1	54	-8.9
39.4712E+09	27.5	1000000	47.37	12.01	-36.67	50.22	54	-3.78
40.0E+09	27.6	1000000	48.01	11.86	-35.74	51.73	54	-2.27

Worst Case Cabinet Spurious Emissions (Vertical Polarity)

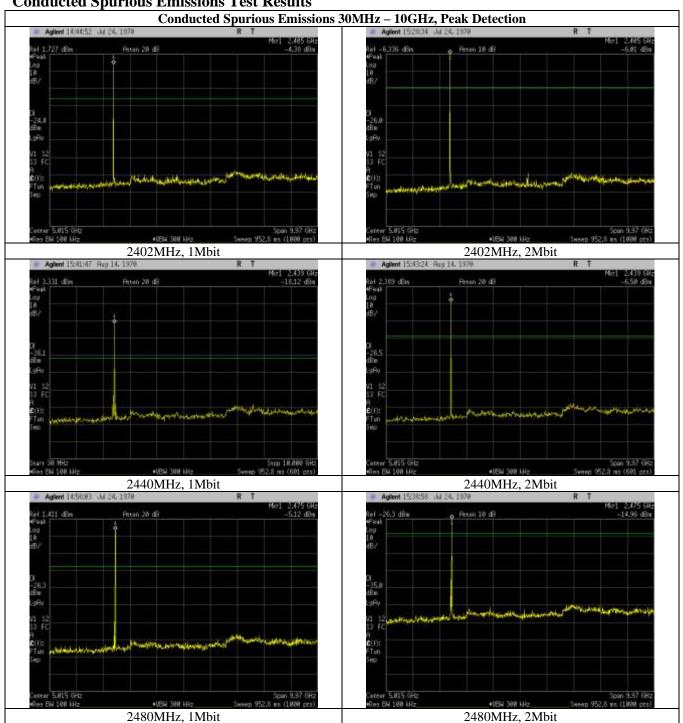
HP, Inc. P033

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) RF Conducted Spurious Emissions Requirements

- **Test Requirement:** 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- **Test Procedure:** For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. The RBW was set to 100 kHz. The VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid and high channels.


See following pages for detailed test results with RF Conducted Spurious Emissions.

- Test Results: The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).
- Test Engineer(s): Bryan Taylor
- **Test Date(s):** 5/3/2022

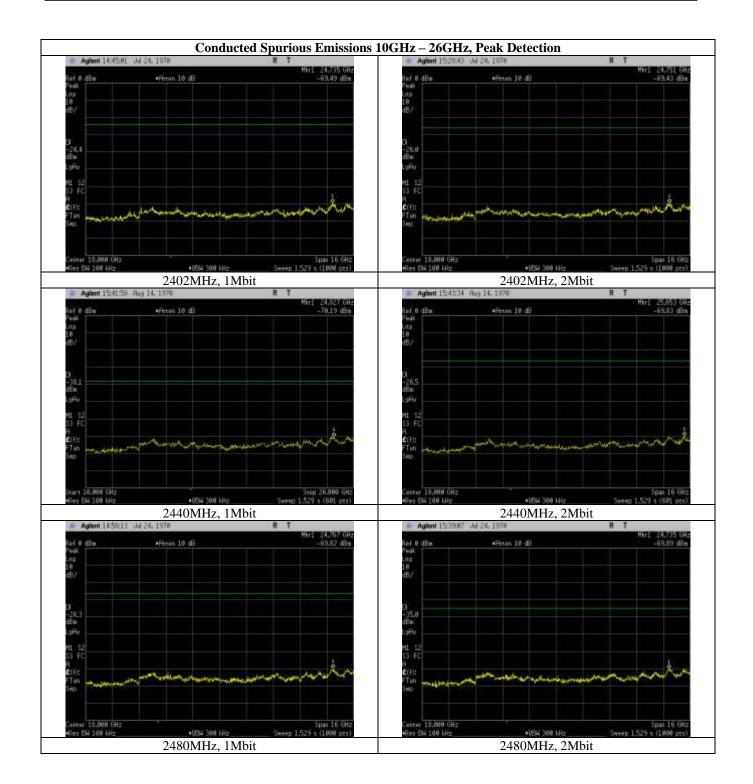
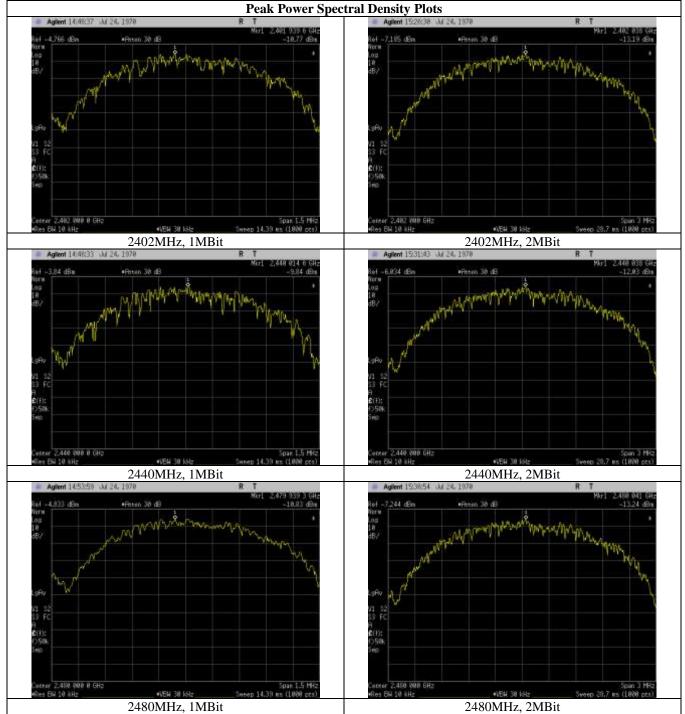


Figure 4. Block Diagram, Conducted Spurious Emissions Test Setup



Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e)	Peak Power Spectral Density
Test Requirements:	§15.247(e): For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.
Test Procedure:	The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. The RBW was set between 3kHz and 100 kHz. The VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid and high channels.
Test Results:	The EUT was compliant with the peak power spectral density limits of § 15.247 (e).
	The peak power spectral density was determined from plots on the following page(s).
Test Engineer:	Bryan Taylor
Test Date:	5/3/2022


Figure 5. Block Diagram, Peak Power Spectral Density Test Setup

	Port 1 (mW)	Port 1 (dBm)	Limit (dBm)	Margin dB
Configuration / Channel Tested	(11100)	(иып)	(иып)	ив
BLE_Low Ch_2402MHz_1MBit	0.0838	-10.77	8	18.77
BLE_Mid Ch_2440MHz_1MBit	0.1038	-9.84	8	17.84
BLE_High Ch_2480MHz_1MBit	0.0825	-10.83	8	18.83
BLE_Low Ch_2402MHz_2MBit	0.0480	-13.18	8	21.18
BLE_Mid Ch_2440MHz_2MBit	0.0626	-12.03	8	20.03
BLE_High Ch_2480MHz_2MBit	0.0474	-13.24	8	21.24

HP, Inc. P033

Peak Power Spectral Density

HP, Inc. P033 Bluetooth Low Energy Test Report FCC Part 15 C and RSS-247 Issue 2

IV. Test Equipment

HP, Inc. P033

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

MET Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4771	Spectrum Analyzer	Keysight	E4446A	4/25/2022	10/25/2023
1A1083	Receiver	Rohde & Schwarz	ESU40	7/1/2021	7/1/2022
1A1176	Active Loop Antenna (9KHz-30MHz)	ETS-Lindgren	6502	06/28/2021	06/28/2022
1A1050	Bilog Antenna (30MHz – 1GHz)	Schaffner	CBL 6112D	12/01/2020	12/01/2022
1A1183	Horn Antenna (1GHz – 18GHz)	ETS Lindgren	3117	06/01/2020	06/01/2022
1A1161	Horn Antenna (18GHz – 40GHz)	ETS Lindgren	3116C	06/03/2020	06/03/2022
1A1065	EMI Receiver	Rohde & Schwarz	ESCI	07/01/2021	07/01/2022
1A1087	Pulse Limiter	Rohde & Schwarz	ESH3Z2	06/30/2021	06/30/2022
1A1122	LISN	Teseq	NNB 51	09/13/202	09/13/2022
1A1123	LISN	Teseq	NNB 51	11/20/2021	11/20/2022
1A1197	RF Current Probe	Fisher Custom Communications (FCC)	F-33-2	09/13/2021	09/13/2022
1A1169	Temp, Humidity, and Pressure Recorder	Omega	OM-CP- PRHTemp2000	03/02/2022	03/02/2023
1A1149	DC Milliohm Meter	GW Instek	GOM-802	06/08/2021	06/08/2022
1A1119	Conducted Emissions Test Area	Custom Made	N/A	06/08/2021	06/08/2022
1A1099	Generator	Com-Power	CGO-51000	See Note	
1A1088	Preamplifier	Rohde & Schwarz	TS-PR1	See Note	
1A1044	Generator	Com-Power	CG-520	See Note	
1A1073	Multi Device Controller	ETS	2090	See Note	
1A1074	System Controller	Panasonic	WV-CU101	See Note	
1A1080	Multi-Device	ETS	2090	See Note	
1A1180	Preamplifier	Miteq	AMF-7D- 01001800-22- 10P	See Note	

Table 18. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

HP, Inc. P033 Bluetooth Low Energy Test Report FCC Part 15 C and RSS-247 Issue 2

End of Report